JPH08312517A - Runner of reversible pump-turbine - Google Patents

Runner of reversible pump-turbine

Info

Publication number
JPH08312517A
JPH08312517A JP7119590A JP11959095A JPH08312517A JP H08312517 A JPH08312517 A JP H08312517A JP 7119590 A JP7119590 A JP 7119590A JP 11959095 A JP11959095 A JP 11959095A JP H08312517 A JPH08312517 A JP H08312517A
Authority
JP
Japan
Prior art keywords
runner
blade
turbine
band
vane
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP7119590A
Other languages
Japanese (ja)
Other versions
JP3688342B2 (en
Inventor
Eizo Kita
英 三 北
Yasuteru Ono
野 泰 照 大
Takahiko Yoshimori
森 隆 彦 吉
Toshiaki Suzuki
木 敏 暁 鈴
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Kansai Electric Power Co Inc
Original Assignee
Toshiba Corp
Kansai Electric Power Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp, Kansai Electric Power Co Inc filed Critical Toshiba Corp
Priority to JP11959095A priority Critical patent/JP3688342B2/en
Publication of JPH08312517A publication Critical patent/JPH08312517A/en
Application granted granted Critical
Publication of JP3688342B2 publication Critical patent/JP3688342B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/20Hydro energy

Abstract

PURPOSE: To improve hydraulic turbine part load efficiency by extending a region near a runner band of an impeller vane outlet end in the hydraulic turbine flowing direction toward the downstream direction of a flow of a hydraulic turbine, gradually extending this extended part as it approaches the runner band and reducing only an angle of a hydraulic turbine impeller vane near the runner band. CONSTITUTION: A region near a, runner band 7 of a hydraulic turbine impeller vane outlet end 8 of a runner vane 4 is extended toward the downstream side in the hydraulic turbine flowing direction so as to make a curved outline. Additionally, when an angle from the circumferential direction of a curved line To made by connecting a vane thickness center of a vane head end part at a point G where the hydraulic turbine impeller vane outlet end 8 starts extending toward an outlet in the hydraulic turbine direction is set as a vane outlet angle βo, the vane outlet angle βo of the extended vane head end part is reduced as it approaches the runner band 7. Additionally, extension quantity of the hydraulic turbine impeller vane outlet end 8 of the runner vane 4 is increased as it approaches the runner band 7.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明はポンプ水車のランナに係
り、特に水車の部分負荷効率性能を改善したランナの羽
根形状に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a pump turbine runner, and more particularly to a runner blade shape having improved partial load efficiency performance of the turbine.

【0002】[0002]

【従来の技術】ポンプ水車のランナはその回転方向を変
えることにより発電及び揚水運転を行うことができる。
図9はポンプ水車の構造の概略を示しており、発電運転
中ケーシング1に流入した水はランナ2に流入し、これ
を回転駆動して吸出し管3から排出される。逆に揚水運
転中、図示しない発電電動機により発電運転時とは逆方
向にランナ2が回転駆動され、吸出し管3を通してラン
ナ室内へ導かれた水はランナ2でエネルギを与えられ、
ケーシング1を介して上池(図示せず)に揚水される。
2. Description of the Related Art A runner of a pump turbine can perform power generation and pumping operation by changing its rotating direction.
FIG. 9 shows an outline of the structure of the pump turbine, and the water that has flowed into the casing 1 during the power generation operation flows into the runner 2, which is rotationally driven and discharged from the suction pipe 3. On the contrary, during the pumping operation, the runner 2 is rotationally driven by a generator motor (not shown) in the direction opposite to the power generating operation, and the water guided into the runner chamber through the suction pipe 3 is given energy by the runner 2,
Water is pumped to the upper pond (not shown) via the casing 1.

【0003】この種のポンプ水車のランナ2は円周方向
に等配された複数枚のランナ羽根4を有し、これらのラ
ンナ羽根4は、主軸5の下端に結合されたランナクラウ
ン6とランナバンド7との間に固定されている。図10
はランナ2を水車出口側から見た図を示しているが、ラ
ンナ羽根の水車流れ方向の出口側先端(以下水車羽根出
口端という)8はほぼ半径方向に放射状に延在してい
る。
A runner 2 of this type of pump turbine has a plurality of runner blades 4 equally arranged in the circumferential direction. These runner blades 4 are connected to the lower end of a main shaft 5 and a runner crown 6 and a runner. It is fixed to the band 7. Figure 10
Shows a view of the runner 2 as seen from the water turbine outlet side, the tip of the runner blade on the outlet side in the turbine flow direction (hereinafter referred to as the water turbine blade outlet end) 8 extends substantially radially in the radial direction.

【0004】上述のように、ポンプ水車は1個のランナ
で発電運転と揚水運転を行うが、両運転時の最高効率点
は一致せず、揚水運転時の最高効率点の方が低落差側に
位置する。揚水発電所では揚水運転時のポンプ特性が最
も重要であることから、ランナはポンプ特性の最高効率
点である低い揚程で大流量の条件で設計される。したが
って、水車運転範囲は水車最高効率点から離れている。
図11はこの説明のために定性的に表した水車特性を示
す。ここで横軸は、単位落差当りのランナ回転速度n11
を、縦軸は、単位落差当たりの流量Q11を表す。図中、
2点鎖線は等効率曲線を示し、これは、最高効率点η
tmax点から離れるほど水車効率が低下することを意味す
る。また、斜線部分は水車運転範囲を示している。以上
のことから、水車運転範囲の水車効率は低くなり、特に
流量の小さい部分負荷時の効率低下が大きくなる。
As described above, the pump turbine performs power generation operation and pumping operation with one runner, but the maximum efficiency points during both operations do not match, and the maximum efficiency point during pumping operation is on the lower head side. Located in. Since pump characteristics during pumping operation are most important in pumped storage power plants, runners are designed under the conditions of high pumping capacity and low pump head, which is the highest efficiency point of pump characteristics. Therefore, the turbine operating range is far from the turbine maximum efficiency point.
FIG. 11 shows the turbine characteristic qualitatively represented for this explanation. Here, the horizontal axis represents the runner rotation speed n 11 per unit head.
And the vertical axis represents the flow rate Q 11 per unit head. In the figure,
The two-dot chain line shows the isoefficiency curve, which is the maximum efficiency point η
It means that the turbine efficiency decreases as the distance from the tmax point increases. The shaded area shows the turbine operating range. From the above, the turbine efficiency in the turbine operating range becomes low, and the efficiency reduction becomes large especially when the flow rate is small at partial load.

【0005】発電専用機の場合、この水車特性を改善す
る方法として、一般にランナ水車羽根入口角度を小さく
して、羽根入口角度と流入角度とのアンマッチングによ
り生ずるエネルギ−損出(以下入口衝突損失という)特
性を高回転速度側に移動させ、水車最高効率点を高回転
速度側に移動させる方法や、羽根出口角度を小さくして
水車出口の旋回成分により吸い出し菅内で生ずるエネル
ギ損失(以下出口損失という)特性を低流量側に移動さ
せ、部分負荷効率を向上させる方法がある。
In the case of a dedicated generator, as a method of improving this turbine characteristic, the runner turbine blade inlet angle is generally made small so that energy loss (hereinafter referred to as inlet collision loss) is caused by unmatching of the blade inlet angle and the inlet angle. Characteristics) to the high rotation speed side to move the turbine maximum efficiency point to the high rotation speed side, or to reduce the blade outlet angle to cause energy loss in the suction pipe due to the swirling component at the turbine outlet (hereinafter referred to as outlet loss). There is a method to improve the partial load efficiency by moving the characteristics to the low flow rate side.

【0006】[0006]

【発明が解決しようとする課題】ところが、ポンプ水車
の場合、ランナ水車羽根入口角度を小さくすると、揚程
が小さくなってしまうと言う問題がある。この理由は次
の通りである。ランナ水車出口側の流入する流れが、旋
回成分を持たないとすると、理論揚程Hthは角運動量理
論より次式で示される。ここで、U2はランナ水車羽根
入口での周速度、Vm2は入口の速度の半径方向速度、β
2は羽根入口角度を示す。 Hth=U2 ・Vu2/g (1) Vu2=U2 −Vm2/tan(β2 ) (2) 上式より、羽根入口角度β2 が小さくなると、Vu2が小
さくなり、理論揚程Hthが小さくなり、所定の揚水運転
が不可能となる。したがって、水車性能向上のために羽
根入口角度をむやみに小さくすることはできない。
However, in the case of a pump turbine, there is a problem that the head is reduced when the runner turbine blade inlet angle is reduced. The reason for this is as follows. Assuming that the inflow on the outlet side of the runner turbine does not have a swirl component, the theoretical head H th is given by the following equation from the angular momentum theory. Where U2 is the peripheral velocity at the inlet of the runner turbine blade, V m2 is the radial velocity of the inlet velocity, β
2 indicates the blade entrance angle. H th = U 2 · V u2 / g (1) V u2 = U 2 −V m2 / tan (β 2 ) (2) From the above equation, when the blade inlet angle β 2 becomes smaller, V u2 becomes smaller, and the theoretical The lift H th becomes small, and it becomes impossible to perform a predetermined pumping operation. Therefore, the blade inlet angle cannot be reduced unnecessarily to improve the turbine performance.

【0007】次に、水車羽根出口角度を小さくした場
合、ポンプ運転時でのキャビテ−ション特性が問題とな
る。図12は揚水運転時における図9のA−A線に沿っ
た断面の水車羽根出口における流れの速度三角形を示
し、流れの絶対速度Cは、ランナ周速U及び相対速度W
に分解される。図12(a)は、小流量である高揚程運
転時の状態を示している。この状態では、羽根角度β0
に対しランナ周速Uと相対速度Wとのなす相対流入角β
が小さくなる。その結果、羽根裏面4aで圧力が大きく
低下し、そしてこの圧力が蒸気圧以下になるとキャビテ
ーション(一般にこの位置で発生するキャビテーション
をK2 と呼ぶ)が発生するようになる。このキャビテー
ションが長時間発生するとキャビテーション発生部付近
で壊食が起こるようになる。
Next, when the outlet angle of the turbine blade is made small, the cavitation characteristic during pump operation becomes a problem. FIG. 12 shows a velocity triangle of the flow at the turbine blade outlet of the cross section taken along the line AA in FIG. 9 during the pumping operation.
Is decomposed into. FIG. 12 (a) shows a state during high-lift operation with a small flow rate. In this state, the blade angle β 0
On the other hand, the relative inflow angle β formed by the runner peripheral speed U and the relative speed W
Becomes smaller. As a result, the pressure is greatly reduced on the blade back surface 4a, and when the pressure becomes equal to or lower than the vapor pressure, cavitation (generally, cavitation generated at this position is called K 2 ) is generated. If this cavitation occurs for a long time, erosion will occur near the cavitation generation part.

【0008】これに対して、図12(b)は、大流量で
ある低揚程運転時の状態を示している。この状態では、
水の相対流入角βは羽根角度β0 より大きくなって、羽
根表面4bで圧力が大きく低下し、高揚程運転時とは逆
に羽根表面4b側にキャビテーション(一般にこの位置
で発生するキャビテーションをK1 という)が発生する
ようになる。
On the other hand, FIG. 12 (b) shows a state during low head operation with a large flow rate. In this state,
The relative inflow angle β of water becomes larger than the blade angle β 0 , the pressure greatly decreases on the blade surface 4b, and cavitation (generally, the cavitation generated at this position is K 1 ) will occur.

【0009】この羽根角度β0 を単純に小さくした場
合、高揚程側のK2 キャビテ−ションは発生しにくくな
るが、K1 低揚程側のキャビテ−ションは逆に発生しや
すくなり、揚水運転範囲とキャビテ−ション特性との関
係が悪くなり、揚水運転範囲が狭くなる。このため、発
電運転および揚水運転での運転時間が短くなり、運用効
率が悪くなり、また、ダムの有効に利用できない貯水量
が多くなり、資源を有効に利用できないと言った問題が
あった。そこで、本発明の目的は、揚程特性やポンプキ
ャビテ−ション特性に影響を与えずに水車部分負荷効率
を向上させることができるポンプ水車ランナを提供する
ことにある。
When the blade angle β 0 is simply reduced, K 2 cavitation on the high head side is less likely to occur, but cavitation on the K 1 low head side is more likely to occur, and pumping operation is more likely to occur. The relationship between the range and the cavitation characteristics deteriorates, and the pumping operation range becomes narrow. For this reason, there are problems that the operating time in the power generation operation and the pumping operation is shortened, the operation efficiency is deteriorated, and the amount of stored water that cannot be effectively used by the dam is large, so that the resources cannot be effectively used. Therefore, an object of the present invention is to provide a pump turbine runner capable of improving the partial load efficiency of the turbine without affecting the lift characteristics and the pump cavitation characteristics.

【0010】[0010]

【課題を解決するための手段】この目的を達成するため
に本発明は、ランナクラウンとランナバンドとの間に複
数枚のランナ羽根を円周方向に等間隔をおいて固定保持
したポンプ水車のランナにおいて、水車流れ方向におけ
る羽根出口端のランナバンドに近い領域が水車流れの下
流方向に向かって延長され、この延長部は、ランナバン
ドに接近するに従い漸次長くなり、さらに水車羽根出口
端近くのランナ羽根の羽根厚中心を結んでできるそり線
の羽根先端でのランナ円周方向となす角度をβとしたと
き、上記延長した羽根先端のβがランナバンドに接近す
るに従い小さくなることを特徴とするものである。
To achieve this object, the present invention relates to a pump turbine in which a plurality of runner blades are fixedly held at equal intervals in the circumferential direction between a runner crown and a runner band. In the runner, a region near the runner band at the blade outlet end in the turbine flow direction is extended toward the downstream direction of the turbine flow, and this extension gradually becomes longer as it approaches the runner band. When the angle formed by the sled line connecting the blade thickness centers of the runner blade with the runner circumferential direction at the blade tip is β, the β of the extended blade tip becomes smaller as it approaches the runner band. To do.

【0011】この構成にあっては、前記延長部が、水車
流れの下流方向に向かって延長を開始する位置とランナ
バンドの内面のランナ出口端との半径方向の距離をH、
ランナバンドの内面の出口端の直径をDとしたとき、H
が、0.02≦H/D≦0.10の関係にあることが望
ましい。また、前記延長部がランナバンド上で終端する
位置と、ランナクラウンに近いランナ羽根の延長されて
いない羽根先端との円周方向の距離をLとしたとき、L
は、0.5≦L/H≦2.3の関係にあることが望まし
い。
According to this structure, the extension portion has a radial distance H between the position at which the extension starts to extend in the downstream direction of the turbine flow and the runner outlet end on the inner surface of the runner band.
When the diameter of the outlet end of the inner surface of the runner band is D, H
Is preferably 0.02 ≦ H / D ≦ 0.10. When the distance in the circumferential direction between the position where the extension ends on the runner band and the tip of the unextended blade of the runner blade near the runner crown is L, L
Preferably has a relationship of 0.5 ≦ L / H ≦ 2.3.

【0012】[0012]

【作用】本発明のポンプ水車ランナでは、バンド付近の
水車羽根角度のみを小さくすることにより、揚水運転時
において吸出し管壁面の境界層の発達により、ランナに
流入する相対流入角度が小さくなることから、低揚程側
のキャビテ−ションに対する性能は低下せず、発電運転
時は、羽根出口側角度が小さくなるため、ランナ出口渦
損失特性が部分負荷側に移動するため部分負荷効率が向
上する。
In the pump turbine runner of the present invention, by reducing only the turbine blade angle near the band, the relative inflow angle that flows into the runner becomes small due to the development of the boundary layer on the wall surface of the suction pipe during pumping operation. The performance for cavitation on the low head side does not deteriorate, and the blade outlet side angle decreases during power generation operation, so the runner outlet eddy loss characteristics move to the partial load side, and the partial load efficiency improves.

【0013】[0013]

【実施例】以下本発明によるポンプ水車のランナの一実
施例を図1乃至3を参照して説明する。図1はランナク
ラウン6とランナバンド7との間に挟持された1枚のラ
ンナ羽根4を示している。図2はランナ2の水車出口方
向から見た複数枚のランナ羽根4の構成を示している。
また、図3は図1のランナバンド7の近くに設定された
A−A線に沿って切断して示した隣り合った一対のラン
ナ羽根を断面で示している。本発明によれば、図1およ
び図2から明らかなように、ランナ羽根4の水車羽根出
口端8のランナバンド7に近い領域が、水車流れ方向下
流側に向かって曲線状の輪郭を成すようにして延長され
ている。図1における点Gは、水車羽根出口端8が水車
方向出口に向かって延長を開始する点を示しており、こ
の点G位置における水車羽根出口端8の輪郭形状は、図
3中破線で示されている。その部分における羽根先端部
の羽根厚中心を結んでできるそり線T0 の円周方向から
の角度を羽根出口角度β0 と定義する。本発明によれ
ば、点Gからランナバンド7に向かう部分の羽根先端部
が、実線で示したように水車流れ方向下流側に向かって
延長され、そのそり線T1 と円周方向となす羽根出口角
度をβ1 とすると、β1<β0 となるように延長されて
いる。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of a runner for a pump turbine according to the present invention will be described below with reference to FIGS. FIG. 1 shows a single runner vane 4 sandwiched between a runner crown 6 and a runner band 7. FIG. 2 shows the configuration of the plurality of runner blades 4 as seen from the water turbine outlet direction of the runner 2.
Further, FIG. 3 is a cross-sectional view showing a pair of adjacent runner blades cut along the line AA set near the runner band 7 in FIG. According to the present invention, as is clear from FIGS. 1 and 2, the region of the water turbine blade outlet end 8 of the runner blade 4 near the runner band 7 forms a curved contour toward the downstream side in the water turbine flow direction. Has been extended. Point G in FIG. 1 indicates the point where the turbine blade outlet end 8 starts extending toward the turbine direction outlet, and the contour shape of the turbine blade outlet end 8 at this point G position is shown by the broken line in FIG. Has been done. The angle from the circumferential direction of the warp line T 0 formed by connecting the blade thickness centers of the blade tips at that portion is defined as the blade outlet angle β 0 . According to the present invention, the blade tip portion of the portion extending from the point G toward the runner band 7 is extended toward the downstream side in the flow direction of the water turbine as shown by the solid line, and the blade forms the warp line T 1 and the circumferential direction. Letting the exit angle be β 1 , it is extended so that β 10 .

【0014】また、図1から明らかなように、上記ラン
ナ羽根の水車羽根出口端の延長量は、ランナバンド7に
向かうに従い大きくなっている。本願発明はこのように
構成されているから、揚水運転時、図9に示したよう
に、吸出し管3から導かれた水がランナ2に流入する
が、このランナに流入する水は境界層が発達し、ランナ
バンド7の側の流速は遅くなる。
Further, as is apparent from FIG. 1, the extension amount of the outlet end of the water turbine blade of the runner blade increases toward the runner band 7. Since the present invention is configured in this way, during pumping operation, as shown in FIG. 9, the water introduced from the suction pipe 3 flows into the runner 2, but the water flowing into this runner has a boundary layer. It develops and the flow velocity on the runner band 7 side slows down.

【0015】図4は、境界層がなく一様絶対速度Cであ
るとして求めた相対流入角度βと、境界層が完全に発達
した場合の絶対速度分布を使って同様に求めた流入角度
βとの差Δβの分布を示している。横軸は図1に示すよ
うに、ランナ出口径Dで無次元化したランナバンド7の
出口端から羽根出口端8の延長開始点Gまでの半径方向
長さHを表し、縦軸は上記Δβを表す。このグラフから
わかるように、ランナバンド7の付近のΔβが大きくな
っており、これは実際の流入角度βは小さくなっている
ことを意味する。したがって、K1 キャビテーションに
対する性能を低下させずにランナバンド7の付近のラン
ナ羽根表面側の羽根角度を小さくすることが可能であ
る。この時、上述のように本発明の実施例の羽根出口角
度β1 は揚水運転条件から決まる羽根出口角度β0 に比
べ小さく設定してあるため、羽根裏面4aの先端角度は
揚水運転条件から決められた角度とほぼ同一となり、K
2 キャビテーションに対する性能はほとんど変わらな
い。
FIG. 4 shows a relative inflow angle β obtained as a uniform absolute velocity C without a boundary layer and an inflow angle β similarly obtained by using an absolute velocity distribution when the boundary layer is fully developed. The distribution of the difference Δβ is shown. As shown in FIG. 1, the horizontal axis represents the radial length H from the exit end of the runner band 7 which is dimensionless with the runner exit diameter D to the extension start point G of the blade exit end 8, and the vertical axis represents the above Δβ. Represents As can be seen from this graph, Δβ near the runner band 7 is large, which means that the actual inflow angle β is small. Therefore, it is possible to reduce the blade angle on the runner blade surface side near the runner band 7 without deteriorating the performance against K 1 cavitation. At this time, as described above, the blade outlet angle β 1 of the embodiment of the present invention is set smaller than the blade outlet angle β 0 determined by the pumping operation condition, so the tip angle of the blade back surface 4a is determined by the pumping operation condition. Is almost the same as the angle
2 Performance against cavitation is almost unchanged.

【0016】次に、発電運転における部分負荷時のラン
ナバンド7に近い水車羽根出口端部8の流れを図5に示
す。破線は従来の水車羽根出口端の形状および速度三角
形を示し、実線は本発明の場合を示している。従来の場
合は、羽根出口角度が大きいため、ランナ出口の流れ
は、ランナ回転方向N側に大きな周方向速度成分Vu1
持つ。これに対して、本発明の場合は羽根出口角度が小
さいため、ランナ出口の流れは従来の場合に比べ周方向
速度成分Vu1は小さくなる。この差は流量が小さくなる
に従い大きくなる。したがって、本発明の場合は、従来
に比べ、ランナ出口の旋回によって生じる出口渦損失特
性が低流量側に移動し、部分負荷側の水車効率が向上す
る。
Next, FIG. 5 shows the flow of the turbine blade outlet end 8 near the runner band 7 during partial load during power generation operation. The broken line shows the shape and velocity triangle of the conventional turbine blade outlet end, and the solid line shows the case of the present invention. In the conventional case, since the blade outlet angle is large, the flow at the runner outlet has a large circumferential velocity component V u1 on the runner rotation direction N side. On the other hand, in the case of the present invention, since the blade outlet angle is small, the flow at the runner outlet has a smaller circumferential velocity component V u1 than in the conventional case. This difference increases as the flow rate decreases. Therefore, in the case of the present invention, the outlet vortex loss characteristic generated by the turning of the runner outlet moves to the low flow rate side, and the turbine efficiency on the partial load side improves, as compared with the conventional case.

【0017】図6は、上述の実施例による効果を検証す
るための模型試験結果を示したグラフである。横軸は、
設計点流量Q0 で無次元化した水車流量Qを表し、縦軸
は、羽根出口端の延長の無い場合の水車最高効率η0
無次元化した水車効率ηを表す。このグラフから、破線
で示した水車羽根出口端に延長の無い場合の効率に比
べ、実線で示した羽根先端延長のある場合の方が水車効
率が向上し、特に部分負荷側の効率が大幅に向上してい
ることがわかる。この実施例によれば、揚水運転時のキ
ャビテ−ションに対する性能を低下させずに、水車効率
を向上できる。
FIG. 6 is a graph showing a model test result for verifying the effect of the above-mentioned embodiment. The horizontal axis is
The design point flow rate Q 0 represents the dimensionless turbine flow rate Q, and the vertical axis represents the dimensionless turbine efficiency η with the turbine maximum efficiency η 0 when the blade outlet end is not extended. From this graph, compared with the efficiency without extension at the outlet end of the turbine blade shown by the broken line, the turbine efficiency with the blade tip extension shown by the solid line is improved, especially the efficiency on the partial load side is significantly improved. You can see that it is improving. According to this embodiment, the turbine efficiency can be improved without lowering the performance against cavitation during the pumping operation.

【0018】本発明の好ましい実施例によれば、図1で
ランナバンド出口端直径Dに対し、羽根出口端延長部の
半径方向長さをHとした時、Hは下記の範囲を満足する
ように選定される。 H=(0.02〜0.10)D
According to the preferred embodiment of the present invention, when the radial length of the blade outlet end extension is H with respect to the runner band outlet end diameter D in FIG. 1, H satisfies the following range. Is selected. H = (0.02-0.10) D

【0019】図7は、羽根出口端8のランナバンド上の
水車下流側への延長距離を一定にした状態で延長部の半
径方向長さHを変化させた時の水車効率への影響を実験
的に調べた結果を示している。左側の縦軸は延長のない
場合の水車最高効率η0 で無次元化した、流量比Q/Q
0 =0.8での羽根先端延長のある場合とない場合との
水車効率差Δηを表す。また、右側の縦軸は、羽根先端
延長のある場合と無い場合とのK1キャビテ−ション係
数差Δσi 1 を表している。
FIG. 7 is an experiment showing the effect on the turbine efficiency when the radial length H of the extension is changed while the extension distance of the blade outlet end 8 on the runner band to the downstream side of the turbine is constant. The results are shown in Table 1. The vertical axis on the left side is the flow rate ratio Q / Q, which is dimensionless with the maximum efficiency of the turbine η 0 without extension.
The water turbine efficiency difference Δη with and without the blade tip extension at 0 = 0.8 is shown. Further, the vertical axis on the right side represents the K1 cavitation coefficient difference Δσ i K 1 with and without the blade tip extension.

【0020】これにより、H/D<0.02では水車効
率への影響は大きいが、H/D>0.02になると、水
車効率の変化は、比較的小さくなり高い効率が得られる
ことがわかる。部分負荷運転の場合、水の流れがランナ
バンド7の側に偏るようになるため、ランナバンド7に
近い部分の羽根形状が効率性能に与える影響が大きくな
る。
Thus, when H / D <0.02, the influence on the turbine efficiency is large, but when H / D> 0.02, the change in turbine efficiency is relatively small and high efficiency can be obtained. Recognize. In the case of partial load operation, the flow of water is biased toward the runner band 7, so that the shape of the blades near the runner band 7 has a great influence on the efficiency performance.

【0021】一方、図4から明らかなように、H/D>
0.1では境界層の影響が小さくなるため、K1 キャビ
テーションが発生しやすくなる。従って、本実施例によ
れば、揚水運転時のキャビテーションに対する性能を低
下させずに水車効率を最大限に向上できる。図1に示す
ランナ羽根先端延長部の半径方向長さHに対し、ランナ
バンド上の延長開始点Gから円周方向への距離をLとし
た時、Lは下記の範囲を満足するように選定される。 L=(0.5〜2.3)H
On the other hand, as is clear from FIG. 4, H / D>
At 0.1, the influence of the boundary layer becomes small, so that K 1 cavitation easily occurs. Therefore, according to the present embodiment, it is possible to maximize the efficiency of the water turbine without deteriorating the performance against cavitation during the pumping operation. When the distance from the extension start point G on the runner band in the circumferential direction is L to the radial length H of the runner blade tip extension shown in FIG. 1, L is selected so as to satisfy the following range. To be done. L = (0.5 to 2.3) H

【0022】次に本実施例の作用を図8を参照して説明
する。このグラフは羽根先端延長距離Lを種々変えた時
の水車効率及びK1キャビテーションに対する性能への
影響を実験的に調査したものである。横軸は羽根先端突
出し高さHで無次元化した先端突出し長さLを表し、縦
軸の左側は突出しのない場合の水車最高効率η0 で無次
元化した、流量比Q/Q0 =0.8での羽根先端突出し
のある場合とない場合との水車効率差Δηを表し、右側
は図1で示したように、羽根先端突出しのない場合とあ
る場合とのK1 キャビテーション係数の差Δσi 1
表す。
Next, the operation of this embodiment will be described with reference to FIG. This graph is an experimental investigation of the effects on the turbine efficiency and performance on K1 cavitation when varying the blade tip extension distance L. The horizontal axis represents the tip projection length L that is made dimensionless by the blade tip projection height H, and the left side of the vertical axis is made dimensionless by the maximum turbine efficiency η 0 without projection, the flow rate ratio Q / Q 0 = The water turbine efficiency difference Δη at 0.8 with and without blade tip protrusion is shown. The right side shows the difference in K 1 cavitation coefficient with and without blade tip protrusion as shown in FIG. Represents Δσ i K 1 .

【0023】図12に示すように、羽根先端延長距離L
が大きくなるに従い、羽根表面の出口角度が相対的に小
さくなるため、第2の実施例と同様に、部分負荷での効
率が上昇し、L/H≧0.5で水車効率上昇が比較的小
さくなる。一方、Lが大きくなると、逆に羽根先端表面
側の羽根角度が小さくなるためK1キャビテーションが
発生しやすくなり、L>2.3Hでその影響が大きくな
る。従って、本実施例によれば、揚水運転時のキャビテ
ーション性能を低下させずに水車効率を最大限に向上で
きる。
As shown in FIG. 12, the blade tip extension distance L
Becomes larger, the outlet angle of the blade surface becomes relatively smaller, so that the efficiency under partial load increases as in the second embodiment, and when L / H ≧ 0.5, the turbine efficiency increases relatively. Get smaller. On the other hand, when L becomes large, on the contrary, the blade angle on the blade tip surface side becomes small, so that K1 cavitation is likely to occur, and when L> 2.3H, the influence becomes large. Therefore, according to the present embodiment, the turbine efficiency can be maximized without lowering the cavitation performance during the pumping operation.

【0024】[0024]

【発明の効果】以上の説明から明らかなように、本発明
によれば、ランナ羽根の水車羽根出口端のランナバンド
付近に羽根先端延長部を設けたので、揚水運転時のキャ
ビテーション性能を低下させずに水車出口流れ渦損失特
性を低流量側に移動させることができ、これによって、
水車運転時の水車効率を向上することができる。
As is apparent from the above description, according to the present invention, since the blade tip extension is provided near the runner band at the outlet end of the turbine blade of the runner blade, the cavitation performance during pumping operation is reduced. It is possible to move the flow eddy loss characteristics of the water turbine outlet to the low flow rate side without
It is possible to improve the efficiency of the turbine when the turbine is operating.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例によるによるポンプ水車のラ
ンナを示した部分断面図。
FIG. 1 is a partial sectional view showing a runner of a pump turbine according to an embodiment of the present invention.

【図2】図1に示したランナ羽根を水車出口側から見た
部分正面図。
FIG. 2 is a partial front view of the runner blade shown in FIG. 1 as seen from the water turbine outlet side.

【図3】図1のA−A線に沿って切断して示した一対の
ランナ羽根を示した断面図。
FIG. 3 is a cross-sectional view showing a pair of runner blades taken along the line AA of FIG.

【図4】羽根出口のランナバンド側からの半径方向によ
るランナ流入角度の変化を示したグラフ。
FIG. 4 is a graph showing a change in a runner inflow angle in a radial direction from a runner band side of a blade outlet.

【図5】発電運転の部分負荷時におけるランナバンド付
近の羽根出口の流れを速度三角形で模式的に示した説明
図。
FIG. 5 is an explanatory diagram that schematically shows the flow at the blade outlet near the runner band at the time of partial load during power generation operation with a speed triangle.

【図6】相対流量と相対効率との関係を示したグラフ。FIG. 6 is a graph showing the relationship between relative flow rate and relative efficiency.

【図7】羽根先端延長部の半径方向長さと水車効率およ
びキャビテ−ション性能への影響について示したグラ
フ。
FIG. 7 is a graph showing influences of radial lengths of blade tip extension portions on turbine efficiency and cavitation performance.

【図8】ランナバンド上の羽根延長部の円周方向距離と
水車効率および揚水運転時の羽根先端表面に発生するキ
ャビテ−ションに対する性能への影響について示したグ
ラフ。
FIG. 8 is a graph showing the effect on the performance of the circumferential distance of the blade extension on the runner band, the turbine efficiency, and the cavitation generated on the blade tip surface during pumping operation.

【図9】従来のポンプ水車の構造を概略的に示した断面
図。
FIG. 9 is a sectional view schematically showing the structure of a conventional pump turbine.

【図10】従来のポンプ水車のランナ羽根を水車出口側
から見た部分正面図。
FIG. 10 is a partial front view of a runner blade of a conventional pump turbine seen from the turbine outlet side.

【図11】単位落差当りの回転速度と単位落差当りの流
量との関係を示した水車特性図。
FIG. 11 is a turbine characteristic diagram showing the relationship between the rotation speed per unit head and the flow rate per unit head.

【図12】(a) 高揚程運転時のランナ羽根流入状態
を速度三角形で模式的に示した概略図。 (b) 低揚程運転時のランナ羽根流入状態を速度三角
形で模式的に示した概略図。
FIG. 12 (a) is a schematic view schematically showing a runner blade inflow state during high head operation with a speed triangle. (B) A schematic view schematically showing a runner blade inflow state during low head operation with a speed triangle.

【符号の説明】 1 ケーシング 2 ランナ 3 吸出し管 4 ランナ羽根 4a ランナ羽根裏面 4b ランナ羽根表面 6 ランナクラウン 7 ランナバンド 8 水車羽根出口端[Explanation of symbols] 1 casing 2 runner 3 suction pipe 4 runner blade 4a runner blade back surface 4b runner blade surface 6 runner crown 7 runner band 8 turbine blade outlet end

フロントページの続き (72)発明者 吉 森 隆 彦 大阪府大阪市北区中之島三丁目3番22号 関西電力株式会社内 (72)発明者 鈴 木 敏 暁 神奈川県横浜市鶴見区末広町2丁目4番地 株式会社東芝京浜事業所内Front page continued (72) Inventor Yoshi Mori Takahiko 3-3-22 Nakanoshima, Kita-ku, Osaka City, Osaka Prefecture Kansai Electric Power Co., Inc. (72) Inventor Toshiaki Suzuki 2-cue, Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa Prefecture No. 4 Toshiba Corporation Keihin Office

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】ランナクラウンとランナバンドとの間に複
数枚のランナ羽根を円周方向に等間隔をおいて固定保持
したポンプ水車のランナにおいて、水車流れ方向におけ
る羽根出口端のランナバンドに近い領域が水車流れの下
流方向に向かって延長され、この延長部は、ランナバン
ドに接近するに従い漸次長くなり、さらに水車羽根出口
端近くのランナ羽根の羽根厚中心を結んでできるそり線
の羽根先端でのランナ円周方向となす角度をβとしたと
き、上記延長した羽根先端のβがランナバンドに接近す
るに従い小さくなることを特徴とするポンプ水車のラン
ナ。
1. A runner of a pump turbine in which a plurality of runner blades are fixedly held at equal intervals in the circumferential direction between a runner crown and a runner band, and are close to the runner band at the blade outlet end in the flow direction of the turbine. The region is extended toward the downstream direction of the turbine flow, and this extension gradually becomes longer as it approaches the runner band, and the blade tip of the sled line formed by connecting the blade thickness centers of the runner blade near the outlet end of the turbine blade. A runner of a pump turbine, wherein β of the extended blade tip becomes smaller as it approaches the runner band, where β is an angle with the runner circumferential direction.
【請求項2】前記延長部が、水車流れの下流方向に向か
って延長を開始する位置とランナバンドの内面のランナ
出口端との半径方向の距離をH、ランナバンドの内面の
出口端の直径をDとしたとき、Hが、0.02≦H/D
≦0.10の関係にあることを特徴とする請求項1に記
載のポンプ水車のランナ。
2. A radial distance H between a position where the extension starts extending in the downstream direction of the water turbine flow and a runner outlet end on the inner surface of the runner band, and a diameter of the outlet end on the inner surface of the runner band. Is defined as D, H is 0.02 ≦ H / D
The runner for a pump turbine according to claim 1, wherein the runner has a relationship of ≤0.10.
【請求項3】前記延長部がランナバンド上で終端する位
置と、ランナクラウンに近いランナ羽根の延長されてい
ない羽根先端との円周方向の距離をLとした時、Lは、
0.5≦L/H≦2.3の関係にあることを特徴とする
請求項1に記載のポンプ水車のランナ。
3. When the distance in the circumferential direction between the position where the extension ends on the runner band and the tip of the unextended blade of the runner blade near the runner crown is L, L is
The runner for a pump turbine according to claim 1, wherein the relationship is 0.5 ≦ L / H ≦ 2.3.
JP11959095A 1995-05-18 1995-05-18 Pump turbine runner Expired - Lifetime JP3688342B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11959095A JP3688342B2 (en) 1995-05-18 1995-05-18 Pump turbine runner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11959095A JP3688342B2 (en) 1995-05-18 1995-05-18 Pump turbine runner

Publications (2)

Publication Number Publication Date
JPH08312517A true JPH08312517A (en) 1996-11-26
JP3688342B2 JP3688342B2 (en) 2005-08-24

Family

ID=14765145

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11959095A Expired - Lifetime JP3688342B2 (en) 1995-05-18 1995-05-18 Pump turbine runner

Country Status (1)

Country Link
JP (1) JP3688342B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7195459B2 (en) 2003-08-11 2007-03-27 Kabushiki Kaisha Toshiba Francis turbine
US7198470B2 (en) 2003-06-16 2007-04-03 Kabushiki Kaisha Toshiba Francis turbine
JP2010090720A (en) * 2008-10-03 2010-04-22 Toshiba Corp Hydraulic machine
EP3683437A1 (en) * 2019-01-18 2020-07-22 GE Renewable Technologies Hydroturbine runner blade local extension to avoid cavitation erosion

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110454310B (en) * 2019-08-07 2021-04-27 东方电气集团东方电机有限公司 Bionics hydraulic turbine

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7198470B2 (en) 2003-06-16 2007-04-03 Kabushiki Kaisha Toshiba Francis turbine
CN1329630C (en) * 2003-06-16 2007-08-01 株式会社东芝 Francis turbine
US7195459B2 (en) 2003-08-11 2007-03-27 Kabushiki Kaisha Toshiba Francis turbine
CN100398811C (en) * 2003-08-11 2008-07-02 株式会社东芝 Axial radial-flow type turbine
JP2010090720A (en) * 2008-10-03 2010-04-22 Toshiba Corp Hydraulic machine
US9181957B2 (en) 2008-10-03 2015-11-10 Yasuyuki Enomoto Hydraulic machine
EP3683437A1 (en) * 2019-01-18 2020-07-22 GE Renewable Technologies Hydroturbine runner blade local extension to avoid cavitation erosion
WO2020148415A1 (en) * 2019-01-18 2020-07-23 Ge Renewable Technologies Hydroturbine runner blade local extension to avoid cavitation erosion

Also Published As

Publication number Publication date
JP3688342B2 (en) 2005-08-24

Similar Documents

Publication Publication Date Title
RU2119102C1 (en) Centrifugal slurry pump wheel
JP3872966B2 (en) Axial fluid machine
JP3898311B2 (en) Water wheel or pump water wheel
JPH08312517A (en) Runner of reversible pump-turbine
JPH0637879B2 (en) Centrifugal pump
JP4280127B2 (en) Francis-type runner
KR100286633B1 (en) Stator of automotive torque converter
JP4322986B2 (en) Pump turbine
JP3600449B2 (en) Impeller
JPH10318117A (en) Impeller of fluid machine
JPS5941024B2 (en) Francis type runner
RU2120037C1 (en) Nozzle assembly blade
JP3782752B2 (en) Pump turbine with splitter runner
JPH11343955A (en) Hydraulic turbine and reversible pump-turbine
JP2001234843A (en) Water turbine moving blade
JPH08312518A (en) Runner of reversible pump-turbine
JP2004156587A (en) Hydraulic turbine
JP3735376B2 (en) Centrifugal compressor and turbo refrigerator using this centrifugal compressor
JP7360357B2 (en) Runner cones and hydraulic machines
JPS61101680A (en) Francis type runner
JP2004044409A (en) Water turbine and runner therefor
JP2010101265A (en) Runner of francis type hydraulic machine and francis type hydraulic machine
JPS6046276B2 (en) pump
JPH0599115A (en) Runner for francis turbine
JPH1030544A (en) Fluid machine

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040422

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040427

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040624

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050531

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050608

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090617

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090617

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100617

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100617

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110617

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120617

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120617

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130617

Year of fee payment: 8

EXPY Cancellation because of completion of term