JPH10318117A - Impeller of fluid machine - Google Patents

Impeller of fluid machine

Info

Publication number
JPH10318117A
JPH10318117A JP9129477A JP12947797A JPH10318117A JP H10318117 A JPH10318117 A JP H10318117A JP 9129477 A JP9129477 A JP 9129477A JP 12947797 A JP12947797 A JP 12947797A JP H10318117 A JPH10318117 A JP H10318117A
Authority
JP
Japan
Prior art keywords
working fluid
angle
turbine
runner
impeller
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9129477A
Other languages
Japanese (ja)
Inventor
Yasushi Matsumoto
本 靖 松
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP9129477A priority Critical patent/JPH10318117A/en
Publication of JPH10318117A publication Critical patent/JPH10318117A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/20Hydro energy

Landscapes

  • Turbine Rotor Nozzle Sealing (AREA)
  • Hydraulic Turbines (AREA)

Abstract

PROBLEM TO BE SOLVED: To stabilize a flow of a working fluid, enlarge the operating range, and prevent cavitation, by installing an overhang having attack angle which is equal to the incident angle of the working fluid on at least a band root of a runner vane. SOLUTION: In a runner vane 5, an overhang 20 is provided at a crown side root and a band side root of an entrance side leading edge of a water wheel. The overhang 20 has sweepback angle which is planely sharp, and side- view, which has an attack angle equal to the incident angle assumed at designing of a working fluid to a blade, is formed to be triangular or top tapered shape similar to it. During partially loaded operation, because the leading edge separating vortex like a vortex tube, which is generated on the negative-pressure surface side of the runner vane 5 around the overhand 20 caused by the change of an incident angle of a working fluid, flows down along the main stream of the working fluid, to local and rapid pressure change is prevented. In overloaded operation, because the separating vortex which is generated by the overhang 20 flows down along the pressure surface side of the runner vine 5, the separation of flow and secondary flow are prevented.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、水車、ポンプ水
車、或はタービン等の流体機械の羽根車に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an impeller of a fluid machine such as a turbine, a pump turbine, or a turbine.

【0002】[0002]

【従来の技術】図11は一般的なフランシス水車の縦断
面であって、水車主軸1の下端には羽根車2が固着され
ている。この羽根車2はランナクラウン3とバンド4
と、これらの間に周方向に列状に配列され上記ランナク
ラウン3とバンド4に固着された複数枚のランナベーン
5とによって構成されている。そして、この羽根車2の
上側は上カバー6によって覆われ、下側は下カバー7に
よって覆われている。
2. Description of the Related Art FIG. 11 is a longitudinal section of a general Francis turbine, and an impeller 2 is fixed to a lower end of a main shaft 1 of the turbine. The impeller 2 has a runner crown 3 and a band 4
And a plurality of runner vanes 5 arranged in a row in the circumferential direction and fixed to the runner crown 3 and the band 4 therebetween. The upper side of the impeller 2 is covered by an upper cover 6, and the lower side is covered by a lower cover 7.

【0003】また、上記羽根車2の半径方向外方には水
口開度を変える複数枚の可動ガイドベーン8が配設さ
れ、さらにその外側には複数枚のステーベーン9が配設
されている。このステーベーン9の外側には水圧鉄管
(図示せず)に連なるうず巻ケーシング10が配設され
ている。一方、上記下カバー7には吸出し管11が接続
され、水車運転時に羽根車2を通過した水を放水路に導
くようになっている。
[0003] A plurality of movable guide vanes 8 for changing the opening of the water port are provided radially outward of the impeller 2, and a plurality of stay vanes 9 are further provided outside thereof. A spiral casing 10 connected to a penstock (not shown) is provided outside the stay vane 9. On the other hand, a suction pipe 11 is connected to the lower cover 7 so that water that has passed through the impeller 2 during operation of the water turbine is guided to a water discharge channel.

【0004】しかして、可動ガイドベーン8が開かれる
と、うず巻ケーシング10から上記羽根車2が配設され
ているランナ室内に水が流入し、上記羽根車2のランナ
ベーン5間を流れて羽根車2を回転させる。そして、上
記羽根車2を通過した水は吸出し管11を経て放水路に
導出される。
When the movable guide vane 8 is opened, water flows from the spiral casing 10 into the runner chamber in which the impeller 2 is disposed, flows between the runner vanes 5 of the impeller 2, and flows into the runner chamber. The car 2 is rotated. Then, the water that has passed through the impeller 2 is led out to the water discharge channel via the suction pipe 11.

【0005】ところで、図12は上記フランシス水車の
羽根車2の断面図であって、ほぼ円板状のクラウン3と
円筒状のバンド4との間には複数枚のランナベーン5が
周方向に列状に配列され、上記クラウン3とバンド4に
一体的に固着されている。なお、図中符号3aは整流用
のランナコーンである。
FIG. 12 is a sectional view of the impeller 2 of the above-mentioned Francis turbine. A plurality of runner vanes 5 are arranged in a row in the circumferential direction between a substantially disk-shaped crown 3 and a cylindrical band 4. And are integrally fixed to the crown 3 and the band 4. Reference numeral 3a in the figure is a runner cone for rectification.

【0006】したがって、通常水車の運転中は図中矢印
の方向から作動流体である高圧水が各ランナベーン5間
に流入し、羽根車2はその圧力を解放することによって
エネルギーを回転力に変換する。
Therefore, during normal operation of the turbine, high-pressure water, which is a working fluid, flows between the runner vanes 5 in the direction of the arrow in the figure, and the impeller 2 releases the pressure to convert energy into rotational force. .

【0007】[0007]

【発明が解決しようとする課題】ところで、このような
水車に限らず、ポンプ水車及びタービン等の流体機械に
おいては、作動流体の流量、水頭(圧力)、回転速度を
設計点として最も効率良く作動流体のエネルギーを吸収
するように作られているので、その設計点を外れた運転
状態では効率が低下していく。さらに、水車用高比速度
ランナは設計点を外れた運転状態では流れが剥離するな
どしてバンド近傍のランナベーン付け根部で非定常の負
圧分布が生じて、振動やキャビテーションを生じ、さら
には壊食に発展するケースがみられる。
By the way, not only such water turbines but also fluid machines such as pump turbines and turbines operate most efficiently by using the flow rate, hydraulic head (pressure) and rotational speed of the working fluid as design points. Since it is made to absorb the energy of the fluid, the efficiency is reduced in operating conditions outside the design point. Furthermore, in the high specific speed runner for water turbines, unsteady negative pressure distribution occurs at the base of the runner vane near the band due to the separation of the flow in the operating state outside the design point, causing vibration and cavitation, and There are cases of erosion.

【0008】より詳細に述べると、水車を含む固有の回
転速度をもつタービンにおいて、その運転状態が設計点
より低負荷、低流量側の場合にはランナベーン間に流入
する作動流体の流量が相対的に低下すると同時に入射角
が大きくなり、ランナベーンの負圧面で流れが剥離する
などして圧力分布が乱れ、効率が低下していく。また同
時に境界層が大幅に発達し、ランナベーン前縁付近で流
れが剥離して旋回失速やサージングを生じたりして、機
械全体に振動を引き起こすことがある。
More specifically, in a turbine having a specific rotational speed including a water turbine, when the operating state is lower than the design point and the flow rate is lower than the design point, the flow rate of the working fluid flowing between the runner vanes is relatively large. At the same time, the angle of incidence increases, and the flow is separated on the negative pressure surface of the runner vane, disturbing the pressure distribution, and the efficiency decreases. At the same time, the boundary layer develops significantly, and the flow separates near the leading edge of the runner vane, causing swirling stall or surging, which may cause vibration in the entire machine.

【0009】図13は上記ランナベーンにおけるバンド
側入口側の流れを示す図であり、正常負荷運転時には図
13の(a)に示すように作動流体の流れがランナベー
ンに対して所定の設計された入射角で流入し、ランナベ
ーンの表面に対してスムーズな流れが生じる。しかし、
水車の部分負荷運転時には、ガイドベーン8で流路が絞
られるのでランナベーン間に流入する水の流量が相対的
に低下する一方、羽根車自体の入口面積や回転速度は一
定なので、ランナベーンに対する水の入射角が大きくな
る。したがって、水の流れ自体が安定性を失い、図13
の(b)に示すようにランナベーン5の負圧面側に流れ
の剥離域が発生し、振動やキャビテーションの原因とな
る。
FIG. 13 is a view showing the flow on the band side inlet side in the runner vane. During normal load operation, as shown in FIG. 13 (a), the working fluid flows into the runner vane according to a predetermined design. It flows in at an angle and produces a smooth flow over the surface of the runner vane. But,
During the partial load operation of the turbine, the flow path of the water flowing between the runner vanes is relatively reduced because the flow path is narrowed by the guide vanes 8, while the inlet area and the rotation speed of the impeller itself are constant, so that the water flow to the runner vanes is reduced. Incident angle increases. Therefore, the flow of water itself loses stability, and FIG.
As shown in (b), a flow separation area is generated on the negative pressure side of the runner vane 5, which causes vibration and cavitation.

【0010】特に、フランシス水車の羽根車において
は、バンド4とランナベーン5の結合部はそれぞれの曲
面のもつ曲率同士の幾何学的な干渉で大きな曲率をもつ
流水面を形成してしまう上に、バンド4側のほぼ垂直に
流下する急な曲がり流路形状のため、バンド4部近傍の
ランナベーン5の入射角が相対的に他の部分より大きく
なってしまい、流れが不安定になりやすい。
In particular, in the impeller of the Francis turbine, the joint between the band 4 and the runner vane 5 forms a flowing water surface having a large curvature due to geometrical interference between the curvatures of the respective curved surfaces. Due to the shape of the sharply curved flow channel that flows down almost vertically on the band 4 side, the incident angle of the runner vanes 5 near the band 4 becomes relatively larger than other portions, and the flow tends to be unstable.

【0011】また、過負荷運転時には、図13の(c)
に示すように、作動流体のランナベーンへの入射角は部
分負荷時と逆に設計時に想定した入射角より浅くなるの
で、圧力面側に流れの剥離やキャビテーションが発生し
がちとなる。
Also, during overload operation, FIG.
As shown in (1), since the incident angle of the working fluid to the runner vane is smaller than the incident angle assumed at the time of design, contrary to the partial load, flow separation and cavitation tend to occur on the pressure surface side.

【0012】図14に、従来の羽根車の部分負荷運転時
のバンド側入口部の流れの剥離状態を示す。
FIG. 14 shows a state in which the flow at the band-side entrance is separated during the partial load operation of the conventional impeller.

【0013】本発明は、このような点に鑑み、水車、ポ
ンプ水車、軸流タービン等の流体機械において主に部分
負荷運転時の作動流体の流れを安定させ、運転範囲の拡
大を図るとともにキャビテーション特性を改善した羽根
車を得ることを目的とする。
In view of the above, the present invention stabilizes the flow of working fluid mainly at the time of partial load operation in a fluid machine such as a water turbine, a pump turbine, an axial turbine, etc., thereby expanding the operating range and cavitation. An object is to obtain an impeller with improved characteristics.

【0014】[0014]

【課題を解決するための手段】第1の発明は、複数枚の
ランナベーンをクラウンとバンドとの間に周方向に列状
に固定したフランシス型水車またはフランシス型ポンプ
水車におけるランナベーンの、水車として運転される時
の作動流体入口側前縁の少なくともバンド側付け根に、
設計時に想定した運転状態における作動流体の入射角に
ほぼ一致する迎え角を有し、鋭い後退角を持った先細状
の張り出し部を設けたことを特徴とする。
According to a first aspect of the present invention, a runner vane in a Francis type water turbine or a Francis type pump turbine having a plurality of runner vanes fixed in a row in the circumferential direction between a crown and a band is operated as a water turbine. At least at the root of the working fluid inlet side leading edge at the band side when
It is characterized in that it has an angle of attack substantially equal to the incident angle of the working fluid in the operating state assumed at the time of design, and has a tapered overhang having a sharp receding angle.

【0015】第2の発明は、複数枚のランナベーンをボ
スの回りに放射状に配設したカプラン型水車またはチュ
ーブラ水車における可動式ランナベーンの作動流体入口
側前縁のボス側付け根およびケーシング側先端部に、第
1の発明と同様な張り出し部を設けたことを特徴とす
る。
According to a second aspect of the present invention, a movable runner van in a Kaplan type turbine or a tubular turbine in which a plurality of runner vanes are radially arranged around a boss is provided at a root on a boss side at a front edge of a working fluid inlet side and a tip end on a casing side. And a projection similar to that of the first invention is provided.

【0016】また、第3の発明は、複数枚のランナベー
ンをボスの回りに放射状に配設した斜流水車における可
動式ランナベーンの作動流体入口側前縁のボス側付け根
およびケーシング側先端部に、第1の発明と同様な張り
出し部を設けたことを特徴とする。
In a third aspect of the present invention, in a mixed flow turbine in which a plurality of runner vanes are radially arranged around a boss, a movable fluid runner vane has a boss-side root and a casing-side tip at a front edge of a working fluid inlet side. It is characterized in that an overhang similar to that of the first invention is provided.

【0017】さらに第4の発明は、複数枚の動翼を回転
軸の回りに放射状に配設したラジアル型タービンにおけ
る上記動翼の作動流体入口側前縁の少なくともチップ側
に、第1の発明と同様な張り出し部を設けたことを特徴
とする。
Further, a fourth invention provides a radial turbine in which a plurality of blades are radially arranged around a rotation axis, at least at a tip side of a working fluid inlet side leading edge of the blades. It is characterized by providing an overhang similar to that described above.

【0018】[0018]

【発明の実施の形態】以下、図1乃至図10を参照して
本発明の実施の形態について説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described below with reference to FIGS.

【0019】図1は本発明の一実施の形態を示すフラン
シス水車の羽根車の縦断面図であり、ランナクラウン3
とバンド4との間に周方向に複数のランナベーン5が列
状に配設され、その各ランナベーン5がランナクラウン
3とバンド4に固着されている。上記ランナベーン5に
は、水車の入口側前縁のクラウン側付け根及びバンド側
付け根に、平面的には鋭い後退角を有し、作動流体のブ
レードへの設計時に想定した入射角に等しい迎え角を有
する側面視が三角形若しくはそれに準ずる先細形状の張
り出し部20が設けられている。すなわち、上記張り出
し部20はクラウン側付け根部或はバンド側付け根部か
ら離れるにしたがって張り出し量が少なくなるように形
成されている。
FIG. 1 is a longitudinal sectional view of an impeller of a Francis turbine showing an embodiment of the present invention.
A plurality of runner vanes 5 are arranged in a row in the circumferential direction between the runner vane 5 and the band 4, and each runner vane 5 is fixed to the runner crown 3 and the band 4. The runner vane 5 has a sharp receding angle at the crown-side root and the band-side root at the leading edge on the inlet side of the turbine, and has an angle of attack equal to the incident angle assumed at the time of designing the working fluid to the blade. A protruding portion 20 having a triangular shape or a tapered shape similar thereto is provided. That is, the overhang portion 20 is formed such that the amount of overhang decreases as the distance from the crown-side root portion or the band-side root portion increases.

【0020】図2は、上述のようにランナベーン5に張
り出し部20を設けたものにおける上記張り出し部近傍
における作動流体の流れの状態を示す図であり、(a)
のように設計的に付近の流れ時においては、上記張り出
し部20は作動流体の流れに対して基本的に平行であ
り、ランナベーン5の張り出し部20の下流側において
剥離渦が発生することはなく、設計時に意図した流れに
は殆んど影響を及ぼすことがなく、その鋭い形状によっ
て作動流体の衝突による翼付け根部の局部的で急激な圧
力上昇が緩和され、圧力損失が低減される。
FIG. 2 is a diagram showing the state of the flow of the working fluid near the overhanging portion in the case where the overhanging portion 20 is provided on the runner vane 5 as described above.
When the flow is near the design as described above, the overhang portion 20 is basically parallel to the flow of the working fluid, and no separation vortex is generated on the downstream side of the overhang portion 20 of the runner vane 5. The sharp flow shape has little effect on the flow intended at the time of design, and the sharp and local pressure rise at the root portion of the blade due to the impact of the working fluid is reduced, and the pressure loss is reduced.

【0021】一方、(b)に示すように、部分負荷運転
時には作動流体の入射角の変化によって上記張り出し部
20がボルテックスジエネレータとして機能し、流れを
巻き上げるような渦管状の前縁剥離渦が上記張り出し部
が形成されている個所の近傍におけるランナベーン負圧
面側に発生される。この渦管は作動流体の主流に沿って
流下し、局部的で急激な圧力変動を抑止するため、ラン
ナベーンの付け根に付着して崩壊するキャビテーション
による壊食も軽減される。
On the other hand, as shown in FIG. 2B, during the partial load operation, the overhang portion 20 functions as a vortex generator due to a change in the incident angle of the working fluid, and a vortex tubular leading edge separation vortex that winds up the flow is formed. It is generated on the runner vane negative pressure side near the place where the overhang is formed. This vortex tube flows down along the main flow of the working fluid and suppresses local and rapid pressure fluctuations, so that erosion due to cavitation that adheres to the base of the runner vane and collapses is reduced.

【0022】また、過負荷運転時においては、(c)に
示すように、作動流体の翼列への入射角が部分負荷運転
時と逆に設計時に想定した入射角より浅くなるので、ラ
ンナベーンの圧力面側に流れの剥離やキャビテーション
等が発生するが、前記張り出し部によって生じた剥離渦
がランナベーンの圧力面側に沿って流下するため、流れ
の剥離、二次流れ、キャビテーションやそれに伴う壊食
が抑止され、効率を損うことなく水車の運転領域が拡大
される。
In the overload operation, the incident angle of the working fluid to the cascade is smaller than the incident angle assumed at the time of the design, contrary to the partial load operation, as shown in FIG. Separation of the flow or cavitation occurs on the pressure surface side, but the separation vortex generated by the overhanging portion flows down along the pressure surface side of the runner vane, so that separation of the flow, secondary flow, cavitation and erosion associated therewith And the operating range of the water turbine is expanded without losing efficiency.

【0023】図3に、張り出し部を設けたランナベーン
における部分負荷運転時のバンド側入口部の渦管状の剥
離渦の発生状態を示す。
FIG. 3 shows the state of generation of a vortex tubular separation vortex at the band-side entrance at the time of partial load operation in a runner vane provided with an overhang.

【0024】図4は従来型水車模型試験による等効率曲
線(目玉カーブ)であり、横軸は実物水車の運転落差に
対応する模型水車の運転状態を示す単位落差当りの回転
速度であり、縦軸は単位落差当りの流量であり、各線は
各ガイドベーン開度の特性曲線である。一方、図5は本
発明を適用した水車の等効率曲線である。
FIG. 4 is an iso-efficiency curve (eyeball curve) based on a conventional turbine model test. The horizontal axis represents the rotation speed per unit head indicating the operating state of the model turbine corresponding to the operating head of the actual turbine. The axis is the flow rate per unit head, and each line is a characteristic curve of each guide vane opening. On the other hand, FIG. 5 is an iso-efficiency curve of a water turbine to which the present invention is applied.

【0025】しかして、両図の等効率曲線を比較する
と、本発明を適用した場合の方が等効率を生ずる範囲が
広く、運転範囲が拡大されることが判る。
By comparing the iso-efficiency curves in both figures, it can be seen that the range in which the iso-efficiency is applied is wider and the operating range is expanded when the present invention is applied.

【0026】図6は、水車の模型試験による検証結果を
示す図であって一つのガイドベーン開度の性能曲線を示
す。ここで、横軸は実物水車の運転落差に対応する模型
水車の運転状態を表わす単位落差当りの回転速度であ
り、縦軸は効率η(%)であって、点線が従来型、実線
が本発明を適用した水車の効率を示す。
FIG. 6 is a diagram showing the results of verification by a model test of a water turbine, and shows a performance curve of one guide vane opening. Here, the horizontal axis is the rotation speed per unit head representing the operating state of the model turbine corresponding to the operating head of the actual turbine, the vertical axis is the efficiency η (%), the dotted line is the conventional type, and the solid line is the actual one. 3 shows the efficiency of a water turbine to which the invention is applied.

【0027】したがって、このグラフからも張り出し部
を設けることによって部分負荷運転時の特性改善が行わ
れることが判る。当然この効果は全てのガイドベーン開
度においてもたらされ、また最高効率点も若干上昇す
る。
Therefore, it can be seen from this graph that the provision of the overhang improves the characteristics during partial load operation. Naturally, this effect is obtained at all guide vane openings, and the maximum efficiency point is slightly increased.

【0028】図7は、フランシス型ポンプ水車の水車側
入口のランナベーン前縁のクラウン側及びバンド側付け
根部に張り出し部20を設けたものを示す。ポンプ水車
ランナの基本構造は水車専用機と共通であるが、設計時
においてポンプ性能を優先するためランナベーンのキャ
ンバーライン(反り線)が水車運転時において水車専用
機とは逆に負圧面側が凹面となってしまうので、水車側
入口のランナベーン前縁部の負圧面側に流体損失やキャ
ビテーション壊食が生じ、それによって運転範囲も限ら
れていたが、上記張り出し部20を設けることによっ
て、図1に示すものと同様な効果を発揮する。さらに、
この張り出し部はポンプ運転時においても翼列からの流
体の流出時に航空機の胴体と翼との結合部のフィレット
と同様な流線形状の効果を発揮し、圧力損失や流れの剥
離を低減し、ポンプ性能をも向上させる。
FIG. 7 shows a Francis type pump-turbine in which a projecting portion 20 is provided on the crown-side and band-side root of the runner vane front edge at the turbine-side inlet. The basic structure of the pump turbine runner is the same as that of the turbine dedicated machine, but in order to give priority to the pump performance at the time of design, the camber line (warp line) of the runner vane has a concave surface on the negative pressure side, contrary to the turbine dedicated during turbine operation Therefore, fluid loss and cavitation erosion occurred on the suction surface side of the runner vane front edge at the turbine-side inlet, thereby limiting the operating range. However, by providing the overhanging portion 20, FIG. It has the same effect as shown. further,
This overhang exerts the same streamline effect as the fillet at the junction between the aircraft fuselage and the wings when the fluid flows out of the cascade even during pump operation, reducing pressure loss and flow separation. Also improves pump performance.

【0029】図8は、本発明の他の実施の形態を示す図
であり、カプラン水車のランナに本発明を適用したもの
である。すなわち、上記カプラン水車ランナにおける可
動ランナベーン12には、その前縁部のチップ側とボス
13への取り付け部に図1に示すものと同様な張り出し
部20が形成されている。しかして、この張り出し部2
0は図1に示す実施の形態におけると同様な効果を奏
し、ランナベーン12の各開度における運転範囲を拡大
することができる。
FIG. 8 is a diagram showing another embodiment of the present invention, in which the present invention is applied to a runner of a Kaplan turbine. In other words, the movable runner vane 12 of the Kaplan turbine runner is formed with a projecting portion 20 similar to that shown in FIG. And this overhang 2
0 has the same effect as in the embodiment shown in FIG. 1, and the operating range at each opening of the runner vane 12 can be expanded.

【0030】また、図9は可動ランナベーンを備えた斜
流水車に本発明を適用したものを示す図であり、この場
合も、各ランナベーン12の前縁部のチップ側とボス1
3への付け根部に前述と同様の張り出し部20が形成さ
れている。しかしてこの場合も前記各実施の形態と同様
の効果を奏する。
FIG. 9 is a view showing an application of the present invention to a mixed flow turbine having movable runner vanes. Also in this case, the tip side of the front edge of each runner vane 12 and the boss 1 are shown.
An overhang 20 similar to that described above is formed at the base of 3. In this case, the same effects as those of the above-described embodiments can be obtained.

【0031】ところで、上記各実施の形態においては、
水車或はポンプ水車に適用したものを示したが、図10
に示すように、蒸気タービン等に用いられる大口径反動
ラジアルタービンにも適用することができる。
In each of the above embodiments,
FIG. 10 shows an example applied to a water turbine or a pump water turbine.
As shown in the above, the present invention can also be applied to a large-diameter reaction radial turbine used for a steam turbine or the like.

【0032】すなわち、図10において、符号14はラ
ジアルタービンのロータ軸15に放射状に設けられた動
翼であって、その動翼14の前縁部におけるチップ部と
ロータ軸15側に、前述と同様の張り出し部20が形成
されている。
That is, in FIG. 10, reference numeral 14 denotes a rotor blade radially provided on a rotor shaft 15 of the radial turbine. A similar overhang 20 is formed.

【0033】ところで、この種のタービンにおいても部
分負荷運転時にはチップ部において遠心力や境界層の干
渉で流れが渦巻いて圧力損失が生ずるけれども、上記張
り出し部20を形成することによって前縁剥離渦を発生
させ、前述と同様な効果を奏せしめることができる。ま
た、ロータ軸側においても上記張り出し部20によって
狭隘部の圧力損失、衝突損失の低減を実現させることが
できる。
By the way, even in this type of turbine, at the time of partial load operation, although the flow is swirled at the tip due to the centrifugal force and the interference of the boundary layer, a pressure loss is caused. This can produce the same effects as described above. Also, on the rotor shaft side, the overhang 20 can reduce the pressure loss and the collision loss of the narrow portion.

【0034】[0034]

【発明の効果】本発明は、上述のように部分負荷運転時
や過負荷運転時において流れの剥離や二次流れが発生し
やすい水車のランナベーンの付け根部やラジアルタービ
ンの動翼のチップ側等に張り出し部を設けたので、その
張り出し部によって渦管が発生され、当該部における流
れの剥離が遅らせられ、急激な圧力の変化が緩和され、
振動その他の悪影響が抑えられる。さらに周囲の主流の
二次流れも抑制され安定化されるため運転可能範囲を効
率を損なうことなく大幅に拡大することができる等の効
果を奏する。
According to the present invention, as described above, the root of a runner vane of a water turbine, the tip side of a moving blade of a radial turbine, etc., in which flow separation or secondary flow is likely to occur during partial load operation or overload operation, is described. Since the overhanging portion is provided, a vortex tube is generated by the overhanging portion, the separation of the flow in the portion is delayed, and the rapid pressure change is reduced,
Vibration and other adverse effects are suppressed. Furthermore, the secondary flow of the surrounding main flow is also suppressed and stabilized, so that the operable range can be greatly expanded without impairing the efficiency.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の第1の実施の形態を示すフランシス型
水車の羽根車の縦断面図。
FIG. 1 is a longitudinal sectional view of an impeller of a Francis type water turbine showing a first embodiment of the present invention.

【図2】(a)、(b)、(c)はそれぞれ設計点付
近、部分負荷運転時、及び過負荷運転時における本発明
の羽根車のバンド側入口部の作動流体の流れの状態を示
す図。
FIGS. 2 (a), (b), and (c) show the flow states of the working fluid at the band-side inlet of the impeller of the present invention near the design point, during partial load operation, and during overload operation, respectively. FIG.

【図3】本発明における羽根車の部分負荷運転時におけ
るランナベーンのバンド側入口部の流体の剥離状態を示
す模式図。
FIG. 3 is a schematic diagram showing a state in which fluid is separated from a band-side inlet of a runner vane during partial load operation of an impeller according to the present invention.

【図4】従来のフランシス型水車の等効率線図。FIG. 4 is an iso-efficiency diagram of a conventional Francis turbine.

【図5】本発明のフランシス型水車の等効率線図。FIG. 5 is an iso-efficiency diagram of the Francis type water turbine of the present invention.

【図6】模型試験における性能曲線図。FIG. 6 is a performance curve diagram in a model test.

【図7】本発明の他の実施の形態を示す図。FIG. 7 is a diagram showing another embodiment of the present invention.

【図8】本発明のさらに他の実施の形態を示す図。FIG. 8 is a diagram showing still another embodiment of the present invention.

【図9】本発明の他の実施の形態を示す図。FIG. 9 is a diagram showing another embodiment of the present invention.

【図10】本発明のさらに他の実施の形態を示す図。FIG. 10 is a diagram showing still another embodiment of the present invention.

【図11】従来のフランシス型水車の概略構成を示す断
面図。
FIG. 11 is a sectional view showing a schematic configuration of a conventional Francis type water turbine.

【図12】図11に示すフランシス型水車の羽根車の縦
断部分図。
12 is a vertical sectional view of the impeller of the Francis type water turbine shown in FIG.

【図13】(a)、(b)、(c)はそれぞれランナベ
ーンのバンド側入口部の作動流体の流れの状態を示す
図。
FIGS. 13A, 13B, and 13C are diagrams showing states of flow of a working fluid at a band-side inlet of a runner vane, respectively.

【図14】従来の羽根車の部分負荷時におけるランナベ
ーンのバンド側入口部の流体の剥離状態を示す模式図。
FIG. 14 is a schematic view showing a state in which a fluid is separated from a band-side inlet of a runner vane when a partial load is applied to a conventional impeller.

【符号の説明】[Explanation of symbols]

3 ランナクラウン 4 バンド 5 ランナベーン 6 上カバー 7 下カバー 8 可動ガイドベーン 11 吸出し管 12 ランナベーン 13 ボス 20 張り出し部 Reference Signs List 3 runner crown 4 band 5 runner vane 6 upper cover 7 lower cover 8 movable guide vane 11 suction pipe 12 runner vane 13 boss 20 overhang portion

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】複数枚のランナベーンをクラウンとバンド
との間に周方向に列状に固定したフランシス型水車また
はフランシス型ポンプ水車におけるランナベーンの、水
車として運転される時の作動流体入口側前縁の少なくと
もバンド側付け根に、設計時に想定した運転状態におけ
る作動流体の入射角にほぼ一致する迎え角を有し、鋭い
後退角を持った先細状の張り出し部を設けたことを特徴
とする、流体機械の羽根車。
1. A working fluid inlet side leading edge of a runner vane in a Francis type water turbine or a Francis type pump turbine in which a plurality of runner vanes are fixed in a row in a circumferential direction between a crown and a band when the turbine is operated as a water turbine. At least at the base of the band, a fluid having an angle of attack substantially coincident with the incident angle of the working fluid in the operating state assumed at the time of design, and provided with a tapered overhang having a sharp receding angle. Machine impeller.
【請求項2】複数枚のランナベーンをボスの回りに放射
状に配設したカプラン型水車またはチューブラ水車にお
ける可動式ランナベーンの作動流体入口側前縁のボス側
付け根およびケーシング側先端部に、設計時に想定した
運転状態における作動流体の入射角にほぼ一致する迎え
角を有し、鋭い後退角を持った先細状の張り出し部を設
けたことを特徴とする、流体機械の羽根車。
In a Kaplan type water turbine or a tubular water turbine in which a plurality of runner vanes are radially arranged around a boss, the movable runner vane is provided at the root on the boss side at the leading edge on the working fluid inlet side and at the tip of the casing side at the time of design. An impeller for a fluid machine, wherein the impeller has an angle of attack substantially equal to the incident angle of the working fluid in the operating state and has a tapered overhang having a sharp receding angle.
【請求項3】複数枚のランナベーンをボスの回りに放射
状に配設した斜流水車における可動式ランナベーンの作
動流体入口側前縁のボス側付け根およびケーシング側先
端部に、設計時に想定した運転状態における作動流体の
入射角にほぼ一致する迎え角を有し、鋭い後退角を持っ
た先細状の張り出し部を設けたことを特徴とする、流体
機械の羽根車。
3. An operating state assumed at the time of design at a boss-side root and a casing-side tip of a working fluid inlet side front edge of a movable runner vane in a mixed flow turbine in which a plurality of runner vanes are radially arranged around a boss. An impeller for a fluid machine, characterized in that it has an angle of attack substantially equal to the incident angle of the working fluid in (1), and has a tapered overhang having a sharp receding angle.
【請求項4】複数枚の動翼を回転軸の回りに放射状に配
設したラジアル型タービンにおける上記動翼の作動流体
入口側前縁の少なくともチップ側に、設計時に想定した
運転状態における作動流体の入射角にほぼ一致する迎え
角を有し、鋭い後退角を持った先細状の張り出し部を設
けたことを特徴とする、流体機械の羽根車。
4. A working fluid in an operating state assumed at the time of design at least at a tip side of a working fluid inlet side leading edge of the working blade in a radial turbine in which a plurality of moving blades are radially arranged around a rotation axis. An impeller for a fluid machine, characterized in that the impeller has an angle of attack substantially coinciding with the angle of incidence and has a tapered overhang having a sharp receding angle.
JP9129477A 1997-05-20 1997-05-20 Impeller of fluid machine Pending JPH10318117A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9129477A JPH10318117A (en) 1997-05-20 1997-05-20 Impeller of fluid machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9129477A JPH10318117A (en) 1997-05-20 1997-05-20 Impeller of fluid machine

Publications (1)

Publication Number Publication Date
JPH10318117A true JPH10318117A (en) 1998-12-02

Family

ID=15010462

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9129477A Pending JPH10318117A (en) 1997-05-20 1997-05-20 Impeller of fluid machine

Country Status (1)

Country Link
JP (1) JPH10318117A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100439701C (en) * 2003-03-14 2008-12-03 哈尔滨电机厂有限责任公司 Mixed-flow hydraulic turbine frequency-variable reel
JP2010077971A (en) * 2009-11-30 2010-04-08 Hitachi Industrial Equipment Systems Co Ltd Water turbine generator
JP2011132810A (en) * 2009-12-22 2011-07-07 Mitsubishi Heavy Ind Ltd Moving blade of radial turbine
JP2013007367A (en) * 2011-06-27 2013-01-10 Ihi Corp Waste-heat power generation apparatus, and power generating apparatus
CN103649524A (en) * 2011-04-20 2014-03-19 阿尔斯通再生能源技术公司 Runner for a hydraulic machine, hydraulic machine provided with such a runner, and power-conversion equipment including such a hydraulic machine
CN103987956A (en) * 2011-10-23 2014-08-13 安德里兹水利有限公司 Compact blade for runner of francis turbine and method for configuring runner
CN108150448A (en) * 2017-10-19 2018-06-12 浙江理工大学 A kind of method for designing impeller of not equidistant runner pump
CN108661840A (en) * 2018-04-24 2018-10-16 东方电气集团东方电机有限公司 Francis Hydro Turbine Blades export side repairing type method

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100439701C (en) * 2003-03-14 2008-12-03 哈尔滨电机厂有限责任公司 Mixed-flow hydraulic turbine frequency-variable reel
JP2010077971A (en) * 2009-11-30 2010-04-08 Hitachi Industrial Equipment Systems Co Ltd Water turbine generator
JP2011132810A (en) * 2009-12-22 2011-07-07 Mitsubishi Heavy Ind Ltd Moving blade of radial turbine
CN103649524B (en) * 2011-04-20 2015-11-25 阿尔斯通再生能源技术公司 For hydraulic machinery runner, be equipped with the hydraulic machinery of this runner and comprise the energy conversion device of this hydraulic machinery
CN103649524A (en) * 2011-04-20 2014-03-19 阿尔斯通再生能源技术公司 Runner for a hydraulic machine, hydraulic machine provided with such a runner, and power-conversion equipment including such a hydraulic machine
US9523343B2 (en) 2011-04-20 2016-12-20 Alstom Renewable Technologies Power-conversion installation including a hydraulic machine provided with a runner
JP2013007367A (en) * 2011-06-27 2013-01-10 Ihi Corp Waste-heat power generation apparatus, and power generating apparatus
JP2014530977A (en) * 2011-10-23 2014-11-20 アンドリッツハイドロ リミテッド Compact blade for a Francis turbine runner and method for configuring the runner
CN103987956A (en) * 2011-10-23 2014-08-13 安德里兹水利有限公司 Compact blade for runner of francis turbine and method for configuring runner
US9605647B2 (en) 2011-10-23 2017-03-28 Andritz Hydro Ltd. Compact blade for runner of Francis turbine and method for configuring runner
RU2629849C2 (en) * 2011-10-23 2017-09-04 Андритц Гидро Лтд. Compact vane for francis turbine runner and method of runner configuration
CN108150448A (en) * 2017-10-19 2018-06-12 浙江理工大学 A kind of method for designing impeller of not equidistant runner pump
CN108150448B (en) * 2017-10-19 2023-09-29 浙江理工大学 Impeller design method of unequal-spacing runner pump
CN108661840A (en) * 2018-04-24 2018-10-16 东方电气集团东方电机有限公司 Francis Hydro Turbine Blades export side repairing type method

Similar Documents

Publication Publication Date Title
US8464426B2 (en) Gas turbine engine airfoil
US6375419B1 (en) Flow directing element for a turbine engine
US8764380B2 (en) Rotor blade
JP2003074306A (en) Axial flow turbine
JP2004092498A (en) Diagonal flow turbine and diagonal flow moving blade
JP4484396B2 (en) Turbine blade
JPWO2014038054A1 (en) Mixed flow turbine
JPH10318117A (en) Impeller of fluid machine
JP2012082826A (en) Turbine bucket shroud tail
JP6745233B2 (en) Turbine and gas turbine
JP2007056824A (en) Stationary blade and moving blade for axial flow turbine, and axial flow turbine provided with same
JP4184565B2 (en) Steam turbine nozzle and steam turbine using the steam turbine nozzle
Li et al. The interaction between inlet guide vanes and the impeller recirculating flow in a centrifugal compressor and the resulting impact on flow range
JPS5941024B2 (en) Francis type runner
JP3575164B2 (en) Axial fan and air separator used for it
JPH11229805A (en) Turbine blade and steam turbine
JPH01318790A (en) Flashing vane of multistage pump
JP3402176B2 (en) Blades for turbomachinery
JPS62174507A (en) Exhaust diffuser for axial flow turbo machine
JP2000104501A (en) Turbine moving blade, gas turbine and steam turbine
JP2003269109A (en) Steam turbine
JPH11173104A (en) Turbine rotor blade
JP3927887B2 (en) Stator blade of axial compressor
JPH0893404A (en) Turbine nozzle and turbine rotor blade
JP2000204903A (en) Axial turbine