JPH0893404A - Turbine nozzle and turbine rotor blade - Google Patents

Turbine nozzle and turbine rotor blade

Info

Publication number
JPH0893404A
JPH0893404A JP23177794A JP23177794A JPH0893404A JP H0893404 A JPH0893404 A JP H0893404A JP 23177794 A JP23177794 A JP 23177794A JP 23177794 A JP23177794 A JP 23177794A JP H0893404 A JPH0893404 A JP H0893404A
Authority
JP
Japan
Prior art keywords
blade
nozzle
turbine
minimum point
section
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP23177794A
Other languages
Japanese (ja)
Inventor
Kenichi Imai
井 健 一 今
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP23177794A priority Critical patent/JPH0893404A/en
Publication of JPH0893404A publication Critical patent/JPH0893404A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE: To remarkably improve the turbine following control by reducing the loss of secondary flow near the wall faces of a diaphragm inner wheel and a diaphragm outer wheel and at the same time increasing the flow rate passing the center part. CONSTITUTION: A nozzle blade 11 to be installed in a circular flow route 14 between a diaphragm inner wheel 13 and a diaphragm outer wheel 12 is so curved as to make a cross-section base line E have one minimum point Pc at the center part of the height of the blade in the fluid flowing out side and one maximum point Pa, Pb respectively between the minimum point Pc and a blade tip end and between the minimum point Pc and the blade base in the case the nozzle blade cross-section at every height position is moved in circumferential direction.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、半径方向の流量分布を
制御して、高効率部への流量を増加させることで、ター
ビン段落性能を向上させるようにしたタービンノズルお
よびタービン動翼に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a turbine nozzle and a turbine rotor blade for improving turbine stage performance by controlling a flow rate distribution in a radial direction to increase a flow rate to a high efficiency section.

【0002】[0002]

【従来の技術】タービンの性能向上を目的として、これ
までに多くの技術が採用されているが、種々の性能向上
技術のうち内部効率の向上は、どのようなサイクルある
いは流体条件のタービンに対しても適用できるため、そ
の応用範囲は広い。また、タービン内部損失のうち、2
次流れ損失は、タービン段落に共通する損失であるた
め、その改善策がタービン効率の向上に寄与する度合い
が大きい。
2. Description of the Related Art Many techniques have been adopted so far for the purpose of improving the performance of turbines. Among various performance improving techniques, the improvement of internal efficiency is required for turbines of any cycle or fluid condition. However, since it can be applied, its application range is wide. Of the turbine internal loss, 2
Since the secondary flow loss is a loss common to the turbine stage, the improvement measure thereof largely contributes to the improvement of the turbine efficiency.

【0003】一般的な軸流タービンのタービンノズル
は、図11に示すように、複数枚のノズル翼1をダイヤ
フラム外輪2とダイヤフラム内輪3との間に形成される
環状流路4に固設することで構成され、各ノズル翼1に
対向して下流側に動翼(図4)が配設されている。
In a turbine nozzle of a general axial flow turbine, as shown in FIG. 11, a plurality of nozzle blades 1 are fixedly installed in an annular flow path 4 formed between a diaphragm outer ring 2 and a diaphragm inner ring 3. The moving blade (FIG. 4) is arranged on the downstream side so as to face each nozzle blade 1.

【0004】タービンノズルのノズル翼1における2次
流れの発生機構を図11を参照して説明する。
A mechanism for generating a secondary flow in the nozzle blade 1 of the turbine nozzle will be described with reference to FIG.

【0005】高圧蒸気などの作動流体は、隣接するノズ
ル翼1,1間の翼間流路を流れる際に流路内で円弧状に
曲げられて流れ、この際、ノズル翼1の背面Bから腹面
F方向に遠心力を生じるが、この遠心力と静圧は平行し
ているため、ノズル翼1の腹面Fにおける静圧が高くな
り、ノズル翼1の背面Bにおいては、作動流体の流速が
大きいため静圧が低くなる。そのため、流路内ではノズ
ル翼1の腹面F側から背面B側に圧力勾配を生じる。こ
の圧力勾配は、ダイヤフラム外輪2とダイヤフラム内輪
3の周壁面上に形成される流速の遅い層、すなわち境界
層においても同じである。
When the working fluid such as high-pressure steam flows in the inter-blade passage between the adjacent nozzle blades 1 and 1, the working fluid is bent into an arc shape in the passage and flows from the back surface B of the nozzle blade 1 at this time. A centrifugal force is generated in the direction of the abdominal surface F, but since the centrifugal force and the static pressure are parallel to each other, the static pressure on the abdominal surface F of the nozzle blade 1 increases, and the flow velocity of the working fluid on the back surface B of the nozzle blade 1 increases. Since it is large, the static pressure is low. Therefore, in the flow path, a pressure gradient is generated from the ventral surface F side of the nozzle blade 1 to the back surface B side. This pressure gradient is the same also in the layer having a low flow velocity formed on the peripheral wall surfaces of the diaphragm outer ring 2 and the diaphragm inner ring 3, that is, the boundary layer.

【0006】一方、ダイヤフラム外輪2とダイヤフラム
内輪3の周壁面上に形成される境界層付近においては、
流速が小さく作用する遠心力も小さいため、ノズル翼1
の腹面F側から背面B側への圧力勾配に抗しきれずに、
ノズル翼1の腹面F側から背面B側に向かう方向の2次
流れ6が生じる。
On the other hand, in the vicinity of the boundary layer formed on the peripheral wall surfaces of the diaphragm outer ring 2 and the diaphragm inner ring 3,
Since the flow velocity is small and the centrifugal force acting is small, the nozzle blade 1
Can not resist the pressure gradient from the abdominal surface F side to the back surface B side of
A secondary flow 6 occurs in the direction from the ventral surface F side of the nozzle blade 1 to the back surface B side.

【0007】上記2次流れ6は、ノズル翼1の腹面F側
から背面B側に向かって流れる際に、ノズル翼1の背面
B側に衝突して巻き上がり、ノズル翼1の内輪側および
外輪側の両接合端において、二次流れ渦7a,7bを発
生し、作動流体が保有するエネルギは、この2次流れ渦
7a,7bを形成するために、その1部が散逸する。
When the secondary flow 6 flows from the ventral surface F side of the nozzle blade 1 toward the back surface B side, the secondary flow 6 collides with the back surface B side of the nozzle blade 1 and is rolled up, and the inner ring side and the outer ring of the nozzle blade 1 are formed. The secondary flow vortices 7a and 7b are generated at both joint ends on the side, and the energy held by the working fluid is partly dissipated to form the secondary flow vortices 7a and 7b.

【0008】このように、ノズル流路内で発生する2次
流れ渦7a,7bは、作動流体の不均一な流れを生じ、
ノズル性能を著しく低下させるので、ノズル流路内に発
生する2次流れ渦7a,7bに起因する2次流れ損失を
低減するために、種々のタービンノズルが研究されてい
る。
As described above, the secondary flow vortices 7a and 7b generated in the nozzle passage generate a non-uniform flow of the working fluid,
Various turbine nozzles have been studied in order to reduce the secondary flow loss caused by the secondary flow vortices 7a and 7b generated in the nozzle flow passage because the nozzle performance is significantly deteriorated.

【0009】2次流れ損失を低減するためのタービンノ
ズルとして、図12に示すように、ノズル翼を回転中心
と通るラジアル線に対して傾斜させて取り付けた形状と
したものがある。このタービンノズルでは、傾斜ノズル
翼1bがロータディクスの回転中心を通るラジアル線E
に対して傾けて取り付けられている。そのため、傾斜ノ
ズル翼1b,1b間に形成される翼間流路は傾斜した曲
管となり、翼間流路における速度ベクトルは、ダイヤフ
ラム内輪3の方向となる。これにより、ダイヤフラム内
輪3の壁面近傍に発生した境界層は、その成長が抑制さ
れ、2次流れも小さくなる。その結果、ノズル流路内に
発生する2次流れ渦7aの規模は、図11に示す形式の
タービンノズルの場合よりも小さくなり、ノズル翼根元
部における2次流れ損失が大幅に減少する。
As a turbine nozzle for reducing the secondary flow loss, as shown in FIG. 12, there is a turbine nozzle having a shape in which the nozzle blade is attached to be inclined with respect to a radial line passing through the center of rotation. In this turbine nozzle, the inclined nozzle vane 1b has a radial line E passing through the center of rotation of the rotor disk.
It is installed at an angle with respect to. Therefore, the inter-blade passage formed between the inclined nozzle vanes 1b and 1b is an inclined curved pipe, and the velocity vector in the inter-blade passage is in the direction of the diaphragm inner ring 3. As a result, the growth of the boundary layer generated near the wall surface of the diaphragm inner ring 3 is suppressed, and the secondary flow is also reduced. As a result, the size of the secondary flow vortex 7a generated in the nozzle flow path becomes smaller than in the case of the turbine nozzle of the type shown in FIG. 11, and the secondary flow loss at the root of the nozzle blade is significantly reduced.

【0010】2次流れ損失を低減するためのタービンノ
ズルとして、図13に示すように、ノズル翼をロータデ
ィクスの回転中心を通るラジアル線Eに対して湾曲させ
て取り付けた形状としたものがある。このタービンノズ
ルの湾曲傾斜ノズル翼1cは、その構成、作用が図10
に示す形式のタービンノズルの傾斜ノズル翼1bと同等
であるが、図13に示すタービンノズルの湾曲ノズル翼
1cでは、翼間流路における速度ベクトルが、根元側で
はダイヤフラム内輪3、先端側では逆にダイヤフラム外
輪2の方向となるため、ダイヤフラム内輪、外輪の両方
で境界層の成長を抑制でき、2次流れも傾斜ノズル翼1
bよりも小さくなる。その結果、ノズル翼の根元部およ
び先端部で2次流れ損失が図11に示す形式のタービン
ノズルに比べて大幅に低減する。
As a turbine nozzle for reducing the secondary flow loss, as shown in FIG. 13, there is a turbine nozzle having a shape in which a nozzle blade is curved and attached to a radial line E passing through the center of rotation of a rotor disk. . The curved inclined nozzle blade 1c of this turbine nozzle has the configuration and operation shown in FIG.
In the curved nozzle blade 1c of the turbine nozzle shown in FIG. 13, the velocity vector in the blade-to-blade flow path is the same as that of the inclined nozzle blade 1b of the turbine nozzle shown in FIG. Since the diaphragm is directed toward the outer ring 2, the growth of the boundary layer can be suppressed on both the inner ring of the diaphragm and the outer ring, and the secondary flow is also inclined nozzle blade 1
It is smaller than b. As a result, the secondary flow loss at the root portion and the tip portion of the nozzle blade is significantly reduced as compared with the turbine nozzle of the type shown in FIG.

【0011】[0011]

【発明が解決しようとする課題】湾曲傾斜ノズル1cを
有するタービンノズルでは、速度ベクトルが根元側でダ
イヤフラム内輪3の方向に、先端側でダイヤフラム外輪
2の方向となるため、図5の翼高さ比に対する流量分布
図で実線で示す流量分布8となる。上記速度ベクトル
は、ダイヤフラム内輪3の壁面近傍では壁面方向に向い
ているため2次流れ損失は低減できるが、図6の翼高さ
比に対する損失分布図で実線で示す損失分布9となり、
流路中央部の効率の良い部分での流量が、従来ノズルと
比較して少なくなり、流路中央部の段落効率への貢献度
は小さくなる。
In the turbine nozzle having the curved inclined nozzle 1c, since the velocity vector is in the direction of the diaphragm inner ring 3 on the root side and in the direction of the diaphragm outer ring 2 on the tip side, the blade height in FIG. The flow rate distribution diagram for the ratio is the flow rate distribution 8 indicated by the solid line. Since the velocity vector is oriented toward the wall surface in the vicinity of the wall surface of the diaphragm inner ring 3, the secondary flow loss can be reduced, but the loss distribution 9 shown by the solid line in the loss distribution diagram for the blade height ratio in FIG.
The flow rate in the efficient portion of the central portion of the flow passage is smaller than that of the conventional nozzle, and the contribution to the paragraph efficiency in the central portion of the flow passage is small.

【0012】本発明は上記従来技術の課題を解決するた
めになされたのであり、簡素な構造で2次流れ損失を低
減し、流量分布を制御することによりタービン段落性能
を向上させたタービンノズルおよびタービン動翼を提供
することを目的とする。
The present invention has been made in order to solve the above-mentioned problems of the prior art, and a turbine nozzle having a simple structure for reducing the secondary flow loss and controlling the flow rate distribution to improve the turbine stage performance, and It is intended to provide a turbine rotor blade.

【0013】[0013]

【課題を解決するための手段】請求項1のタービンノズ
ルは、ダイヤフラム内輪とダイヤフラム外輪との間に形
成される環状流路の周方向に複数のノズル翼を列状に配
設し、各ノズル翼をダイヤフラム内輪側の接合端におい
て固定したタービンノズルにおいて、各高さ位置におけ
るノズル翼断面を円周方向に移動し、断面基準線が流体
流出側に翼高さ中央部において1つの極小点を有しかつ
極小点と翼先端の間および極小点と翼根元の間に1つの
極大点を有するように湾曲した特徴を有する。
A turbine nozzle according to a first aspect of the present invention has a plurality of nozzle blades arranged in a row in the circumferential direction of an annular flow path formed between an inner ring of a diaphragm and an outer ring of the diaphragm. In a turbine nozzle with blades fixed at the joint end on the inner ring side of the diaphragm, the nozzle blade cross section at each height position is moved in the circumferential direction, and the cross section reference line is located on the fluid outflow side with one local minimum point at the blade height center. And has a curved feature such that it has one local maximum between the local minimum and the blade tip and between the local minimum and the blade root.

【0014】請求項2のタービンノズルは、請求項1の
タービンノズルにおいて、断面基準線の根元側極大点が
翼高さ比で0.1〜0.5の位置にあり、先端側極大点
が翼高さ比で0.5〜0.9の位置にあることを特徴と
する。
A turbine nozzle according to a second aspect of the present invention is the turbine nozzle according to the first aspect, wherein the root-side maximum point of the cross-section reference line is at a blade height ratio of 0.1 to 0.5 and the tip-side maximum point is The blade height ratio is 0.5 to 0.9.

【0015】請求項3のタービン動翼は、タービンロー
タの植込部に複数の動翼を列状に配設して構成するター
ビン動翼において、各高さ位置における動翼断面を円周
方向に移動し、断面基準線を基準ラジアル線に対して流
体流出側に翼高さ中央部において1つの極小点を有しか
つ極小点と翼先端の間および極小点と翼根元の間に1つ
の極大点を有するように湾曲した特徴を有する。
According to a third aspect of the present invention, there is provided a turbine rotor blade having a plurality of rotor blades arranged in a row in an implanted portion of a turbine rotor. The cross-section reference line with respect to the reference radial line on the fluid outflow side and has one minimum point at the blade height center and one between the minimum point and the blade tip and between the minimum point and the blade root. It has a curved feature with a maximum point.

【0016】請求項4のタービン動翼は、請求項3のタ
ービン動翼において、断面基準線の根元側極大点が翼高
さ比で0.1〜0.5の位置にあり、先端側極大点が翼
高さ比で0.5〜0.9の位置にあることを特徴とす
る。
A turbine rotor blade according to a fourth aspect is the turbine rotor blade according to the third aspect, in which a root-side maximum point of a cross-section reference line is located at a blade height ratio of 0.1 to 0.5 and a tip-side maximum point. The point is located at a position of 0.5 to 0.9 in terms of blade height ratio.

【0017】請求項5のタービンノズルは、ダイヤフラ
ム内輪とダイヤフラム外輪との間に形成される環状流路
の周方向に複数のノズル翼を列状に配設し、各ノズル翼
をダイヤフラム内輪側の接合端において固定したタービ
ンノズルにおいて、各高さ位置におけるノズル翼断面を
軸方向に移動し、断面基準線が流体流出側に翼高さ中央
部において1つの極小点を有しかつ極小点と翼先端の間
および極小点と翼根元の間に1つの極大点を有するよう
に湾曲した特徴を有する。
According to a fifth aspect of the turbine nozzle, a plurality of nozzle blades are arranged in a row in the circumferential direction of the annular flow passage formed between the inner ring of the diaphragm and the outer ring of the diaphragm, and each nozzle blade is arranged on the inner ring side of the diaphragm. In the turbine nozzle fixed at the joint end, the cross section of the nozzle blade at each height position is moved in the axial direction, and the section reference line has one local minimum point at the blade height center on the fluid outflow side and the local minimum point and blade. It has a curved feature with one local maximum between the tips and between the local minimum and the blade root.

【0018】請求項6のタービンノズルは、請求項5の
タービンノズルにおいて、断面基準線の根元側極大点が
翼高さ比で0.1〜0.5の位置にあり、先端側極大点
が翼高さ比で0.5〜0.9の位置にあることを特徴と
する。
A turbine nozzle according to a sixth aspect of the present invention is the turbine nozzle according to the fifth aspect, wherein the root-side maximum point of the cross-section reference line is at a blade height ratio of 0.1 to 0.5 and the tip-side maximum point is The blade height ratio is 0.5 to 0.9.

【0019】請求項7のタービン動翼は、タービンロー
タの植込部に複数の動翼を列状に配設して構成するター
ビン動翼において、各高さ位置における動翼断面を軸方
向に移動し、断面基準線を基準ラジアル線に対して流体
流出側に翼高さ中央部において1つの極小点を有しかつ
極小点と翼先端の間および極小点と翼根元の間に1つの
極大点を有するように湾曲した特徴を有する。
According to a seventh aspect of the present invention, there is provided a turbine rotor blade having a plurality of rotor blades arranged in a row at an implanting portion of a turbine rotor. Moves and has a cross-section reference line on the fluid outflow side with respect to the reference radial line, and has one minimum point at the blade height center and one maximum point between the minimum point and the blade tip and between the minimum point and the blade root. It has features that are curved to have points.

【0020】請求項8のタービン動翼は、請求項7のタ
ービン動翼において、断面基準線の根元側極大点が翼高
さ比で0.1〜0.5の位置にあり、先端側極大点が翼
高さ比で0.5〜0.9の位置にあることを特徴とす
る。
A turbine rotor blade according to an eighth aspect is the turbine rotor blade according to the seventh aspect, wherein a root-side maximum point of a cross-section reference line is located at a blade height ratio of 0.1 to 0.5, and a tip-side maximum point. The point is located at a position of 0.5 to 0.9 in terms of blade height ratio.

【0021】[0021]

【作用】請求項1のタービンノズルでは、各高さ位置に
おけるノズル翼断面を円周方向に移動し、断面基準線が
流体流出側に翼高さ中央部において1つの極小点を有し
かつ極小点と翼先端の間および極小点と翼根元の間に1
つの極大点を有する湾曲形状としたことで、翼列間の内
外周壁面近傍での2次流れ損失を低減するとともに、速
度ベクトルが中央高さ部へ向き、中央高さ位置での効率
の良い部分を通過する流量割合が増加する。
In the turbine nozzle of claim 1, the nozzle blade section at each height position is moved in the circumferential direction, and the section reference line has one local minimum point and a local minimum point at the blade outlet center on the fluid outflow side. 1 between the point and the tip of the wing and between the minimum point and the root of the wing
The curved shape with two maximum points reduces the secondary flow loss in the vicinity of the inner and outer peripheral wall surfaces between the blade rows, and the velocity vector is directed to the central height part, which is efficient at the central height position. The rate of flow through the section increases.

【0022】請求項3のタービン動翼では、各高さ位置
における動翼断面を円周方向に移動し、断面基準線を基
準ラジアル線に対して流体流出側に翼高さ中央部におい
て1つの極小点を有しかつ極小点と翼先端の間および極
小点と翼根元の間に1つの極大点を有する湾曲形状とし
たことで、翼列間の内外周壁面近傍での2次流れ損失を
低減するとともに、速度ベクトルが中央高さ部へ向き、
中央高さ位置での効率の良い部分を通過する流量割合が
増加する。
According to the turbine moving blade of claim 3, the moving blade cross section at each height position is moved in the circumferential direction, and the cross section reference line is located on the fluid outflow side with respect to the reference radial line. By having a curved shape that has a minimum point and one maximum point between the minimum point and the blade tip and between the minimum point and the blade root, the secondary flow loss near the inner and outer peripheral wall surfaces between the blade rows is reduced. As the velocity decreases, the velocity vector goes to the central height,
The rate of flow rate passing through the efficient portion at the central height position increases.

【0023】請求項5のタービンノズルでは、各高さ位
置におけるノズル翼断面を軸方向に移動し、断面基準線
が流体流出側に翼高さ中央部において1つの極小点を有
しかつ極小点と翼先端の間および極小点と翼根元の間に
1つの極大点を有する湾曲形状としたことで、翼列間の
内外周壁面近傍での2次流れ損失は低減され、速度ベク
トルは中央高さ部へ向き、中央高さ位置での効率の良い
部分を通過する流量割合が増加する。
In the turbine nozzle of the fifth aspect, the nozzle blade cross section at each height position is moved in the axial direction, and the section reference line has one local minimum point at the blade height center on the fluid outflow side and the local minimum point. By adopting a curved shape with one maximum point between the blade tip and the blade tip and between the minimum point and the blade root, secondary flow loss near the inner and outer peripheral wall surfaces between the blade rows is reduced, and the velocity vector is The ratio of the flow rate passing through the efficient portion at the central height position toward the swell increases.

【0024】請求項7のタービン動翼では、各高さ位置
における動翼断面を軸方向に移動し、断面基準線を基準
ラジアル線に対して流体流出側に翼高さ中央部において
1つの極小点を有しかつ極小点と翼先端の間および極小
点と翼根元の間に1つの極大点を有する湾曲形状とした
ことで、翼列間の内外周壁面近傍での2次流れ損失は低
減され、速度ベクトルは中央高さ部へ向き、中央高さ位
置での効率の良い部分を通過する流量割合が増加する。
In the turbine moving blade of claim 7, the moving blade cross section at each height position is moved in the axial direction, and the cross section reference line is located at the center of the blade height on the fluid outflow side with respect to the reference radial line. By having a curved shape that has points and one maximum point between the minimum point and the blade tip and between the minimum point and the blade root, secondary flow loss near the inner and outer wall surfaces between the blade rows is reduced. Then, the velocity vector is directed to the central height portion, and the rate of flow rate passing through the efficient portion at the central height position increases.

【0025】[0025]

【実施例】以下本発明の実施例を図面を参照して説明す
る。
Embodiments of the present invention will be described below with reference to the drawings.

【0026】図1は本発明によるタービンノズルの構造
の一部をノズル出口側より視た斜視図であり、タービン
ノズル10は、複数枚のノズル翼11をダイヤフラム外
輪12とダイヤフラム内輪13との間に形成される環状
流路14に周方向に所定間隔を置いて列状に配設し、各
ノズル翼11の根元部および先端部をダイヤフラム内輪
13およびダイヤフラム外輪12に固定することで構成
されている。環状流路14への流体流入方向を符号Iで
示す。
FIG. 1 is a perspective view of a part of the structure of a turbine nozzle according to the present invention as viewed from the nozzle outlet side. In a turbine nozzle 10, a plurality of nozzle blades 11 are provided between a diaphragm outer ring 12 and a diaphragm inner ring 13. It is configured by arranging in a row at a predetermined interval in the annular flow path 14 formed in the circumferential direction, and fixing the root part and the tip part of each nozzle blade 11 to the diaphragm inner ring 13 and the diaphragm outer ring 12. There is. The symbol I indicates the direction of fluid flow into the annular flow path 14.

【0027】図2は本発明によるタービンノズル10の
ノズル翼11の後縁形状を示す図であり、タービンノズ
ル10の軸中心を通るラジアル線Eとノズル翼11の後
縁線との関係が示されている。すなわち、ノズル翼11
は、各高さ位置におけるノズル翼断面を円周方向に移動
し、ノズル翼の断面基準線11aが軸中心を通るラジア
ル線Eに対して翼高さ中央部において1つの極小点Pc
を有しかつ極小点Pcと翼先端の間に1つの極大点Pb
および極小点Pcと翼根元の間に1つの極大点Paを有
するように湾曲した特徴を有する。根元側極大点Pa
は、ダイヤフラム内輪13から距離Rの位置にあり、先
端側極大点Pbは、ダイヤフラム外輪12から距離Tの
位置にあり、極小点Pcは、PCD部Gに位置する。
FIG. 2 is a view showing the trailing edge shape of the nozzle blade 11 of the turbine nozzle 10 according to the present invention, and shows the relationship between the radial line E passing through the axial center of the turbine nozzle 10 and the trailing edge line of the nozzle blade 11. Has been done. That is, the nozzle blade 11
Moves in the circumferential direction of the nozzle blade cross section at each height position, and one local minimum point Pc at the blade height center with respect to the radial line E where the nozzle blade cross-section reference line 11a passes through the axial center.
And one maximum point Pb between the minimum point Pc and the blade tip.
And has a characteristic that it is curved so as to have one maximum point Pa between the minimum point Pc and the blade root. Root side maximum point Pa
Is located at a distance R from the diaphragm inner ring 13, the tip-side maximum point Pb is located at a distance T from the diaphragm outer ring 12, and the minimum point Pc is located at the PCD portion G.

【0028】各ノズル翼11は、ダイヤフラム外輪12
とダイヤフラム内輪13との間の環状流路14に周方向
に所定間隔を置いて列状に配設されることで、ノズル翼
11間流路が曲管となり、ノズル翼間での速度ベクトル
Dは、図2に示すように、ノズル翼11の根元部ではダ
イヤフラム内輪3側に指向し、ノズル翼11の先端部で
はダイヤフラム外輪2側に指向し、ノズル翼11の中央
部ではPCD部Gに指向する。
Each nozzle blade 11 has a diaphragm outer ring 12
By arranging in a row in the annular flow path 14 between the diaphragm and the inner ring 13 of the diaphragm at a predetermined interval in the circumferential direction, the flow path between the nozzle blades 11 becomes a curved pipe, and the velocity vector D between the nozzle blades is increased. 2, is directed toward the diaphragm inner ring 3 side at the root of the nozzle blade 11, directed toward the diaphragm outer ring 2 side at the tip of the nozzle blade 11, and toward the PCD section G at the center of the nozzle blade 11. Be oriented.

【0029】しかして、本発明によるタービンノズル1
0は、図5に示すように、後縁をラジアル線Eと一致さ
せた従来のノズル翼の流量分布15に対してW字型の流
量分布16となる。この流量分布16は、従来の湾曲型
ノズルの流量分布8のように根元部(翼高さ比0位置)
と先端部(翼高さ比1.0位置)で従来翼より流量が多
く流れる傾向を保ち、中央部でも従来翼レベル以上の流
量割合を流す。
Thus, the turbine nozzle 1 according to the present invention
As shown in FIG. 5, 0 is a W-shaped flow distribution 16 in contrast to the flow distribution 15 of the conventional nozzle blade whose trailing edge coincides with the radial line E. This flow rate distribution 16 is similar to the flow rate distribution 8 of the conventional curved nozzle, and is at the base (blade height ratio 0 position).
The flow rate at the tip portion (at a blade height ratio of 1.0 position) tends to flow higher than that of the conventional blade, and the flow rate at the central portion or more is equal to or higher than that of the conventional blade.

【0030】図6は、翼高さ比に対する損失分布図を示
し、本発明によるタービンノズル10の損失分布(点
線)は符号17で示され、従来の湾曲ノズル翼1cのタ
ービンノズルの損失分布(実線)は符号18で示されて
いる。
FIG. 6 shows a loss distribution diagram with respect to the blade height ratio. The loss distribution (dotted line) of the turbine nozzle 10 according to the present invention is shown by reference numeral 17, and the loss distribution of the turbine nozzle of the conventional curved nozzle vane 1c ( The solid line is indicated by reference numeral 18.

【0031】すなわち、湾曲ノズル1cのタービンノズ
ルでは、従来の湾曲ノズル翼1cの根元部、先端部付近
で速度ベクトルDがそれぞれダイヤフラム内輪3側、ダ
イヤフラム外輪2側に向いて2次流れ損失を抑えている
ため、その損失分布18は従来のノズル翼1bのタービ
ンノズルの損失分布9と比較して根元部、先端部付近で
2次流れ損失を押さえた分だけ小さくなる。
That is, in the turbine nozzle of the curved nozzle 1c, the velocity vector D near the root and the tip of the conventional curved nozzle blade 1c is directed toward the diaphragm inner ring 3 side and the diaphragm outer ring 2 side, respectively, to suppress secondary flow loss. Therefore, the loss distribution 18 becomes smaller than the loss distribution 9 of the turbine nozzle of the conventional nozzle blade 1b by the amount of the secondary flow loss suppressed near the root portion and the tip portion.

【0032】これに対して、本発明によるタービンノズ
ル10は、根元部、先端部において従来の湾曲ノズル翼
1cと同様に速度ベクトルDがそれぞれダイヤフラム内
輪13側、ダイヤフラム外輪12側に向いているため、
その損失分布17は湾曲ノズル翼1cのタービンノズル
の損失分布18とほとんど同レベルの分布となる。
On the other hand, in the turbine nozzle 10 according to the present invention, the velocity vector D is directed toward the diaphragm inner ring 13 side and the diaphragm outer ring 12 side at the root portion and the tip portion, respectively, similarly to the conventional curved nozzle blade 1c. ,
The loss distribution 17 has almost the same level as the loss distribution 18 of the turbine nozzle of the curved nozzle blade 1c.

【0033】図7は、図5および図6により得られる半
径方向の翼高さ比に対する出力比分布図を示す。図7に
おいて、本発明によるタービンノズル10の出力分布
(点線)を符号19で示し、従来のノズル翼1bのター
ビンノズルの損失分布(実線)を符号20で示し、従来
の湾曲ノズル翼1cのタービンノズルの損失分布(実
線)を符号21で示す。
FIG. 7 is a power ratio distribution diagram with respect to the radial blade height ratio obtained by FIGS. 5 and 6. 7, the output distribution (dotted line) of the turbine nozzle 10 according to the present invention is shown by reference numeral 19, the loss distribution (solid line) of the turbine nozzle of the conventional nozzle blade 1b is shown by reference numeral 20, and the turbine of the conventional curved nozzle blade 1c is shown. The loss distribution (solid line) of the nozzle is indicated by reference numeral 21.

【0034】本発明によるタービンノズル10では、ノ
ズル翼11が高効率の中央部において流量が多く流れる
構造となっているため、この部分で高出力が得られ、根
元部および先端部でも、2次流れ損失低減により従来の
ノズル翼1bのタービンノズルの出力分布20より高い
出力が得られる。
In the turbine nozzle 10 according to the present invention, since the nozzle blade 11 has a structure in which a large amount of flow flows in the highly efficient central portion, a high output is obtained in this portion, and the root portion and the tip portion are also secondary. By reducing the flow loss, an output higher than the output distribution 20 of the turbine nozzle of the conventional nozzle blade 1b can be obtained.

【0035】図8は、本発明によるタービンノズルの翼
高さ0.5より根元側の出力分布比図であり、ダイヤフ
ラム内輪13側の極大点Paの位置と湾曲ノズル翼1c
に対する出力比の関係を示している。図8において、横
軸は翼高さを1.0とした場合の翼断面位置を比率で示
し、縦軸は湾曲ノズルにおける半径方向の出力分布を各
翼断面位置において1.0として無次元化した出力比を
示す。
FIG. 8 is a power distribution ratio diagram of the turbine nozzle according to the present invention on the root side with respect to the blade height of 0.5. The position of the maximum point Pa on the diaphragm inner ring 13 side and the curved nozzle blade 1c.
It shows the relationship of the output ratio to. In FIG. 8, the horizontal axis represents the blade cross-section position when the blade height is 1.0, and the vertical axis represents the radial power distribution in the curved nozzle as 1.0 at each blade cross-section position to make it dimensionless. The output ratio is shown.

【0036】本発明によるタービンノズル10は、出力
曲線が翼高さ比において0.1〜0.5の間に極大点P
aが位置する時に従来の湾曲ノズル翼1cより高出力が
得られ、タービン効率が大幅に向上する。
In the turbine nozzle 10 according to the present invention, the output curve has a maximum point P between 0.1 and 0.5 in the blade height ratio.
When a is positioned, a higher output than that of the conventional curved nozzle blade 1c is obtained, and the turbine efficiency is significantly improved.

【0037】図9は、本発明によるタービンノズルの翼
高さ0.5より先端側の出力分布比図であり、ダイヤフ
ラム内輪13側の極大点Paの位置と湾曲ノズル翼1c
に対する出力比の関係を示している。
FIG. 9 is an output distribution ratio diagram of the turbine nozzle according to the present invention on the tip side with respect to the blade height of 0.5. The position of the maximum point Pa on the diaphragm inner ring 13 side and the curved nozzle blade 1c.
It shows the relationship of the output ratio to.

【0038】本発明によるタービンノズル10のノズル
翼11は、出力曲線が翼高さ比において0.5〜0.9
の間に極大点Pbが位置する時に従来の湾曲ノズル翼1
cよりも高出力が得られ、タービン効率が大幅に向上す
る。
In the nozzle blade 11 of the turbine nozzle 10 according to the present invention, the output curve has a blade height ratio of 0.5 to 0.9.
The conventional curved nozzle blade 1 when the maximum point Pb is located between
A higher output than that of c is obtained, and the turbine efficiency is significantly improved.

【0039】なお、本発明によるタービンノズル10で
は、極大点が0.5の場合、従来の湾曲ノズル翼1cと
同形状となるため、出力比は同レベルとなる。また、根
元側で0.1以下、または、先端で0.9以上の翼高さ
位置に極大点が位置する場合、それぞれの壁面近傍にお
いて湾曲形状による2次流れを押さえる効果が小さくな
り、出力も従来の湾曲ノズル翼1cに比べて小さくな
る。
In the turbine nozzle 10 according to the present invention, when the maximum point is 0.5, the shape is the same as that of the conventional curved nozzle blade 1c, so that the output ratio is at the same level. Further, when the maximum point is located at a blade height position of 0.1 or less at the root side or 0.9 or more at the tip, the effect of suppressing the secondary flow due to the curved shape in the vicinity of each wall surface becomes small, and the output Is smaller than that of the conventional curved nozzle blade 1c.

【0040】図3は本発明によるタービン動翼30を示
し、このタービン動翼30は、タービンロータ31の植
込部31aに複数の動翼32を列状に配設し、各動翼3
2の外周端をシュラウド33で固定することで構成され
る。このタービン動翼30は、タービンノズル10の下
流側に動翼32がノズル翼11に対向するように配設さ
れる。
FIG. 3 shows a turbine rotor blade 30 according to the present invention. In this turbine rotor blade 30, a plurality of rotor blades 32 are arranged in a row in an implanted portion 31a of a turbine rotor 31, and each rotor blade 3 is provided.
It is configured by fixing the outer peripheral end of 2 with a shroud 33. The turbine rotor blade 30 is disposed downstream of the turbine nozzle 10 so that the rotor blade 32 faces the nozzle blade 11.

【0041】上記タービン動翼30の各動翼32は、図
2で示すタービン翼11と同様に、各高さ位置における
動翼断面を円周方向に移動し、断面基準線を基準ラジア
ル線に対して流体流出側に翼高さ中央部において1つの
極小点を有しかつ極小点と翼先端の間および極小点と翼
根元の間に1つの極大点を有するように湾曲した特徴を
有する。
As in the turbine blade 11 shown in FIG. 2, each blade 32 of the turbine blade 30 is moved in the circumferential direction in the blade cross section at each height position, and the section reference line becomes the reference radial line. On the other hand, it has a feature that it has one local minimum point at the blade height center on the fluid outflow side and one local maximum point between the local minimum point and the blade tip and between the local minimum point and the blade root.

【0042】タービン動翼30の各動翼32は、環状流
路に配設されることで動翼32間流路が曲管となり、翼
間での速度ベクトルDは、動翼32の根元部ではタービ
ンロータ31側に指向し、動翼32の先端部ではダイヤ
フラム外輪12側に指向し、動翼32のの中央部ではP
CD部Gを指向する。したがって、タービン動翼30の
動翼32は、タービンノズル10のノズル翼11と同等
の効果を奏する。
Since each moving blade 32 of the turbine moving blade 30 is arranged in the annular flow path, the flow path between the moving blades 32 becomes a curved pipe, and the velocity vector D between the blades is determined by the root portion of the moving blade 32. Is directed toward the turbine rotor 31 side, the tip end of the moving blade 32 is directed toward the diaphragm outer ring 12 side, and P is provided at the central portion of the moving blade 32.
The CD section G is directed. Therefore, the moving blade 32 of the turbine moving blade 30 has the same effect as the nozzle blade 11 of the turbine nozzle 10.

【0043】図4は、本発明によるタービンノズルおよ
びタービン動翼の他の実施例の周方向から見た図であ
り、この実施例のタービンノズル40の各ノズル翼41
およびタービン動翼42の各動翼43は、断面基準線4
1a,43aが基準ラジアル線に対して流体流出側に、
1つの極小点を有しかつ極小点と翼先端の間および極小
点と翼根元の間に1つの極大点を有するように湾曲した
特徴を有する。
FIG. 4 is a view of another embodiment of the turbine nozzle and the turbine rotor blade according to the present invention as seen from the circumferential direction. Each nozzle blade 41 of the turbine nozzle 40 of this embodiment is shown.
And each rotor blade 43 of the turbine rotor blade 42 has a cross-section reference line 4
1a and 43a are on the fluid outflow side with respect to the reference radial line,
It has a feature with one local minimum and one local maximum between the local minimum and the blade tip and between the local minimum and the blade root.

【0044】すなわち、タービンノズル40のノズル翼
41は、断面基準線41aが翼高さ中央部において1つ
の極小点を有しかつ極小点と翼先端の間に1つの極大点
および極小点と翼根元の間に1つの極大点を有するよう
に湾曲した特徴を有するので、速度ベクトルDは、根元
部ではダイヤフラム内輪13方向へ、先端部においては
ダイヤフラム外輪12方向へ向くため、2次流れ損失の
低減効果が見られ、また、中央部の凹部により中央部で
の低損失部分への流量を増加させることになり、周方向
に同形状のノズル翼11と同等の効果を奏する。
That is, in the nozzle blade 41 of the turbine nozzle 40, the cross-section reference line 41a has one local minimum point at the blade height center and one local maximum point and one local minimum point between the local minimum point and the blade tip. Since the velocity vector D has a feature that it is curved so as to have one maximum point between the roots, the velocity vector D is directed toward the diaphragm inner ring 13 at the root portion and toward the diaphragm outer ring 12 at the tip portion, so that the secondary flow loss A reduction effect is seen, and the flow rate to the low loss portion in the central portion is increased by the concave portion in the central portion, and the same effect as that of the nozzle blade 11 having the same shape in the circumferential direction is obtained.

【0045】また、タービン動翼42の動翼43も、断
面基準線43aが翼高さ中央部において1つの極小点を
有しかつ極小点と翼先端の間に1つの極大点および極小
点と翼根元の間に1つの極大点を有するように湾曲した
特徴を有するので、速度ベクトルDは、根元部ではダイ
ヤフラム内輪13方向へ、先端部においてはダイヤフラ
ム外輪12方向へ向くため、2次流れ損失の低減効果が
見られ、また、中央部の凹部により中央部での低損失部
分への流量を増加させることになり、周方向に同形状の
動翼32と同等の効果を示す。
In the rotor blade 43 of the turbine rotor blade 42, the cross-section reference line 43a also has one local minimum point at the blade height center and one local maximum point and one local minimum point between the local minimum point and the blade tip. Since the blade has a characteristic that it is curved so as to have one maximum point between the blade roots, the velocity vector D is directed toward the diaphragm inner ring 13 at the root portion and toward the diaphragm outer ring 12 at the tip portion, so that the secondary flow loss occurs. And the flow rate to the low loss portion in the central portion is increased by the concave portion in the central portion, and the same effect as that of the moving blade 32 having the same shape in the circumferential direction is exhibited.

【0046】タービンノズルのノズル翼の作用を図10
で説明する。
The operation of the nozzle blade of the turbine nozzle is shown in FIG.
Described in.

【0047】ノズル翼を通過した流体はある角度αでノ
ズル翼から流出する。このノズル流出速度をC2 とする
と、ノズル流出速度の周方向成分ベクトルはCt 、ノズ
ル流出速度の軸方向成分ベクトルはCa となる。
The fluid that has passed through the nozzle vanes flows out from the nozzle vanes at an angle α. When the nozzle outflow velocity is C2, the circumferential component vector of the nozzle outflow velocity is Ct, and the axial component vector of the nozzle outflow velocity is Ca.

【0048】図1で示す実施例は、ノズル翼の断面を周
方向の移動することにより、ノズル流出速度の周方向成
分ベクトルCt を図2に示すような半径方向分布とし、
2次流れ損失の低減と中央部の効率のよい部分への流量
割合の増加という効果を奏する。
In the embodiment shown in FIG. 1, by moving the cross section of the nozzle blade in the circumferential direction, the circumferential component vector Ct of the nozzle outflow velocity is made to have a radial distribution as shown in FIG.
The secondary flow loss is reduced and the flow rate ratio to the efficient portion of the central portion is increased.

【0049】図3で示す実施例は、ノズル流出速度の軸
方向成分ベクトルCa を図2に示すような半径方向分布
とし、2次流れ損失の低減と中央部の効率のよい部分へ
の流量割合の増加という効果を奏する。
In the embodiment shown in FIG. 3, the axial component vector Ca of the nozzle outflow velocity is set to a radial distribution as shown in FIG. 2 so that the secondary flow loss is reduced and the flow rate ratio to the efficient portion of the central portion is set. The effect is to increase.

【0050】すなわち、図1で示す実施例では、断面位
置が周方向の流体流出側に上記形状を有するように定義
したものであり、図3で示す実施例では、断面の移動方
向を周方向から軸方向とすることによって、断面位置が
軸方向の流体流出側に上記形状を有するように定義した
ものである。
That is, in the embodiment shown in FIG. 1, the cross-sectional position is defined so as to have the above-mentioned shape on the fluid outflow side in the circumferential direction, and in the embodiment shown in FIG. Is defined as having the above-mentioned shape on the fluid outflow side in the axial direction.

【0051】[0051]

【発明の効果】以上述べたように、請求項1のタービン
ノズルは、各高さ位置におけるノズル翼断面を円周方向
に移動し、断面基準線が流体流出側に翼高さ中央部にお
いて1つの極小点を有しかつ極小点と翼先端の間および
極小点と翼根元の間に1つの極大点を有するように湾曲
することで、ダイヤフラム内輪、ダイヤフラム外輪の壁
面近傍の2次流れ損失を低減するとともに、中央部を通
過する流量割合を増加させることでタービン段落性能を
大幅に向上させることができる。
As described above, according to the turbine nozzle of the first aspect, the nozzle blade section at each height position is moved in the circumferential direction, and the section reference line is 1 at the blade height center portion on the fluid outflow side. By having two local minimum points and one local maximum point between the local minimum point and the blade tip and between the local minimum point and the blade root, the secondary flow loss near the wall surface of the diaphragm inner ring and the diaphragm outer ring is reduced. The turbine stage performance can be significantly improved by reducing the flow rate and increasing the flow rate ratio passing through the central portion.

【0052】また、請求項3のタービン動翼は、各高さ
位置における動翼断面を円周方向に移動し、断面基準線
を基準ラジアル線に対して流体流出側に翼高さ中央部に
おいて1つの極小点を有しかつ極小点と翼先端の間およ
び極小点と翼根元の間に1つの極大点を有するように湾
曲することで、タービンロータ、ダイヤフラム外輪の壁
面近傍の2次流れ損失を低減するとともに、中央部を通
過する流量割合を増加させることでタービン段落性能を
大幅に向上させることができる。
Further, in the turbine moving blade of claim 3, the moving blade cross section at each height position is moved in the circumferential direction, and the cross section reference line is at the blade outflow center with respect to the reference radial line at the blade height center portion. The secondary flow loss near the wall surface of the turbine rotor and the outer ring of the diaphragm by having one local minimum point and one local maximum point between the local minimum point and the blade tip and between the local minimum point and the blade root. The turbine stage performance can be significantly improved by reducing the flow rate and increasing the flow rate ratio passing through the central portion.

【0053】また、請求項5のタービンノズルは、各高
さ位置におけるノズル翼断面を軸方向に移動し、断面基
準線が流体流出側に翼高さ中央部において1つの極小点
を有しかつ極小点と翼先端の間および極小点と翼根元の
間に1つの極大点を有するように湾曲することで、ダイ
ヤフラム内輪、ダイヤフラム外輪の壁面近傍の2次流れ
損失を低減するとともに、中央部を通過する流量割合を
増加させることでタービン段落性能を大幅に向上させる
ことができる。
Further, in the turbine nozzle of claim 5, the nozzle blade section at each height position is moved in the axial direction, and the section reference line has one local minimum point at the blade height center on the fluid outflow side. By curving so as to have one maximum point between the minimum point and the blade tip and between the minimum point and the blade root, the secondary flow loss near the wall surface of the diaphragm inner ring and the diaphragm outer ring is reduced, and the central portion is reduced. Turbine stage performance can be significantly improved by increasing the rate of flow through.

【0054】また、請求項7のタービン動翼は、各高さ
位置における動翼断面を軸方向に移動し、断面基準線を
基準ラジアル線に対して流体流出側に翼高さ中央部にお
いて1つの極小点を有しかつ極小点と翼先端の間および
極小点と翼根元の間に1つの極大点を有するように湾曲
することで、タービンロータ、ダイヤフラム外輪の壁面
近傍の2次流れ損失を低減するとともに、中央部を通過
する流量割合を増加させることでタービン段落性能を大
幅に向上させることができる。
According to a seventh aspect of the present invention, in the turbine rotor blade, the rotor blade section at each height position is moved in the axial direction, and the section reference line is at the blade outflow side with respect to the reference radial line at the blade height center portion. By having two local minimum points and one local maximum point between the local minimum point and the blade tip and between the local minimum point and the blade root, the secondary flow loss near the wall surface of the turbine rotor and the outer ring of the diaphragm can be reduced. The turbine stage performance can be significantly improved by reducing the flow rate and increasing the flow rate ratio passing through the central portion.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明によるタービンノズルのノズル翼を流体
流出側より見た斜視図。
FIG. 1 is a perspective view of a nozzle blade of a turbine nozzle according to the present invention as viewed from a fluid outflow side.

【図2】本発明によるタービンノズルのノズル翼の後縁
形状を示す図。
FIG. 2 is a view showing a trailing edge shape of a nozzle blade of a turbine nozzle according to the present invention.

【図3】本発明によるタービン動翼の動翼を流体流出側
より見た斜視図。
FIG. 3 is a perspective view of a rotor blade of a turbine rotor blade according to the present invention as viewed from a fluid outflow side.

【図4】本発明によるタービンノズルおよびタービン動
翼の他の実施例を周方向から見た図。
FIG. 4 is a view of another embodiment of the turbine nozzle and the turbine rotor blade according to the present invention as viewed from the circumferential direction.

【図5】翼高さ比に対する流量分布図。FIG. 5 is a flow rate distribution chart with respect to a blade height ratio.

【図6】翼高さ比に対する損失分布図。FIG. 6 is a loss distribution diagram with respect to a blade height ratio.

【図7】翼高さ比に対する出力比分布図。FIG. 7 is an output ratio distribution diagram with respect to a blade height ratio.

【図8】根元部側極大点に対する出力比分布図。FIG. 8 is an output ratio distribution diagram for a root-side maximum point.

【図9】先端部側極大点に対する出力比分布図。FIG. 9 is an output ratio distribution diagram for the local maximum on the tip side.

【図10】ノズル流出速度を周方向成分ベクトルと軸方
向成分ベクトルに分解して示す図。
FIG. 10 is a diagram showing the nozzle outflow velocity decomposed into a circumferential component vector and an axial component vector.

【図11】従来のタービンノズルのノズル翼を流体流出
側により見た斜視図。
FIG. 11 is a perspective view of a nozzle blade of a conventional turbine nozzle viewed from the fluid outflow side.

【図12】従来のタービンノズルの傾斜ノズル翼を流体
流出側より見た斜視図。
FIG. 12 is a perspective view of an inclined nozzle blade of a conventional turbine nozzle viewed from a fluid outflow side.

【図13】従来のタービンノズルの湾曲ノズル翼を流体
流出側より見た斜視図。
FIG. 13 is a perspective view of a curved nozzle blade of a conventional turbine nozzle viewed from a fluid outflow side.

【符号の説明】[Explanation of symbols]

10 タービンノズル 11 ノズル翼 11a 断面基準線 12 ダイヤフラム外輪 13 ダイヤフラム内輪 14 環状流路 30 タービン動翼 32 動翼 31 タービンロータ 31a タービンロータの植込部 Pa 極大点 Pb 極大点 Pc 極小点 10 Turbine Nozzle 11 Nozzle Blade 11a Cross Section Reference Line 12 Diaphragm Outer Ring 13 Diaphragm Inner Ring 14 Annular Flow Path 30 Turbine Moving Blade 32 Moving Blade 31 Turbine Rotor 31a Turbine Rotor Implantation Part Pa Maximum Point Pb Maximum Point Pc Minimum Point

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】ダイヤフラム内輪とダイヤフラム外輪との
間に形成される環状流路の周方向に複数のノズル翼を列
状に配設し、各ノズル翼をダイヤフラム内輪側の接合端
において固定したタービンノズルにおいて、各高さ位置
におけるノズル翼断面を円周方向に移動し、断面基準線
が流体流出側に翼高さ中央部において1つの極小点を有
しかつ極小点と翼先端の間および極小点と翼根元の間に
1つの極大点を有するように湾曲した特徴を有するター
ビンノズル。
1. A turbine in which a plurality of nozzle blades are arranged in a row in a circumferential direction of an annular flow passage formed between an inner ring of a diaphragm and an outer ring of the diaphragm, and each nozzle blade is fixed at a joint end on the inner ring side of the diaphragm. In the nozzle, the cross section of the nozzle blade at each height position is moved in the circumferential direction, and the section reference line has one minimum point at the center of the blade height on the fluid outflow side, and between the minimum point and the blade tip and the minimum point. A turbine nozzle having features that are curved to have one local maximum between the point and the blade root.
【請求項2】断面基準線の根元側極大点が翼高さ比で
0.1〜0.5の位置にあり、先端側極大点が翼高さ比
で0.5〜0.9の位置にあることを特徴とする請求項
1に記載のタービンノズル。
2. A root-side maximum point of the cross-section reference line is located at a blade height ratio of 0.1 to 0.5, and a tip-side maximum point is located at a blade height ratio of 0.5 to 0.9. The turbine nozzle according to claim 1, wherein
【請求項3】タービンロータの植込部に複数の動翼を列
状に配設して構成するタービン動翼において、各高さ位
置における動翼断面を円周方向に移動し、断面基準線を
基準ラジアル線に対して流体流出側に翼高さ中央部にお
いて1つの極小点を有しかつ極小点と翼先端の間および
極小点と翼根元の間に1つの極大点を有するように湾曲
した特徴を有するタービン動翼。
3. A turbine rotor blade having a plurality of rotor blades arranged in a row in an implanted portion of a turbine rotor, wherein the rotor blade cross section at each height position is moved in the circumferential direction to obtain a reference line for the section. Is curved so that it has one minimum point at the blade height center on the fluid outflow side with respect to the reference radial line and one maximum point between the minimum point and the blade tip and between the minimum point and the blade root. Turbine rotor blade having the above characteristics.
【請求項4】断面基準線の根元側極大点が翼高さ比で
0.1〜0.5の位置にあり、先端側極大点が翼高さ比
で0.5〜0.9の位置にあることを特徴とする請求項
3に記載のタービン動翼。
4. A root-side maximum point of the cross-section reference line is located at a blade height ratio of 0.1 to 0.5, and a tip-side maximum point is located at a blade height ratio of 0.5 to 0.9. The turbine rotor blade according to claim 3, wherein
【請求項5】ダイヤフラム内輪とダイヤフラム外輪との
間に形成される環状流路の周方向に複数のノズル翼を列
状に配設し、各ノズル翼をダイヤフラム内輪側の接合端
において固定したタービンノズルにおいて、各高さ位置
におけるノズル翼断面を軸方向に移動し、断面基準線が
流体流出側に翼高さ中央部において1つの極小点を有し
かつ極小点と翼先端の間および極小点と翼根元の間に1
つの極大点を有するように湾曲した特徴を有するタービ
ンノズル。
5. A turbine in which a plurality of nozzle blades are arranged in a row in a circumferential direction of an annular flow path formed between an inner ring of a diaphragm and an outer ring of the diaphragm, and each nozzle blade is fixed at a joint end on the inner ring side of the diaphragm. In the nozzle, the cross section of the nozzle blade at each height position is moved in the axial direction, and the section reference line has one minimum point at the center of the blade height on the fluid outflow side, and between the minimum point and the blade tip, and the minimum point. Between the root and the root of the wing
A turbine nozzle having features curved to have two maxima.
【請求項6】断面基準線の根元側極大点が翼高さ比で
0.1〜0.5の位置にあり、先端側極大点が翼高さ比
で0.5〜0.9の位置にあることを特徴とする請求項
5に記載のタービンノズル。
6. A root-side maximum point of the cross-section reference line is located at a blade height ratio of 0.1 to 0.5, and a tip-side maximum point is located at a blade height ratio of 0.5 to 0.9. The turbine nozzle according to claim 5, wherein
【請求項7】タービンロータの植込部に複数の動翼を列
状に配設して構成するタービン動翼において、各高さ位
置における動翼断面を軸方向に移動し、断面基準線を基
準ラジアル線に対して流体流出側に翼高さ中央部におい
て1つの極小点を有しかつ極小点と翼先端の間および極
小点と翼根元の間に1つの極大点を有するように湾曲し
た特徴を有するタービン動翼。
7. A turbine rotor blade having a plurality of rotor blades arranged in a row in an implanted portion of a turbine rotor, wherein the rotor blade cross section at each height position is moved in the axial direction to obtain a cross section reference line. Curved to have one local minimum point at the blade height center on the fluid outflow side with respect to the reference radial line and one local maximum point between the local minimum point and the blade tip and between the local minimum point and the blade root. Turbine rotor blade with features.
【請求項8】断面基準線の根元側極大点が翼高さ比で
0.1〜0.5の位置にあり、先端側極大点が翼高さ比
で0.5〜0.9の位置にあることを特徴とする請求項
7に記載のタービン動翼。
8. A root-side maximum point of the cross-section reference line is at a blade height ratio of 0.1 to 0.5, and a tip-side maximum point is a blade height ratio of 0.5 to 0.9. The turbine blade according to claim 7, wherein
JP23177794A 1994-09-27 1994-09-27 Turbine nozzle and turbine rotor blade Pending JPH0893404A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23177794A JPH0893404A (en) 1994-09-27 1994-09-27 Turbine nozzle and turbine rotor blade

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23177794A JPH0893404A (en) 1994-09-27 1994-09-27 Turbine nozzle and turbine rotor blade

Publications (1)

Publication Number Publication Date
JPH0893404A true JPH0893404A (en) 1996-04-09

Family

ID=16928877

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23177794A Pending JPH0893404A (en) 1994-09-27 1994-09-27 Turbine nozzle and turbine rotor blade

Country Status (1)

Country Link
JP (1) JPH0893404A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6431829B1 (en) 1999-06-03 2002-08-13 Ebara Corporation Turbine device
JP2008157246A (en) * 2006-12-22 2008-07-10 General Electric Co <Ge> Gas turbine engine including inclined stator vane and method for assembling the same
JP2008157247A (en) * 2006-12-22 2008-07-10 General Electric Co <Ge> Turbine assembly of gas turbine engine and its manufacturing method
JP2008157250A (en) * 2006-12-22 2008-07-10 General Electric Co <Ge> Gas turbine engine including multi-curved surface stator vane and method for assembling the same
EP1995469A1 (en) * 2006-03-14 2008-11-26 Mitsubishi Heavy Industries, Ltd. Blade for axial-flow fluid machine
JPWO2020161943A1 (en) * 2019-02-07 2021-09-30 株式会社Ihi Design method for axial fan, compressor and turbine blades, and blades obtained by the design.

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6431829B1 (en) 1999-06-03 2002-08-13 Ebara Corporation Turbine device
EP1995469A1 (en) * 2006-03-14 2008-11-26 Mitsubishi Heavy Industries, Ltd. Blade for axial-flow fluid machine
EP1995469A4 (en) * 2006-03-14 2013-08-14 Mitsubishi Heavy Ind Ltd Blade for axial-flow fluid machine
JP2008157246A (en) * 2006-12-22 2008-07-10 General Electric Co <Ge> Gas turbine engine including inclined stator vane and method for assembling the same
JP2008157247A (en) * 2006-12-22 2008-07-10 General Electric Co <Ge> Turbine assembly of gas turbine engine and its manufacturing method
JP2008157250A (en) * 2006-12-22 2008-07-10 General Electric Co <Ge> Gas turbine engine including multi-curved surface stator vane and method for assembling the same
JPWO2020161943A1 (en) * 2019-02-07 2021-09-30 株式会社Ihi Design method for axial fan, compressor and turbine blades, and blades obtained by the design.
EP3922817A4 (en) * 2019-02-07 2022-11-23 Ihi Corporation Method for designing blade for axial flow type fan, compressor and turbine, and blade obtained by means of said design
US11795823B2 (en) 2019-02-07 2023-10-24 Ihi Corporation Method for designing vane of fan, compressor and turbine of axial flow type, and vane obtained by the designing

Similar Documents

Publication Publication Date Title
JP4373629B2 (en) Axial flow turbine
EP2492440B1 (en) Turbine nozzle blade and steam turbine equipment using same
JP4876206B2 (en) Turbine stage with crescent shaped slope
JP5777531B2 (en) Airfoil blades for axial turbomachinery
US20120009065A1 (en) Rotor blade
JP3910648B2 (en) Turbine nozzle, turbine blade and turbine stage
US6109869A (en) Steam turbine nozzle trailing edge modification for improved stage performance
JP3773565B2 (en) Turbine nozzle
JPH0893404A (en) Turbine nozzle and turbine rotor blade
JP2002256810A (en) Axial flow turbines
JP3786443B2 (en) Turbine nozzle, turbine blade and turbine stage
JP2003020904A (en) Axial flow turbine blade and axial flow turbine stage
WO2000061918A2 (en) Airfoil leading edge vortex elimination device
JP4184565B2 (en) Steam turbine nozzle and steam turbine using the steam turbine nozzle
JP2007056824A (en) Stationary blade and moving blade for axial flow turbine, and axial flow turbine provided with same
JPH0478803B2 (en)
JP2000073702A (en) Axial flow turbine
JP2004263679A (en) Axial flow turbine
JP2004263602A (en) Nozzle blade, moving blade, and turbine stage of axial-flow turbine
JP2008202420A (en) Nozzle blade and axial-flow turbine
JPH11173104A (en) Turbine rotor blade
JP2000045703A (en) Axial flow turbine cascade
JPH06212902A (en) Turbine moving blade
JP2005030266A (en) Axial-flow turbine
JPH1061405A (en) Stationary blade of axial flow turbo machine