JP2003314188A - Method for predicting settlement in excavation of tunnel - Google Patents

Method for predicting settlement in excavation of tunnel

Info

Publication number
JP2003314188A
JP2003314188A JP2002120560A JP2002120560A JP2003314188A JP 2003314188 A JP2003314188 A JP 2003314188A JP 2002120560 A JP2002120560 A JP 2002120560A JP 2002120560 A JP2002120560 A JP 2002120560A JP 2003314188 A JP2003314188 A JP 2003314188A
Authority
JP
Japan
Prior art keywords
subsidence
amount
excavation
characteristic curve
predicting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002120560A
Other languages
Japanese (ja)
Inventor
Akio Tamai
昭雄 玉井
Takeshi Fujii
剛 藤井
Tadashi Ninomiya
正 二宮
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Obayashi Corp
Original Assignee
Obayashi Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Obayashi Corp filed Critical Obayashi Corp
Priority to JP2002120560A priority Critical patent/JP2003314188A/en
Publication of JP2003314188A publication Critical patent/JP2003314188A/en
Pending legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for predicting settlement in a relatively simple manner when excavation of a tunnel is carried out by adopting an auxiliary method. <P>SOLUTION: The method for predicting the settlement is available in excavation of the tunnel by adopting the auxiliary method employing longer section preliminary installed works, leg reinforcing works, etc., and setting timbering on an excavated wall surface. According to the method, the settlement is predicted based on a ground characteristic curve A showing the relationship between timbering internal pressure and wall surface deformation, and a timbering characteristic curve B showing the relationship between the timbering internal pressure and the settlement. Reinforcement in a cross sectional direction, by virtue of execution of the auxiliary method is reflected on the natural ground characteristic curve A as an arch effect, and reinforcement in a longitudinal sectional direction, by virtue of execution of the auxiliary method is reflected on the timbering characteristic curve B as a beam effect. <P>COPYRIGHT: (C)2004,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】この発明は、トンネル掘削に
おける沈下量の予測方法に関し、特に、トンネル掘削に
長尺先受け工などの補助工法を採用した場合の沈下量の
予測方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for predicting a subsidence amount in tunnel excavation, and more particularly to a method for predicting a subsidence amount when an auxiliary construction method such as a long pre-bearing work is adopted for tunnel excavation.

【0002】[0002]

【従来の技術】トンネル掘削において、掘削に伴って発
生する沈下量を予測する場合には、FEMなどの有限要
素法に基づく数値解析法を採用することが通例となって
いる。
2. Description of the Related Art In tunnel excavation, it is customary to employ a numerical analysis method based on a finite element method such as FEM when predicting the amount of subsidence that accompanies excavation.

【0003】しかしながら、このような従来のトンネル
掘削における沈下量の予測方法には、以下に説明する技
術的な課題があった。
However, such a conventional method of predicting the amount of subsidence in tunnel excavation has the following technical problems.

【0004】[0004]

【発明が解決しようとする課題】すなわち、トンネル掘
削による沈下は、地山条件(変形係数,強度特性)、土
被り、トンネル径、支保工などの各種の条件が複雑に絡
み合った結果として発生し、このような条件にすべて適
合した数値解析のモデル化が難しく、解析結果と実際の
沈下量とが合い難いという問題があった。
That is, subsidence due to tunnel excavation occurs as a result of complicated intertwining of various conditions such as ground conditions (deformation coefficient, strength characteristics), overburden, tunnel diameter, and support work. However, there is a problem that it is difficult to model the numerical analysis that meets all of these conditions, and it is difficult to match the analysis result with the actual subsidence amount.

【0005】特に、近時の都市型トンネルでは、長尺先
受け工などの補助工法を採用しているが、このような補
助工法を採用すると、より一層モデル化が難しく、沈下
量を予測するために確立された手法がないのが現状であ
る。
In particular, in recent urban tunnels, an auxiliary construction method such as a long length pre-bearing construction is adopted. However, if such an auxiliary construction method is adopted, it is more difficult to model and the settlement amount is predicted. Currently, there is no established method.

【0006】本発明は、このような従来の問題点に鑑み
てなされたものであって、その目的とするところは、補
助工法を採用した場合に、比較的簡便に沈下量を予測す
ることができるトンネル掘削における沈下量の予測方法
を提供することにある。
The present invention has been made in view of such conventional problems, and an object of the present invention is to relatively easily predict the subsidence amount when an auxiliary construction method is adopted. It is to provide a method of predicting the amount of settlement in tunnel excavation that can be performed.

【0007】[0007]

【課題を解決するための手段】上記目的を達成するため
に、本発明は、長尺先受け工,脚部補強工などの補助工
法を採用してトンネルを掘削し、掘削壁面に支保工を設
置するトンネル掘削における沈下量の予測方法におい
て、支保内圧と壁面変形量との関係を示す地山特性曲線
と、支保に作用する外力と支保変形量との関係を示す支
保特性曲線とに基づいて、前記沈下量を予測することを
基本構成とし、前記補助工法の施工に伴う横断面方向の
補強をアーチ効果として、前記地山特性曲線に反映させ
るとともに、前記補助工法の施工に伴う縦断面方向の補
強をビーム効果として、前記支保特性曲線に反映させる
ようにした。
In order to achieve the above object, the present invention employs an auxiliary construction method such as a long tip receiving work and leg reinforcement work to excavate a tunnel and support the excavation wall surface. In the method of predicting the amount of subsidence in tunnel excavation to be installed, based on the ground characteristic curve indicating the relationship between the bearing internal pressure and the wall deformation amount, and the bearing characteristic curve indicating the relationship between the external force acting on the bearing and the bearing deformation amount. The basic configuration is to predict the subsidence amount, and the reinforcement in the cross-section direction due to the construction of the auxiliary construction method is reflected as an arch effect in the natural characteristic curve, and the longitudinal cross-section direction along with the construction of the auxiliary construction method. The beam effect of the reinforcement is reflected in the support characteristic curve.

【0008】このように構成したトンネル掘削における
沈下量の予測方法によれば、後述する実施工との比較か
らも明らかなように、補助工法を採用した場合に、比較
的簡便に沈下量を予測することができる。
According to the method of predicting the amount of subsidence in tunnel excavation constructed as described above, as is clear from a comparison with the construction work to be described later, the amount of subsidence can be predicted relatively easily when the auxiliary construction method is adopted. can do.

【0009】前記横断面方向のアーチ効果は、前記掘削
面の外周に環状の地山補強領域を想定して、無限媒体内
での厚肉円筒モデルを設定して、弾性理論により前記地
山特性を算定することができる。
The arch effect in the cross-sectional direction is obtained by setting a thick cylinder model in an infinite medium assuming an annular ground reinforcement region on the outer periphery of the excavation surface, and using the elasticity theory to calculate the rock mass characteristics. Can be calculated.

【0010】前記地山特性曲線の壁面変形量は、初期地
圧による変形量を減算して掘削影響変形量として算定す
ることができる。
The wall surface deformation amount of the rock mass characteristic curve can be calculated as the excavation affected deformation amount by subtracting the deformation amount due to the initial ground pressure.

【0011】前記支保特性曲線は、掘削時の応力解放に
よる前記支保工の天端沈下量と、前記支保工の脚部沈下
量とに基づいて算定することができる。
The support characteristic curve can be calculated on the basis of the crown subsidence amount of the support work due to stress release during excavation and the leg subsidence amount of the support work.

【0012】前記天端沈下量は、薄肉円筒モデルとし
て、外力とそれに伴う沈下量の関係を設定し、この薄肉
円筒モデルに基づいて算定することができる。
The crown settlement can be calculated based on this thin-walled cylindrical model by setting the relationship between the external force and the settlement amount associated therewith as a thin-walled cylindrical model.

【0013】前記脚部沈下量は、脚部の補強程度に応じ
て、地盤反力係数を算定し、それを用いて沈下量と支保
工軸力との関係を設定することができる。
As for the leg subsidence amount, the ground reaction force coefficient is calculated according to the degree of reinforcement of the leg portion, and the relation between the subsidence amount and the supporting work axial force can be set using the coefficient.

【0014】前記沈下量を予測する際には、前記天端沈
下量を、類似地質のトンネル掘削のデータや、先行掘削
の際の沈下量測定から推定する先行沈下率αにより補正
して、全沈下量を算定することができる。
When predicting the subsidence amount, the crown subsidence amount is corrected by the data of tunnel excavation of similar geology and the preceding subsidence rate α estimated from the subsidence amount measurement during the preceding excavation to obtain the total subsidence amount. The amount of subsidence can be calculated.

【0015】[0015]

【発明の実施の形態】以下、本発明の好適な実施の形態
について、添付図面に基づいて詳細に説明する。図1か
ら図10は、本発明にかかるトンネル掘削における沈下
量の予測方法の一実施例を示している本発明にかかる。
BEST MODE FOR CARRYING OUT THE INVENTION Preferred embodiments of the present invention will be described in detail below with reference to the accompanying drawings. 1 to 10 show an embodiment of a method of predicting a subsidence amount in tunnel excavation according to the present invention.

【0016】同図に示した予測方法は、トンネル内圧と
変位との関係、すなわち、支保内圧と壁面変形量との関
係を示す地山特性曲線Aと、支保に作用する外力(内圧
と等しい)と支保変形量との関係を示す支保特性曲線B
とに着目し、これら曲線の交点(両者のバランスする
点)であるトンネル内の収束変位量(天端沈下量)を求
めることが基本概念となっている。なお、本実施例の場
合には、トンネルの上半掘削時を対象としている。
The prediction method shown in the figure is based on the relationship between the tunnel internal pressure and the displacement, that is, the natural characteristic curve A showing the relationship between the support internal pressure and the wall deformation amount, and the external force (equal to the internal pressure) acting on the support. Characteristic curve B showing the relationship between
Focusing on and, the basic concept is to find the amount of convergent displacement in the tunnel (the amount of subsidence) that is the intersection of these curves (the point where both curves are balanced). In the case of this embodiment, the upper half of the tunnel is excavated.

【0017】また、地表面沈下量を求める場合には、実
施工をした際に地表面沈下量と天端沈下量とを計測し、
その計測結果から得られる地表面沈下量と天端沈下量の
比率から、地表面沈下量を予測することになる。
When the ground surface subsidence amount is to be obtained, the ground surface subsidence amount and the crown subsidence amount are measured at the time of performing the construction work,
The amount of land subsidence is predicted from the ratio of the amount of land subsidence and the amount of subsidence obtained from the measurement results.

【0018】図1は、本実施例の予測方法が適用される
トンネル掘削の一例を示している。同図に示したトンネ
ル掘削においては、補助工法として、長尺先受け工と脚
部補強工とが採用されている。
FIG. 1 shows an example of tunnel excavation to which the prediction method of this embodiment is applied. In the tunnel excavation shown in the same figure, a long length receiving work and a leg reinforcing work are adopted as auxiliary construction methods.

【0019】長尺先受け工は、トンネル掘削の上半部に
おいて、所定長さの複数のフォアパイル1が、切羽の前
方側に向けて傘状に形成される。このフォアパイル1
は、トンネル掘削の進行に伴って、所定の間隔を隔て
て、端部同士がトンネル軸方向で重なるように設置され
る。
In the long front receiving work, a plurality of fore piles 1 having a predetermined length are formed in an umbrella shape toward the front side of the face in the upper half of the tunnel excavation. This fore pile 1
With the progress of tunnel excavation, are installed so that their ends overlap with each other in the tunnel axial direction with a predetermined gap.

【0020】掘削されたトンネル内面には、アーチ状の
鋼製支保工2が設置されるとともに、その脚部側を補強
するために、脚部補強工として、フットパイル3が掘削
壁面の下方側に向けて形成される。
On the inner surface of the excavated tunnel, an arch-shaped steel supporter 2 is installed, and in order to reinforce its leg side, a foot pile 3 is provided below the excavated wall surface as a leg reinforcement work. Is formed toward.

【0021】このような補助工法が採用されたトンネル
掘削では、フォアパイル1を形成する長尺先受け工の作
用効果は、理想的には、図2,3に示すようなシェル効
果であり、これは近似的には、図2に示す横断面方向の
アーチ効果と、図3に示す縦断面方向のビーム効果との
合成効果であると考えられる。
In tunnel excavation adopting such an auxiliary construction method, ideally, the effect of the long front receiving work for forming the fore pile 1 is a shell effect as shown in FIGS. This is approximately considered to be a combined effect of the arch effect in the cross-section direction shown in FIG. 2 and the beam effect in the cross-section direction shown in FIG.

【0022】そして、沈下量を予測する際には、図2に
示した横断面方向のアーチ効果は、トンネル周辺に地山
補強領域4を想定し、この地山補強領域4を変位抑制効
果として評価する。
When predicting the amount of subsidence, the arch effect in the cross-sectional direction shown in FIG. 2 assumes a natural rock reinforcement area 4 around the tunnel, and this natural rock reinforcement area 4 is used as a displacement suppressing effect. evaluate.

【0023】すなわち、横方向アーチ効果は、フォアパ
イル1を形成する際の打設鋼管・地山改良材の注入によ
り、トンネル掘削の周辺にある厚みを有する地山補強領
域4が形成されることに基づくものであり、この地山補
強領域4が形成されることにより、地山の変形係数が増
加するので、これを変位抑制効果として評価する。
In other words, the lateral arch effect is that the ground reinforcement region 4 having a certain thickness around the tunnel excavation is formed by injecting the cast steel pipe / ground improvement material when forming the fore pile 1. The deformation coefficient of the natural ground increases due to the formation of the natural ground reinforced region 4, and this is evaluated as the displacement suppressing effect.

【0024】また、沈下量を予測する際には、図3に示
した縦断面方向のビーム効果は、長尺先受け工(フォア
パイル1)の剛性に関する先行沈下率として評価する。
トンネル掘削に伴う地山変位は、先行変位として切羽到
達手前から発生しており、通常、2次元FEM解析で
は、これを等価初期地圧の概念を用いて、応力解放率で
表示している。
Further, when predicting the amount of subsidence, the beam effect in the direction of the longitudinal section shown in FIG. 3 is evaluated as the preceding subsidence rate related to the rigidity of the long front receiving work (fore pile 1).
The ground displacement due to tunnel excavation occurs as a preceding displacement before the face reaches the face, and is usually displayed as a stress release rate in the two-dimensional FEM analysis using the concept of equivalent initial ground pressure.

【0025】この概念を用いた場合、先行沈下率は、設
置する支保工によって大きく変化する結果となるが、こ
れまでの施工実積では、設置する支保工に関わらず先行
沈下率は、大きく変化していないのが現状である。
When this concept is used, the preceding settlement rate changes greatly depending on the supporting work to be installed. However, in actual construction work so far, the preceding settlement rate changes greatly regardless of the supporting work to be installed. The current situation is not doing it.

【0026】そこで、本実施例の沈下量の予測方法で
は、こうしたFEM解析での不具合を解消し、より現実
に合うように直接的な先行沈下率αに着目して評価でき
るようにした。
Therefore, in the method of predicting the amount of subsidence according to the present embodiment, such a problem in the FEM analysis is eliminated and the direct preceding subsidence rate α can be focused and evaluated so as to be more realistic.

【0027】また、先行沈下は、切羽前方に打設した長
尺先受け工(フォアパイル1)のビーム効果に関連する
ものと考えられるので、先行沈下率を長尺先受け工(フ
ォアパイル1)の剛性と関連付けることにした。
Further, since the preceding subsidence is considered to be related to the beam effect of the long front receiving work (fore pile 1) placed in front of the face, the preceding subsidence rate is set to the long front receiving work (fore pile 1). ) The stiffness of

【0028】ただし、ここでの先行沈下率αは、長尺先
受け工(フォアパイル1)が掘削時の応力解放から支保
工2の設置までの素掘状態での地山安定に大きく寄与し
ていると考えられることから、上半収束値に対する切羽
進行+1mまでの沈下率として定義することとした(一
般に先行沈下率は、最終収束値に対する切羽進行+0m
までの沈下率としている。)。
However, the preceding subsidence rate α greatly contributes to the stability of the ground in the uncut state from the stress relief during excavation to the installation of the supporting work 2 in the long pre- receiving work (fore pile 1). Therefore, it is decided to define it as the settlement rate up to +1 m of the face advance for the upper half convergence value (in general, the advance settlement rate is the face advance +0 m for the final convergence value).
The subsidence rate is up to. ).

【0029】一方、フットパイル2を形成する脚部補強
工は、図4に示すように、支保工2を介して、支保工脚
部地山に伝達される土荷重に対して、脚部地山改良によ
り地耐力を向上させ、脚部沈下量を抑制する作用を持
つ。
On the other hand, as shown in FIG. 4, the leg reinforcement work forming the footpile 2 is supported by the foot support 2 against the earth load transmitted to the support support foot ground through the support support 2. By improving the mountain, it has the effect of improving the ground bearing capacity and suppressing the amount of foot subsidence.

【0030】結果として、天端沈下量・地表面沈下量が
抑制される。このような脚部補強工による効果は、脚部
地盤に地山改良領域を想定し、この領域の地盤反力係数
κが増加するとして、変位抑制効果を評価する。
As a result, the amount of crown subsidence and the amount of ground subsidence are suppressed. With regard to the effect of the leg reinforcement work, the displacement suppressing effect is evaluated by assuming a ground improvement region in the leg ground and assuming that the ground reaction force coefficient κ in this region increases.

【0031】次に、沈下量を予測する際の具体的な手順
および手法について説明する。図5は、沈下量を予測す
る際の手順を示している。本実施例の沈下量の予測方法
では、まず、上述したような補助工法の効果を勘案し
て、地山特性曲線Aと支保特性曲線Bとが算定される。
Next, a specific procedure and method for predicting the amount of subsidence will be described. FIG. 5 shows a procedure for predicting the amount of subsidence. In the subsidence amount prediction method of the present embodiment, first, the natural characteristic curve A and the support characteristic curve B are calculated in consideration of the effects of the auxiliary construction method as described above.

【0032】地山特性曲線Aの算定(ステップ1,2)
では、トンネル周辺に長尺先受け工(フォアパイル1)
による横断面方向のアーチ効果を評価するため、地山補
強領域4を設定する。
Calculation of natural characteristic curve A (steps 1 and 2)
Then, a long receiving work (fore pile 1) around the tunnel
In order to evaluate the arch effect in the cross-sectional direction due to, the ground reinforcement region 4 is set.

【0033】そして、この地山補強領域4が、円形の掘
削面(トンネル断面を円形に仮定している)と同心円状
に存在するものと仮定して、図6に示すような、無限媒
体内での厚肉円筒モデルを想定し、このモデルの基本条
件での弾性理論に基づいて、地山特性曲線A(支保内圧
と壁面変形量uとの関係)を算定する。
Assuming that the ground reinforcement region 4 exists concentrically with the circular excavation surface (assuming that the tunnel cross section is circular), an infinite medium as shown in FIG. Assuming a thick-walled cylinder model in 1), the natural characteristic curve A (relationship between the bearing internal pressure P a and the wall surface deformation amount u a ) is calculated based on the elasticity theory under the basic conditions of this model.

【0034】以下に、この算定に用いる支保内圧P
壁面変形量uとの関係式を示す。
The relational expression between the support internal pressure P a and the wall surface deformation amount u a used in this calculation is shown below.

【0035】[0035]

【式1】 ただし、この式は、初期地圧による変形も含んでいるの
で、上式からこの分の変形量を減算する必要がある。初
期地圧による変形量は、ua,0は、P=P として
求められ、これより、掘削影響変形量u´は、次のよ
うになる。 u´=u−ua,0 支保特性曲線Bは、支保内圧P(支保に作用する外力
に等しい)と沈下量s(支保の変形量に相当する)との
関係を示すものであって、この算定では、沈下量sは、
掘削時の解放応力による一次支保の天端沈下量sと、
脚部沈下量sとに分けて算定(ステップ3〜6)す
る。
[Formula 1] However, this equation also includes deformation due to initial ground pressure
Therefore, it is necessary to subtract this amount of deformation from the above equation. First
The amount of deformation due to the ground pressure is ua, 0Is Pa= P 0As
Calculated from this, the amount of deformation due to excavation ua´ is next
Growls ua´ = ua-Ua, 0 The support characteristic curve B is the support internal pressure P.a(External force acting on the support
And the subsidence amount s (corresponding to the deformation amount of the support)
In this calculation, the subsidence amount s is
Crown subsidence s of primary support due to release stress during excavation1When,
Leg subsidence sTwoAnd calculate separately (steps 3-6)
It

【0036】天端沈下量sに関しては、一次支保(支
保工2)の厚みは、トンネル掘削半径に比べて小さいこ
とから、図7に示すような薄肉円筒でモデル化し、外力
(支保内圧Pと等しい)とそれに伴う沈下量s
の関係を設定し、これに基づいて算定する。
[0036] With respect to the crest subsidence s 1, the thickness of the primary支保(支保Engineering 2), since smaller than the tunnel excavation radius, modeled with thin cylindrical as shown in FIG. 7, the external force P a (支保 (Equal to internal pressure P a ) and the amount of subsidence s 1 that accompanies it
The relationship is established and the calculation is performed based on this.

【0037】脚部沈下量sに関しては、脚部の補強程
度(フットパイル3の打設密度や打設長,直径など)に
応じて、地盤反力係数κを算定し、それを用いて、図8
に示すモデルで、沈下量sと支保工軸力T(脚部作用
荷重)との関係を設定する。
Regarding the leg subsidence amount s 2 , the ground reaction force coefficient κ is calculated according to the degree of reinforcement of the leg (placing density, placing length, diameter, etc. of the foot pile 3), and it is used. , Fig. 8
In the model shown in, the relationship between the subsidence amount s 2 and the supporting work axial force T (leg working load) is set.

【0038】この結果、支保工軸力Tは、掘削半径aと
支保内圧Pで示されるため、沈下量sは、支保内圧
の関数で示すことができる。以上のことから、掘削
による一次支保(支保工2)の天端沈下量と脚部沈下量
とを合わせた天端部の全沈下量sは、以下に示すよう
な支保内圧Pの関数となる。
[0038] Consequently, shoring axial force T, because represented by excavation radius a and支保pressure P a, subsidence s 2 can be represented by a function of支保pressure P a. From the above, the total subsidence amount s a of the top end, which is the sum of the subsidence amount and the leg subsidence amount of the primary support (supporting work 2) due to excavation, is a function of the support internal pressure P a as shown below. Becomes

【0039】[0039]

【式2】 さらに、一次支保(支保工2)の設置時点には、既にト
ンネル掘削による地山の変形が生じていることから、切
羽前方で発生している沈下量の比率(先行沈下率α)を
考慮すると、全沈下量s´は、以下のように示され
る。 s´=s+α・s´ s´=s/(1−α) なお、この場合の先行沈下率αは、類似地質のトンネル
掘削のデータや、先行掘削の際の沈下量測定から推定す
る。
[Formula 2] Furthermore, at the time of installation of the primary support (support 2), the ground deformation due to tunnel excavation has already occurred. Therefore, considering the ratio of the amount of settlement (preceding settlement rate α) occurring in front of the face. , The total subsidence amount s a ′ is shown as follows. s a ′ = s a + α · s a ′ s a ′ = s a / (1-α) Note that the preceding settlement rate α in this case is the data for tunnel excavation of similar geology and the amount of settlement during the preceding excavation. Estimate from measurements.

【0040】以上のようにして、地山特性曲線Aと支保
特性曲線Bとが算定されると、次に、ステップ7で入力
値の設定が行われる。この際には、幾何学的条件から決
定される土被り,トンネル半径aなどの項目以外に、先
行掘削に伴う計測結果や試験結果を入力して、これらを
反映できるようにする(ステップ8,9)。
When the ground characteristic curve A and the support characteristic curve B are calculated as described above, next, in step 7, the input value is set. At this time, in addition to items such as soil cover and tunnel radius a determined from the geometric conditions, measurement results and test results associated with the preceding excavation are input so that these can be reflected (step 8, 9).

【0041】そして、入力値が設定されると、次に、ス
テップ10で、天端沈下量の算定が行われる。天端沈下
量は、図9に示すように、前述した掘削影響変形量u
´と全沈下量s´とが等しくなる点、すなわち、沈下
ないしは変形の収束点Cにおける沈下量とする。
When the input value is set, next, in step 10, the crown settlement amount is calculated. As shown in FIG. 9, the amount of crown settlement is the above-mentioned amount of deformation affected by excavation u a
′ And the total subsidence amount s a ′ are equal to each other, that is, the subsidence amount at the convergence point C of the subsidence or deformation.

【0042】図9において、補助工法の有無,種類が違
えば、横断面方向のアーチ効果の相違によって、地山特
性曲線Aの傾きが変化し、また、この時に、支保工2や
脚部補強工が同一でも、縦断面方向のビーム効果の違い
により、先行沈下量が変化するので、これらの違いによ
り、結果として、発生する沈下量も異なることになり、
補助工法に応じた沈下量の予測が反映される。
In FIG. 9, if the auxiliary construction method is used and the type is different, the slope of the ground characteristic curve A changes due to the difference in the arch effect in the cross-sectional direction, and at this time, the support work 2 and the leg reinforcement Even if the work is the same, since the preceding settlement amount changes due to the difference in the beam effect in the longitudinal section direction, the difference in the settlement amount that occurs as a result of these differences,
The forecast of subsidence amount according to the auxiliary construction method is reflected.

【0043】以上のようにして得られた沈下量の予測結
果は、例えば、未施工区間の表面沈下量の予測に用いら
れ、地表面の沈下利用予測は、例えば、図10に示すよ
うな、計測結果から得られる天端沈下量と地表面沈下量
の比率によって算定する(ステップ11)。
The prediction result of the subsidence amount obtained as described above is used, for example, to predict the subsidence amount of the unconstructed section, and the subsidence utilization prediction of the ground surface is, for example, as shown in FIG. It is calculated by the ratio of the crown subsidence and the ground subsidence obtained from the measurement result (step 11).

【0044】この場合、天端沈下量と地表面沈下量の比
率は、土被り・掘削断面に大きく依存しているため、計
測結果は、図10に示すような関係のものを使用するこ
とが望ましい。
In this case, since the ratio of the crown subsidence amount to the ground surface subsidence amount largely depends on the soil cover and excavation cross section, it is preferable to use the measurement result having the relationship shown in FIG. desirable.

【0045】図11は、本実施例の予測方法の妥当性を
確認するために、実際に施工されているトンネルに適用
し、予測値と計測値とを比較した結果を示している。実
施工トンネルでは、各種補助工法として、アーチ部に注
入式鋼管先受工法(トレビチューブ工法),高圧噴射鋼
管先受工法(トレビジェット工法)、また、脚部に脚部
ジェットグラウト工などを採用しているが、これらをす
べて本実施例の予測方法で処理し、予測値を算出した。
FIG. 11 shows the result of comparison between the predicted value and the measured value, which was applied to an actually constructed tunnel in order to confirm the validity of the prediction method of this embodiment. In the construction tunnel, various types of auxiliary methods, such as injection type steel pipe front receiving method (trevi tube method), high pressure injection steel pipe front receiving method (trevijet method), and leg jet grout are used for the legs. However, all of them were processed by the prediction method of this example, and the predicted value was calculated.

【0046】予測値は、沈下計測値の大小で幾分異なる
が、計測値/予測値=1に対して、R=0.8と高い
相関があり、本実施例の予測方法の有効性が確認され、
この予測方法は、地表面沈下の抑制を目的として、補助
工法を採用する際の判断資料として用いることもでき
る。
The predicted value is somewhat different depending on the magnitude of the squat measurement value, but there is a high correlation of R 2 = 0.8 with the measured value / predicted value = 1, and the effectiveness of the prediction method of this embodiment is high. Is confirmed,
This prediction method can also be used as a judgment material when adopting an auxiliary construction method for the purpose of suppressing ground subsidence.

【0047】[0047]

【発明の効果】以上、詳細に説明したように、本発明に
かかるトンネル掘削における沈下量の予測方法によれ
ば、補助工法を採用した場合に、比較的簡便に沈下量を
予測することができるとともに、地表面沈下の抑制を目
的とする補助工法を採用する際の判断資料として用いる
こともできる。
As described above in detail, according to the method of predicting the amount of subsidence in tunnel excavation according to the present invention, the amount of subsidence can be relatively easily predicted when the auxiliary construction method is adopted. At the same time, it can be used as a judgment material when adopting an auxiliary construction method for the purpose of suppressing ground subsidence.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明にかかるトンネル掘削における沈下量の
予測方法が適用されるトンネルと補助工法の説明図であ
る。
FIG. 1 is an explanatory view of a tunnel and an auxiliary construction method to which a subsidence amount prediction method in tunnel excavation according to the present invention is applied.

【図2】図1に示した補助工法の横断面方向のアーチ効
果を示す説明図である。
FIG. 2 is an explanatory diagram showing an arch effect in a cross-sectional direction of the auxiliary construction method shown in FIG.

【図3】図1に示した補助工法の縦断面方向のビーム効
果を示す説明図である。
FIG. 3 is an explanatory diagram showing a beam effect in a vertical cross-section direction of the auxiliary method shown in FIG.

【図4】図1に示した補助工法の脚部補強工の説明図で
ある。
FIG. 4 is an explanatory view of leg reinforcement work of the auxiliary construction method shown in FIG. 1.

【図5】本発明の予測方法の手順を示すフローチャート
図である。
FIG. 5 is a flowchart showing the procedure of the prediction method of the present invention.

【図6】図2に示したアーチ効果の厚肉円筒モデルの説
明図である。
FIG. 6 is an explanatory diagram of a thick-walled cylindrical model with an arch effect shown in FIG. 2.

【図7】本発明の予測方法において掘削時の解放応力に
よる沈下量を評価する際の薄肉円筒モデルの説明図であ
る。
FIG. 7 is an explanatory diagram of a thin-walled cylindrical model when evaluating the amount of subsidence due to release stress during excavation in the prediction method of the present invention.

【図8】本発明の予測方法において、脚部沈下量を算定
する際の沈下モデルの説明図である。
FIG. 8 is an explanatory diagram of a squat model when calculating a leg squat amount in the prediction method of the present invention.

【図9】本発明の予測方法において、最終沈下量を求め
る際の説明図である。
FIG. 9 is an explanatory diagram for obtaining a final subsidence amount in the prediction method of the present invention.

【図10】本発明の予測方法で得られる最終沈下量から
地表面沈下量を予測する際に用いる土被りと沈下比率の
関係を示すグラフである。
FIG. 10 is a graph showing the relationship between soil cover and subsidence ratio used when predicting ground subsidence from the final subsidence obtained by the prediction method of the present invention.

【図11】本発明の予測方法と実施工の測定結果とを示
すグラフである。
FIG. 11 is a graph showing the prediction method of the present invention and the measurement result of the actual work.

【符号の説明】[Explanation of symbols]

1 フォアパイル(長尺先受け工) 2 支保工 3 フットパイル 4 地山補強領域 A 地山特性曲線 B 支保特性曲線 1 Fore pile (long length receiving work) 2 support work 3 foot pile 4 Ground reinforcement area A natural characteristic curve B Support characteristic curve

───────────────────────────────────────────────────── フロントページの続き (72)発明者 二宮 正 東京都港区港南2丁目15番2号 株式会社 大林組本社内   ─────────────────────────────────────────────────── ─── Continued front page    (72) Inventor Tadashi Ninomiya             2-15-2 Konan, Minato-ku, Tokyo Co., Ltd.             Obayashi Head Office

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】 長尺先受け工,脚部補強工などの補助工
法を採用してトンネルを掘削し、掘削壁面に支保工を設
置するトンネル掘削における沈下量の予測方法におい
て、 支保内圧と壁面変形量との関係を示す地山特性曲線と、
支保に作用する外力と支保変形量との関係を示す支保特
性曲線とに基づいて、前記沈下量を予測することを基本
構成とし、 前記補助工法の施工に伴う横断面方向の補強をアーチ効
果として、前記地山特性曲線に反映させるとともに、 前記補助工法の施工に伴う縦断面方向の補強をビーム効
果として、前記支保特性曲線に反映させることを特徴と
するトンネル掘削における沈下量の予測方法。
1. A method of predicting the amount of subsidence in tunnel excavation, which employs an auxiliary construction method such as a long length receiving work and leg reinforcement work to install a support work on the excavation wall surface. Natural characteristic curve showing the relationship with the amount of deformation,
Based on a support characteristic curve showing the relationship between the external force acting on the support and the amount of support deformation, the basic configuration is to predict the settlement amount, and the reinforcement in the cross-sectional direction along with the construction of the auxiliary construction method is used as an arch effect. A method of predicting a subsidence amount in tunnel excavation, which is reflected in the natural characteristic curve and is also reflected in the support characteristic curve as a beam effect of reinforcement in a vertical cross-sectional direction associated with the construction of the auxiliary construction method.
【請求項2】 前記横断面方向のアーチ効果は、前記掘
削面の外周に環状の地山補強領域を想定して、無限媒体
内での厚肉円筒モデルを設定して、弾性理論により前記
地山特性を算定することを特徴とするトンネル掘削にお
ける沈下量の予測方法。
2. The arch effect in the cross-sectional direction is set by a theory of elasticity by setting a thick cylinder model in an infinite medium assuming an annular ground reinforcement region on the outer periphery of the excavation surface. A method for predicting subsidence in tunnel excavation, which is characterized by calculating mountain characteristics.
【請求項3】 前記地山特性曲線の壁面変形量は、初期
地圧による変形量を減算して掘削影響変形量として算定
することを特徴とする請求項2記載のトンネル掘削にお
ける沈下量の予測方法。
3. The prediction of the subsidence amount in tunnel excavation according to claim 2, wherein the wall deformation amount of the rock mass characteristic curve is calculated as an excavation affected deformation amount by subtracting the deformation amount due to the initial ground pressure. Method.
【請求項4】 前記支保特性曲線は、掘削時の応力解放
による前記支保工の天端沈下量と、前記支保工の脚部沈
下量とに基づいて算定することを特徴とする請求項1記
載のトンネル掘削における沈下量の予測方法。
4. The support characteristic curve is calculated on the basis of a crown subsidence amount of the support work due to stress release during excavation and a leg subsidence amount of the support work. Method of subsidence amount in tunnel excavation in Japan.
【請求項5】 前記天端沈下量は、薄肉円筒モデルとし
て、外力とそれに伴う沈下量の関係を設定し、この薄肉
円筒モデルに基づいて算定することを特徴とする請求項
4記載のトンネル掘削における沈下量の予測方法。
5. The tunnel excavation according to claim 4, wherein the crown settlement is set as a thin-walled cylinder model by setting a relationship between an external force and a settlement amount associated therewith, and is calculated based on the thin-walled cylinder model. Method of subsidence in Japan.
【請求項6】 前記脚部沈下量は、脚部の補強程度に応
じて、地盤反力係数を算定し、それを用いて沈下量と支
保工軸力との関係を設定することを特徴とする請求項4
記載のトンネル掘削における沈下量の予測方法。
6. The leg subsidence amount is characterized by calculating a ground reaction force coefficient in accordance with the degree of reinforcement of the leg portion and using the calculated coefficient to set the relationship between the subsidence amount and the supporting work axial force. Claim 4
A method for predicting subsidence in tunnel excavation as described.
【請求項7】 前記沈下量を予測する際には、前記天端
沈下量を、類似地質のトンネル掘削のデータや、先行掘
削の際の沈下量測定から推定する先行沈下率αにより補
正して、全沈下量を算定することを特徴とする請求項5
記載のトンネル掘削における沈下量の予測方法。
7. When predicting the subsidence amount, the crown subsidence amount is corrected by the data of tunnel excavation of similar geology, or the preceding subsidence rate α estimated from the subsidence measurement at the time of preceding excavation. And calculating the total subsidence amount.
A method for predicting subsidence in tunnel excavation as described.
JP2002120560A 2002-04-23 2002-04-23 Method for predicting settlement in excavation of tunnel Pending JP2003314188A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002120560A JP2003314188A (en) 2002-04-23 2002-04-23 Method for predicting settlement in excavation of tunnel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002120560A JP2003314188A (en) 2002-04-23 2002-04-23 Method for predicting settlement in excavation of tunnel

Publications (1)

Publication Number Publication Date
JP2003314188A true JP2003314188A (en) 2003-11-06

Family

ID=29536751

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002120560A Pending JP2003314188A (en) 2002-04-23 2002-04-23 Method for predicting settlement in excavation of tunnel

Country Status (1)

Country Link
JP (1) JP2003314188A (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007162367A (en) * 2005-12-15 2007-06-28 Okumura Corp Settlement restraining method of tunnel timbering
CN104297447A (en) * 2013-11-14 2015-01-21 长安大学 Physical simulation method for influences of surface subsidence on subway tunnel
CN106908032A (en) * 2017-03-06 2017-06-30 兰州交通大学 A kind of method of Soil-cement Residual Settlement of Composite Foundation prediction
CN107024575A (en) * 2017-06-08 2017-08-08 浙江工业大学 Simulate experimental rig and test method that tunneling boring constructing tunnel triggers earth's surface deformation
CN107036515A (en) * 2017-06-08 2017-08-11 浙江工业大学 Simulate experimental rig and test method that benching tunnelling method constructing tunnel triggers earth's surface deformation
CN107527546A (en) * 2017-07-31 2017-12-29 杭州市地下空间建设发展中心 Simulation CRD method constructing tunnels cause the experimental provision and experimental method of earth's surface deformation
JP2018035553A (en) * 2016-08-31 2018-03-08 大成建設株式会社 Design method of contractible timbering
CN108170996A (en) * 2018-01-30 2018-06-15 山东科技大学 Existing building determines method to adjacent piles stability influence critical line
CN110489844A (en) * 2019-08-09 2019-11-22 山东大学 One kind being suitable for the uneven large deformation grade prediction technique of soft rock tunnel
CN112035937A (en) * 2020-09-07 2020-12-04 河南城建学院 Tunnel construction surrounding rock deformation analysis and informatization construction method
CN113340359A (en) * 2021-08-02 2021-09-03 中国矿业大学(北京) Soft rock creep in-situ monitoring and analyzing method and system
CN116579150A (en) * 2023-04-26 2023-08-11 山东建筑大学 Full-stage ground surface subsidence prediction and control method

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4657908B2 (en) * 2005-12-15 2011-03-23 株式会社奥村組 Method for controlling settlement of tunnel support
JP2007162367A (en) * 2005-12-15 2007-06-28 Okumura Corp Settlement restraining method of tunnel timbering
CN104297447A (en) * 2013-11-14 2015-01-21 长安大学 Physical simulation method for influences of surface subsidence on subway tunnel
JP2018035553A (en) * 2016-08-31 2018-03-08 大成建設株式会社 Design method of contractible timbering
CN106908032A (en) * 2017-03-06 2017-06-30 兰州交通大学 A kind of method of Soil-cement Residual Settlement of Composite Foundation prediction
CN107024575A (en) * 2017-06-08 2017-08-08 浙江工业大学 Simulate experimental rig and test method that tunneling boring constructing tunnel triggers earth's surface deformation
CN107036515A (en) * 2017-06-08 2017-08-11 浙江工业大学 Simulate experimental rig and test method that benching tunnelling method constructing tunnel triggers earth's surface deformation
CN107527546A (en) * 2017-07-31 2017-12-29 杭州市地下空间建设发展中心 Simulation CRD method constructing tunnels cause the experimental provision and experimental method of earth's surface deformation
CN108170996A (en) * 2018-01-30 2018-06-15 山东科技大学 Existing building determines method to adjacent piles stability influence critical line
CN110489844A (en) * 2019-08-09 2019-11-22 山东大学 One kind being suitable for the uneven large deformation grade prediction technique of soft rock tunnel
CN112035937A (en) * 2020-09-07 2020-12-04 河南城建学院 Tunnel construction surrounding rock deformation analysis and informatization construction method
CN112035937B (en) * 2020-09-07 2023-12-22 河南城建学院 Tunnel construction surrounding rock deformation analysis and informatization construction method
CN113340359A (en) * 2021-08-02 2021-09-03 中国矿业大学(北京) Soft rock creep in-situ monitoring and analyzing method and system
CN116579150A (en) * 2023-04-26 2023-08-11 山东建筑大学 Full-stage ground surface subsidence prediction and control method
CN116579150B (en) * 2023-04-26 2024-01-26 山东建筑大学 Full-stage ground surface subsidence prediction and control method

Similar Documents

Publication Publication Date Title
Lin et al. Deformation behaviors of existing tunnels caused by shield tunneling undercrossing with oblique angle
Wu et al. Soil-tunnel interaction modelling for shield tunnels considering shearing dislocation in longitudinal joints
Hashash et al. Seismic design and analysis of underground structures
Mroueh et al. A simplified 3D model for tunnel construction using tunnel boring machines
JP2003314188A (en) Method for predicting settlement in excavation of tunnel
Luo et al. Deformation rule and mechanical characteristics of temporary support in soil tunnel constructed by sequential excavation method
CN107590357B (en) Method for judging stability of tunnel in different construction stages
JP6065155B2 (en) Foundation pile construction method, program, storage medium, and foundation pile construction system
Yoo et al. A web-based tunneling-induced building/utility damage assessment system: TURISK
Bian et al. Evaluating the effect of soil structure on the ground response during shield tunnelling in Shanghai soft clay
Frank et al. Experimental pile subjected to long duration thrusts owing to a moving slope
Klotoé et al. Three dimensional finite element analysis of the influence of the umbrella arch on the settlements induced by shallow tunneling
Xu et al. Shanghai center project excavation induced ground surface movements and deformations
CN110761296A (en) Cement-soil enclosure wall-cast-in-place pile cantilever type combined support and construction method thereof
Meng et al. Excavation-induced arching effect below base level and responses of long-collinear underlying existing tunnel
Gan et al. Probabilistic analysis for twin tunneling-induced longitudinal responses of existing shield tunnel
Gavin et al. A field investigation of vertical footing response on sand
Vu et al. Structural design model for tunnels in soft soils: From construction stages to the long-term
Zhang et al. Observed deformation characteristics of a deep excavation for the spring area in Jinan, China
CN105178331B (en) Deep foundation pit and ultra-deep foundation pit pile-anchor support method
CN112177061B (en) System and method for monitoring microscopic horizontal deformation under complex geological structure
Wang et al. Performance of piles at pit bottom during excavation of metro station
Liu et al. Ratio of long-term settlement to immediate settlement for piled raft on soft clay
Jia et al. Semi-Empirical Method for Estimating Stiffness and Deformation of Cylindrical Retaining Diaphragm Wall
CN112344983A (en) Method and system for monitoring settlement construction level in soft soil base environment