KR20220095340A - Evaluation method and system of ground subsidence according to changes in groundwater level - Google Patents

Evaluation method and system of ground subsidence according to changes in groundwater level Download PDF

Info

Publication number
KR20220095340A
KR20220095340A KR1020200186064A KR20200186064A KR20220095340A KR 20220095340 A KR20220095340 A KR 20220095340A KR 1020200186064 A KR1020200186064 A KR 1020200186064A KR 20200186064 A KR20200186064 A KR 20200186064A KR 20220095340 A KR20220095340 A KR 20220095340A
Authority
KR
South Korea
Prior art keywords
amount
ground
groundwater
ground settlement
groundwater level
Prior art date
Application number
KR1020200186064A
Other languages
Korean (ko)
Inventor
안민홍
Original Assignee
주식회사 세움텍
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 세움텍 filed Critical 주식회사 세움텍
Priority to KR1020200186064A priority Critical patent/KR20220095340A/en
Publication of KR20220095340A publication Critical patent/KR20220095340A/en

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q50/00Information and communication technology [ICT] specially adapted for implementation of business processes of specific business sectors, e.g. utilities or tourism
    • G06Q50/08Construction
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/20Design optimisation, verification or simulation
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q10/00Administration; Management
    • G06Q10/06Resources, workflows, human or project management; Enterprise or organisation planning; Enterprise or organisation modelling
    • G06Q10/063Operations research, analysis or management
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q50/00Information and communication technology [ICT] specially adapted for implementation of business processes of specific business sectors, e.g. utilities or tourism
    • G06Q50/10Services
    • G06Q50/26Government or public services

Landscapes

  • Business, Economics & Management (AREA)
  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Human Resources & Organizations (AREA)
  • Physics & Mathematics (AREA)
  • Economics (AREA)
  • Tourism & Hospitality (AREA)
  • Strategic Management (AREA)
  • General Physics & Mathematics (AREA)
  • General Business, Economics & Management (AREA)
  • Marketing (AREA)
  • Educational Administration (AREA)
  • Health & Medical Sciences (AREA)
  • Entrepreneurship & Innovation (AREA)
  • Primary Health Care (AREA)
  • Development Economics (AREA)
  • General Health & Medical Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Quality & Reliability (AREA)
  • Evolutionary Computation (AREA)
  • Computer Hardware Design (AREA)
  • Operations Research (AREA)
  • Geometry (AREA)
  • Game Theory and Decision Science (AREA)
  • Investigation Of Foundation Soil And Reinforcement Of Foundation Soil By Compacting Or Drainage (AREA)

Abstract

Disclosed are a method for evaluating the amount of ground subsidence according to changes in a groundwater level and a system therefor, which can evaluate the amount of ground subsidence according to changes in the groundwater level through numerical analysis (or numerical analysis model) during underground excavation of the center of a city and, by using the evaluation, can design water permeability of a cutoff wall. The method for evaluating the amount of ground subsidence according to changes in a groundwater level includes: a step of calculating changes in the groundwater level by numerically analyzing wide groundwater based on design information including water permeability information of a retaining wall and an on-site material of the wide groundwater; a step of calculating the amount of ground subsidence by analyzing ground stability based on a result of numerical analysis on the wide groundwater; a step of comparing the calculated amount of ground subsidence and the acceptable amount of ground subsidence for evaluating the amount of ground subsidence; a step of evaluating acceptable changes in the groundwater level according to the acceptable amount of ground subsidence when the calculated amount of ground subsidence is smaller than the acceptable amount of ground subsidence; and a step of calculating acceptable water permeability of the retaining wall according to the evaluated acceptable changes in the groundwater level.

Description

지하수위 변동에 따른 지반침하량 평가 방법 및 그 시스템{Evaluation method and system of ground subsidence according to changes in groundwater level}Evaluation method and system of ground subsidence according to changes in groundwater level

본 발명은 지하수위 변동에 따른 지반침하량 평가 방법 및 그 시스템에 관한 것으로, 보다 상세하게는 수치해석(또는 수치해석모형)을 통해 도심지 지반굴착시 지하수위 변동에 근거하여 지반침하량을 평가하고 이를 활용하여 차수벽체의 투수성을 설계할 수 있는 지하수위 변동에 따른 지반침하량 평가 방법 및 그 시스템에 관한 것이다.The present invention relates to a method and system for estimating ground settlement according to groundwater level fluctuations, and more particularly, evaluating the ground settlement amount based on the groundwater level fluctuations during underground excavation in urban areas through numerical analysis (or numerical analysis model) and utilizing the same It relates to a method and system for evaluating the amount of ground subsidence according to groundwater level fluctuations that can design the permeability of a water barrier wall.

일반적으로 교각 기초, 지하 차도, 완충 저류조 시설, 아파트, 빌딩 등의 구조물 시공 시나 대구경 용수 관로,도시 가스 및 하수 관거 등의 관로 공사 등 각종 지하 구조물의 시공을 위해서는 구조물의 시공이 요구되는 지반을 일정 심도로 굴착하여 구조물의 시공 토대가 되는 기초 터파기 공사를 시행하게 된다.In general, for the construction of structures such as pier foundations, underground driveways, buffer storage facilities, apartments, and buildings, and for the construction of various underground structures such as large-diameter water pipelines, city gas and sewage pipelines, the ground required for the construction of structures must be determined. By excavating in depth, the foundation excavation work, which becomes the foundation for the construction of the structure, will be carried out.

그런데, 이와 같은 기초 터파기 공사에서 굴착 심도가 일정 깊이 이상이 되면 토사의 붕괴 등으로 작업자 및 주변 시설물의 안전에 위해가 미칠 수 있다. 특히, 연약 지반이나 사질토 등에서 지하수 등 침투수가 굴착된 지반을 통하여 유입되거나 용출될 경우에는 기초 터파기 작업시 작업 환경이 습식화되어 작업자 및 사용 중장비 등의 기동성을 저해하여 작업 효율과 작업 환경을 악화시키고, 가시설 흙막이 구조물 및 시공하고자 하는 구조물의 강도와 안전성에도 악영향을 미치게 된다.However, when the depth of excavation exceeds a certain depth in such foundation excavation work, the safety of workers and surrounding facilities may be harmed due to the collapse of soil and the like. In particular, when infiltrating water, such as groundwater, enters or leaches through the excavated ground, such as soft ground or sandy soil, the work environment becomes wet when excavating the foundation, impairing the mobility of workers and heavy equipment in use, thereby worsening work efficiency and work environment. This will adversely affect the strength and safety of the temporary retaining structure and the structure to be constructed.

이러한 문제를 방지하기 위해, 기존의 가시설 흙막이 방법은 기초 터파기 공사 전에 굴착하고자 하는 가시설 흙막이 벽체의 배면 둘레 후면에 수직으로 그라우팅재로 차수 벽체를 선시공하여 수압 및 토압에 의한 굴착면의붕괴를 방지하고 기초 터파기 내부로 지하수 등 침투수가 유입되는 것을 차단시킨 다음 기초 터파기 작업을 실시하는 방법을 사용하였다.To prevent this problem, the existing temporary retaining method prevents the collapse of the excavated surface due to water pressure and earth pressure by pre-constructing the barrier wall with grouting material vertically on the back circumference of the temporary retaining wall to be excavated before the foundation excavation work. The method of excavating the foundation was used after blocking the infiltration of water such as groundwater into the excavation of the foundation.

이러한 기존의 기초 가시설 공법은 전통적으로 측면에 대한 벽체 강성 및 차수 등에 집중되어 있으며 하부 저면에 대한 차수 및 개량 등에 대한 기술은 많이 개발되고 있지 않은 상황이다.These existing temporary temporary facility construction methods have traditionally been focused on wall rigidity and degree of the sidewall, and the technology for leveling and improvement of the lower floor has not been developed much.

따라서 기존 공법에서 이를 극복하기 위하여 고심도의 암반층까지 가시설 흙막이 벽체를 과도하게 시공하여 차수 및 전도와 히빙 등에 대응하고 있다.Therefore, in order to overcome this problem in the existing construction method, the temporary retaining wall is excessively constructed up to the deep bedrock layer to respond to water blocking, conduction and heaving.

그러나, 이 공법은 가시설 흙막이 벽체의 저면 근입부를 과도하게 암반 저층까지 시공하여 공사비 증가에 주된원인이 되고 있다.However, this construction method is the main cause of the increase in the construction cost by excessively constructing the bottom of the temporary retaining wall to the bottom of the bedrock.

한편, 최근 도시 집중화로 인해 빌딩 등 시설물 건설에 있어 굴착규모와 굴착심도가 점차 증가하고 지하구조물또한 대형화 추세로 인해 지하수위 변동에 의한 영향이 심화되고 있어 지하수 변동과 연계된 지반변형 예측기술의 확보가 시급한 실정이다.Meanwhile, due to the recent urban concentration, the scale and depth of excavation in the construction of facilities such as buildings are gradually increasing, and the effect of groundwater level fluctuations is intensifying due to the trend of enlargement of underground structures. is urgently needed.

특히 집중호우나 지반굴착에 의해 미고결 퇴적층(unconsolidated soil, 또는 토양)이 포화-불포화 상태를 반복적으로 진행됨에 따라 토양의 공극 내 분포하는 체적함수비 변화가 발생되며 이에 따른 토양 내 지하수 거동에따른 유효공극률 예측을 기반으로 지반침하 예측 기술개발이 필요하다.In particular, as the unconsolidated soil (or soil) repeatedly undergoes a saturated-unsaturated state due to heavy rain or ground excavation, a change in the volume water content distributed in the pores of the soil occurs. It is necessary to develop a technology to predict ground subsidence based on the prediction of porosity.

또한, 지반굴착 시 지하수 변동에 대한 영향과 그에 따른 지반변형을 복합적으로 예측하기 위해서는 포화/불포화 지반에서의 지하수 거동예측이 선행되어야 하며, 이를 통해 도출된 토양 내 함수비를 동적으로 모의하여 지반 체적 변화를 정량적으로 예측할 수 있는 모델링 기술 개발이 필요한 상황이다.In addition, in order to comprehensively predict the effects of groundwater fluctuations and the resulting ground deformation during excavation, the groundwater behavior prediction in saturated/unsaturated ground should be preceded. There is a need to develop modeling technology that can quantitatively predict

이에 본 발명의 기술적 과제는 이러한 점에 착안한 것으로, 본 발명의 목적은 도심지 지반굴착시 지하수 변동및 지반침하량을 수치해석하여 지반침하 가능성을 평가하고, 지반침하 가능성을 제시하며, 허용 지반침하량 이하의 경우 흙막이 벽체의 투수성을 조절하여 흙막이 벽체의 설계에 반영할 수 있는 지하수위 변동에 따른 지반침하량 평가 방법을 제공하는 것이다.Accordingly, the technical task of the present invention is based on this point, and the object of the present invention is to evaluate the possibility of ground subsidence by numerical analysis of groundwater fluctuations and ground subsidence during urban ground excavation, to suggest the possibility of ground subsidence, and to be less than the allowable ground subsidence. In this case, it is to provide a method for evaluating the amount of ground subsidence according to groundwater level fluctuations that can be reflected in the design of the retaining wall by adjusting the permeability of the retaining wall.

본 발명의 다른 목적은 상기한 지하수위 변동에 따른 지반침하량 평가 방법을 수행하기 위한 지하수위 변동에따른 지반침하량 평가 시스템을 제공하는 것이다.Another object of the present invention is to provide a system for evaluating ground settlement according to ground water level fluctuations for performing the method for evaluating ground settlement according to ground water level fluctuations described above.

상기한 본 발명의 목적을 실현하기 위하여 일실시예에 따른 지하수위 변동에 따른 지반침하량 평가 방법은, 흙막이 벽체의 투수성 정보가 포함된 설계자료와 광역지하수의 현장자료를 근거로, 지하수위 변화량 산정부가 광역지하수를 수치해석하여 지하수위 변화량을 산정하는 단계; 광역지하수 수치해석 결과를 토대로 지반침하량 산정부가 지반안전성을 해석하여 지반침하량을 산정하는 단계; 지반침하량을 평가하기 위해 비교부가 상기 산정된지반침하량과 허용 지반침하량을 비교하는 단계; 상기 산정된 지반침하량이 상기 허용 지반침하량보다 작은 것으로 체크되면, 평가부가 허용침하량에 따른 허용 지하수위 변화량을 평가하는 단계; 및 투수성 산정부가 상기평가된 허용 지하수위 변화량에 따른 흙막이 벽체의 허용 투수성을 산정하는 단계를 포함하되, 상기 지반침하량(Ssub)은 각각의 토양층에서의 압축률을 합하거나 비저류계수(Ss)로부터 산정된다.In order to realize the object of the present invention, the method for evaluating the amount of ground settlement according to the fluctuation of the groundwater level according to an embodiment is based on the design data including the permeability information of the retaining wall and the field data of the wide area groundwater, the amount of groundwater level change calculating, by a calculation unit, the amount of groundwater level change by numerical analysis of the wide area groundwater; calculating the amount of ground settlement by analyzing the stability of the ground by the ground settlement calculation unit based on the results of the wide-area groundwater numerical analysis; comparing the calculated amount of ground settlement with the allowable amount of ground settlement by a comparator to evaluate the amount of ground settlement; if it is checked that the calculated amount of ground settlement is smaller than the allowable amount of ground settlement, evaluating, by an evaluation unit, the amount of change in the allowable groundwater level according to the allowable amount of settlement; and calculating the allowable permeability of the retaining wall according to the evaluated allowable groundwater level change by the water permeability calculation unit, wherein the ground settlement amount (Ssub) is the sum of the compression rates in each soil layer or the specific storage coefficient (Ss) is calculated from

이러한 지하수위 변동에 따른 지반침하량 평가 방법 및 그 시스템에 의하면, 수치해석을 통해 도심지 지반굴착시 지하수위 변동에 근거하여 지반침하량을 평가할 수 있고, 이를 활용하여 차수벽체의 투수성을 설계할 수 있다.According to the method and system for evaluating the amount of ground settlement according to the groundwater level fluctuation, it is possible to evaluate the ground settlement amount based on the groundwater level change during underground excavation through numerical analysis, and by using this, it is possible to design the water permeability of the water barrier. .

도 1은 본 발명의 일실시예에 따른 지하수위 변동에 따른 지반침하량 평가 시스템을 개략적으로 설명하기 위한블록도이다.
도 2는 본 발명의 일실시예에 따른 지하수위 변동에 따른 지반침하량 평가 방법을 개략적으로 설명하기 위한 흐름도이다.
도 3a는 지하수 변동 분석을 위한 투수성 대비 수위강하 곡선이고, 도 3b는 지하수위 변동에 따른 지반침하량분석을 위한 수위강하 대비 지반침하량 곡선이고, 도 3c는 허용 지반침하량에 따른 허용 수위변화량 분석을 위한 수위강하 대비 지반침하량 곡선이고, 도 3d는 허용 수위변화량에 따른 허용 투수성 분석을 위한 투수성 대비수위강하 곡선이다.
1 is a block diagram schematically illustrating a system for evaluating ground settlement according to groundwater level fluctuations according to an embodiment of the present invention.
2 is a flowchart schematically illustrating a method for evaluating ground settlement according to groundwater level fluctuations according to an embodiment of the present invention.
3a is a water level drop curve versus permeability for groundwater fluctuation analysis, FIG. 3b is a water level drop versus ground settlement curve for ground settlement analysis according to groundwater level fluctuations, and FIG. 3c is an allowable water level change analysis according to allowable ground settlement amount is a water level drop versus ground subsidence curve for water level drop, and FIG. 3D is a water permeability versus water level drop curve for allowable permeability analysis according to the allowable water level change.

이하, 첨부한 도면들을 참조하여, 본 발명을 보다 상세하게 설명하고자 한다. 본 발명은 다양한 변경을 가할 수있고 여러 가지 형태를 가질 수 있는 바, 특정 실시예들을 도면에 예시하고 본문에 상세하게 설명하고자 한다.그러나, 이는 본 발명을 특정한 개시 형태에 대해 한정하려는 것이 아니며, 본 발명의 사상 및 기술 범위에 포함되는 모든 변경, 균등물 내지 대체물을 포함하는 것으로 이해되어야 한다.Hereinafter, the present invention will be described in more detail with reference to the accompanying drawings. Since the present invention can make various changes and can have various forms, specific embodiments are illustrated in the drawings and described in detail in the text. However, this is not intended to limit the present invention to a specific disclosed form, It should be understood to include all modifications, equivalents and substitutes included in the spirit and scope of the present invention.

각 도면을 설명하면서 유사한 참조부호를 유사한 구성요소에 대해 사용하였다. 첨부된 도면에 있어서, 구조물들의 치수는 본 발명의 명확성을 기하기 위하여 실제보다 확대하여 도시한 것이다.In describing each figure, like reference numerals have been used for like elements. In the accompanying drawings, the dimensions of the structures are enlarged than the actual size for clarity of the present invention.

제1, 제2 등의 용어는 다양한 구성요소들을 설명하는데 사용될 수 있지만, 상기 구성요소들은 상기 용어들에 의해 한정되어서는 안 된다. 상기 용어들은 하나의 구성요소를 다른 구성요소로부터 구별하는 목적으로만 사용된다. 예를들어, 본 발명의 권리 범위를 벗어나지 않으면서 제1 구성요소는 제2 구성요소로 명명될 수 있고, 유사하게 제2 구성요소도 제1 구성요소로 명명될 수 있다. 단수의 표현은 문맥상 명백하게 다르게 뜻하지 않는 한,복수의 표현을 포함한다.Terms such as first, second, etc. may be used to describe various elements, but the elements should not be limited by the terms. The above terms are used only for the purpose of distinguishing one component from another. For example, without departing from the scope of the present invention, a first component may be referred to as a second component, and similarly, a second component may also be referred to as a first component. The singular expression includes the plural expression unless the context clearly dictates otherwise.

본 출원에서, "포함하다" 또는 "가지다" 등의 용어는 명세서 상에 기재된 특징, 숫자, 단계, 동작, 구성요소,부분품 또는 이들을 조합한 것이 존재함을 지정하려는 것이지, 하나 또는 그 이상의 다른 특징들이나 숫자, 단계, 동작, 구성요소, 부분품 또는 이들을 조합한 것들의 존재 또는 부가 가능성을 미리 배제하지 않는 것으로이해되어야 한다.In the present application, terms such as “comprise” or “have” are intended to designate that a feature, number, step, operation, component, part, or a combination thereof described in the specification exists, but one or more other features It should be construed as not precluding the possibility of the presence or addition of elements, numbers, steps, operations, components, parts, or combinations thereof.

또한, 다르게 정의되지 않는 한, 기술적이거나 과학적인 용어를 포함해서 여기서, 사용되는 모든 용어들은 본발명이 속하는 기술 분야에서 통상의 지식을 가진 자에 의해 일반적으로 이해되는 것과 동일한 의미를 가지고있다. 일반적으로 사용되는 사전에 정의되어 있는 것과 같은 용어들은 관련 기술의 문맥 상 가지는 의미와 일치하는 의미를 가지는 것으로 해석되어야 하며, 본 출원에서 명백하게 정의하지 않는 한, 이상적이거나 과도하게 형식적인 의미로 해석되지 않는다.In addition, unless otherwise defined, all terms used herein, including technical or scientific terms, have the same meaning as commonly understood by one of ordinary skill in the art to which the present invention belongs. Terms such as those defined in commonly used dictionaries should be interpreted as having a meaning consistent with the meaning in the context of the related art, and should not be interpreted in an ideal or excessively formal meaning unless explicitly defined in the present application. does not

도 1은 본 발명의 일실시예에 따른 지하수위 변동에 따른 지반침하량 평가블록도이다.1 is a block diagram for evaluating the amount of ground settlement according to groundwater level fluctuations according to an embodiment of the present invention.

도 1을 참조하면, 본 발명의 일실시예에 따른 지하수위 변동에 따른 지반침하량 평가 시스템(100)은 설계자료DB(10), 현장자료 DB(20), 지하수위 변화량 산정부(110), 지반침하량 산정부(120), 비교부(130), 메시지 출력부(140), 허용 지하수위 평가부(150) 및 투수성 산정부(160)를 포함한다. 본 실시예에서, 지하수위 변동에 따른지반침하량 평가 시스템(100)은 설계자료 DB(10), 현장자료 DB(20), 지하수위 변화량 산정부(110), 지반침하량산정부(120), 비교부(130), 메시지 출력부(140), 허용 지하수위 평가부(150) 및 투수성 산정부(160)를 포함하는것을 설명하였으나, 이는 설명의 편의를 위해 논리적으로 구분하였을뿐 하드웨어적으로 구분한 것은 아니다.Referring to FIG. 1 , the ground settlement evaluation system 100 according to the groundwater level fluctuation according to an embodiment of the present invention includes a design data DB 10 , a field data DB 20 , a groundwater level change calculation unit 110 , It includes a ground subsidence calculation unit 120 , a comparison unit 130 , a message output unit 140 , an allowable groundwater level evaluation unit 150 , and a permeability calculation unit 160 . In this embodiment, the ground settling amount evaluation system 100 according to the groundwater level fluctuation is a design data DB 10, a field data DB 20, a groundwater level change calculation unit 110, a ground settlement amount calculation unit 120, a comparison It has been described that it includes the unit 130, the message output unit 140, the allowable groundwater level evaluation unit 150, and the permeability calculation unit 160, but this is only logically divided for convenience of explanation and is divided into hardware didn't do it

상기 지하수위 변화량 산정부(110)는 설계자료 DB(10)에 저장된 흙막이 벽체 투수성 정보를 포함하는 설계자료와 현장자료 DB(20)에 저장된 광역지하수의 현장자료를 근거로 상기 광역지하수를 수치해석하여 지하수위 변화량을 산정한다.The groundwater level change calculation unit 110 numerically calculates the wide-area groundwater based on the design data including the retaining wall permeability information stored in the design data DB 10 and the field data of the wide-area groundwater stored in the field data DB 20 . Analyze and calculate the amount of groundwater level change.

상기 지반침하량 산정부(120)는 광역지하수 수치해석 결과를 토대로 지반안전성을 해석하여 지반침하량을 산정한다.The ground settlement amount calculation unit 120 calculates the ground settlement amount by analyzing the ground safety based on the result of numerical analysis of the wide area groundwater.

도 1을 다시 참조하면, 상기 비교부(130)는 지반침하량을 평가하기 위해 상기 지반침하량 산정부(120)에 의해산정된 지반침하량과 허용 지반침하량을 비교한다. 상기 허용 지반침하량은 별도의 허용 지반침하량 DB(30)에저장될 수 있다.Referring back to FIG. 1 , the comparison unit 130 compares the ground settlement amount calculated by the ground settlement amount calculating unit 120 and the allowable ground settlement amount in order to evaluate the ground settlement amount. The allowable ground settlement amount may be stored in a separate allowable ground settlement amount DB 30 .

상기 메시지 출력부(140)는 상기 산정된 지반침하량이 상기 허용 지반침하량보다 같거나 큰 것으로 체크되면,침하 방지 대책 수립을 요청하는 메시지를 출력한다.When it is checked that the calculated amount of ground settlement is equal to or greater than the allowable amount of ground settlement, the message output unit 140 outputs a message requesting establishment of a settlement prevention measure.

상기 허용 지하수위 평가부(150)는 상기 산정된 지반침하량이 상기 허용 지반침하량보다 작은 것으로 체크되면,지하수위 변화량을 평가한다.The allowable groundwater level evaluation unit 150 evaluates the amount of change in the groundwater level when it is checked that the calculated amount of ground settlement is smaller than the allowable amount of ground settlement.

상기 투수성 산정부(160)는 허용 지하수위 평가부(150)에 의해 평가된 지하수위 변화량이 허용 지하수위 변화량이면, 흙막이 벽체의 투수성을 산정한다. 산정된 투수성을 갖는 흙막이 벽체를 시공하는 흙막이 공법은 CIP 공법, H-PILE+토류판 공법, 슬러리 월(Slurry Wall) 공법, SCW(Soil Cement Wall) 공법 등으로 구분할 수 있다.The permeability calculation unit 160 calculates the permeability of the retaining wall when the groundwater level change evaluated by the allowable groundwater level evaluation unit 150 is the allowable groundwater level change amount. The retaining method for constructing a retaining wall with the calculated water permeability can be divided into the CIP method, the H-PILE + earth plate method, the slurry wall method, and the SCW (Soil Cement Wall) method.

상기 CIP 공법은 곡률 반경이 400mm ~1,500mm 정도로 지반을 천공한 후 철근이나 H형강과 콘크리트를 주입하여연속적인 주열벽을 형성하는 공법이다. CIP 공법은 합리적, 경제적 시공이 가능하고, 무진동, 무소음이다. 시공적인 측면에서 많이 채택된다.The CIP method is a method of forming a continuous column wall by perforating the ground with a radius of curvature of 400 mm to 1,500 mm and then injecting reinforcing bars or H-beams and concrete. The CIP method can be constructed reasonably and economically, and is vibration-free and noise-free. It is widely used in terms of construction.

상기 H-PILE+토류판 공법은 항타기를 이용해서 시공하는 보편적인 공법이다. 즉, H-PILE+토류판을 사용하며, 응력전달용으로 띠장을 설치한다. H-PILE+토류판 공법은 가장 널리 쓰이고, 경험과 기술축적이 풍부하다. 또한 별도의 차수공사를 필요로하며, 구체공사가 종료되면 해체 재사용하는 특성으로 원가 절감 효과가 크다.The H-PILE + earth plate construction method is a universal construction method using a driving machine. In other words, H-PILE + earth plate is used, and a wale is installed for stress transmission. The H-PILE + earth plate method is the most widely used and has abundant experience and technology accumulation. In addition, it requires a separate waterproofing work, and when the concrete work is completed, it is dismantled and reused, so the cost reduction effect is great.

상기 슬러리 월 공법은 트렌치를 굴삭하고, 철근망을 삽입한 패널을 연속적으로 지하 벽체를 구축하는공법이다. 슬러리 월 공법은 도심지내의 민원이 많이 제기되는 경우 많이 채택된다. 완벽한 차수성능을 가지고,건축지하벽체로 이용된다.The slurry wall method is a method of excavating a trench and continuously constructing an underground wall with a panel inserted with a reinforcing bar mesh. The slurry wall method is often adopted when there are many complaints in the downtown area. It has perfect water-repellent performance and is used as a building basement wall.

상기 SCW 공법은 특수다축기구를 이용해서 천공한다. 시멘트 페이스트와 벤ㄹ나이트(Bentonite)액을 주입해서시공한다. H형강을 공 내부에 삽입해서 차수벽 및 토류벽 역할을 하게한다. SCW 공법은 주변지반에 대한 영향이극히 적다. 또한 지수성능이 높고, 소음진동이 적고 공기단축이 가능하며 시공실적이 많다.The SCW method is drilled using a special multi-axis mechanism. It is constructed by injecting cement paste and Bentonite solution. H-beam is inserted into the ball to act as a water barrier and earth wall. The SCW method has very little effect on the surrounding ground. In addition, it has high water-resistance performance, low noise and vibration, shortened construction period, and many construction achievements.

통상적으로, 지반안정성 평가는 투수성에 따른 지하수위 변동을 분석한 후, 상기 지하수위 변동에 따른 지반침하량을 분석하는 과정을 통해 이루어졌다.In general, ground stability evaluation was performed by analyzing groundwater level fluctuations according to permeability, and then analyzing the amount of ground settlement according to the groundwater level fluctuations.

하지만, 본 발명에 따르면, 상기한 지하수위 변동을 분석한 후 지반침하량을 분석하는 과정에 추가적으로, 허용지반침하량에 따른 허용 수위변화량을 분석한 후, 허용 수위변화량에 따른 허용 투수성을 분석한다. 이에 따라,지반침하량이 허용 지반침하량 이내인 경우, 허용 지반침하량에 해당하는 수위강하량을 선정하고 이를 이용하여투수성이 조절된 흙막이 벽체를 설계할 수 있다.However, according to the present invention, in addition to the process of analyzing the ground settlement amount after analyzing the groundwater level fluctuations described above, the allowable water level change according to the allowable ground settlement amount is analyzed, and then the allowable permeability according to the allowable water level change amount is analyzed. Accordingly, if the amount of ground settlement is within the allowable ground settlement amount, the water level drop corresponding to the allowable ground settlement amount can be selected and used to design a retaining wall with controlled permeability.

이를 통해 도심지 중 지하수가 풍부한 지역에서 흙막이 벽체의 완전 차수를 위한 과설계를 줄일 수 있다. 또한통상적인 완전차수공법에 비해 시공이 용이하면서 저렴한 비용으로 흙막이 벽체를 설계할 수 있다.Through this, it is possible to reduce the overdesign for the complete waterproofing of the retaining wall in the area where groundwater is abundant in the downtown area. In addition, it is possible to design a retaining wall at a low cost while being easier to construct compared to the conventional complete waterproofing method.

도 2는 본 발명의 일실시예에 따른 지하수위 변동에 따른 지반침하량 평가 방법을 개략적으로 설명하기 위한 흐름도이다. 도 3a는 지하수 변동 분석을 위한 투수성 대비 수위강하 곡선이고, 도 3b는 지하수위 변동에 따른 지반침하량 분석을 위한 수위강하 대비 지반침하량 곡선이고, 도 3c는 허용 지반침하량에 따른 허용 수위변화량분석을 위한 수위강하 대비 지반침하량 곡선이고, 도 3d는 허용 수위변화량에 따른 허용 투수성 분석을 위한 투수성 대비 수위강하 곡선이다.2 is a flowchart schematically illustrating a method for evaluating ground settlement according to groundwater level fluctuations according to an embodiment of the present invention. 3a is a water level drop curve versus permeability for groundwater fluctuation analysis, FIG. 3b is a water level drop versus ground settlement curve for ground settlement analysis according to groundwater level fluctuations, and FIG. 3c is an allowable water level change analysis according to the allowable ground settlement amount It is a water level drop versus ground subsidence curve for this purpose, and FIG. 3D is a water level drop versus water permeability curve for permeability analysis according to the allowable water level change.

도 2를 참조하면, 흙막이 벽체의 투수성 정보가 포함된 설계자료와 광역지하수의 현장자료를 입력받는다(단계S110). 상기한 설계자료와 현장자료는 상기 설계자료 DB(10, 도 에 도시됨) 및 상기 현장자료 DB(20, 도 1에 도시됨) 각각에 저장된 자료를 지하수위 변화량 산정부(110, 도 1에 도시됨)가 입력받는 방식으로 수행될 수있다.Referring to FIG. 2 , design data including permeability information of the retaining wall and field data of wide-area groundwater are input (step S110). The design data and the field data are the data stored in the design data DB (10, shown in FIG. 1) and the field data DB (20, shown in FIG. 1), respectively, in the groundwater level change calculation unit (110, in FIG. 1). shown) can be performed in such a way that the input is received.

단계 S110에서 입력된 상기 설계자료와 상기 현장자료를 근거로, 광역지하수를 수치해석하여 지하수위 변화량을산정한다(단계 S120). 예를들어, 도 3a에 도시된 바와 같이, 특정 영역에서의 투수성 정보(Permeability)에 대응하여 지하수위 변화량(Drawndown)이 산정될 수 있다. 도 3a에서는 투수성에 대응하여 지하수위 변화량을 곡선으로 표현하였으나, 이는 설명의 편의를 위해 곡선으로 표현하였을 뿐 하나의 영역에 대해서는 하나의 포인트가매핑되는 방식으로 표현될 것이다. 상기 지하수위 변화량의 산정은 도 1에 도시된 지하수위 변화량 산정부(11)에 의해 산정될 수 있다. Based on the design data and the field data input in step S110, the amount of groundwater level change is calculated by numerically analyzing the wide-area groundwater (step S120). For example, as shown in FIG. 3A , a groundwater level change amount (Drawdown) may be calculated in response to permeability information (Permeability) in a specific area. In FIG. 3A , the amount of change in the groundwater level is expressed as a curve in response to permeability, but this is expressed as a curve for convenience of explanation and will be expressed in a manner in which one point is mapped for one area. The calculation of the groundwater level change amount may be calculated by the groundwater level change amount calculating unit 11 shown in FIG. 1 .

단계 S120에서 산정된 결과를 토대로 지반안전성을 해석하여 지반침하량을 산정한다(단계 S130). 예를들어, 도3b에 도시된 바와 같이, 지하수위 변화량(Drawndown)에 대응하여 지반침하량(Land subsidence)이 산정될 수 있다. 도 3b에서는 지하수위 변하량에 대응하여 지반침하량을 곡선으로 역시 표현하였으나, 이는 설명의 편의를위해 곡선으로 표현하였을 뿐 하나의 영역에 대해서는 하나의 포인트가 매핑되는 방식으로 역시 표현될 것이다.상기 지반침하량의 산정은 도 1에 도시된 지반침하량 산정부(120)에 의해 수행될 수 있다.Based on the result calculated in step S120, the ground safety is analyzed to calculate the amount of ground settlement (step S130). For example, as shown in FIG. 3B , a land subsidence may be calculated in response to a groundwater level drawdown. In FIG. 3B, the amount of ground subsidence is also expressed as a curve in response to the change in the groundwater level, but this is expressed as a curve for convenience of explanation and will also be expressed in a manner in which one point is mapped for one area. The ground The calculation of the settlement amount may be performed by the ground settlement amount calculation unit 120 shown in FIG. 1 .

본 실시예에서, 지하수위 변화량을 산정한 후 지반침하량을 산정하는 것을 설명하였으나, 지하수위 변화량을 산정하는 단계와 지반침하량을 산정하는 단계를 동시에 수행할 수도 있다.In this embodiment, it has been described that the groundwater level change amount is calculated after calculating the groundwater level change amount, but the step of calculating the groundwater level change amount and the ground settlement amount calculation step can be performed at the same time.

지반침하량을 평가하기 위해 상기 산정된 지반침하량과 허용 지반침하량을 비교한다(단계 S140). 상기 산정된지반침하량과 상기 허용 지반침하량의 비교는 도 1에 도시된 비교부(130)에 의해 수행될 수 있다.In order to evaluate the amount of ground settlement, the calculated amount of ground settlement and the allowable amount of ground settlement are compared (step S140). The comparison of the calculated amount of ground settlement and the allowable amount of ground settlement may be performed by the comparison unit 130 shown in FIG. 1 .

단계 S140에서 상기 산정된 지반침하량이 상기 허용 지반침하량보다 크거나 같은 것으로 체크되면, 침하방지 대 책 수립 메시지를 출력한다(단계 S150) 상기 침하방지 대책 수립 메시지의 출력은 도 1에 도시된 메시지 출력부(140)에 의해 수행될 수 있다.When it is checked that the calculated ground settlement amount is greater than or equal to the allowable ground settlement amount in step S140, a settlement prevention measure establishment message is output (step S150). may be performed by the unit 140 .

단계 S140에서 상기 산정된 지반침하량이 상기 허용 지반침하량보다 작은 것으로 체크되면, 도 3c에 도시된 바와 같이, 허용침하량에 따른 허용 지하수위 변화량을 산정한다(단계 S160). 상기 허용 지하수위 변화량의 산정은 도 1에 도시된 허용 지하수위 평가부(150)에 의해 수행될 수 있다.If it is checked that the calculated amount of ground settlement is smaller than the allowable amount of ground settlement in step S140, as shown in FIG. 3c, the allowable groundwater level change according to the allowable amount of settlement is calculated (step S160). The calculation of the allowable groundwater level change amount may be performed by the allowable groundwater level evaluation unit 150 shown in FIG. 1 .

상기 평가된 허용 지하수위 변화량이 허용 지하수위 변화량이면, 도 3d에 도시된 바와 같이, 흙막이 벽체의 허용 투수성을 산정한다(단계 S170). 상기 허용 투수성의 산정은 도 1에 도시된 투수성 산정부(160)에 의해 수행될 수 있다.If the evaluated allowable groundwater level change amount is the allowable groundwater level change amount, as shown in FIG. 3D , the allowable permeability of the retaining wall is calculated (step S170). The calculation of the allowable water permeability may be performed by the water permeability calculation unit 160 illustrated in FIG. 1 .

산정된 흙박이 벽체의 허용 투수성을 근거로 설계시 벽체 투수성을 제안한다(단계 S180).Based on the calculated allowable permeability of the earthen wall, the wall permeability is proposed at the time of design (step S180).

이상에서 설명된 바와 같이, 지반안정성을 평가하기 위해, 산정된 지반침하량이 허용 지반침하량보다 작은 것으로 체크되면, 허용침하량에 따른 허용 지하수위 변화량을 추가적으로 산정하고, 흙막이 벽체의 허용 투수성을추가적으로 산정한다.As described above, to evaluate the ground stability, if the calculated amount of ground settlement is checked to be smaller than the allowable ground settlement amount, the allowable groundwater level change according to the allowable settlement amount is additionally calculated, and the allowable permeability of the retaining wall is additionally calculated do.

본 발명에 따르면, 수치해석을 통해 지하수 변동에 따른 지반침하량을 평가할 수 있다. 통상적으로, 흙막이 벽체는 투수성이 제로(0)인 완전 차수이다.According to the present invention, it is possible to evaluate the amount of ground subsidence according to groundwater fluctuations through numerical analysis. Typically, retaining walls are of full order with zero permeability.

지반침하량이 허용 지반침하량(예를들어, 25mm) 이내인 경우, 허용 지반침하량에 해당하는 수위강하량을 선정하고, 이를 이용하여 흙막이 벽체의 투수성을 조절할 수 있도록 제시할 수 있다.If the amount of ground settlement is within the allowable amount of ground settlement (for example, 25mm), the water level drop corresponding to the allowable amount of ground settlement can be selected and suggested to adjust the permeability of the retaining wall using this.

이를 통해 도심지 중 지하수가 풍부한 지역(즉, 지하수위가 지표면과 가깝고, 투수성이 좋은 지역)에서 흙막이벽체의 완전 차수를 위한 과설계를 줄일 수 있다. 여기서, 지표면에서 지하수위까지 깊이는 지표면 표고에서 지하수 수위를 차감하여 획득한다.Through this, it is possible to reduce the overdesign for complete waterproofing of the retaining wall in the downtown area where groundwater is abundant (that is, the groundwater level is close to the ground surface and the permeability is good). Here, the depth from the surface to the groundwater level is obtained by subtracting the groundwater level from the surface elevation.

이를 통해 본 발명은 통상적인 완전차수공법에 비해 시공이 용이하며 저렴한 비용으로 흙막이 벽체를 설계할 수있다.Through this, the present invention can design a retaining wall at a low cost and easy to construct compared to a conventional complete waterproofing method.

이상에서 설명된 바와 같이, 본 발명에 따르면 수치해석을 통해 도심지 지반굴착시 지하수위 변동에 근거하여지반침하량을 평가할 수 있고, 이를 활용하여 차수벽체의 투수성을 설계할 수 있다.As described above, according to the present invention, it is possible to evaluate the amount of ground subsidence based on the fluctuation of the groundwater level during urban ground excavation through numerical analysis, and use this to design the water permeability of the order wall.

이상에서는 실시예를 참조하여 설명하였지만, 해당 기술 분야의 숙련된 당업자는 하기의 특허 청구의 범위에 기재된 본 발명의 사상 및 영역으로부터 벗어나지 않는 범위 내에서 본 발명을 다양하게 수정 및 변경시킬 수 있음을 이해할 수 있을 것이다.Although the above has been described with reference to the embodiments, those skilled in the art can variously modify and change the present invention within the scope without departing from the spirit and scope of the present invention described in the claims below You will understand.

Claims (2)

흙막이 벽체의 투수성 정보가 포함된 설계자료와 광역지하수의 현장자료를 근거로, 지하수위 변화량 산정부가광역지하수를 수치해석하여 지하수위 변화량을 산정하는 단계;
광역지하수 수치해석 결과를 토대로 지반침하량 산정부가 지반안전성을 해석하여 지반침하량을 산정하는 단계; 지반침하량을 평가하기 위해 비교부가 상기 산정된 지반침하량과 허용 지반침하량을 비교하는 단계;
상기 산정된 지반침하량이 상기 허용 지반침하량보다 작은 것으로 체크되면, 평가부가 허용침하량에 따른 허용지하수위 변화량을 평가하는 단계; 및
투수성 산정부가 상기 평가된 허용 지하수위 변화량에 따른 흙막이 벽체의 허용 투수성을 산정하는 단계를 포함하되,
상기 지반침하량(Ssub)은 각각의 토양층에서의 압축률을 합하거나 비저류계수(Ss)로부터 산정하는 지하수위 변동에 따른 지반침하량 평가방법.
Calculating the amount of groundwater level change by numerically interpreting the sub-regional groundwater calculation based on the design data including the permeability information of the retaining wall and the field data of the wide area groundwater;
estimating the amount of ground settlement by analyzing the stability of the ground by the ground settlement amount calculation unit based on the result of the numerical analysis of the wide area groundwater; comparing the calculated amount of ground settlement with the allowable amount of ground settlement by a comparator to evaluate the amount of ground settlement;
if it is checked that the calculated ground settlement amount is smaller than the allowable ground settlement amount, evaluating, by an evaluation unit, the allowable groundwater level change amount according to the allowable settlement amount; and
Comprising the step of calculating the allowable water permeability of the retaining wall according to the estimated allowable groundwater level change by the water permeability calculation unit,
The ground settlement amount (Ssub) is a method for evaluating ground settlement amount according to groundwater level fluctuations, which is calculated by summing the compressibility in each soil layer or from a non-retention coefficient (Ss).
제1항에 있어서, 상기 산정된 지반침하량이 상기 허용 지반침하량보다 같거나 큰 것으로 체크되면, 메시지 출력부가 침하 방지 대책 수립을 요청하는 메시지를 출력하는 단계를 더 포함하는 것을 특징으로 하는 지하수위 변동에 따른 지반침하량 평가 방법.
The groundwater level fluctuation according to claim 1, further comprising outputting a message requesting establishment of a settlement prevention measure by a message output unit when it is checked that the calculated amount of ground settlement is equal to or greater than the allowable amount of ground settlement. ground settlement evaluation method according to
KR1020200186064A 2020-12-29 2020-12-29 Evaluation method and system of ground subsidence according to changes in groundwater level KR20220095340A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020200186064A KR20220095340A (en) 2020-12-29 2020-12-29 Evaluation method and system of ground subsidence according to changes in groundwater level

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020200186064A KR20220095340A (en) 2020-12-29 2020-12-29 Evaluation method and system of ground subsidence according to changes in groundwater level

Publications (1)

Publication Number Publication Date
KR20220095340A true KR20220095340A (en) 2022-07-07

Family

ID=82397674

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020200186064A KR20220095340A (en) 2020-12-29 2020-12-29 Evaluation method and system of ground subsidence according to changes in groundwater level

Country Status (1)

Country Link
KR (1) KR20220095340A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116007576A (en) * 2023-02-14 2023-04-25 成都建工第三建筑工程有限公司 Road settlement detection system and method based on artificial intelligence analysis

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116007576A (en) * 2023-02-14 2023-04-25 成都建工第三建筑工程有限公司 Road settlement detection system and method based on artificial intelligence analysis
CN116007576B (en) * 2023-02-14 2023-06-09 成都建工第三建筑工程有限公司 Road settlement detection system and method based on artificial intelligence analysis

Similar Documents

Publication Publication Date Title
Shen et al. Calculation of head difference at two sides of a cut-off barrier during excavation dewatering
Tan et al. Deep excavation of the Gate of the Orient in Suzhou stiff clay: Composite earth-retaining systems and dewatering plans
Elbaz et al. Investigation into performance of deep excavation in sand covered karst: a case report
Tan et al. Structural behaviors of large underground earth-retaining systems in Shanghai. I: Unpropped circular diaphragm wall
Ou et al. Performance of excavations with cross walls
Li et al. Tunnelling‐Induced Settlement and Treatment Techniques for a Loess Metro in Xi’an
Lai et al. Ground movements induced by installation of twin large diameter deeply-buried caissons: 3D numerical modeling
Gong et al. Excavation collapse of Hangzhou subway station in soft clay and numerical investigation based on orthogonal experiment method
Wang et al. Research on deformation law of deep foundation pit of station in core region of saturated soft loess based on monitoring
Dong Advanced finite element analysis of deep excavation case histories
Hsieh et al. Lessons learned in design of an excavation with the installation of buttress walls
Hung et al. Practice and experience in deep excavations in soft soil of Ho Chi Minh City, Vietnam
Maher et al. General deformation behavior of deep excavation support systems: A review
Ma et al. A combined support method of isolation pile and diaphragm wall for protection of buildings adjacent to deep foundation pit
Zhu et al. Numerical Simulation Study on Construction Effect of Top‐Down Construction Method of Suspended Diaphragm Wall for Deep and Large Foundation Pit in Complex Stratum
KR20220095340A (en) Evaluation method and system of ground subsidence according to changes in groundwater level
Zheng et al. Environmental impact of ground deformation caused by underground construction in China
KR101987247B1 (en) Evaluation method and system for the ground subsidence by groundwater level fluctuation
Ong et al. Ground and groundwater responses due to shaft excavation in organic soils
Preene Assessment of settlements caused by groundwater control
Marr et al. Displacement-based design for deep excavations
Wrzesiński et al. Numerical analysis of dewatering process of deep excavation
Xu et al. Safety Analysis of Deep Foundation Excavation in Water‐Rich Soft Soils Based on BIM
Pedro et al. Numerical modelling of the Ivens shaft construction in Lisbon, Portugal
Nikbakhtan et al. The effects of jet grouting on slope stability at Shahriar dam, Iran