JP2003311618A - Fluid supply nozzle used for grinding wheel, and grinding method - Google Patents

Fluid supply nozzle used for grinding wheel, and grinding method

Info

Publication number
JP2003311618A
JP2003311618A JP2002126597A JP2002126597A JP2003311618A JP 2003311618 A JP2003311618 A JP 2003311618A JP 2002126597 A JP2002126597 A JP 2002126597A JP 2002126597 A JP2002126597 A JP 2002126597A JP 2003311618 A JP2003311618 A JP 2003311618A
Authority
JP
Japan
Prior art keywords
grindstone
grinding wheel
grinding
nozzle
peripheral surface
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002126597A
Other languages
Japanese (ja)
Inventor
Shinichi Toe
真一 東江
Keizo Ota
惠三 太田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
OTA KK
Original Assignee
OTA KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by OTA KK filed Critical OTA KK
Priority to JP2002126597A priority Critical patent/JP2003311618A/en
Publication of JP2003311618A publication Critical patent/JP2003311618A/en
Pending legal-status Critical Current

Links

Landscapes

  • Grinding-Machine Dressing And Accessory Apparatuses (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an efficient fluid supply nozzle for simply supplying only an appropriate amount required for improving a grinding effect without being affected by air flow occurring on the peripheral surface of a grinding wheel following rotation of the grinding wheel. <P>SOLUTION: The fluid supply nozzle comprises a nozzle body 7 butted on the peripheral surface 6 of the grinding wheel in a substantially adhering state and a nozzle inner box 8 containing nozzle body 7 for bringing it close to or separating from the peripheral surface 6 of the grinding wheel, or holding it at a position. A peripheral-edge-shaped supply opening 5 of the nozzle body 7 for supplying fluid for a grinding wheel is surrounded by longitudinal peripheral edges 18a and 18b with a transfer shape copying with the cross section of the peripheral surface 6 and a lateral peripheral edge 20 facing to the peripheral shape of the peripheral surface 6. <P>COPYRIGHT: (C)2004,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、回転する研削砥石
の研削効果(良好な研削や周囲の環境汚染低減等)を高め
るため、研削液、冷却液又は洗浄液等、砥石用流体を砥
石周面へ適量供給する研削砥石に用いる流体供給ノズル
に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention uses a grinding fluid such as a grinding fluid, a cooling fluid or a cleaning fluid to improve the grinding effect of a rotating grinding wheel (such as good grinding and reduction of environmental pollution in the surroundings). The present invention relates to a fluid supply nozzle used for a grinding wheel that supplies an appropriate amount to a grinding wheel.

【0002】本発明にいう「砥石用流体」とは、研削に
際して研削作用をもたらす研削液、研削作用の低減を抑
制する砥石の冷却液、研削後の砥石周面を洗浄する洗浄
液を含む。また、前記冷却液は、主として冷却効果をも
たらす液体を指すが、液体のみならず、冷却効果を有す
る気体や、前記液体及び気体の混合体をも含み、これら
を冷却液の語で代表する。
The term "fluid for a grindstone" as used in the present invention includes a grinding fluid that causes a grinding action during grinding, a cooling fluid for a grindstone that suppresses the reduction of the grinding action, and a cleaning fluid that cleans the circumferential surface of the grindstone after grinding. Further, the cooling liquid mainly refers to a liquid having a cooling effect, but includes not only a liquid but also a gas having a cooling effect and a mixture of the liquid and the gas, which are represented by the term of the cooling liquid.

【0003】[0003]

【従来の技術】回転する研削砥石の研削効果を高めるに
は、研削液又は冷却液を砥石周面へ適量供給する研削液
又は冷却液供給ノズルが用いられる(特公昭62-043834号
等参照)。しかし、単に研削液又は冷却液を供給するだ
けでは、研削砥石の回転に伴って砥石周面に連れ回る空
気流により、砥石周面、特に研削点に対して研削液を到
達させることが難しい。このため、種々の流体供給ノズ
ルが提案されているが、それぞれに問題があった。例え
ば高圧液ジェットノズルは、高圧装置を必要とすること
からコストが増加するほか、高圧を作ることによる消費
エネルギーの増加等の欠点が指摘されていた。また、こ
の高圧液ジェットノズルを用いる場合、高速研削では、
研削砥石に連れ回る空気流を打ち破って研削液又は冷却
液を砥石周面に供給することがより難しくなり、仮に空
気流を打ち破って研削液又は冷却液を供給しようとする
と非常な高圧が必要となって、この高圧が砥石回転にブ
レーキをかけることになり、今度は研削砥石の回転のた
めに高出力砥石モータが要求されるという問題が発生す
る。
2. Description of the Related Art In order to enhance the grinding effect of a rotating grinding wheel, a grinding liquid or cooling liquid supply nozzle for supplying an appropriate amount of grinding liquid or cooling liquid to the peripheral surface of the grinding stone is used (see Japanese Patent Publication No. 62-043834). . However, simply supplying the grinding liquid or the cooling liquid makes it difficult for the grinding liquid to reach the grindstone peripheral surface, particularly the grinding point, due to the air flow that is entrained around the grindstone peripheral surface as the grinding grindstone rotates. Therefore, various fluid supply nozzles have been proposed, but each has its own problems. For example, high-pressure liquid jet nozzles have been pointed out to have disadvantages such as an increase in cost since they require a high-pressure device and an increase in energy consumption due to high pressure. When using this high-pressure liquid jet nozzle, in high-speed grinding,
It becomes more difficult to break the air flow that entrains the grinding wheel and supply the grinding liquid or cooling liquid to the grindstone peripheral surface.If it is attempted to break the air flow and supply the grinding liquid or cooling liquid, extremely high pressure is required. Then, this high pressure brakes the rotation of the grindstone, which in turn causes a problem that a high-power grindstone motor is required to rotate the grindstone.

【0004】また、巻付ノズルは大量の研削液を使うた
め、研削砥石の見かけ質量を増加させる問題がある。仮
に、使用する研削液を少量に抑えたとしても、巻付ノズ
ルと砥石周面との隙間が管理されていないため、前記隙
間がばらつき、結果として研削効果にばらつきが生じて
しまう。また、高速研削では、上記高圧ジェットノズル
同様、高出力砥石モータを必要としていた。洗浄液に代
えて冷風を用いる冷風研削では、当然に潤滑効果がない
ほか、工作物等周囲をも冷却するものの、肝心の砥石周
面、特に研削点における冷却効果が低い。このため、十
分な冷却効果を得るには大型の冷却装置を使用すること
となり、結果として大電力を必要とする欠点があった。
更に冷風研削では、高速研削における空気流を打ち破る
には、冷却液を使用する場合以上の高圧が要求される問
題がある。同様に、ミスト(セミドライ)研削では、研削
点以外にもミストが発散するために雰囲気を阻害し、高
速研削においても冷風研削と同じ高圧での吹き付けが要
求される問題がある。
Further, since the winding nozzle uses a large amount of grinding liquid, there is a problem of increasing the apparent mass of the grinding wheel. Even if the amount of the grinding liquid used is reduced to a small amount, the gap between the winding nozzle and the grindstone peripheral surface is not controlled, so that the gap is varied, and as a result, the grinding effect is varied. In addition, high-speed grinding requires a high-power grindstone motor as in the above high-pressure jet nozzle. In cold air grinding that uses cold air instead of the cleaning liquid, naturally there is no lubrication effect and the surroundings of the work and the like are also cooled, but the cooling effect at the peripheral surface of the whetstone, especially at the grinding point, is low. Therefore, a large cooling device is used to obtain a sufficient cooling effect, and as a result, there is a drawback that a large amount of electric power is required.
Further, in cold air grinding, in order to break the air flow in high speed grinding, there is a problem that a higher pressure than that when using a cooling liquid is required. Similarly, mist (semi-dry) grinding has a problem in that mist diverges in addition to the grinding point, which obstructs the atmosphere and requires high-speed grinding at the same high pressure as cold-air grinding.

【0005】[0005]

【発明が解決しようとする課題】従来の流体供給ノズル
における上記各問題は、研削砥石の回転に伴って砥石周
面に生じる空気流のため、砥石用流体を適切に供給する
ことが難しかった。これは、研削砥石による研削効果の
向上を妨げるほか、既に明らかなように、コスト増加や
環境に対する悪影響等の問題をもたらす。この問題を解
決するには、なによりも砥石用流体の供給量を減らし、
研削効果を改善する(向上させる)のに必要な適量のみを
供給すれば足りる効率的な砥石用流体の供給手段が要求
される。ところが、従来の流体供給ノズルは、前記要求
を満たすものがなかった。そこで、研削砥石の回転に伴
って砥石周面に生じる空気流の影響を受けず、研削効果
を改善する(向上させる)のに必要な適量のみを供給すれ
ば足りる効率的な流体供給ノズルを開発するため、検討
した。
The above-mentioned problems in the conventional fluid supply nozzle are difficult to properly supply the grindstone fluid because of the air flow generated on the peripheral surface of the grindstone as the grinding grindstone rotates. This hinders the improvement of the grinding effect by the grinding wheel, and brings about problems such as an increase in cost and an adverse effect on the environment, as is already clear. In order to solve this problem, reduce the supply amount of the grinding wheel fluid above all,
There is a demand for an efficient means for supplying a fluid for a grindstone that is sufficient to supply only an appropriate amount necessary for improving (improving) the grinding effect. However, none of the conventional fluid supply nozzles satisfies the above requirements. Therefore, we have developed an efficient fluid supply nozzle that is not affected by the air flow generated on the grinding wheel peripheral surface as the grinding wheel rotates, and only needs to supply the appropriate amount necessary to improve (improve) the grinding effect. In order to do so, I examined.

【0006】[0006]

【課題を解決するための手段】検討の結果開発したもの
が、回転する研削砥石の研削効果を高めるため、砥石用
流体を砥石周面へ供給する研削砥石に用いる流体供給ノ
ズルにおいて、砥石周面に略密着状態で宛てがうノズル
本体と、このノズル本体を砥石周面に向けて接近離反及
び位置保持自在に内挿するノズル内箱とからなり、砥石
用流体を供給するノズル本体の供給開口は砥石周面の断
面に倣った転写形状の縦周縁と、砥石周面の周形状に沿
う横周縁とに囲まれた周縁形状である研削砥石に用いる
流体供給ノズルである。本発明に用いる砥石用流体は、
研削液、冷却液、洗浄液のほか、冷却効果を有する気体
や、前記液体及び気体の混合体(ミスト)を含む。砥石用
流体の供給に必要な圧力は、例えば研削盤に付属する研
削液ポンプで発生する圧力以下でよく、極微量の流体を
供給できるだけの圧力があればよい。
[Means for Solving the Problems] In order to enhance the grinding effect of a rotating grinding wheel, a fluid supply nozzle used for the grinding wheel that supplies a grinding wheel fluid to the grinding wheel peripheral surface has been developed as a result of the study. Nozzle main body that is placed in close contact with the nozzle body, and a nozzle inner box that inserts the nozzle main body toward and away from the grindstone so that the nozzle body can be moved toward and away from the grindstone and holds the position. Is a fluid supply nozzle used for a grinding wheel having a peripheral shape surrounded by a vertical peripheral edge of a transfer shape following the cross section of the peripheral surface of the grindstone and a lateral peripheral edge along the peripheral shape of the peripheral surface of the grindstone. The grindstone fluid used in the present invention is
In addition to the grinding liquid, the cooling liquid, the cleaning liquid, a gas having a cooling effect and a mixture (mist) of the liquid and the gas are included. The pressure required to supply the grindstone fluid may be, for example, lower than or equal to the pressure generated by the grinding fluid pump attached to the grinding machine, and may be a pressure sufficient to supply an extremely small amount of fluid.

【0007】本発明の流体供給ノズルは、ノズル本体を
砥石周面に略密着状態で宛てがうことで、(1)研削砥石
の回転により砥石周面に連れ回る空気流からノズル本体
内を隔離し、供給する砥石用流体が空気流の影響を受け
ないようにする作用と共に、(2)供給した砥石用流体を
供給経路端の供給開口内に留めて、最小限必要な適量の
砥石用流体で十分に研削効果を向上させる作用を得る。
「略密着状態」とは、前記(1)及び(2)の作用を実現する
程度にノズル本体の供給開口周縁(縦壁の縦周縁及び横
壁の横周縁)と砥石周面との隙間tが小さい場合を指
す。ここで、略方形状の供給開口における回転方向上流
側の縦周縁、上下の横周縁及び回転方向下流側の縦周縁
を考えた場合、特に回転方向上流側の縦周縁と砥石周面
との隙間tを0<t≦0.3mmの範囲で調整すればよく、
例えば重研削等では、砥石用流体の排出を促すために回
転方向下流側の縦周縁と砥石周面との隙間は前記範囲よ
りも大きくしてよい。
In the fluid supply nozzle of the present invention, the nozzle body is placed in close contact with the peripheral surface of the grindstone to (1) isolate the inside of the nozzle main body from the air flow entrained around the peripheral surface of the grindstone by the rotation of the grinding wheel. However, it has a function to prevent the supplied grinding wheel fluid from being affected by the air flow, and (2) keeps the supplied grinding wheel fluid in the supply opening at the end of the supply path to provide the minimum necessary and appropriate amount of grinding wheel fluid. To obtain the effect of sufficiently improving the grinding effect.
The "substantially close contact state" means that the gap t between the supply opening peripheral edge (vertical peripheral edge of the vertical wall and horizontal peripheral edge of the horizontal wall) of the nozzle body and the grindstone peripheral surface is such that the functions of (1) and (2) above are realized. Refers to the small case. Here, when considering the vertical peripheral edge on the upstream side in the rotational direction, the upper and lower horizontal peripheral edges, and the vertical peripheral edge on the downstream side in the rotational direction in the substantially rectangular supply opening, especially the gap between the vertical peripheral edge on the upstream side in the rotational direction and the grindstone peripheral surface. It is only necessary to adjust t within the range of 0 <t ≦ 0.3 mm,
For example, in heavy grinding or the like, the gap between the vertical peripheral edge on the downstream side in the rotation direction and the grindstone peripheral surface may be made larger than the above range in order to promote discharge of the grindstone fluid.

【0008】上記(1)及び(2)の作用を実現するために
は、ノズル本体の供給開口が砥石周面に略密着状態で接
近させなくてはならない。そこで、本発明では、砥石周
面に対して前記供給開口の位置関係を調節できるよう
に、(a)ノズル本体を砥石周面に向けて接近離反及び位
置保持自在にノズル内箱に内挿する。好ましくは、更に
(b)前記ノズル内箱を前記ノズル本体の接近離反方向の
直交方向へ移動及び位置保持自在にノズル外箱に取り付
けるとよい。これにより、供給開口の砥石周面に対する
直線距離はノズル内箱に対するノズル本体の内挿深さで
直接調節でき、供給開口の砥石周面に対する上下又は左
右の位置関係はノズル本体を内挿するノズル内箱のノズ
ル外箱に対する位置関係により間接的に調節できる。ま
た、ノズル内箱に対するノズル本体、ノズル外箱に対す
るノズル内箱を位置保持自在とすることで、砥石用流体
の供給による反力を受けるノズル本体の供給開口と砥石
周面との隙間を一定に保つことができる。
In order to realize the operations of (1) and (2), the supply opening of the nozzle body must be brought into close contact with the peripheral surface of the grindstone. Therefore, in the present invention, in order to adjust the positional relationship of the supply opening with respect to the grindstone circumferential surface, (a) the nozzle body is inserted into the nozzle inner box so that the nozzle body can be moved toward and away from the grindstone circumferential surface and the position can be held. . Preferably, further
(b) The nozzle inner box may be attached to the nozzle outer box so as to be movable and positionally held in a direction orthogonal to the approaching / separating direction of the nozzle body. Thus, the linear distance of the supply opening to the grindstone circumferential surface can be directly adjusted by the insertion depth of the nozzle body with respect to the nozzle inner box, and the vertical or horizontal positional relationship of the supply opening with respect to the grindstone circumferential surface is the nozzle into which the nozzle body is inserted. It can be indirectly adjusted by the positional relationship between the inner box and the nozzle outer box. In addition, by allowing the nozzle body for the inner box of the nozzle and the inner box of the nozzle for the outer box to be held in position, the gap between the supply opening of the nozzle body that receives the reaction force due to the supply of the fluid for the grindstone and the grindstone peripheral surface is made constant. Can be kept.

【0009】ノズル本体を砥石周面に向けて接近離反及
び位置保持自在にする具体的手段は、ノズル本体からノ
ズル内箱外に伸びる内スピンドル軸を有する内マイクロ
メータにより、ノズル内箱から砥石周面に向けて接近離
反及び位置保持自在にする構成を挙げることができる。
更に、内マイクロメータによる調節量は、ノズル内箱を
基準とする内ダイヤルゲージをノズル本体に対して設け
ると把握できる。同様に、ノズル内箱をノズル本体の接
近離反方向の直交方向へ移動及び位置保持自在にする具
体的手段は、ノズル内箱からノズル外箱外に伸びる外ス
ピンドル軸を有する外マイクロメータにより、ノズル外
箱に対してからノズル本体の接近離反方向の直交方向へ
移動及び位置保持自在にする構成を挙げることができ
る。外マイクロメータによる調節量は、ノズル外箱を基
準とする外ダイヤルゲージをノズル内箱に対して設ける
と把握できる。各マイクロメータによる調節単位は、0.
001〜0.01mmとすることができる。ここで、「ノズル本
体の接近離反方向の直交方向」は、ノズル本体の接近離
反方向に対して直交する任意の方向を選択できるが、好
ましくは研削砥石の回転面方向又は回転面直交方向がよ
い。更にいえば、回転面方向はノズル本体の接近離反を
伴うため、基本的には回転面直交方向にノズル内箱を移
動させるとよい。
A specific means for allowing the nozzle body to move toward and away from the peripheral surface of the grindstone and to hold the position thereof is as follows: an inner micrometer having an inner spindle shaft extending from the nozzle body to the outside of the nozzle inner box, and An example of such a structure is that the surface can be moved toward and away from the surface and the position thereof can be held.
Further, the adjustment amount by the inner micrometer can be grasped by providing an inner dial gauge based on the inner box of the nozzle with respect to the nozzle body. Similarly, a specific means for moving and maintaining the position of the inner box of the nozzle in the direction orthogonal to the approaching / separating direction of the nozzle body is to use an outer micrometer having an outer spindle shaft extending from the inner box of the nozzle to the outside of the outer box of the nozzle. An example is a configuration in which the nozzle body can be moved and held in a position orthogonal to the approaching / separating direction of the nozzle body. The adjustment amount by the outer micrometer can be grasped by providing an outer dial gauge based on the nozzle outer box with respect to the nozzle inner box. The unit of adjustment by each micrometer is 0.
It can be 001 to 0.01 mm. Here, as the “direction orthogonal to the approaching / separating direction of the nozzle body”, any direction orthogonal to the approaching / separating direction of the nozzle body can be selected, but preferably the rotation surface direction of the grinding wheel or the rotation surface orthogonal direction is good. . Furthermore, since the direction of rotation surface is accompanied by the approach and separation of the nozzle body, basically it is advisable to move the inner box of nozzles in the direction orthogonal to the surface of rotation.

【0010】供給経路端の供給開口が砥石周面に略密着
状態にするための形状特定が必要である。この形状特定
について、本発明の供給開口は、砥石周面の断面に倣っ
た転写形状の縦周縁と、砥石周面の周形状に沿う横周縁
とに囲まれた周縁形状としている。具体的な供給開口の
周縁形状としては、略方形や略円形(楕円形を含む)が考
えられる。略方形の周縁形状では、研削砥石の回転面直
交方向の縦壁端縁が縦周縁、研削砥石の回転面方向の横
壁端縁が横周縁である。略円形の周縁形状では、縦周縁
及び横周縁が連続することになるので、概ね研削砥石の
回転面直交方向を向く壁面端縁を縦周縁、概ね研削砥石
の回転面方向を向く壁面端縁を横周縁と見ることができ
る。縦周縁は、砥石周面は平坦とは限らないので、砥石
周面の断面に倣った転写形状とするが、回転方向上流側
の縦周縁と同下流側の縦周縁とはそれぞれ砥石集面に対
する隙間を個別に管理してもよい。
It is necessary to identify the shape of the supply opening at the end of the supply path so that the supply opening is in close contact with the peripheral surface of the grindstone. Regarding this shape identification, the supply opening of the present invention has a peripheral shape surrounded by a vertical peripheral edge of a transfer shape following the cross section of the peripheral surface of the grindstone and a lateral peripheral edge along the peripheral shape of the peripheral surface of the grindstone. As a specific peripheral shape of the supply opening, a substantially rectangular shape or a substantially circular shape (including an elliptical shape) can be considered. In the substantially rectangular peripheral shape, the vertical wall edge in the direction orthogonal to the rotation surface of the grinding wheel is the vertical edge, and the horizontal wall edge in the rotation surface direction of the grinding wheel is the horizontal edge. With a substantially circular peripheral shape, the vertical peripheral edge and the horizontal peripheral edge are continuous, so the wall edge that is generally oriented in the direction orthogonal to the rotation surface of the grinding wheel is the vertical edge, and the wall edge that is generally oriented in the rotation surface direction of the grinding wheel is Can be seen as the lateral margin. The vertical peripheral edge does not necessarily have a flat grindstone peripheral surface, and therefore has a transfer shape that follows the cross section of the grindstone peripheral surface. The gap may be managed individually.

【0011】ここで、供給開口の横周縁は、砥石周面の
上下周縁に倣った円弧縁でもよいが、供給する砥石用流
体の飛散を抑制するには、砥石周面より研削砥石の半径
方向内向きに突出する横周縁とするのがよい。この横周
縁は、研削砥石を挟むような位置関係となり、およそ研
削砥石の回転直交方向への砥石用流体の飛散を防止でき
る。具体的な横周縁は、円弧縁でも直線縁でも構わな
い。ここで、上述したノズル外箱に対するノズル内箱の
移動方向を回転面直交方向にすると、このノズル外箱に
対するノズル内箱の位置関係の調節は、前記横壁の研削
砥石平面に対する間隙の調節となる。
Here, the lateral peripheral edge of the supply opening may be an arc edge following the upper and lower peripheral edges of the grindstone circumferential surface, but in order to suppress the scattering of the grindstone fluid supplied, the radial direction of the grinding grindstone from the grindstone circumferential surface can be suppressed. It is preferable that the lateral edges project inward. This lateral edge has a positional relationship such that the grinding wheel is sandwiched, and it is possible to prevent the fluid for the grinding wheel from being scattered about in the direction orthogonal to the rotation of the grinding wheel. The specific lateral edge may be an arc edge or a straight edge. Here, when the moving direction of the nozzle inner box with respect to the nozzle outer box is a direction orthogonal to the rotation surface, the adjustment of the positional relationship of the nozzle inner box with respect to the nozzle outer box is the adjustment of the gap of the lateral wall with respect to the grinding wheel plane. .

【0012】こうした本発明のような供給開口と砥石周
面との隙間を調節できる流体供給ノズルを用いれば、前
記隙間を限りなく狭くすることで、砥石用流体の使用量
を抑制しながら研削効果を高めることができる。すなわ
ち、回転する研削砥石の研削効果を高めるため、砥石用
流体を砥石周面へ供給する研削に際し、砥石用流体を供
給するノズル本体を砥石周面に対して接近離反方向に位
置調節及び位置保持して、このノズル本体が砥石用流体
を供給する供給開口と砥石周面との隙間tを研削砥石に
連れ回る空気流を遮断する範囲、具体的には回転上流側
の縦周縁と砥石周面との隙間tを0<t≦0.3mmの範囲
で調節し、この供給開口から砥石周面へ供給する砥石用
流体の使用量を抑制しながら研削効果(良好な研削や周
囲の環境汚染低減等)を高める研削方法を用いることが
できる。ここで、「使用量を抑制する」とは基本的に従
来必要とされていた量より少なくて済むことを意味し、
例えば数10cc/min.程度の冷却液や研削液の供給でも、
十分な冷却効果や研削効果を得ることができる。この研
削方法は、ノズル本体の供給開口と砥石周面との隙間
t、特に回転上流側の縦周縁と砥石周面との隙間tを管
理する点に特徴があり、上記本発明の流体供給ノズルを
用いると、よりよく実現できる。
By using the fluid supply nozzle capable of adjusting the gap between the supply opening and the grindstone peripheral surface as in the present invention, the grinding effect can be suppressed while the amount of the fluid for the grindstone is suppressed by making the gap as narrow as possible. Can be increased. That is, in order to enhance the grinding effect of the rotating grinding wheel, when the grinding wheel fluid is supplied to the grinding wheel peripheral surface, the nozzle body supplying the grinding wheel fluid is adjusted in position and held in the direction away from the grinding wheel circumferential surface. The range in which this nozzle body blocks the air flow that entrains the grinding wheel in the gap t between the grindstone fluid supply opening and the grindstone circumferential surface, specifically, the vertical peripheral edge on the upstream side of rotation and the grindstone circumferential surface. Adjusting the clearance t between 0 and t within the range of 0 <t ≤ 0.3 mm, and suppressing the amount of the grinding wheel fluid supplied from this supply opening to the grinding wheel peripheral surface, the grinding effect (good grinding and reduction of surrounding environmental pollution, etc. ) Can be used. Here, "to suppress the amount used" basically means that the amount required is smaller than the amount conventionally required,
For example, even if you supply cooling fluid or grinding fluid of several tens cc / min.
A sufficient cooling effect and grinding effect can be obtained. This grinding method is characterized in that the gap t between the supply opening of the nozzle body and the grindstone peripheral surface, particularly the gap t between the vertical peripheral edge on the upstream side of rotation and the grindstone peripheral surface, is controlled. Can be better achieved by using.

【0013】[0013]

【発明の実施の形態】以下、本発明の実施形態について
図を参照しながら説明する。図1は本発明に基づく冷却
及び潤滑用流体供給ノズル1と洗浄用流体供給ノズル2
とを研削砥石3を挟んで対向関係に配置した研削装置の
側面図、図2は冷却及び潤滑用流体供給ノズル1近傍の
拡大断面図、図3は図2中A−A断面図、図4は図1中
B−B拡大断面図、図5は図1中C−C拡大断面図であ
り、図6は図1中D−D拡大断面図である。本例は、図
1に見られるように、回転する台部周面に形成した円環
状の砥粒層からなる研削砥石3をフード4で覆い、研削
点(砥石周面と被研削対象とが接触する部位)の回転上流
側に冷却及び潤滑用流体供給ノズル1を、同回転下流側
に洗浄用流体供給ノズル2を、それぞれの供給開口5,
5を砥石周面6に略密着状態となるように配している。
基本的に、供給する砥石用流体の違いのほか、対向する
各流体供給ノズル1,2は構成が同じなので、以下では
冷却及び潤滑用流体供給ノズル1を挙げて説明する。
BEST MODE FOR CARRYING OUT THE INVENTION Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 shows a cooling and lubricating fluid supply nozzle 1 and a cleaning fluid supply nozzle 2 according to the present invention.
4 is a side view of a grinding device in which the and are arranged in an opposing relationship with the grinding wheel 3 sandwiched therebetween. FIG. 2 is an enlarged sectional view in the vicinity of the cooling and lubricating fluid supply nozzle 1, and FIG. 3 is an AA sectional view in FIG. 1 is an enlarged sectional view taken along line BB in FIG. 1, FIG. 5 is an enlarged sectional view taken along line CC of FIG. 1, and FIG. 6 is an enlarged sectional view taken along line DD of FIG. In this example, as shown in FIG. 1, a hood 4 covers a grinding stone 3 made of an annular abrasive grain layer formed on a rotating peripheral surface of a base portion, and a grinding point (the peripheral surface of the grinding stone and an object to be ground are different from each other). The cooling and lubricating fluid supply nozzle 1 is provided on the upstream side of the rotation of the contact portion), the cleaning fluid supply nozzle 2 is provided on the downstream side of the rotation, and the respective supply openings 5,
5 is arranged so as to be in close contact with the peripheral surface 6 of the grindstone.
Basically, the fluid supply nozzles 1 and 2 facing each other have the same structure in addition to the difference in the supplied grindstone fluid. Therefore, the cooling and lubricating fluid supply nozzle 1 will be described below.

【0014】本例の冷却及び潤滑用流体供給ノズル1
は、図2及び図3に見られるように、砥石周面6に略密
着状態で供給開口5を宛てがうノズル本体7と、このノ
ズル本体7を砥石周面6に向けて接近離反及び位置保持
自在に内挿するノズル内箱8と、このノズル内箱8を研
削砥石3の回転面直交方向へ移動及び位置保持自在にし
たノズル外箱9とからなる。ノズル本体7は、ノズル内
箱8外に内スピンドル軸10を伸ばす内マイクロメータ11
と、ノズル内箱8を基準とする内ダイヤルゲージ12を設
けている。これにより、ノズル本体7は、砥石周面6と
供給開口5との隙間t(図2及び図5参照)を0〜0.3mm
の範囲で0.001mmピッチで調節可能に、砥石周面6に対
して接近離反及び位置保持できる(図1及び図2中太矢
印参照)。同様に、ノズル内箱8は、ノズル外箱9外に
外スピンドル軸13を伸ばす外マイクロメータ14と、ノズ
ル外箱9を基準とする外ダイヤルゲージ15をノズル内箱
8に対して設けている。これにより、ノズル本体7は、
ノズル外箱9に対して0.001mmピッチで研削砥石3の回
転面直交方向に移動及び位置保持するノズル内箱8を介
して前記接近離反方向の直交方向に位置調節できる(図
3中太矢印参照、図1及び図2では紙面法線方向)。
Cooling and lubricating fluid supply nozzle 1 of this embodiment
As shown in FIGS. 2 and 3, the nozzle main body 7 that directs the supply opening 5 to the grindstone circumferential surface 6 in a substantially intimate contact state, and the nozzle body 7 that moves toward and away from the grindstone circumferential surface 6 and its position. It comprises a nozzle inner box 8 which is insertable in a releasable manner, and a nozzle outer box 9 in which the nozzle inner box 8 is movable in the direction orthogonal to the rotation surface of the grinding wheel 3 and can be held in position. The nozzle body 7 has an inner micrometer 11 that extends the inner spindle shaft 10 outside the inner box 8 of the nozzle.
And an inner dial gauge 12 based on the nozzle inner box 8 is provided. As a result, the nozzle body 7 has a clearance t (see FIGS. 2 and 5) between the grindstone peripheral surface 6 and the supply opening 5 of 0 to 0.3 mm.
In the range of 0.001 mm, it can be adjusted at a pitch of 0.001 mm and can be moved toward and away from the grindstone peripheral surface 6 and held in position (see thick arrows in FIGS. 1 and 2). Similarly, the inner nozzle box 8 is provided with an outer micrometer 14 extending the outer spindle shaft 13 outside the outer nozzle box 9 and an outer dial gauge 15 based on the outer nozzle box 9 for the inner nozzle box 8. . As a result, the nozzle body 7 is
It is possible to adjust the position in the direction orthogonal to the approaching / separating direction via the inner box 8 that moves and holds the position of the grinding wheel 3 in the direction orthogonal to the rotation surface of the grinding wheel 3 at a pitch of 0.001 mm with respect to the outer box 9 (see the thick arrow in FIG. 3). 1 and 2, the normal direction to the paper surface).

【0015】ノズル本体7は、研削砥石3の中心を通ら
ない周横断方向に砥石用流体の供給経路16を有してい
る。砥石用流体の供給パイプ21は、ノズル内外箱8,9
を貫通してノズル本体7に連結しており、途中に設けた
流量調節バルブ22で供給する砥石用流体の流量を加減で
きる。本例の冷却及び潤滑用流体供給ノズル1では、研
削砥石3の回転を妨げないように、供給経路16を接線方
向に対して傾けており、更に研削砥石3の回転方向上流
から下流に向けて砥石用流体(具体的には研削液又は冷
却液)を供給している。本発明では、こうした砥石用流
体が最小限でありながら無駄なく利用できるように、供
給開口5を砥石周面6に略密着状態としている。具体的
には、本例における砥石周面6の断面が図4に見られる
形状であった場合、研削砥石3の回転方向に直交する縦
壁17の縦周縁18a(18b)は、砥石周面6の前記断面に倣っ
た転写形状(図3及び図5参照)とし、研削砥石3の連れ
回る空気流からノズル本体7内(具体的には供給経路16)
を遮断し、また砥石用流体の飛散を防止している。ここ
で、大量の研削屑を出す高能率な重研削では、砥石用流
体が大量に必要となるので、本発明を用いる場合、研削
砥石3の回転方向下流側の縦周縁18bと砥石周面6との
隙間tを大きくするとよい。この場合、研削砥石に連れ
回る空気流は、回転方向上流側の縦周縁18aと砥石周面
6との隙間tを正確に管理することで防止できる。
The nozzle body 7 has a grindstone fluid supply path 16 in a transverse direction which does not pass through the center of the grindstone 3. The grindstone fluid supply pipe 21 includes the nozzle inner and outer boxes 8 and 9.
Is connected to the nozzle body 7 by penetrating therethrough, and the flow rate of the grindstone fluid supplied by the flow rate control valve 22 provided on the way can be adjusted. In the cooling and lubricating fluid supply nozzle 1 of this example, the supply path 16 is inclined with respect to the tangential direction so as not to hinder the rotation of the grinding wheel 3, and further from the upstream side to the downstream side in the rotation direction of the grinding wheel 3. A grindstone fluid (specifically, a grinding liquid or a cooling liquid) is supplied. In the present invention, the supply opening 5 is in a substantially intimate contact state with the grindstone circumferential surface 6 so that such a grindstone fluid can be utilized without waste even though the fluid is minimal. Specifically, when the cross section of the grinding wheel peripheral surface 6 in this example has the shape shown in FIG. 4, the vertical peripheral edge 18a (18b) of the vertical wall 17 orthogonal to the rotation direction of the grinding wheel 3 is the grinding wheel peripheral surface. 6 has a transfer shape (see FIGS. 3 and 5) that follows the above-mentioned cross section, and the inside of the nozzle main body 7 (specifically, the supply path 16) from the air flow that the grinding wheel 3 rotates
It also shuts off and prevents the fluid for the grindstone from scattering. Here, since a large amount of grinding wheel fluid is required for highly efficient heavy grinding that produces a large amount of grinding dust, when the present invention is used, the vertical peripheral edge 18b on the downstream side in the rotational direction of the grinding wheel 3 and the grinding wheel peripheral surface 6 are used. It is advisable to increase the gap t between and. In this case, the air flow entrained by the grinding wheel can be prevented by accurately controlling the gap t between the vertical peripheral edge 18a on the upstream side in the rotation direction and the wheel peripheral surface 6.

【0016】そして、供給した砥石用流体が回転する研
削砥石3の砥石周面6に弾かれたりして回転面直交方向
へ飛散しないように、研削砥石3の回転方向の横壁19
は、砥石周面6より研削砥石3の半径方向内向きに突出
する横周縁20を有する構成にしている(図1及び図2参
照)。このように、供給開口5を囲む周縁18,20は、砥石
周面6に対する隙間t(図2及び図5参照)を極めて小さ
く(本例ではノズル本体7の砥石周面6に対する接近離
反方向の調節範囲0〜0.3mm)にすることができ、略方形
状の供給開口5を外界と隔離して砥石周面6に宛てがう
ことができる(図6参照)。これにより、少量(適量)の砥
石用流体を無駄なく利用することができ、研削効果を向
上させることができる。ノズル本体7の素材は特定され
ないが、砥石周面6に接触することを考慮して、例えば
樹脂素材やカーボン等でノズル本体7を形成するとよ
い。
Then, the lateral wall 19 in the rotation direction of the grinding wheel 3 is prevented so that the supplied grinding wheel fluid is not repelled by the grinding wheel peripheral surface 6 of the rotating grinding wheel 3 and scattered in the direction orthogonal to the rotation surface.
Has a lateral peripheral edge 20 protruding inward in the radial direction of the grinding wheel 3 from the wheel peripheral surface 6 (see FIGS. 1 and 2). As described above, the peripheral edges 18 and 20 surrounding the supply opening 5 have a very small gap t (see FIGS. 2 and 5) with respect to the grindstone circumferential surface 6 (in this example, in the direction of approaching and separating from the grindstone circumferential surface 6 of the nozzle body 7). The adjustment range can be set to 0 to 0.3 mm), and the substantially square-shaped supply opening 5 can be isolated from the outside and applied to the grindstone peripheral surface 6 (see FIG. 6). As a result, a small amount (appropriate amount) of the grinding stone fluid can be used without waste, and the grinding effect can be improved. The material of the nozzle body 7 is not specified, but the nozzle body 7 may be formed of, for example, a resin material or carbon in consideration of contact with the grindstone peripheral surface 6.

【0017】図7は、本発明に基づく冷却及び潤滑用流
体供給ノズル1と洗浄用流体供給ノズル2とを研削砥石
3を挟んで対向関係に配置した別例の研削装置の側面図
である。供給経路(=砥石用流体の供給方向)を砥石周面
6の法線方向及び接線方向の間で傾斜させたノズル本体
7は、上記図1に見られる両供給ノズル1,2の対向関
係方向で砥石周面に対して接近離反させるほか、図7に
見られるように、両供給ノズル1,2を平行な同方向(図
7中太矢印参照)で内マイクロメータ11,11により動かし
ても、同様に砥石周面に対して接近離反させることがで
きる。対向関係方向に動かす場合は接近離反量=調節量
×sinα(α=砥石周面6に対する砥石用流体の供給方向
の傾斜角)で、平行な同方向に動かす場合は接近離反量
=調節量×cosαであることから、マイクロメータの調
節量に対する各移動量が異なるだけで、ノズル本体7の
供給開口5が砥石周面6に対して接近離反することに変
わりはないからである。図7に見られる構成にすると、
研削装置左右における各部の突出を抑制できるので、研
削装置をコンパクトにまとめることができる利点があ
る。
FIG. 7 is a side view of another example of a grinding apparatus according to the present invention in which a cooling and lubricating fluid supply nozzle 1 and a cleaning fluid supply nozzle 2 are arranged in an opposed relationship with a grinding wheel 3 interposed therebetween. The nozzle main body 7 in which the supply path (= the supply direction of the fluid for the grindstone) is inclined between the normal direction and the tangential direction of the grindstone peripheral surface 6 is the facing relation direction of both supply nozzles 1 and 2 seen in FIG. In addition to moving the feed nozzles 1 and 2 toward and away from the grindstone circumferential surface with the inner micrometers 11 and 11 in the same parallel direction (see the thick arrow in FIG. 7), as shown in FIG. In the same manner, it is possible to make the grindstone approach and separate from the circumferential surface. When moving in the facing relationship direction, the amount of approach / separation = adjustment amount × sin α (α = tilt angle of the grindstone fluid supply direction to the grindstone circumferential surface 6), and when moving in the same direction in parallel, the amount of approach / separation = adjustment amount × Since it is cos α, the movement amount with respect to the adjustment amount of the micrometer is different, and the supply opening 5 of the nozzle body 7 is moved toward and away from the grindstone circumferential surface 6 without any change. With the configuration shown in FIG. 7,
Since the protrusion of each part on the left and right of the grinding device can be suppressed, there is an advantage that the grinding device can be compactly integrated.

【0018】[0018]

【発明の効果】本発明の研削砥石に用いる流体供給ノズ
ルにより、適量の砥石用流体を無駄なく利用し、高い研
削効果の向上を図ることができる効果が得られる。砥石
周面に略密着状態となるノズル本体の供給開口は、前記
砥石周面との隙間tを極小に抑えることで、少量の砥石
用流体を無駄なく利用できる。また、使用する砥石用流
体が少なくて済むことは、例えば冷却液の場合には、過
剰冷却の問題をなくし、また高速研削では、研削砥石の
回転を阻害せず、研削砥石の不要な回転動力の増強を要
求しないで済む効果をもたらす。本発明では、利用可能
な砥石用流体は、液体、気体又はミスト等、いずれでも
よく、限定はないので、およそ従来の研削装置に用いて
いた砥石用流体の利用に際し、適用できる利点がある。
また、砥石用流体の供給対象である研削砥石にも限定は
なく、通常の研削砥石のほか、切断用砥石、プロファイ
ル用砥石又はカップ砥石にも本発明は利用できる。更
に、機械の種類でいうと、平面研削盤、成形研削盤、円
筒研削盤、プロファイル研削盤、内面研削盤、工具研削
盤、各種専用研削盤、グラインディングセンター、複合
工作機の研削軸用等、様々な用途に利用できるが、高い
研削効果の向上が見込めることから、特に高能率、高精
度、高速研削加工が要求される分野に本発明は適当であ
る。
With the fluid supply nozzle used in the grinding wheel of the present invention, an appropriate amount of the grinding wheel fluid can be used without waste, and a high grinding effect can be improved. The supply opening of the nozzle body, which is in close contact with the peripheral surface of the grindstone, minimizes the gap t with the peripheral surface of the grindstone, so that a small amount of grindstone fluid can be used without waste. Also, it is possible to use less grinding wheel fluid, for example, in the case of cooling liquid, eliminate the problem of overcooling, in high-speed grinding, does not hinder the rotation of the grinding wheel, unnecessary rotation power of the grinding wheel The effect that does not require the enhancement of the. In the present invention, the grindstone fluid that can be used may be liquid, gas, mist, or the like, and is not limited. Therefore, there is an advantage that it can be applied when the grindstone fluid that is used in the conventional grinding apparatus is used.
Further, the grinding stone to which the fluid for the grindstone is supplied is not limited, and the present invention can be applied to a cutting grindstone, a profile grindstone, or a cup grindstone in addition to a normal grindstone. Furthermore, in terms of the types of machines, surface grinders, forming grinders, cylindrical grinders, profile grinders, inner surface grinders, tool grinders, various dedicated grinders, grinding centers, grinding axes for complex machine tools, etc. Although it can be used for various purposes, the present invention is suitable for a field in which high efficiency, high accuracy, and high speed grinding are required, because a high grinding effect can be expected to be improved.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明を適用した研削装置の側面図である。FIG. 1 is a side view of a grinding apparatus to which the present invention is applied.

【図2】冷却及び潤滑用流体供給ノズル近傍の拡大断面
図である。
FIG. 2 is an enlarged cross-sectional view near a cooling and lubricating fluid supply nozzle.

【図3】図2中A−A断面図である。FIG. 3 is a sectional view taken along line AA in FIG.

【図4】図1中B−B拡大断面図である。4 is an enlarged cross-sectional view taken along the line BB in FIG.

【図5】図1中C−C拡大断面図である。5 is an enlarged cross-sectional view taken along line CC in FIG.

【図6】図1中D−D拡大断面図である。FIG. 6 is an enlarged cross-sectional view taken along the line DD in FIG.

【図7】本発明を適用した別例の研削装置の側面図であ
る。
FIG. 7 is a side view of another example of a grinding apparatus to which the present invention is applied.

【符号の説明】[Explanation of symbols]

1 冷却及び潤滑用流体供給ノズル 2 洗浄用流体供給ノズル 3 研削砥石 4 フード 5 供給開口 6 砥石周面 7 ノズル本体 8 ノズル内箱 9 ノズル外箱 10 内スピンドル軸 11 内マイクロメータ 12 内ダイヤルゲージ 13 外スピンドル軸 14 外マイクロメータ 15 外ダイヤルゲージ 16 供給経路 17 縦壁 18a 回転方向上流側の縦周縁 18b 回転方向下流側の縦周縁 19 横壁 20 横周縁 21 供給パイプ 22 流量調節バルブ 1 Cooling and lubrication fluid supply nozzle 2 Cleaning fluid supply nozzle 3 grinding wheels 4 hood 5 supply opening 6 Whetstone surface 7 Nozzle body Box with 8 nozzles 9 nozzle outer box 10 Inner spindle axis 11 micrometer 12 inner dial gauge 13 Outer spindle shaft 14 Outside micrometer 15 Outer dial gauge 16 Supply route 17 vertical wall 18a Vertical edge on the upstream side in the direction of rotation 18b Vertical edge on the downstream side in the rotation direction 19 Horizontal wall 20 Edge 21 Supply pipe 22 Flow control valve

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 回転する研削砥石の研削効果を高めるた
め、砥石用流体を砥石周面へ供給する研削砥石に用いる
流体供給ノズルにおいて、砥石周面に略密着状態で宛て
がうノズル本体と、該ノズル本体を砥石周面に向けて接
近離反及び位置保持自在に内挿するノズル内箱とからな
り、砥石用流体を供給するノズル本体の供給開口は砥石
周面の断面に倣った転写形状の縦周縁と、砥石周面の周
形状に沿う横周縁とに囲まれた周縁形状であることを特
徴とする研削砥石に用いる流体供給ノズル。
1. A fluid supply nozzle used for a grinding wheel for supplying a grinding wheel fluid to a grinding wheel peripheral surface in order to enhance a grinding effect of a rotating grinding wheel, and a nozzle main body which is applied to the grinding wheel peripheral surface in a substantially adhered state. The nozzle main body comprises an inner box for inserting the nozzle main body toward and away from the grindstone circumferentially and maintaining the position thereof, and the supply opening of the nozzle main body for supplying the fluid for the grindstone has a transfer shape of the cross section of the peripheral surface of the grindstone. A fluid supply nozzle for use in a grinding wheel, which has a peripheral shape surrounded by a vertical peripheral edge and a horizontal peripheral edge along the peripheral shape of the peripheral surface of the grindstone.
【請求項2】 ノズル本体は、ノズル内箱外に伸びる内
スピンドル軸を有する内マイクロメータにより、ノズル
内箱から砥石周面に向けて接近離反及び位置保持自在に
した請求項1記載の流体供給ノズル。
2. The fluid supply according to claim 1, wherein the nozzle main body can be moved toward and away from the inner box of the nozzle toward the peripheral surface of the grindstone and can be held in position by an inner micrometer having an inner spindle shaft extending outside the inner box of the nozzle. nozzle.
【請求項3】 供給開口の横周縁は、砥石周面より研削
砥石の半径方向内向きに突出する横周縁である請求項1
記載の流体供給ノズル。
3. The lateral edge of the supply opening is a lateral edge that protrudes inward in the radial direction of the grinding wheel from the grinding wheel peripheral surface.
The fluid supply nozzle described.
【請求項4】 回転する研削砥石の研削効果を高めるた
め、砥石用流体を砥石周面へ供給する研削に際し、砥石
用流体を供給するノズル本体を砥石周面に対して接近離
反方向に位置調節及び位置保持して、該ノズル本体が砥
石用流体を供給する供給開口と砥石周面との隙間tを研
削砥石に連れ回る空気流を遮断する範囲で調節し、該供
給開口から砥石周面へ供給する砥石用流体の使用量を抑
制しながら研削効果を高める研削方法。
4. In order to enhance the grinding effect of a rotating grinding wheel, the nozzle main body for supplying the fluid for the grindstone is positionally adjusted toward and away from the peripheral surface of the grindstone during the grinding for supplying the fluid for the grindstone to the peripheral surface of the grindstone. While maintaining the position, the nozzle body adjusts the gap t between the supply opening for supplying the grinding wheel fluid and the grindstone peripheral surface within a range in which the air flow entrained in the grinding grindstone is blocked, and from the supply opening to the grindstone peripheral surface. A grinding method for enhancing the grinding effect while suppressing the amount of the supplied grinding wheel fluid.
JP2002126597A 2002-04-26 2002-04-26 Fluid supply nozzle used for grinding wheel, and grinding method Pending JP2003311618A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002126597A JP2003311618A (en) 2002-04-26 2002-04-26 Fluid supply nozzle used for grinding wheel, and grinding method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002126597A JP2003311618A (en) 2002-04-26 2002-04-26 Fluid supply nozzle used for grinding wheel, and grinding method

Publications (1)

Publication Number Publication Date
JP2003311618A true JP2003311618A (en) 2003-11-05

Family

ID=29540961

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002126597A Pending JP2003311618A (en) 2002-04-26 2002-04-26 Fluid supply nozzle used for grinding wheel, and grinding method

Country Status (1)

Country Link
JP (1) JP2003311618A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007526838A (en) * 2004-02-23 2007-09-20 トーワ−インターコン・テクノロジー・インコーポレーテッド Individualization

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007526838A (en) * 2004-02-23 2007-09-20 トーワ−インターコン・テクノロジー・インコーポレーテッド Individualization

Similar Documents

Publication Publication Date Title
US10569442B2 (en) Cutting blade mounting mechanism
US9669511B2 (en) Surface grinding method for workpiece
EP1716974B1 (en) Coolant supply method and apparatus for grinding machine
CN105081980B (en) Grinding attachment
JP2011051028A (en) Grinding method, method for manufacturing chamfered glass plate, and grinding device
TWM478567U (en) Grinding processing apparatus of sheet material
JP2003266306A (en) Grinding method for glass plate and its device
CN109746842A (en) It is ground emery wheel
JP2007296601A (en) Grinding wheel
JP4786949B2 (en) Cutting equipment
KR20190096277A (en) Grinding apparatus
JP2003311618A (en) Fluid supply nozzle used for grinding wheel, and grinding method
JP5689596B2 (en) Grinding equipment
JP2002254278A (en) Machining method and device for joined surface
JP2007048780A (en) Wafer chamfering device
JPH0271973A (en) Feeding nozzle for grinding liquid of grinder
JPH0751981A (en) Method and device for machining
JP2828377B2 (en) Grinding method and apparatus
JP2018176362A (en) Coolant supply device
JP4182172B2 (en) Grinding equipment
JP5211958B2 (en) Processing fluid supply device
JP2007326192A (en) Grinding fluid supplying device
JP4159913B2 (en) Polishing roll
JP3969244B2 (en) Grinding wheel-associated air layer blocking method and apparatus, and coolant supply device with a grinding wheel-associated air layer blocking device
JP3975875B2 (en) Whetstone-associated air layer blocking device and grinding device using the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050422

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20071217

A131 Notification of reasons for refusal

Effective date: 20080812

Free format text: JAPANESE INTERMEDIATE CODE: A131

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081009

A131 Notification of reasons for refusal

Effective date: 20090414

Free format text: JAPANESE INTERMEDIATE CODE: A131

A521 Written amendment

Effective date: 20090612

Free format text: JAPANESE INTERMEDIATE CODE: A523

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090707

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20091104