JP2003307499A - Defect observation method for substrate - Google Patents

Defect observation method for substrate

Info

Publication number
JP2003307499A
JP2003307499A JP2002112629A JP2002112629A JP2003307499A JP 2003307499 A JP2003307499 A JP 2003307499A JP 2002112629 A JP2002112629 A JP 2002112629A JP 2002112629 A JP2002112629 A JP 2002112629A JP 2003307499 A JP2003307499 A JP 2003307499A
Authority
JP
Japan
Prior art keywords
defect
wafer
observation
observing
inspected
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002112629A
Other languages
Japanese (ja)
Inventor
Shiro Shichijo
司朗 七条
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Chemicals Inc
Original Assignee
Mitsui Chemicals Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Chemicals Inc filed Critical Mitsui Chemicals Inc
Priority to JP2002112629A priority Critical patent/JP2003307499A/en
Publication of JP2003307499A publication Critical patent/JP2003307499A/en
Pending legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a defect inspection method that eliminates the need for polishing a wafer end face for allowing laser beams to enter in a wafer-like transparent sample in face of the problems of the conventional technique, eliminates the need for cutting a sample, enables a defect in the wafer state on an object to be inspected to be observed, and can put in a line industrially. <P>SOLUTION: The defect-observing apparatus comprises: a means for applying laser beams 31 for observation from the surface of a wafer-like object 5 to be inspected; and an observation means 37 for observing an object 3 to be inspected that is illuminated by the injection means. The defect-observing apparatus is sued for observing a defect or a foreign object in the object 5 to be inspected. The defect-observing apparatus further discriminates a surface defect due to the surface scratch of the object to be inspected or dust adhesion on the surface and the like from an internal defect existing inside the object to be inspected. <P>COPYRIGHT: (C)2004,JPO

Description

【発明の詳細な説明】 【0001】 【発明の属する技術分野】本発明は、半導体基板や光学
素子基板などに用いられる結晶体等の被検物中の異物や
欠陥を検出しその情報を得るための欠陥観察装置および
方法に関する。 【0002】 【従来の技術】従来、結晶体等の被検物中の異物や欠陥
に関する情報を得る技術としては、測定材料に対して透
明な波長のレーザ光を用い、試料側面からレーザ光を入
射し、入射面と垂直な主面から内部の散乱光を顕微鏡等
で観測するレ−ザトモグラフィ方法が知られている。
(文献1 守矢一男、応用物理 55巻、6号542 (198
6))また欠陥等による散乱強度は波長の4乗に反比例し
て大きくなることを利用した紫外線レーザ散乱トモグラ
フィも開発されている。(文献2 小村肇 ほか Proce
edings of the 9th Sony Research Forum, 364 (199
9)) レーザビームが端面から入射してウエハー内を通過でき
るのは屈折率が空気より高く光が屈折して試料内部を細
いビームのまま通過するからである(文献1)。しかし
ながらウエハーサイズが大きくなると入射端面、出射端
面のモード径がウエハー厚みより大きくなるため入射で
きないといった問題が生じる。つまり試料片等の比較的
小さな試料については入射、出射面と観測面を光学研磨
を行ない入射面からレーザビームを入射し、入射面と直
交した主面から散乱光を観測することができるが、試料
厚みが薄く大面積のウエハー状態の被検物に対しては上
記の手法をとることは困難である。 【0003】またウエハーはハンドリングによるチッピ
ングによるかけを防止するため円周周辺は厚み方向に丸
みをもたせ、表面も荒らしたせたいわゆるベベリング処
理が施されているため円周周辺から光を入射することは
できない。このため端面を光学的に研磨する必要がある
が、厚みも薄いため端面を光学研磨を行うことは困難で
あるうえ破壊検査となるため望ましくない。 【0004】 【発明が解決しようとする課題】本発明の目的は、この
従来技術の問題点に鑑み、ウエハー状の透明サンプルに
おいてレーザビームを入射するためウエハー端面を研磨
する必要もなくまたサンプルを裁断する必要もなく、被
検物がウエハー状態での欠陥を観測することを可能に
し、工業的にラインに入れることのできる欠陥検査方法
を提供することにある。 【0005】 【課題を解決するための手段】上記課題を解決するため
にウエハーを入射するレーザビームに対して傾けて配置
し、レーザビームに直交した方向から顕微鏡観測するこ
とにより薄いウエハー状試料でも内部の欠陥のみを観測
できることがわかった。すなわち本発明は、観察用レー
ザ光で被検物を照明する照明手段と、これによって照明
された被検物を観察するための観測手段とを備え、レー
ザ散乱法による被検物中の欠陥もしくは異物の観察に用
いられる欠陥観察装置を用い、前記被検物は光学研磨さ
れた対向する2つの主面を有し、入射側主面垂直に対し
て傾けて観測用レーザビーム光を入射し、出射側主面方
向から前記観測手段で観測することを特徴とする欠陥観
察方法である。 【0006】図2に示すようにレーザビーム1に対して
ウエハー状の被検物中5を45度傾けて配置する。ウエ
ハー入射側主面6に当たったレーザビームは一部がフレ
ネル反射(空気と披検知体の屈折率差による部分反射)
により90度方向の光軸2に反射される。また被検物5
に入射されたレーザ光は出射側主面7でフレネル反射に
よりさらに一部が光軸3に添って反射される。一方、出
射面7を通過したレーザ光は光軸1を伝搬する。 【0007】このフレネル反射側の方向21から観測し
た場合、強いフレネル反射光が迷光となり微弱な内部欠
陥からの散乱光を捕らえらない。この迷光による影響を
避けるためレーザビームの透過側の90度方向20から観
測すると迷光の影響を受けることなく欠陥による散乱が
観測できることがわかった。 【0008】入射面6、出射面7上のレーザビーム断面
に存在する表面傷や付着物は強い散乱スポット12、1
3を生じる。この強い散乱光ははさらにレーザビーム断
面外の離れた表面上の付着物や傷など(たとえば図中の
15,16)を照らし顕微鏡画面中で輝点となって観測
される。一方、被検物内部に存在する点状欠陥、ライン
状欠陥はこれらの散乱スポット12,13からの散乱光
により光ることはなく、レーザビームのビーム断面内を
欠陥10が内部の欠陥をよぎった場合のみ輝点となって
観測される。 【0009】図2の被検物の出射側主面7側の方向でか
るレーザビーム伝搬軸1に対して90度の方向20から
観測される散乱画像の概略図を図3(a)、(b),(c)に示
す。図の左方向からレーザビームが入射されている。被
検物のある位置では図3(a)の画像とする。レーザビ
ーム断面内の入射面12上の加工傷、スクラッチ等によ
る散乱像12および出射面上の欠陥、傷による散乱像1
3、ならびに12、13の散乱光により照らされる入出
射面上に存在する傷等による輝点16,15が観測され
る。一方レーザビームの通過するライン状には輝点は存
在しない。次に被検物を図中の下側にΔyだけ移動させ
る(図3(b))。 この場合表面上に存在する加工
傷、スクラッチ等による輝点16,15は同じ相対位置
を保ったまま画面上の位置が下側にΔyだけ移動する。
一方被検物内部に存在する点状欠陥もしくは線状、もし
くは面状欠陥11はレーザビーム断面をよぎった時にの
み輝点10となって観測される。 さらに被検物を移動
させるとラインもしくは面状欠陥の場合はレーザビーム
とのクロスする位置が変化するため、図3(c)のように
レーザビームの直線状1の中を輝点10が1次元的に移
動することがわかった。この輝点10の1次元の位置は
検知体の深さ方向の情報をもっており直線状レーザビー
ム1中の1次元位置を読み取ることにより3次元的に検
知体の中の欠陥分布を計測することができる。 【0010】表面上に存在するスクラッチまたは傷等に
よる輝点と、検知物内部に存在する欠陥の見え方の違い
を考慮し、本発明者らはさらにこれらを自動的に判別し
て計測する方法を考案した。図4(a)(b)(c)に自動判別
法原理の概略図を示す。まず図4(a)に示すようにn
ステップでの画像をイメージキャプチャーによりデイジ
タル情報として取り込み、y方向のステップ移動距離Δ
yに相当する距離離れた2つのライン上の強度分布A
(n) 、B(n)のプロファイルコンピュータ上に取り込み、
2値化処理により0,1情報におきかえた強度分布とし
てマイクロコンピュータの記憶領域に記録する。 【0011】次に図4(b)に示すように被検物をy方
向にΔyの移動量だけ移動させ、n+1ステップの画像
を同様に取り込む。同様に2つのライン上の強度分布A
(n+1)、B(n+1)の強度分布をコンピュータ上に読み込み
2値化処理により0,1情報におきかえた強度分布に変
換する。次にマイクロコンピュータ上のメモリ上の2値
化された1ステップ前のA(n)の強度分布と今回取り
込んだB(n+1)の強度分布を比較演算をおこない、
A(n)上では0でB(n+1)上で1となるチャンネ
ル位置を検出する。この操作はnステップ(図4(a))
のAライン上には存在しないがn+1ステップ(図4
(b))のBライン上には輝点が存在するかを判定する
ことに相当する。具体的にはマスクされた領域以外のイ
メージセンサチャンネルごとにB(n+1)−A(n)
が+1となればそのチャンネルナンバー(画素の番地)
を検出してその番地を記憶する。チャンネルナンバーは
内部欠陥のx軸方向の位置情報に相当する。 【0012】次に被検知物をy方向にΔy移動させ同じ
プロセスを繰り返すことにより被検知物内部の欠陥分布
をマッピングすることが可能になる。これらのステップ
ををフローチャートで示したものを図5に示す。 【0013】 【発明の実施の形態】本発明の欠陥観察装置の好ましい
実施形態においては図6は本発明の一実施例に係るレー
ザトモグラフィによる欠陥観察装置を示す概略図であ
る。同図に示すように、この欠陥観察装置は、観察用レ
ーザ光31でウエハー状被検物5を表面から入射する手
段と、これによって照明された被検物3を観察するため
の観察手段37とを備え、被検物5中の欠陥もしくは異
物の観察に用いられるものである。この欠陥観察装置は
さらに、被検物の表面の傷もしくは表面のごみ付着等に
よる表面欠陥と、被検物内部に存在する内部欠陥とを区
別することができる。 【0014】ウエハー状披検物5として厚み1mmのZ
カット4インチネオブ酸リチウム(LiNbO3)ウエハー5
を用いている。ウエハー5はパルスモータ34,35で
駆動されるX-Yステージ36上に装着されている。入射
するレーザ光源31として波長532nm、出力100
mWのグリーンレーザ(三井化学製 MDS-1000)を
用いている。レーザ光源31は放熱用マウント台30の
上に固定され、水平方向に出射され、コリメータレンズ
32、集光レンズ33により集光点でのモード半径が約
50μmとなるように集光され、披検物中央に焦点位置
を結ぶようにレンズ位置が調整されている。 【0015】x−yステージとして駆動範囲200mm
のステージ(駿河精機製:MI88-N)を用い、ステージコ
ンロトローラ(駿河精機 :MCS-10)により駆動され
る。 【0016】駆動ステージ36は光軸1に対して45度
となるように斜めに固定されている。拡大ズム付(×2
00)CCDカメラ47はx−z軸マイクロメータ上に
(図示せず)固定され、ビーム位置が見えるように位置
調整されている。CCDからの画像は、イメージキャプチ
ャーボード(μテクニカ製:MTPIC−MN)により256
階調のデジタル画像としてマイクロコンピュータに取り
込まれる。画像の取り込みはX-Yステージ36の駆動と
同期して取り込みを行う。 図7(a)(b)、(c)
にy軸方向にステージ位置を200μm移動後、各ステ
ップで取り込んだ画像を示す。図7(a)をみると、ウ
エハー入射面、出射面では表面の傷、散乱等により強い
スポットが12、13が観測される。また強い散乱スポ
ットにより照らされたレーザビーム断面から離れた表面
上のごみと輝点15等も観測される。スポット12,1
3の間に見られるスポット10は結晶内部に存在する線
状欠陥である。さらにウエハーを200μm動かすとこ
のスポットは移動し図7(b)のように観測される。さ
らに200μm移動させると図7(c)の用に移動す
る。こうした欠陥はウエハー内部に存在する線、もしく
は面状の欠陥にでありウエハーの上下を貫いていること
がわかる。またマイクロコンピュータにより自動にスキ
ャンニングさせ4インチウエハーを全体にわたり内部の
欠陥状態をマッピングした時の、一部の領域の欠陥状態
を図1に示した。 【0017】このように本発明により大型でうすいウエ
ハー状の測定物であってもウエハーエッジを研磨するこ
となく内部の欠陥状態のみを観測でき、が画像処理と、
自動移動装置を連動させることにより、ウエハー全体の
内部欠陥状態を迅速に観測することが可能になった。 【0018】また本発明は、酸化物結晶にかぎるもので
なく、レーザ光源もグリーンレーザに限ったものではな
い。たとえばGaAsなどの化合物半導体ウエハーなどの場
合は、レーザとして透明波長である1.06μmで発振
するNd:YAGレーザを用いると同様に欠陥状態が観測でき
ることはいうまでもない。またInPなどの化合物半導体
について波長1.58μm近傍で発振するファイバレーザ
もしくはファイバアンプにより増幅されたLD光源を用い
ることにより有効に欠陥上状態が観測できる。
Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention detects foreign matter and defects in a test object such as a crystal used for a semiconductor substrate or an optical element substrate and obtains information on the foreign matter or defect. And a defect observation apparatus for the same. 2. Description of the Related Art Conventionally, as a technique for obtaining information on a foreign substance or a defect in a test object such as a crystal, a laser beam having a transparent wavelength is applied to a measurement material, and the laser beam is applied from the side of a sample. There is known a laser tomography method for observing, with a microscope or the like, internal scattered light from a main surface which is incident and perpendicular to the incident surface.
(Reference 1 Kazuo Moriya, Applied Physics 55, 6, 542 (198
6)) Ultraviolet laser scattering tomography has also been developed which utilizes the fact that the scattering intensity due to defects and the like increases in inverse proportion to the fourth power of the wavelength. (Reference 2 Hajime Komura et al. Proce
edings of the 9 th Sony Research Forum , 364 (199
9)) The laser beam is incident from the end face and can pass through the wafer because the refractive index is higher than air and light is refracted and passes through the inside of the sample as a thin beam (Reference 1). However, when the wafer size is large, there is a problem that the light cannot be incident because the mode diameter of the entrance end face and the exit end face becomes larger than the wafer thickness. In other words, for a relatively small sample such as a sample piece, the laser beam is incident from the entrance surface by performing optical polishing on the entrance, exit surface and observation surface, and scattered light can be observed from the main surface orthogonal to the entrance surface. It is difficult to apply the above-described method to a large-area wafer-like specimen having a small sample thickness. Further, the wafer is subjected to a so-called beveling process in which the periphery is rounded in the thickness direction to prevent chipping due to handling and the surface is roughened. Can not. For this reason, it is necessary to optically polish the end face. However, it is difficult to optically polish the end face because of its small thickness, and it is not desirable because it becomes a destructive inspection. SUMMARY OF THE INVENTION In view of the problems of the prior art, it is an object of the present invention to eliminate the need to polish a wafer end surface because a laser beam is incident on a wafer-shaped transparent sample. It is an object of the present invention to provide a defect inspection method that enables a test object to observe a defect in a wafer state without cutting, and that can be industrially put into a line. [0005] In order to solve the above-mentioned problems, a thin wafer-shaped sample can be obtained by arranging a wafer at an angle with respect to an incident laser beam and observing with a microscope from a direction perpendicular to the laser beam. It was found that only internal defects could be observed. That is, the present invention includes illumination means for illuminating the test object with the observation laser beam, and observation means for observing the test object illuminated by the observation laser light. Using a defect observation device used for observing foreign matter, the test object has two optically polished opposing main surfaces, and enters an observation laser beam light obliquely to the incident side main surface vertical, A defect observation method is characterized in that observation is performed by the observation means from the direction of the emission-side main surface. As shown in FIG. 2, a wafer-like test object 5 is arranged at an angle of 45 degrees with respect to a laser beam 1. A part of the laser beam hitting the wafer incident side main surface 6 is Fresnel reflected (partial reflection due to a difference in refractive index between air and the object to be detected).
Is reflected by the optical axis 2 in the 90-degree direction. The specimen 5
Is partially reflected along the optical axis 3 by Fresnel reflection on the emission-side main surface 7. On the other hand, the laser light that has passed through the emission surface 7 propagates along the optical axis 1. When observed from the direction 21 on the Fresnel reflection side, strong Fresnel reflection light becomes stray light and does not catch scattered light from weak internal defects. When observing from the 90-degree direction 20 on the transmission side of the laser beam in order to avoid the influence of the stray light, it was found that scattering by the defect can be observed without being affected by the stray light. [0008] Surface scratches and deposits existing on the laser beam cross section on the entrance surface 6 and the exit surface 7 are strong scattering spots 12, 1.
Yields 3. The strong scattered light further illuminates the attachments and flaws (eg, 15 and 16 in the figure) on a remote surface outside the cross section of the laser beam and is observed as a bright spot on the microscope screen. On the other hand, point-like defects and line-like defects existing inside the test object do not shine due to the scattered light from these scattering spots 12 and 13, and the defect 10 crosses the internal defect in the beam cross section of the laser beam. It is observed only as a bright spot. FIGS. 3A and 3A are schematic diagrams of scattered images observed from a direction 20 at 90 degrees with respect to the laser beam propagation axis 1 in the direction of the exit side main surface 7 of the test object in FIG. b) and (c). A laser beam is incident from the left side of the figure. At the position where the test object exists, the image shown in FIG. Scattered image 12 due to processing scratches, scratches, etc. on the incident surface 12 in the cross section of the laser beam, and scattered image 1 due to defects and scratches on the exit surface
3, and bright spots 16 and 15 due to scratches and the like existing on the entrance / exit surface illuminated by the scattered lights of 12 and 13 are observed. On the other hand, there is no bright spot in the line passing the laser beam. Next, the test object is moved downward by Δy in the figure (FIG. 3B). In this case, the bright spots 16 and 15 due to processing scratches and scratches existing on the surface are shifted downward by Δy from the position on the screen while maintaining the same relative position.
On the other hand, a point-like defect, a linear defect, or a planar defect 11 existing inside the test object is observed as a luminescent spot 10 only when the laser beam crosses the cross section of the laser beam. When the test object is further moved, the position where the laser beam crosses in the case of a line or planar defect changes. Therefore, as shown in FIG. It turned out to move dimensionally. The one-dimensional position of the luminescent spot 10 has information in the depth direction of the detector, and by reading the one-dimensional position in the linear laser beam 1, it is possible to three-dimensionally measure the defect distribution in the detector. it can. In consideration of the difference in the appearance of a luminescent spot due to a scratch or a scratch existing on the surface and the appearance of a defect existing inside the detection object, the present inventors further determine these automatically and measure them. Was devised. FIGS. 4 (a), 4 (b) and 4 (c) show schematic diagrams of the principle of the automatic discrimination method. First, as shown in FIG.
The image at the step is captured as digital information by image capture, and the step moving distance Δ in the y direction
intensity distribution A on two lines separated by a distance corresponding to y
(n) and B (n) profile computer
It is recorded in the storage area of the microcomputer as an intensity distribution replaced with 0 and 1 information by the binarization processing. Next, as shown in FIG. 4 (b), the test object is moved in the y direction by a movement amount of Δy, and an image of n + 1 steps is similarly captured. Similarly, intensity distribution A on two lines
The intensity distributions of (n + 1) and B (n + 1) are read into a computer and converted into an intensity distribution replaced with 0 and 1 information by a binarization process. Next, the intensity distribution of the binarized A (n) one step before in the memory on the microcomputer and the intensity distribution of B (n + 1) taken in this time are compared and calculated.
A channel position that is 0 on A (n) and 1 on B (n + 1) is detected. This operation is n steps (Fig. 4 (a))
N + 1 steps (FIG. 4)
This corresponds to determining whether a bright spot exists on the B line in (b)). Specifically, B (n + 1) -A (n) for each image sensor channel other than the masked area
If +1 becomes the channel number (address of pixel)
Is detected and the address is stored. The channel number corresponds to the position information of the internal defect in the x-axis direction. Next, by moving the object by Δy in the y direction and repeating the same process, it becomes possible to map the defect distribution inside the object. FIG. 5 is a flowchart showing these steps. FIG. 6 is a schematic view showing a defect observation apparatus using laser tomography according to an embodiment of the present invention. As shown in the figure, this defect observation apparatus includes a means for causing a wafer-like test object 5 to enter from the surface with an observation laser beam 31 and an observation means 37 for observing the test object 3 illuminated thereby. Which is used for observing a defect or a foreign matter in the test object 5. The defect observation apparatus can further distinguish a surface defect caused by a scratch on the surface of the test object or adhesion of dust on the surface, and an internal defect existing inside the test object. As a wafer-shaped specimen 5, a Z having a thickness of 1 mm
Cut 4 inch Lithium Neobate (LiNbO3) Wafer 5
Is used. The wafer 5 is mounted on an XY stage 36 driven by pulse motors 34 and 35. The incident laser light source 31 has a wavelength of 532 nm and an output of 100.
An mW green laser (MDS-1000, manufactured by Mitsui Chemicals) is used. The laser light source 31 is fixed on the heat-dissipating mount table 30, is emitted in the horizontal direction, and is condensed by the collimator lens 32 and the condensing lens 33 so that the mode radius at the condensing point is about 50 μm. The lens position is adjusted so as to connect the focal position to the object center. Driving range 200 mm as xy stage
Is driven by a stage controller (Suruga Seiki: MCS-10). The drive stage 36 is fixed obliquely at 45 degrees with respect to the optical axis 1. With enlargement (× 2
00) The CCD camera 47 is fixed on an xz-axis micrometer (not shown) and is adjusted so that the beam position can be seen. The image from the CCD is 256 images using an image capture board (MTPIC-MN manufactured by μ Technica).
The image is taken into a microcomputer as a digital image of gradation. The image is captured in synchronization with the driving of the XY stage 36. FIG. 7 (a) (b), (c)
2 shows images captured at each step after the stage position is moved by 200 μm in the y-axis direction. Referring to FIG. 7A, strong spots 12 and 13 due to surface flaws, scattering, and the like are observed on the wafer entrance and exit surfaces. In addition, dust and bright spots 15 on the surface apart from the cross section of the laser beam illuminated by the strong scattering spot are also observed. Spot 12,1
The spot 10 seen between 3 is a linear defect existing inside the crystal. When the wafer is further moved by 200 μm, this spot moves and is observed as shown in FIG. If it is further moved by 200 μm, it moves as shown in FIG. It can be seen that such a defect is a line or a planar defect existing inside the wafer and penetrates above and below the wafer. FIG. 1 shows the defect state of a partial area when the internal defect state is mapped over the entirety of the 4-inch wafer by automatic scanning by the microcomputer. As described above, according to the present invention, even in the case of a large and thin wafer-shaped measurement object, only the internal defect state can be observed without polishing the wafer edge.
By linking the automatic moving device, it has become possible to quickly observe the internal defect state of the entire wafer. Further, the present invention is not limited to the oxide crystal, and the laser light source is not limited to the green laser. For example, in the case of a compound semiconductor wafer such as GaAs, it goes without saying that a defect state can be observed as in the case of using an Nd: YAG laser that oscillates at a transparent wavelength of 1.06 μm. In addition, a compound semiconductor such as InP can be effectively observed on a defect by using a fiber laser oscillating at a wavelength of about 1.58 μm or an LD light source amplified by a fiber amplifier.

【図面の簡単な説明】 【図1】本発明の測定法による欠陥の表示図。 【図2】本発明の測定の様子を示す図。 【図3】散乱画像の概略を示す図。 【図4】自動判別法の原理を示す概略図。 【図5】欠陥分布を示すためのフローチャート図。 【図6】本発明に用いる欠陥観察装置の1例を示す概略
図。 【図7】散乱光の観察図。 【符号の説明】 1、2,3・・ 光軸, 10・・欠陥 1
2,13・・散乱スポット 15,16・・ 表面上の付着物や傷
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a view showing a defect according to the measuring method of the present invention. FIG. 2 is a diagram showing a state of measurement according to the present invention. FIG. 3 is a diagram showing an outline of a scattering image. FIG. 4 is a schematic diagram showing the principle of an automatic discrimination method. FIG. 5 is a flowchart showing a defect distribution. FIG. 6 is a schematic view showing an example of a defect observation device used in the present invention. FIG. 7 is an observation diagram of scattered light. [Explanation of Signs] 1, 2, 3 ... Optical axis, 10 ... Defect 1
2,13 ... Scattering spots 15,16 ... Deposits and scratches on the surface

フロントページの続き Fターム(参考) 2F065 AA49 CC19 FF04 GG04 HH04 JJ03 JJ08 JJ26 MM03 PP12 QQ31 2G051 AA51 AA90 AB01 AB02 AB06 BA10 CA03 CA04 DA07 EA11 EA14 EA23 EC02 4M106 AA01 BA05 CA19 CA41 CA70 DA15 DB04 DB08 DJ04 DJ05Continuation of front page    F term (reference) 2F065 AA49 CC19 FF04 GG04 HH04                       JJ03 JJ08 JJ26 MM03 PP12                       QQ31                 2G051 AA51 AA90 AB01 AB02 AB06                       BA10 CA03 CA04 DA07 EA11                       EA14 EA23 EC02                 4M106 AA01 BA05 CA19 CA41 CA70                       DA15 DB04 DB08 DJ04 DJ05

Claims (1)

【特許請求の範囲】 【請求項1】 観察用レーザ光で被検物を照明する照明
手段と、これによって照明された被検物を観察するため
の観測手段とを備え、レーザ散乱法による被検物中の欠
陥もしくは異物の観察に用いられる欠陥観察装置を用
い、前記被検物は光学研磨された対向する2つの主面を
有し、入射側主面垂直に対して傾けて観測用レーザビー
ム光を入射し、出射側主面方向から前記観測手段で観測
することを特徴とする欠陥観察方法。
Claims: 1. An illumination device for illuminating a test object with an observation laser beam, and an observation device for observing the test object illuminated by the observation laser beam. A defect observing device used for observing a defect or a foreign substance in an inspection object, wherein the inspection object has two optically polished opposing main surfaces, and is inclined with respect to a vertical main surface on an incident side. A defect observation method, wherein a beam light is incident and observed by the observation means from the direction of the main surface on the emission side.
JP2002112629A 2002-04-15 2002-04-15 Defect observation method for substrate Pending JP2003307499A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002112629A JP2003307499A (en) 2002-04-15 2002-04-15 Defect observation method for substrate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002112629A JP2003307499A (en) 2002-04-15 2002-04-15 Defect observation method for substrate

Publications (1)

Publication Number Publication Date
JP2003307499A true JP2003307499A (en) 2003-10-31

Family

ID=29395073

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002112629A Pending JP2003307499A (en) 2002-04-15 2002-04-15 Defect observation method for substrate

Country Status (1)

Country Link
JP (1) JP2003307499A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015225015A (en) * 2014-05-29 2015-12-14 株式会社レイテックス Defect determination device and defect determination method
JP2016020824A (en) * 2014-07-14 2016-02-04 株式会社サイオクス Substrate inspection device and substrate inspection method

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01221850A (en) * 1988-02-29 1989-09-05 Shimadzu Corp Infrared scatter microscope
JPH041507A (en) * 1990-01-23 1992-01-07 Datsuku Eng Kk Measuring method for thickness and surface strain of object and detecting method for mixed foreign matter
JPH0424541A (en) * 1990-05-21 1992-01-28 Mitsui Mining & Smelting Co Ltd Method and apparatus for measuring internal defect

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01221850A (en) * 1988-02-29 1989-09-05 Shimadzu Corp Infrared scatter microscope
JPH041507A (en) * 1990-01-23 1992-01-07 Datsuku Eng Kk Measuring method for thickness and surface strain of object and detecting method for mixed foreign matter
JPH0424541A (en) * 1990-05-21 1992-01-28 Mitsui Mining & Smelting Co Ltd Method and apparatus for measuring internal defect

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015225015A (en) * 2014-05-29 2015-12-14 株式会社レイテックス Defect determination device and defect determination method
JP2016020824A (en) * 2014-07-14 2016-02-04 株式会社サイオクス Substrate inspection device and substrate inspection method

Similar Documents

Publication Publication Date Title
JP7373527B2 (en) Workpiece defect detection device and method
JP3422935B2 (en) Inspection method and apparatus for non-uniformity of translucent substance and method for selecting transparent substrate
TWI633295B (en) Apparatus for surface feature detection and inspection of an article
US7397553B1 (en) Surface scanning
US10677739B2 (en) Method and apparatus for inspecting defects on transparent substrate
JP2004170495A (en) Method and device for inspecting substrate for display
JP2002062267A (en) Device for inspecting defect
JPH06294749A (en) Flaw inspection method for plat glass
JP3482425B2 (en) Inspection device
US6577389B2 (en) System and methods for inspection of transparent mask substrates
TW382061B (en) Carrier for substrate and defect inspection apparatus for substrate
JP2003307499A (en) Defect observation method for substrate
US20090324057A1 (en) Optical Inspection Tools Featuring Parallel Post-Inspection Analysis
JP2005274173A (en) Surface inspection method of contamination on surface of object to be inspected such as wafer substrate transparent glass for liquid crystal display or the like and surface inspection device
JP2002131242A (en) Image for surface inspection
JPS5841459B2 (en) BUTSUTAIRIYO BUKETSUKAN KENSAHOHO
JP3627562B2 (en) Evaluation method of trace organic substances on silicon wafer surface
JPH09218162A (en) Surface defect inspection device
JPH0989793A (en) Foreign matter inspection apparatus
KR200427386Y1 (en) Inspection system using camera
JPH0434347A (en) Surface inspecting method
JPH08136465A (en) Surface inspection device for plate-like member
JPH11352014A (en) Optical inspection system
JPH06281587A (en) Defect detecting method for transparent plate like body
JPS6329537A (en) Inspecting apparatus

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040706

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20061011

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061017

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20070227