JP2003306747A - Steel wire and production method therefor, and spring - Google Patents

Steel wire and production method therefor, and spring

Info

Publication number
JP2003306747A
JP2003306747A JP2002113907A JP2002113907A JP2003306747A JP 2003306747 A JP2003306747 A JP 2003306747A JP 2002113907 A JP2002113907 A JP 2002113907A JP 2002113907 A JP2002113907 A JP 2002113907A JP 2003306747 A JP2003306747 A JP 2003306747A
Authority
JP
Japan
Prior art keywords
steel wire
mass
quenching
tempering
phase
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002113907A
Other languages
Japanese (ja)
Other versions
JP3975110B2 (en
Inventor
Hiroshi Izumida
寛 泉田
Nozomi Kawabe
望 河部
Norito Yamao
憲人 山尾
Teruyuki Murai
照幸 村井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo SEI Steel Wire Corp
Original Assignee
Sumitomo SEI Steel Wire Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo SEI Steel Wire Corp filed Critical Sumitomo SEI Steel Wire Corp
Priority to JP2002113907A priority Critical patent/JP3975110B2/en
Publication of JP2003306747A publication Critical patent/JP2003306747A/en
Application granted granted Critical
Publication of JP3975110B2 publication Critical patent/JP3975110B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Springs (AREA)
  • Heat Treatment Of Strip Materials And Filament Materials (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a steel wire which has high strength and high toughness and has a high fatigue limit, and to provide a production method therefor. <P>SOLUTION: The steel wire comprises as chemical components, by mass, 0.4 to 1.0% C, 1.8 to 2.5% Si, 0.4 to 1.3% Mn, 0.7 to 1.2% Cr and 0.05 to 1.00% Co, and the balance Fe with inevitable impurities. The matrix phase obtained by performing quenching and tempering has a tempered martensitic phase and a retained austenitic phase. The retained austenitic phase is present in the martensite in the range of 1 to 10% by a volume ratio. The content of Co in the austenitic phase remaining in the martensitic structure is 0.05 to 2.00 mass%. <P>COPYRIGHT: (C)2004,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、焼戻しマルテンサ
イト組織を有する鋼線及びその製造方法ならびにこの鋼
線を用いたばねに関するものである。特に、家電や自動
車部品に用いられる耐疲労性に優れた圧縮・引張コイル
ばね、ならびに線ばねなどに好適なばね用鋼線とその製
造方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a steel wire having a tempered martensite structure, a method for manufacturing the steel wire, and a spring using the steel wire. In particular, the present invention relates to a compression / tensile coil spring having excellent fatigue resistance used in home appliances and automobile parts, and a steel wire for spring suitable for a wire spring and a manufacturing method thereof.

【0002】[0002]

【従来の技術】自動車エンジンの排気系に用いられるば
ね部品素材として、Si-Cr鋼を主体とする高強度オイル
テンパー線が用いられてきた。近年、地球環境問題の高
まりに対応したエンジンの低燃費化、高効率化への要望
に応えるため、動弁系機構や懸架ばねユニットの省重量
化、省スペース化が行われている。その結果として、ば
ねの小型化、即ちばね用鋼線の高強度化が進む傾向にあ
る。オイルテンパー線は耐疲労性も高く、ばね用鋼線と
して優秀なものであるが、高強度化を進めることで靭性
の欠如が発生し、結果としてばね成形中の折損や、靭性
の低下から起こる耐疲労性の低下が問題となっている。
2. Description of the Related Art High-strength oil-tempered wire mainly composed of Si-Cr steel has been used as a spring component material used in an exhaust system of an automobile engine. 2. Description of the Related Art In recent years, in order to meet the demand for low fuel consumption and high efficiency of engines in response to rising global environmental problems, weight reduction and space saving of valve train mechanisms and suspension spring units have been performed. As a result, there is a tendency for downsizing of springs, that is, higher strength of spring steel wires. Oil tempered wire has high fatigue resistance and is excellent as a steel wire for springs, but lack of toughness occurs due to the progress of higher strength, resulting in breakage during spring forming and deterioration of toughness. The deterioration of fatigue resistance is a problem.

【0003】[0003]

【発明が解決しようとする課題】このような問題に対し
て、特公平3-6981号公報においては、添加V量と焼入条
件を特定して結晶粒度を10以上とすることにより強度と
靭性を確保することが提案されている。しかし、結晶粒
度を10以上としたところで、実際にはオイルテンパー線
は、焼入後の焼戻しによって強度と靭性が決定されてお
り、結晶粒度を決定する焼入工程での改善によって飛躍
的に靭性が向上するとは考えにくい。
With respect to such a problem, in Japanese Patent Publication No. 3-6981, the strength and toughness are improved by specifying the amount of added V and the quenching condition and setting the grain size to 10 or more. It is proposed to secure. However, when the grain size is set to 10 or more, the strength and toughness of the oil tempered wire are actually determined by tempering after quenching, and the toughness is dramatically improved by the improvement in the quenching process that determines the grain size. Is unlikely to improve.

【0004】また、特開平3-162550号公報においてはオ
イルテンパー線の焼戻し後のマトリックス組織である焼
戻しマルテンサイト中に残留オーステナイト相を5〜20
体積%存在させることにより靭性を確保することが提案
されている。しかし、残留オーステナイト相が多量に存
在すると、ばねとしての使用中に残留オーステナイト相
がマルテンサイト相に変態して、体積膨張により永久歪
を生じ、耐へたり性が劣化するおそれがある。
Further, in JP-A-3-162550, a residual austenite phase of 5 to 20 is contained in tempered martensite which is a matrix structure after tempering of an oil tempered wire.
It has been proposed to ensure toughness by making it exist by volume%. However, if a large amount of the retained austenite phase is present, the retained austenite phase is transformed into a martensite phase during use as a spring, which may cause permanent strain due to volume expansion and deteriorate sag resistance.

【0005】このような残留オーステナイト相の制御に
ついては、特開平9-71843号公報においても残留オース
テナイト相の母相に対する体積率と焼入時の未固溶炭化
物のサイズ及び存在確率を規定することで靭性の確保を
狙っている。この方法では残留するオーステナイト相の
化学成分にまで言及しておらず、オーステナイト相の靭
性やオーステナイトと焼戻しマルテンサイト間の粒界の
性質によっては必ずしも期待する靭性が得られるとは限
らない。
Regarding such control of the retained austenite phase, JP-A-9-71843 also defines the volume ratio of the retained austenite phase to the parent phase and the size and existence probability of undissolved carbide during quenching. It aims to secure toughness. This method does not mention the chemical composition of the residual austenite phase, and the expected toughness may not always be obtained depending on the toughness of the austenite phase and the nature of the grain boundary between austenite and tempered martensite.

【0006】従って、本発明の主目的は、高強度で高靭
性を有し、疲労限の高い鋼線とその製造方法を提供する
ことにある。
Therefore, a main object of the present invention is to provide a steel wire having a high strength and a high toughness and a high fatigue limit, and a manufacturing method thereof.

【0007】また、本発明の他の目的は、上記の鋼線を
用いたばねを提供することにある。
Another object of the present invention is to provide a spring using the above steel wire.

【0008】[0008]

【課題を解決するための手段】本発明者等は高強度ばね
用オイルテンパー線の靭性を向上させて疲労限を向上さ
せるべく鋭意研究を重ねた結果、焼戻しマルテンサイト
組織内に残留するオーステナイト相中のCoの質量%が0.
02〜2.00%であることによって、靭性が向上し、疲労限
が向上するとの知見を得て本発明を完成するに至った。
Means for Solving the Problems The inventors of the present invention have conducted extensive studies to improve the toughness of the oil tempered wire for high strength springs and improve the fatigue limit, and as a result, the austenite phase remaining in the tempered martensite structure has been found. The mass% of Co in it is 0.
The content of 02 to 2.00% improves the toughness and improves the fatigue limit, and the present invention has been completed.

【0009】すなわち、本発明鋼線の特徴は、化学成分
として、質量%でC:0.4〜1.0、Si:1.8〜2.5、Mn:0.4
〜1.3、Cr:0.7〜1.2、Co:0.05〜1.00を含有し、残部
がFe及び不可避不純物からなる成分で、焼入れ焼戻しを
行って得られる母相が焼戻しマルテンサイト組織と、残
留オーステナイト相とを有し、この残留オーステナイト
相が焼戻しマルテンサイト中に体積率で1〜10%の範囲
で存在しており、さらにマルテンサイト組織内に残留す
るオーステナイト相中のCoの含有量が0.05〜2.00質量%
であることを特徴とする。
That is, the characteristics of the steel wire of the present invention are as follows: C: 0.4 to 1.0, Si: 1.8 to 2.5, Mn: 0.4 as a chemical composition by mass%.
~ 1.3, Cr: 0.7 ~ 1.2, Co: 0.05 ~ 1.00, the balance is a component consisting of Fe and unavoidable impurities, the mother phase obtained by quenching and tempering is a tempered martensite structure and residual austenite phase. The residual austenite phase is present in the tempered martensite in the range of 1 to 10% by volume, and the content of Co in the austenite phase remaining in the martensite structure is 0.05 to 2.00% by mass.
Is characterized in that.

【0010】このような化学成分の限定や残留オーステ
ナイト相量の限定ならびに残留オーステナイト相中のCo
量を特定することで、靭性を改善し、疲労限を向上させ
ることができる。特に、残留オーステナイト相中のCoの
好ましい含有量はCo:0.25〜0.70質量%である。
[0012] Such chemical components are limited, the amount of retained austenite phase is limited, and Co in the retained austenite phase is limited.
By specifying the amount, the toughness can be improved and the fatigue limit can be increased. Particularly, the preferable content of Co in the retained austenite phase is Co: 0.25 to 0.70 mass%.

【0011】ここで、さらに質量%で、Mo:0.05〜0.5
0、V:0.05〜0.50、W:0.05〜0.15、Nb:0.05〜0.15、T
i:0.01〜0.20,Ni:0.02〜1.00,Cu:0.02〜1.00のう
ち1種以上を含有することが好ましい。
Here, further in mass%, Mo: 0.05 to 0.5
0, V: 0.05 to 0.50, W: 0.05 to 0.15, Nb: 0.05 to 0.15, T
It is preferable to contain one or more of i: 0.01 to 0.20, Ni: 0.02 to 1.00, and Cu: 0.02 to 1.00.

【0012】これらの元素の少なくとも1種を含有する
ことで、より一層の疲労限向上が実現できる。
By containing at least one of these elements, the fatigue limit can be further improved.

【0013】鋼線横断面における焼入時オーステナイト
(旧オーステナイト)の平均結晶粒径を1.0〜7.0μmと
することが好ましい。このように金属組織を微細化する
ことで高強度と高靭性を両立させた鋼線を得ることがで
きる。より好ましい旧オーステナイトの平均結晶粒径は
1.0〜5.Oμmである。旧オーステナイトの平均結晶粒径
を1.0〜7.0μmの範囲とするには、焼入れ加熱温度を980
℃以下とすることが好ましい。
The average grain size of austenite (former austenite) during quenching in the cross section of the steel wire is preferably 1.0 to 7.0 μm. By refining the metal structure in this way, it is possible to obtain a steel wire having both high strength and high toughness. More preferable average austenite grain size is
1.0 to 5.0 μm. To set the average grain size of old austenite in the range of 1.0 to 7.0 μm, the quenching heating temperature is set to 980.
It is preferable that the temperature is not higher than ° C.

【0014】本発明鋼線の引張強さは1800N/mm2以上230
0N/mm2以下が望ましい。このような引張強さを具えるこ
とで、加工特性および耐疲労特性に優れたばねを得るこ
とができる。
The tensile strength of the steel wire of the present invention is 1800 N / mm 2 or more 230
0N / mm 2 or less is desirable. By providing such a tensile strength, it is possible to obtain a spring having excellent working characteristics and fatigue resistance.

【0015】本発明鋼線の断面形状は円形が最も一般的
であるが、これに限定されるものではない。例えば、矩
形、台形、楕円形など種々の形状であっても構わない。
このように断面が非円形の鋼線は、線引きを行う際のダ
イスの形状などにより調整することができる。
The cross-sectional shape of the steel wire of the present invention is most generally circular, but is not limited to this. For example, various shapes such as a rectangle, a trapezoid, and an ellipse may be used.
As described above, the steel wire having a non-circular cross section can be adjusted by the shape of the die used for drawing.

【0016】また、本発明鋼線の製造方法は、化学成分
として、質量%でC:0.4〜1.0、Si:1.8〜2.5、Mn:0.4
〜1.3、Cr:0.7〜1.2,Co:0.05〜1.00を含有し、残部
がFe及び不可避不純物からなる成分を持つ鋼材を焼入れ
焼戻しして鋼線を得る鋼線の製造方法であって、前記焼
入れ時および焼戻し時の加熱を、昇温速度50〜2000℃/
s、保持時間を0.5〜30sで行うことを特徴とする。
Further, in the method for producing a steel wire according to the present invention, C: 0.4 to 1.0, Si: 1.8 to 2.5, Mn: 0.4 as a chemical component by mass%.
~ 1.3, Cr: 0.7 ~ 1.2, Co: 0.05 ~ 1.00, the rest is a steel material having a component consisting of Fe and unavoidable impurities is a method for producing a steel wire by quenching and tempering, wherein the quenching Heating rate during heating and tempering is 50-2000 ° C /
The holding time is 0.5 to 30 s.

【0017】このように焼入れ焼戻し条件を特定するこ
とで、高強度で高靭性を有し、疲労限の高い鋼線を得る
ことができる。この焼入れ時および焼戻し時のより好ま
しい加熱条件は、昇温速度300〜2000℃/s、保持時間0.5
〜10sである。
By thus specifying the quenching and tempering conditions, it is possible to obtain a steel wire having high strength and high toughness and a high fatigue limit. More preferable heating conditions at the time of quenching and tempering are a temperature rising rate of 300 to 2000 ° C./s and a holding time of 0.5.
~ 10s.

【0018】ここで、焼入れに至るまでの工程として
は、通常、鋼材の溶解鋳造→鍛造→熱間圧延→熱処理→
冷間伸線が行われる。これら溶解鋳造から冷間伸線まで
の条件は公知の条件で構わない。
Here, as the steps leading up to quenching, usually, melting casting of steel material → forging → hot rolling → heat treatment →
Cold drawing is performed. The conditions from melt casting to cold drawing may be known conditions.

【0019】その後の焼入れにおいて、焼入れ加熱温度
は850〜1050℃が好ましい。焼入れ時の冷却速度は、油
もしくは水焼入れにより得られる程度の速度でよい。水
焼入れにおいて、割れなどが生じる場合、有機溶剤の添
加による冷却速度の低減が好ましい。また、焼戻しにお
ける加熱温度は350〜600℃が好ましい。焼戻し時の冷却
は、冷却時の脆化温度域を避けるため、水冷とすること
が好ましい。
In the subsequent quenching, the quenching heating temperature is preferably 850 to 1050 ° C. The cooling rate during quenching may be a rate that can be obtained by quenching with oil or water. When cracking occurs in water quenching, it is preferable to reduce the cooling rate by adding an organic solvent. The heating temperature in tempering is preferably 350 to 600 ° C. The cooling during tempering is preferably water cooling in order to avoid the embrittlement temperature range during cooling.

【0020】この製造方法において、さらに化学成分と
して、質量%でMo:0.05〜0.50、V:0.05〜0.50、W:0.
05〜0.15、Nb:0.05〜0.15、Ti:0.01〜0.20,Ni:0.02
〜1.00,Cu:0.02〜1.00のうち1種以上を含有する鋼材
を用いることが好ましい。
In this manufacturing method, as a chemical component, Mo: 0.05 to 0.50, V: 0.05 to 0.50, W: 0.
05 ~ 0.15, Nb: 0.05 ~ 0.15, Ti: 0.01 ~ 0.20, Ni: 0.02
It is preferable to use a steel material containing at least one of ˜1.00 and Cu: 0.02 to 1.00.

【0021】さらに、本発明ばねは、前述した本発明鋼
線を用いて作製したことを特徴とする。前述したよう
に、本発明鋼線は、靭性と引張強さが両立され、高い疲
労限を有する鋼線である。そのため、この鋼線をばね加
工することで、高い耐疲労特性を有するばねを得ること
ができる。
Further, the spring of the present invention is characterized by being manufactured using the above-mentioned steel wire of the present invention. As described above, the steel wire of the present invention has both high toughness and tensile strength and a high fatigue limit. Therefore, by spring-forming this steel wire, a spring having high fatigue resistance can be obtained.

【0022】以下に本発明における構成要素の限定理由
を述べる。 <C:0.4〜1.0質量%>Cは鋼の機械的特性を決定する重
要な元素であるが、0.4質量%未満では十分な強度が得
られない。逆に1.0質量%を越えると靭性が低下し、さ
らに鋼線の疵感受性が高くなり信頼性が低下する。その
ため、Cの含有量を0.4〜1.0質量%とした。
The reasons for limiting the constituent elements of the present invention will be described below. <C: 0.4 to 1.0% by mass> C is an important element that determines the mechanical properties of steel, but if it is less than 0.4% by mass, sufficient strength cannot be obtained. On the other hand, if it exceeds 1.0% by mass, the toughness is lowered, the flaw sensitivity of the steel wire is further increased, and the reliability is lowered. Therefore, the content of C is set to 0.4 to 1.0% by mass.

【0023】<Si:1.8〜2.5質量%>Siは溶解精錬時の
脱酸剤として使用される。また、フェライト中に固溶
し、強化する効果も併せ持つ。但し、過度の添加は靭性
の欠如を招き、熱間加工性の低下や熱処理による脱炭の
助長、ばね加工時の折損の原因となり易い。そこで、脱
酸効果を持たせ、ばね加工後の強度保持、ばね硬化処理
(窒化)時の窒化層より内面の硬度低下を避けるために
1.8質量%以上、靭性欠如を防止するために2.5質量%以
下とした。
<Si: 1.8 to 2.5% by mass> Si is used as a deoxidizing agent during melting and refining. It also has the effect of forming a solid solution in ferrite and strengthening it. However, excessive addition leads to lack of toughness, which tends to cause deterioration of hot workability, promotion of decarburization by heat treatment, and breakage during spring processing. Therefore, in order to have a deoxidizing effect, to maintain the strength after spring processing and to avoid lowering the hardness of the inner surface of the nitride layer during spring hardening (nitriding)
The content is 1.8% by mass or more and 2.5% by mass or less to prevent lack of toughness.

【0024】<Mn:0.4〜1.3質量%>MnもSi同様、溶解
精錬時の脱酸剤として使用され、鋼の焼入性を向上さ
せ、鋼中のSを固定してその害を阻止する。また、MnはN
iを代替するオーステナイト形成元素でもあり靭性の改
善効果がある。但し、Mnは線材の中心偏析を生じ易くす
る元素でもあり、熱間圧延後のパテンティング処理時に
中心偏析箇所にマルテンサイトを生じ、著しく線引き加
工時の断線率を増加させる。そこで、脱酸作用を持つ下
限として0.4質量%以上、靭性劣化を招かない範囲とし
て上限を1.3質量%とした。
<Mn: 0.4 to 1.3% by mass> Mn is also used as a deoxidizing agent during melting and refining like Si, improves the hardenability of steel and fixes S in steel to prevent its damage. . Also, Mn is N
It is also an austenite forming element that substitutes i and has an effect of improving toughness. However, Mn is also an element that facilitates the center segregation of the wire rod, and causes martensite at the center segregation site during the patenting treatment after hot rolling, which remarkably increases the wire breakage rate during wire drawing. Therefore, the lower limit of the deoxidizing action is 0.4% by mass or more, and the upper limit is 1.3% by mass so as not to cause deterioration of toughness.

【0025】<Cr:0.7〜1.2質量%>CrはMn同様に鋼の
焼入性を向上させ、かつ熱間圧延後のパテンティング処
理により靭性を付与し、焼入れ後、焼戻し時の軟化抵抗
を高め、高強度化に有効な元素である。0.7質量%未満
ではその効果が少なく、逆に1.2質量%を越えると炭化
物の固溶を抑制し、強度の低下を招くとともに、焼入性
の過度の増加となって靭性の低下をもたらすためであ
る。
<Cr: 0.7 to 1.2% by mass> Cr improves the hardenability of steel similarly to Mn, and imparts toughness by the patenting treatment after hot rolling to improve the softening resistance during tempering and tempering. It is an element that is effective in increasing the strength and increasing the strength. If it is less than 0.7% by mass, its effect is small, and if it exceeds 1.2% by mass, on the other hand, it suppresses the solid solution of carbides, resulting in a decrease in strength and an excessive increase in hardenability, resulting in a decrease in toughness. is there.

【0026】<Mo:0.05〜0.50質量%>Moは焼戻し時に
炭化物を形成し、軟化抵抗を増大させる元素である。但
し、0.05質量%未満ではその効果は少なく、0.50質量%
を越えると伸線加工性を低下させるため、含有量をMo:
0.05〜0.50質量%とした。
<Mo: 0.05 to 0.50 mass%> Mo is an element that forms carbides during tempering and increases the softening resistance. However, if less than 0.05% by mass, the effect is small, and 0.50% by mass.
When the content exceeds Mo, the wire drawability is deteriorated, so the content is Mo:
It was set to 0.05 to 0.50 mass%.

【0027】<W:0.05〜0.15、Nb:0.05〜0.15、V:0.
05〜0.50質量%>W,Nb,Vも焼戻し時に鋼中に炭化物を
形成し、軟化抵抗を増大させる効果がある。但し、いず
れも0.05質量%未満では、その効果を十分に発揮し得な
い。逆に、Vでは0.50質量%を超え、W,Nbでは0.15質量
%を超えると、いずれも焼入れ加熱時に炭化物を多く形
成し、靭性の低下を招く。そのため、含有量をそれぞ
れ、V:0.05〜0.50質量%、W:0.05〜0.15質量%、Nb:
0.05〜0.15質量%と定めた。
<W: 0.05 to 0.15, Nb: 0.05 to 0.15, V: 0.
05 to 0.50 mass%> W, Nb, and V also have the effect of forming carbides in the steel during tempering and increasing the softening resistance. However, in all cases, if the amount is less than 0.05% by mass, the effect cannot be sufficiently exhibited. On the other hand, when V exceeds 0.50 mass% and W and Nb exceed 0.15 mass%, a large amount of carbide is formed during quenching and heating, resulting in a decrease in toughness. Therefore, V: 0.05 to 0.50 mass%, W: 0.05 to 0.15 mass%, Nb:
It was defined as 0.05 to 0.15 mass%.

【0028】<Ti:0.01〜0.20質量%>Tiも焼戻し時に
鋼中に炭化物を形成し、軟化抵抗を増大させる効果があ
る。但し、Tiは高融点非金属介在物であるTiOを生成す
る。故に精錬時の条件設定などが重要である。軟化抵抗
向上効果が期待できる量として0.01質量%以上、炭化
物、介在物の過度の増加による靭性劣化を考慮して0.20
質量%以下とした。
<Ti: 0.01 to 0.20 mass%> Ti also has the effect of forming carbides in the steel during tempering and increasing the softening resistance. However, Ti produces TiO which is a non-metallic inclusion having a high melting point. Therefore, it is important to set the conditions for refining. 0.01 mass% or more as an amount that can be expected to improve the softening resistance, 0.20 considering the deterioration of toughness due to excessive increase of carbides and inclusions.
It was set to not more than mass%.

【0029】<Ni:0.02〜1.00、Co:0.05〜1.00、Cu:
0.02〜1.00質量%>Ni,Co,Cuはオーステナイト生成元
素であり、Ni,Co,Cu添加によって残留オーステナイト
を生じ易くする材料である。残留オーステナイトの増加
は、鋼線の硬度を低下させる作用を持つが、逆にSiによ
る固溶強化やMo,W,Nb,V,Tiといった炭化物析出元素
で強化された鋼線に靭性を持たせる効果を持つ。また、
Niは塩水腐食環境において、Cl元素の侵入を阻止する役
割も持つ。靭性向上効果を持つ最低限度として0.02質量
%、硬度低下を招かない上限として1.00質量%とした。
<Ni: 0.02 to 1.00, Co: 0.05 to 1.00, Cu:
0.02 to 1.00 mass%> Ni, Co and Cu are austenite forming elements, and are materials that easily generate retained austenite by adding Ni, Co and Cu. The increase of retained austenite has the effect of lowering the hardness of the steel wire, but on the contrary, it imparts toughness to the solid solution strengthened by Si and the steel wire reinforced by carbide precipitation elements such as Mo, W, Nb, V and Ti. Have an effect. Also,
Ni also has a role of blocking the intrusion of Cl element in a salt water corrosive environment. The minimum toughness improving effect is 0.02% by mass, and the upper limit that does not cause hardness reduction is 1.00% by mass.

【0030】<残留オーステナイト相中のCo含有量:0.
02〜2.00%質量%>上記成分を有する鋼線の疲労限を向
上させるために、焼戻しマルテンサイト相中に残留する
オーステナイト相にCoが質量%で0.02〜2.00%存在する
ことが必要である。Coは積層欠陥エネルギーを下げる効
果があるため、残留オーステナイト相中に転位を導入し
やすく、結果として残留オーステナイト相が極めて硬い
マルテンサイト相中で柔軟に変形することで、鋼線全体
での靭性を向上させ、疲労限の向上に大きな効果があ
る。逆に言えば、この柔らかい残留オーステナイト相の
存在する鋼線の疲労限を向上させるためには、窒化によ
る硬化を促進するCrなどの炭化物形成元素の存在や熱処
理による軟化抵抗向上に効果があるSiなどの元素の存在
が欠かせない。そこで、上記化学成分を有する鋼線に対
して、残留オーステナイト相中のCoの質量%を決定し
た。この残留オーステナイト相中のCoの質量%が少なく
ては靭性改善効果が無くなり、多すぎると鋼線全体の機
械的特性の低下を招く。この靭性改善に伴う疲労限向上
効果を得るための残留オーステナイト相中の最低量とし
て0.02質量%とし、鋼線全体での引張強さ低下を招かな
い残留オーステナイト相中の最大量として2.00質量%と
した。特に、残留オーステナイト相中のCo含有量はCo:
0.25〜0.70質量%とすることが好ましい。
<Co content in retained austenite phase: 0.
02 to 2.00% by mass> In order to improve the fatigue limit of the steel wire having the above components, Co must be present in the austenite phase remaining in the tempered martensite phase in an amount of 0.02 to 2.00% by mass. Since Co has the effect of lowering the stacking fault energy, it is easy to introduce dislocations in the retained austenite phase, and as a result, the retained austenite phase flexibly deforms in the extremely hard martensite phase, thereby improving the toughness of the entire steel wire. It has a great effect on improving the fatigue limit. Conversely speaking, in order to improve the fatigue limit of the steel wire in which this soft retained austenite phase exists, the presence of a carbide-forming element such as Cr that promotes hardening by nitriding and the effect of improving the softening resistance by heat treatment are effective. The existence of such elements is essential. Therefore, the mass% of Co in the retained austenite phase was determined for the steel wire having the above chemical composition. If the mass% of Co in the retained austenite phase is small, the toughness improving effect is lost, and if it is too large, the mechanical properties of the entire steel wire deteriorate. The minimum amount in the retained austenite phase to obtain the fatigue limit improvement effect accompanying this toughness improvement is 0.02% by mass, and the maximum amount in the retained austenite phase that does not cause a decrease in the tensile strength of the entire steel wire is 2.00% by mass. did. In particular, the Co content in the retained austenite phase is Co:
It is preferably 0.25 to 0.70 mass%.

【0031】<残留オーステナイト相の体積率:1.0〜1
0.0%>焼戻しマルテンサイト中の残留オーステナイト
相の体積率は、鋼線全体の靭性を向上させる手段として
大きい方が良い。しかし、残留オーステナイト相が多量
に存在するとばねとしての使用中に残留オーステナイト
相がマルテンサイト相に変態して、体積膨張により永久
歪を生じ、耐へたり性が劣化するおそれがある。そこ
で、鋼全体の靭性を向上させる最低量として1.0体積%
とし、耐へたり性を低下させない最大量として10.0体積
%とした。
<Volume ratio of retained austenite phase: 1.0 to 1
0.0%> The volume ratio of the retained austenite phase in the tempered martensite is preferably large as a means for improving the toughness of the entire steel wire. However, if a large amount of retained austenite phase is present, the retained austenite phase is transformed into a martensite phase during use as a spring, which may cause permanent strain due to volume expansion and deteriorate sag resistance. Therefore, the minimum amount that improves the toughness of the entire steel is 1.0% by volume.
And 10.0% by volume as the maximum amount that does not reduce the sag resistance.

【0032】<旧オーステナイト平均結晶粒径:1.0〜
7.0μm>上記の鋼線は、さらに旧オーステナイト平均結
晶粒径が1.0〜7.0μmであると、より一層耐疲労性に優
れる。これは結晶粒の強化を行い、金属組織を微細化す
ることで高強度と高靭性を両立させた材料が得られるこ
とに起因する。結晶粒径は7.0μm以下としたとき微細化
効果が現れるが、さらに5.0μm以下に設定したときその
微細化による強化の効果は著しい。但し、結晶粒径1.0
μm未満のとき、加熱不足となり、熱処理による未固溶
炭化物の除去が非常に困難となるため、下限を1.0μmと
した。
<Old austenite average crystal grain size: 1.0 to
7.0 μm> If the former austenite average crystal grain size is 1.0 to 7.0 μm, the above steel wire is further excellent in fatigue resistance. This is due to the fact that a material having both high strength and high toughness can be obtained by strengthening the crystal grains and refining the metal structure. When the grain size is 7.0 μm or less, the refinement effect appears, but when it is further set to 5.0 μm or less, the effect of strengthening due to the refinement is remarkable. However, crystal grain size 1.0
When it is less than μm, heating becomes insufficient and it becomes very difficult to remove undissolved carbides by heat treatment, so the lower limit was made 1.0 μm.

【0033】<引張り強さ:1800N/mm以上2300N/mm
以下>引張り強さ1800N/mm以上2300N/mm以下である
とき、ばね用鋼線として特に優れた性能を発揮する。ば
ねの疲労限は主に引張強さに比例するため、ばねとして
必要な高疲労限を達成する引張強さとして1800N/mm2
上、コイリング時に折損しない靭性を持たせるために23
00N/mm2以下とした。
<Tensile strength: 1800 N / mm 2 or more 2300 N / mm 2
Hereinafter> Tensile when strength 1800 N / mm 2 or more 2300N / mm 2 or less, exhibits particularly excellent performance as a spring steel wire. Since the fatigue limit of a spring is mainly proportional to the tensile strength, the tensile strength that achieves the high fatigue limit required for a spring is 1800 N / mm 2 or more, and the toughness that does not break during coiling
It was set to 00 N / mm 2 or less.

【0034】<製造条件>残留オーステナイト相のマル
テンサイト相への体積率を制御するためには、極めて短
時間の焼戻し加熱が必要である。長時間の加熱は粒内炭
化物の球状化、粗大化を引き起こす。また、1.0〜7.0μ
mといった旧オーステナイト平均結晶粒径を実現するた
めにも必要である。そこで、焼入れ・焼戻し時の加熱の
昇温速度を50〜2000℃/sとし、保持時間を0.5〜30sとす
ることで靭性と引張強さを兼備した鋼線を製造すること
が可能となる。
<Manufacturing Conditions> In order to control the volume ratio of the retained austenite phase to the martensite phase, tempering heating for an extremely short time is required. Prolonged heating causes spheroidization and coarsening of intragranular carbide. Also, 1.0-7.0μ
It is also necessary to achieve the average grain size of old austenite such as m. Therefore, it is possible to manufacture a steel wire having both toughness and tensile strength by setting the heating rate of heating during quenching / tempering to 50 to 2000 ° C./s and holding time to 0.5 to 30 s.

【0035】このような高速での均熱加熱は、鋼線中の
金属元素の拡散を抑制する効果も有する。例えば、加熱
に時間をかけるとCrやMoの様な炭化物形成元素が炭化物
の形で擬集粗大化する可能性もあり、また本発明の靭性
改善の担い手であるCoの均一性を損なう恐れもある。こ
のような事情から、焼入れ焼戻し条件は昇温速度:300
〜2000℃/s、保持時間:0.5〜10sで行うことがより好ま
しい。
Such high-speed soaking heating also has the effect of suppressing the diffusion of metal elements in the steel wire. For example, when heating is performed for a long time, a carbide forming element such as Cr or Mo may be coarsely coarsened in the form of carbide, and there is also a risk of impairing the uniformity of Co, which is the key to improving the toughness of the present invention. is there. Under these circumstances, the quenching and tempering conditions are: heating rate: 300
More preferably, it is carried out at ˜2000 ° C./s and holding time: 0.5 to 10 s.

【0036】[0036]

【発明の実施の形態】以下、本発明の実施の形態を説明
する。 (実施例1)表1のサンプルA〜Mの各実施例、N,Oの各
比較例に示される組成の鋼を真空溶解炉にて溶製し、熱
間鍛造、熱間圧延により直径6.5mmの線材を作製した。
BEST MODE FOR CARRYING OUT THE INVENTION Embodiments of the present invention will be described below. (Example 1) Steels having the compositions shown in Examples A to M of Table 1 and Comparative Examples N and O are melted in a vacuum melting furnace, and hot forged and hot rolled to a diameter of 6.5. mm wire rod was produced.

【0037】この線材を熱処理、皮剥ぎ、冷間伸線によ
り直径3.2mmに加工した。さらに、得られた線材に、焼
入れ加熱温度:1000℃、焼入れ昇温速度:1000℃/s、保
持時間:5sとして焼入れ、焼戻し加熱温度:450℃、焼
戻し昇温速度:1000℃/s、保持時間:10sとして焼戻し
処理を施してオイルテンパー線を得た。
This wire was heat treated, peeled, and cold drawn to a diameter of 3.2 mm. Furthermore, the obtained wire rod is quenched at a quenching heating temperature of 1000 ° C, a quenching heating rate of 1000 ° C / s, and a holding time of 5s, tempering heating temperature: 450 ° C, a tempering heating rate of 1000 ° C / s, holding After tempering for 10 seconds, an oil tempered wire was obtained.

【0038】表1に得られたオイルテンパー線の化学成
分、残留オーステナイト相中のCo質量率、残留オーステ
ナイト(γ)相の体積率、旧オーステナイト平均粒径、
および室温での引張強さを示す。旧オーステナイト結晶
粒の測定は、各サンプルを550℃で2時間ほど焼鈍し、
旧オーステナイト粒界に炭化物を析出させてから鋼線横
断面をエッチングし、光学顕微鏡写真から旧オーステナ
イト結晶粒の平均値を算出することで行った(後述する
他の実施例でも同様)。
The chemical composition of the oil tempered wire obtained in Table 1, the mass ratio of Co in the retained austenite phase, the volume ratio of the retained austenite (γ) phase, the average particle size of the former austenite,
And the tensile strength at room temperature. For the measurement of former austenite grains, each sample was annealed at 550 ° C for about 2 hours,
It was carried out by precipitating carbides on the former austenite grain boundaries, etching the steel wire cross section, and calculating the average value of the former austenite crystal grains from the optical micrograph (the same applies to other examples described later).

【0039】[0039]

【表1】 [Table 1]

【0040】実施例と比較例では化学成分中のCo量が異
なり、それに従って残留γ相中のCo質量率が異なる。実
施例では0.05〜1.0質量%としたのに対し、比較例では
0.02〜1.5質量%としている。Coはほぼばねの製造全工
程において、Feとの固溶体となるため、鋼材中のCoの含
有量と残留γ相中のCoの含有量はほぼ同値である。
In the example and the comparative example, the amount of Co in the chemical composition is different, and accordingly, the Co mass ratio in the residual γ phase is different. In the examples, 0.05 to 1.0% by mass, while in the comparative examples
It is set to 0.02 to 1.5% by mass. Since Co becomes a solid solution with Fe in almost all the steps of manufacturing the spring, the content of Co in the steel material and the content of Co in the residual γ phase are almost the same.

【0041】次に、以上のサンプルを中村式回転曲げ疲
労試験機にかけた結果を表2に示す。試験はひずみ一定
で応力をかけ、繰り返し回数1×107回で折損のなかった
振幅応力の平均をとった(n数=8)。この試験方法
は、後述する他の実施例における疲れ強さの評価方法で
も同様である。
Next, Table 2 shows the results of applying the above samples to the Nakamura rotary bending fatigue tester. In the test, stress was applied with constant strain, and the amplitude stress without breakage was averaged at the number of repetitions of 1 × 10 7 (n number = 8). This test method is the same as the fatigue strength evaluation method in other examples described later.

【0042】[0042]

【表2】 [Table 2]

【0043】サンプルA〜Fは、Co量の異なるN,Oに対し
て30〜85MPaの疲れ強さ上昇が確認できた。また、試料D
に対してMo、V、W、Nb、Ti、Ni、Cuの少なくとも1種を
含有したサンプルG〜Mにおいては、さらに高い疲れ強さ
を得ることができることが確認できた。実施例A〜Fと比
較例N,Oの結果から、Co量が0.05〜1.00質量%で、残留
オーステナイト相量が1〜10体積%の場合に疲れ強さ上
昇に有効であることがわかる。特に、Co:0.3〜0.5質量
%において優れた疲れ強さを示すことが確認できた。ま
た、比較例P,Qの結果から、残留オーステナイト相中のC
o量が0.05〜2.00質量%の範囲を満たす場合でも、Si量
が1.8〜2.5質量%を外れる場合やCr量が0.7〜1.2質量%
を外れる場合は、疲れ強さの向上は得られないことが確
認できた。
In the samples A to F, it was confirmed that the fatigue strength increased by 30 to 85 MPa with respect to N and O having different Co contents. Also, sample D
On the other hand, it was confirmed that in Samples G to M containing at least one of Mo, V, W, Nb, Ti, Ni and Cu, higher fatigue strength could be obtained. From the results of Examples A to F and Comparative Examples N and O, it is found that when the Co content is 0.05 to 1.00 mass% and the retained austenite phase content is 1 to 10 volume%, it is effective for increasing the fatigue strength. In particular, it was confirmed that Co: 0.3 to 0.5 mass% exhibited excellent fatigue strength. In addition, from the results of Comparative Examples P and Q, C in the retained austenite phase
o Even if the amount satisfies the range of 0.05 to 2.00% by mass, the amount of Si deviates from 1.8 to 2.5% by mass and the amount of Cr is 0.7 to 1.2% by mass.
It was confirmed that the fatigue strength could not be improved if the temperature was out of range.

【0044】(実施例2)次に、サンプルDと同成分の
鋼を用いて、焼入れ時の冷却速度を変え、残留オーステ
ナイト相の体積率を変化させた実施例R,S、比較例T,Uを
作製した。実施例Rは加熱後水冷を行い、急冷を行っ
た。実施例Sは加熱後、空気中に放冷することで冷媒に
油を用いるよりも比較的遅く冷却した。また、比較例T
は加熱後、加熱炉の熱源を切り、そのまま炉中でゆっく
りと冷却させ、比較例Uは加熱直後に液体窒素中に試料
を浸漬して急冷させた。焼入れ時の冷却条件以外は実施
例1と同様の焼入れ焼戻し条件である。そして、各サン
プルの焼入れ冷却速度、残留オーステナイト相中のCo質
量率、残留オーステナイト(γ)相の体積率、旧オース
テナイト平均粒径、室温での引張強さおよび疲れ強さを
求めた。その結果を表3に示す。冷却速度は、炉の温
度、冷媒の種類・温度より推定している。
(Example 2) Next, using a steel having the same composition as the sample D, the cooling rate at the time of quenching was changed, and the volume ratio of the retained austenite phase was changed. U was made. In Example R, water was cooled after heating, and then rapidly cooled. In Example S, after being heated, it was cooled in the air relatively slowly as compared with the case where oil was used as the refrigerant. In addition, Comparative Example T
After heating, the heating source of the heating furnace was turned off and the sample was slowly cooled in the furnace as it was, and in Comparative Example U, the sample was immersed in liquid nitrogen immediately after heating and rapidly cooled. Except for the cooling conditions during quenching, the quenching and tempering conditions are the same as in Example 1. Then, the quenching cooling rate of each sample, the Co mass ratio in the retained austenite phase, the volume ratio of the retained austenite (γ) phase, the former austenite average grain size, the tensile strength at room temperature and the fatigue strength were obtained. The results are shown in Table 3. The cooling rate is estimated from the temperature of the furnace and the type and temperature of the refrigerant.

【0045】[0045]

【表3】 [Table 3]

【0046】表3から明らかなように、残留オーステナ
イト相の体積率は1.0〜10.0%の範囲で疲れ強さ向上に
有効であり、特に実施例Dの約7体積%程度で優れてい
ることがわかる。
As is clear from Table 3, when the volume ratio of the retained austenite phase is in the range of 1.0 to 10.0%, it is effective for improving the fatigue strength, and particularly about 7% by volume of Example D is excellent. Recognize.

【0047】(実施例3)さらに試料D、Gと同成分の鋼
を用いて焼入れ時の加熱温度を変え、残留オーステナイ
トの旧オーステナイト結晶粒径を変化させた実施例V,W,
X,Yを作製した。試料Dと加熱温度の異なる試料がV,Wで
あり、試料Gと加熱温度の異なる試料がX,Yである。これ
らの試料は、高周波加熱を行い、加熱速度:1000℃/s
で、加熱温度:950℃、980℃、保持時間3秒(線径に応
じて均一に加熱が可能な保持時間に設定)にそれぞれ設
定して焼入れを行った。焼入れ時の加熱温度以外は実施
例1と同様の焼入れ焼戻し条件である。そして、各サン
プルの焼入れ加熱温度、残留オーステナイト相中のCo質
量率、残留オーステナイト(γ)相の体積率、旧オース
テナイト平均粒径、室温での引張強さおよび疲れ強さを
求めた。その結果を表4に示す。
(Example 3) Further, in Examples V, W, in which the heating temperature at the time of quenching was changed by using the steel having the same composition as the samples D and G, the former austenite grain size of the retained austenite was changed.
X and Y were produced. Samples having different heating temperatures from sample D are V and W, and samples having different heating temperatures from sample G are X and Y. These samples are subjected to high frequency heating and heating rate: 1000 ° C / s
Then, the heating temperature was set to 950 ° C. and 980 ° C., and the holding time was set to 3 seconds (set to a holding time that enables uniform heating according to the wire diameter), and quenching was performed. Except for the heating temperature during quenching, the quenching and tempering conditions are the same as in Example 1. Then, the quenching heating temperature of each sample, the Co mass ratio in the retained austenite phase, the volume ratio of the retained austenite (γ) phase, the old austenite average grain size, the tensile strength at room temperature, and the fatigue strength were determined. The results are shown in Table 4.

【0048】[0048]

【表4】 [Table 4]

【0049】表4から明らかなように、旧オーステナイ
ト平均粒径を1.0〜7.0μmの範囲とすることで、更なる
疲労限の向上が確認できた。特に、加熱を高周波加熱で
行うことにより、均一な加熱によるオーステナイト化、
炭化物の母相への溶け込みが可能になり、オーステナイ
ト相の結晶粒径の変化を材料全体にわたって均一にする
ことができる。上記の試料の他、MoやTiといった炭化物
を形成する成分を有する実施例鋼線でも、高周波加熱を
用いることで同様の均一なオーステナイト化と炭化物の
溶け込みが確認できた。
As is clear from Table 4, further improvement in fatigue limit could be confirmed by setting the former austenite average particle size within the range of 1.0 to 7.0 μm. In particular, by performing heating by high frequency heating, austenitization by uniform heating,
It becomes possible to dissolve the carbide into the parent phase, and the change in the crystal grain size of the austenite phase can be made uniform throughout the material. In addition to the above-mentioned samples, the same uniform austenitization and melting of carbides could be confirmed by using high frequency heating in the example steel wires having carbide forming components such as Mo and Ti.

【0050】(実施例4)以上のような評価を鋼線の引
張強さで1800、2200MPa級の試料についても実施した。
引張強さの調整は、焼戻し時の温度調整で行った。1800
MPa級の試料における焼戻し時の加熱温度は400℃、2200
MPa級の試料における焼戻し時の加熱温度は550℃であ
る。他の条件は実施例1と同様である。得られた試料に
ついて中村式回転曲げ疲労試験の結果、いずれも発明材
は引張強さ×0.43(MPa)程度の高い疲れ強さを示し
た。そして、これらをばね加工したところ、何ら問題な
くばね加工することができた。
(Embodiment 4) The above-mentioned evaluation was carried out also on the samples of 1800 and 2200 MPa class in tensile strength of steel wire.
The tensile strength was adjusted by adjusting the temperature during tempering. 1800
The heating temperature for tempering of MPa class samples is 400 ℃, 2200
The heating temperature for tempering of MPa class samples is 550 ° C. The other conditions are the same as in Example 1. As a result of the Nakamura-type rotary bending fatigue test on the obtained samples, the invention materials all exhibited high fatigue strength of about tensile strength × 0.43 (MPa). Then, when these were spring-processed, the springs could be processed without any problems.

【0051】[0051]

【発明の効果】以上説明したように、本発明鋼線は、主
に焼き戻しマルテンサイト組織を母相に持つ鋼線におい
て、残留オーステナイト相の化学組成と、残留オーステ
ナイト層の体積率を制御することによって高い疲労特性
を得ることができる。
As described above, the steel wire of the present invention mainly controls the chemical composition of the retained austenite phase and the volume ratio of the retained austenite layer in the steel wire having the tempered martensite structure as the matrix phase. As a result, high fatigue characteristics can be obtained.

【0052】さらに、Mo,V,W,Nb,Tiといった炭化物生成
元素を添加することで析出強化を行い、Ni,Cuといった
オーステナイト生成元素添加による靭性向上を行うこと
で、従来鋼線では得られない高い靭性・耐疲労特性を得
ることが可能となる。高い靭性に伴う耐疲労性は、例え
ば腐食ピットが破壊起点となる腐食応力破壊についても
有効である。本発明の鋼線を用いることで、弁ばね、懸
架ばねなどに要求される高疲労強度ばね用鋼線、もしく
は耐腐食疲労ばねを得ることが可能である。
Further, by adding carbide-forming elements such as Mo, V, W, Nb, and Ti to enhance precipitation strengthening, and by adding austenite-forming elements such as Ni and Cu to improve toughness, conventional steel wires can be obtained. It is possible to obtain high toughness and fatigue resistance. Fatigue resistance associated with high toughness is also effective for corrosion stress fracture in which a corrosion pit serves as a fracture starting point. By using the steel wire of the present invention, it is possible to obtain a steel wire for a high fatigue strength spring required for a valve spring, a suspension spring or the like, or a corrosion resistant fatigue spring.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) F16F 1/02 F16F 1/02 B (72)発明者 山尾 憲人 兵庫県伊丹市昆陽北一丁目1番1号 住友 電気工業株式会社伊丹製作所内 (72)発明者 村井 照幸 兵庫県伊丹市昆陽北一丁目1番1号 住友 電気工業株式会社伊丹製作所内 Fターム(参考) 3J059 AB06 AB11 AD06 BA31 BC02 EA09 GA01 GA21 4K043 AA02 AB04 AB05 AB08 AB10 AB11 AB13 AB15 AB18 AB21 AB22 AB28 AB29 AB30 AB31 BB02 BB03 DA01 DA04 ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 7 Identification code FI theme code (reference) F16F 1/02 F16F 1/02 B (72) Inventor Kento Yamao 1-1 1-1 Kunyokita, Itami City, Hyogo Prefecture Issue Sumitomo Electric Industries, Ltd. Itami Works (72) Inventor Teruyuki Murai 1-1 Kunyo Kita 1-1, Itami City, Hyogo Prefecture Sumitomo Electric Industries Itami Works F-term (reference) 3J059 AB06 AD11 BA31 BC02 EA09 GA01 GA21 4K043 AA02 AB04 AB05 AB08 AB10 AB11 AB13 AB15 AB18 AB21 AB22 AB28 AB29 AB30 AB31 BB02 BB03 DA01 DA04

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】 化学成分として、質量%でC:0.4〜1.
0、Si:1.8〜2.5、Mn:0.4〜1.3、Cr:0.7〜1.2,Co:
0.05〜1.00を含有し、残部がFe及び不可避不純物からな
る成分で、 焼入れ焼戻しを行って得られる母相が焼戻しマルテンサ
イト組織と、残留オーステナイト相とを有し、 この残留オーステナイト相が焼戻しマルテンサイト中に
体積率で1〜10%の範囲で存在しており、 さらにマルテンサイト組織内に残留するオーステナイト
相中のCoの含有量が0.05〜2.00質量%であることを特徴
とする鋼線。
1. As a chemical component, C: 0.4 to 1.% by mass%.
0, Si: 1.8 to 2.5, Mn: 0.4 to 1.3, Cr: 0.7 to 1.2, Co:
The matrix containing 0.05 to 1.00 and the balance consisting of Fe and unavoidable impurities, the mother phase obtained by quenching and tempering has a tempered martensite structure and a retained austenite phase, and this retained austenite phase is a tempered martensite. A steel wire having a volume ratio of 1 to 10% and a Co content of 0.05 to 2.00% by mass in the austenite phase remaining in the martensitic structure.
【請求項2】 さらに化学成分として、質量%でMo:0.
05〜0.50、V:0.05〜0.50、W:0.05〜0.15、Nb:0.05〜
0.15、Ti:0.01〜0.20,Ni:0.02〜1.00,Cu:0.02〜1.
00のうち1種以上を含有することを特徴とする請求項1
に記載の鋼線。
2. Further, as a chemical component, Mo: 0 by mass%.
05 ~ 0.50, V: 0.05 ~ 0.50, W: 0.05 ~ 0.15, Nb: 0.05 ~
0.15, Ti: 0.01 to 0.20, Ni: 0.02 to 1.00, Cu: 0.02 to 1.
2. One or more of 00 are contained, The claim 1 characterized by the above-mentioned.
Steel wire described in.
【請求項3】 鋼線横断面における旧オーステナイトの
平均結晶粒径が1.0〜7.0μmであることを特徴とする請
求項1または2に記載の鋼線。
3. The steel wire according to claim 1, wherein the average crystal grain size of the prior austenite in the cross section of the steel wire is 1.0 to 7.0 μm.
【請求項4】 引張強さが1800N/mm2以上2300N/mm2以下
であることを特徴とする請求項1〜3のいずれかに記載の
鋼線。
4. A steel wire according to claim 1, the tensile strength is equal to or is 1800 N / mm 2 or more 2300N / mm 2 or less.
【請求項5】 鋼線断面が非円形であることを特徴とす
る請求項1〜4のいずれかに記載の鋼線。
5. The steel wire according to any one of claims 1 to 4, wherein the steel wire has a non-circular cross section.
【請求項6】 化学成分として、質量%でC:0.4〜1.
0、Si:1.8〜2.5、Mn:0.4〜1.3、Cr:0.7〜1.2,Co:
0.05〜1.00を含有し、残部がFe及び不可避不純物からな
る成分を持つ鋼材を焼入れ焼戻しして鋼線を得る鋼線の
製造方法であって、 前記焼入れ時および焼戻し時の加熱を、昇温速度50〜20
00℃/s、保持時間を0.5〜30sで行うことを特徴とする鋼
線の製造方法。
6. As a chemical component, C: 0.4-1.% By mass%.
0, Si: 1.8 to 2.5, Mn: 0.4 to 1.3, Cr: 0.7 to 1.2, Co:
A method of manufacturing a steel wire containing 0.05 to 1.00, the balance being a steel material having a component consisting of Fe and unavoidable impurities to obtain a steel wire by quenching and tempering, heating during the quenching and tempering, a heating rate 50-20
A method of manufacturing a steel wire, which is performed at 00 ° C / s and a holding time of 0.5 to 30 s.
【請求項7】 さらに化学成分として、質量%でMo:0.
05〜0.50、V:0.05〜0.50、W:0.05〜0.15、Nb:0.05〜
0.15、Ti:0.01〜0.20,Ni:0.02〜1.00,Cu:0.02〜1.
00のうち1種以上を含有することを特徴とする請求項6
に記載の鋼線の製造方法。
7. Further, as a chemical component, Mo: 0 by mass%.
05 ~ 0.50, V: 0.05 ~ 0.50, W: 0.05 ~ 0.15, Nb: 0.05 ~
0.15, Ti: 0.01 to 0.20, Ni: 0.02 to 1.00, Cu: 0.02 to 1.
7. One or more kinds of 00 are contained, The claim 6 characterized by the above-mentioned.
The method for manufacturing a steel wire according to.
【請求項8】 請求項1〜5のいずれかに記載の鋼線を用
いて作製したことを特徴とするばね。
8. A spring manufactured by using the steel wire according to claim 1.
JP2002113907A 2002-04-16 2002-04-16 Steel wire, manufacturing method thereof and spring Expired - Fee Related JP3975110B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002113907A JP3975110B2 (en) 2002-04-16 2002-04-16 Steel wire, manufacturing method thereof and spring

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002113907A JP3975110B2 (en) 2002-04-16 2002-04-16 Steel wire, manufacturing method thereof and spring

Publications (2)

Publication Number Publication Date
JP2003306747A true JP2003306747A (en) 2003-10-31
JP3975110B2 JP3975110B2 (en) 2007-09-12

Family

ID=29395943

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002113907A Expired - Fee Related JP3975110B2 (en) 2002-04-16 2002-04-16 Steel wire, manufacturing method thereof and spring

Country Status (1)

Country Link
JP (1) JP3975110B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004055226A1 (en) * 2002-12-13 2004-07-01 Sumitomo (Sei) Steel Wire Corp. Steel wire for spring
WO2005075695A1 (en) * 2004-02-04 2005-08-18 Sumitomo (Sei) Steel Wire Corp. Steel wire for spring
WO2007018048A1 (en) * 2005-08-05 2007-02-15 Sumitomo Electric Industries, Ltd. Oil-tempered wire and process for producing the same
JP2010163689A (en) * 2005-08-05 2010-07-29 Sumitomo Electric Ind Ltd Oil-tempered wire, method for manufacturing the same, and spring
US8038934B2 (en) 2006-01-23 2011-10-18 Kobe Steel, Ltd. High-strength spring steel excellent in brittle fracture resistance and method for producing same

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004055226A1 (en) * 2002-12-13 2004-07-01 Sumitomo (Sei) Steel Wire Corp. Steel wire for spring
WO2005075695A1 (en) * 2004-02-04 2005-08-18 Sumitomo (Sei) Steel Wire Corp. Steel wire for spring
CN100449026C (en) * 2004-02-04 2009-01-07 住友电工钢铁电缆株式会社 Steel wire for spring
KR101096888B1 (en) 2004-02-04 2011-12-22 스미토모 덴코 스틸 와이어 가부시키가이샤 Steel wire for spring
WO2007018048A1 (en) * 2005-08-05 2007-02-15 Sumitomo Electric Industries, Ltd. Oil-tempered wire and process for producing the same
JP2007063584A (en) * 2005-08-05 2007-03-15 Sumitomo Electric Ind Ltd Oil tempered wire and manufacturing method therefor
JP2010163689A (en) * 2005-08-05 2010-07-29 Sumitomo Electric Ind Ltd Oil-tempered wire, method for manufacturing the same, and spring
CN101287851B (en) * 2005-08-05 2012-09-05 住友电气工业株式会社 Oil-tempered wire and process for producing the same
US8038934B2 (en) 2006-01-23 2011-10-18 Kobe Steel, Ltd. High-strength spring steel excellent in brittle fracture resistance and method for producing same

Also Published As

Publication number Publication date
JP3975110B2 (en) 2007-09-12

Similar Documents

Publication Publication Date Title
TWI551693B (en) Steel wire material for high strength spring with excellent hydrogen embrittlement resistance and its manufacturing method and high strength spring
JP4486040B2 (en) Steel wire for cold forming springs with excellent cold cutability and fatigue characteristics and manufacturing method thereof
WO2007114491A1 (en) Heat-treatment steel for high-strength spring
JP2006291291A (en) Steel wire for cold formed spring having excellent corrosion resistance, and method for producing the same
WO2013179934A1 (en) Steel wire for high-strength spring having exceptional coiling performance and hydrogen embrittlement resistance, and method for manufacturing same
WO2002063055A1 (en) Heat-treated steel wire for high strength spring
JP4559959B2 (en) High strength spring steel
JP2003213372A (en) Steel wire for spring and spring
JP4994932B2 (en) Oil tempered wire and method for producing oil tempered wire
JP5679455B2 (en) Spring steel, spring steel wire and spring
JP2004027334A (en) Steel for induction tempering and method of producing the same
JPH06240408A (en) Steel wire for spring and its production
JP3918587B2 (en) Spring steel for cold forming
WO2013022033A1 (en) Material for springs, manufacturing process therefor, and springs
JP4867638B2 (en) High-strength bolts with excellent delayed fracture resistance and corrosion resistance
JP6453693B2 (en) Heat treated steel wire with excellent fatigue characteristics
JP7133705B2 (en) Wire rod for spring, steel wire with improved toughness and corrosion fatigue characteristics, and method for producing the same
JP3975110B2 (en) Steel wire, manufacturing method thereof and spring
JP3633866B2 (en) Steel wire for spring, spring and manufacturing method thereof
JP2004010965A (en) High strength spring steel having excellent corrosion fatigue strength
JP2005314810A (en) Steel for induction hardening
JP2002180201A (en) Steel for hard-drawn wire having excellent fatigue strength and ductility, and hard-drawn wire
WO2017169481A1 (en) Steel wire having excellent fatigue characteristics and method for manufacturing same
JP3398552B2 (en) High-strength austenitic stainless steel sheet for flapper valve with excellent fatigue properties and method for producing the same
JP2004002994A (en) Steel wire for hard drawn spring excellent in fatigue strength and set resistance, and hard drawn spring

Legal Events

Date Code Title Description
A625 Written request for application examination (by other person)

Free format text: JAPANESE INTERMEDIATE CODE: A625

Effective date: 20040720

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060518

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060613

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060802

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070319

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070605

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070618

R150 Certificate of patent or registration of utility model

Ref document number: 3975110

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100622

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110622

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110622

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120622

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130622

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees