JP2003302264A - Ultrasonic propagation device - Google Patents

Ultrasonic propagation device

Info

Publication number
JP2003302264A
JP2003302264A JP2002105009A JP2002105009A JP2003302264A JP 2003302264 A JP2003302264 A JP 2003302264A JP 2002105009 A JP2002105009 A JP 2002105009A JP 2002105009 A JP2002105009 A JP 2002105009A JP 2003302264 A JP2003302264 A JP 2003302264A
Authority
JP
Japan
Prior art keywords
ultrasonic
measuring
ultrasonic wave
measuring tube
ultrasonic piezoelectric
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002105009A
Other languages
Japanese (ja)
Inventor
Akio Yasumatsu
彰夫 安松
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yokogawa Electric Corp
Original Assignee
Yokogawa Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yokogawa Electric Corp filed Critical Yokogawa Electric Corp
Priority to JP2002105009A priority Critical patent/JP2003302264A/en
Publication of JP2003302264A publication Critical patent/JP2003302264A/en
Pending legal-status Critical Current

Links

Landscapes

  • Measuring Volume Flow (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an inexpensive ultrasonic propagation device having an excellent assemblage, manufacturable at a low cost, and providing a high reliability. <P>SOLUTION: This ultrasonic propagation device for measuring the flow or physical amount of measured fluid flowing in a measurement pipe comprises a straight measurement pipe having a same diameter through the overall length thereof, two ultrasonic piezoelectric vibrators installed on the upstream and downstream sides of the measurement pipe at a specified interval with the inner peripheral surface thereof fitted to the outer peripheral surface of the measurement pipe, providing specified measurement sensitivities, and formed in semi-circular or smaller annular shapes, and a calculation circuit for receiving ultrasonic transmitted from one ultrasonic piezoelectric vibrator by the other ultrasonic piezoelectric vibrator and calculating the flow or physical amount of the flow by the signals. <P>COPYRIGHT: (C)2004,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、組立て性が良好
で、コストダウンが可能となり、信頼性が高く、安価な
超音波伝播装置に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an ultrasonic wave propagation device which is easy to assemble, allows cost reduction, has high reliability, and is inexpensive.

【0002】[0002]

【従来の技術】図9は、従来より一般に使用されている
従来例の構成説明図で、例えば、特開2000−180
228号(特願平10−359753号)に示されてい
る。
2. Description of the Related Art FIG. 9 is a structural explanatory view of a conventional example which has been generally used, for example, Japanese Patent Laid-Open No. 2000-180.
No. 228 (Japanese Patent Application No. 10-359753).

【0003】図において、11は測定流体FLが流れ全
長にわたって同直径をなす直管状の測定管である。1
2,13はこの測定管11に一定の距離Lをおいて配置
された円環状の第1の超音波圧電振動子と第2の超音波
圧電振動子である。
In the figure, reference numeral 11 is a straight tube-shaped measuring tube in which the measuring fluid FL flows and has the same diameter over its entire length. 1
Reference numerals 2 and 13 are an annular first ultrasonic piezoelectric vibrator and a second ultrasonic piezoelectric vibrator which are arranged in the measuring tube 11 at a constant distance L.

【0004】14,15は一方の超音波圧電振動子1
2,13から発信した超音波を他方の超音波圧電振動子
12,13で受信し、発信側と受信側の超音波圧電振動
子12,13を交互に切換える切換回路である。
Reference numerals 14 and 15 designate one ultrasonic piezoelectric vibrator 1
This is a switching circuit that receives the ultrasonic waves transmitted from the other ultrasonic piezoelectric vibrators 12 and 13 and alternately switches the ultrasonic piezoelectric vibrators 12 and 13 on the transmitting side and the receiving side.

【0005】16,17は、切換回路14,15の切換え
に基づいて、上流側から下流側への超音波の伝播時間と
下流側から上流側への超音波の伝播時間とをそれぞれ計
測する伝播時間計測回路である。
Propagations 16 and 17 measure the propagation time of the ultrasonic wave from the upstream side to the downstream side and the propagation time of the ultrasonic wave from the downstream side to the upstream side, respectively, based on the switching of switching circuits 14 and 15. It is a time measuring circuit.

【0006】18は、伝播時間計測回路16,17からの
信号により測定流体の流量あるいは物理量を演算する演
算回路である。19は、電源である。
Reference numeral 18 is an arithmetic circuit for calculating the flow rate or physical quantity of the fluid to be measured by the signals from the propagation time measuring circuits 16 and 17. Reference numeral 19 is a power source.

【0007】21,22は、2個の超音波圧電振動子1
2,13間の測定管11にそれぞれ設けられ、2個の超
音波圧電振動子12,13間の測定管11を伝播する超
音波を減衰する減衰部材である。
Reference numerals 21 and 22 denote two ultrasonic piezoelectric vibrators 1.
It is a damping member that is provided in each of the measuring tubes 11 between 2 and 13 and attenuates the ultrasonic waves propagating through the measuring tube 11 between the two ultrasonic piezoelectric vibrators 12 and 13.

【0008】以上の構成において、切換回路14,15
を図9の様にA側に切換えることにより、超音波圧電振
動子12を発振器、超音波圧電振動子13を受振器とし
て、順流れの伝搬時問を伝播時間計測回路16,17で
計測する。
In the above configuration, the switching circuits 14 and 15
9 is switched to the side A as shown in FIG. 9, the ultrasonic piezoelectric vibrator 12 is used as an oscillator, and the ultrasonic piezoelectric vibrator 13 is used as a geophone. .

【0009】また、切換回路14,15を図9とは逆に
B側に切換えることにより、超音波圧電振動子12を受
振器、超音波圧電振動子13を発振器として、逆流れの
伝搬時問を伝播時間計測回路16,17で計測すること
ができる。
In addition, the switching circuits 14 and 15 are reversed from those of FIG.
By switching to the B side, the propagation time of the reverse flow can be measured by the propagation time measuring circuits 16 and 17 using the ultrasonic piezoelectric vibrator 12 as a geophone and the ultrasonic piezoelectric vibrator 13 as an oscillator.

【0010】演算回路18では、播時間計測回路16,
17からの信号により測定流体FLの流量あるいは物理
量を演算することが出来る。このときに、減衰部材2
1,22は、測定管11自身を伝搬する振動波、特に、
高域波をカットする作用を発揮する。
In the arithmetic circuit 18, the seeding time measuring circuit 16,
From the signal from 17, it is possible to calculate the flow rate or physical quantity of the measurement fluid FL. At this time, the damping member 2
Reference numerals 1 and 22 denote vibration waves propagating in the measuring tube 11 itself, in particular,
It exerts the effect of cutting high frequency waves.

【0011】[0011]

【発明が解決しようとする課題】図9従来例の超音波伝
播装置は、ストレートな測定管11の全周に、円環状超
音波圧電振動子12,13を取り付け、超音波を送受信
し、その伝播時間から測定流体の流量あるいは物理量を
測定するものである。
In the ultrasonic wave propagation device of the conventional example shown in FIG. 9, annular ultrasonic piezoelectric vibrators 12 and 13 are attached to the entire circumference of a straight measuring tube 11 to transmit and receive ultrasonic waves. The flow rate or physical quantity of the measurement fluid is measured from the propagation time.

【0012】測定管11部分を直接に伝播に対する超音
波を減衰するための減衰部材21,22部材について
も、測定管11に円環形状減衰部材21,22が接着等
により、取り付けられている。
As for the damping members 21 and 22 for directly attenuating ultrasonic waves for propagation in the measuring pipe 11, the annular damping members 21 and 22 are attached to the measuring pipe 11 by adhesion or the like.

【0013】従来の、円環状超音波圧電振動子12,1
3が用いられた場合、圧電素子の穴に測定管11を通し
た後、所定位置に組み立てた後に、測定管11の両端に
測定管11径より大きなフランジあるいは、管継ぎ手を
取り付ける必要がある場合、フランジ継ぎ手を測定管1
1に接着や溶接などで取付ける必要がある。
Conventional annular ultrasonic piezoelectric vibrators 12, 1
When 3 is used, it is necessary to attach a flange larger than the diameter of the measuring pipe 11 or a pipe joint to both ends of the measuring pipe 11 after passing the measuring pipe 11 through the hole of the piezoelectric element and then assembling it at a predetermined position. , Flange fitting measuring pipe 1
It is necessary to attach it to 1 by adhesion or welding.

【0014】なお、超音波圧電振動子を1/2にカット
し、組み立てるものもみられるが(特開平11−264
750号公報)、最終的には、これを2つ組み合わせ円
環形状に組み立てて使用している。しかし、半円状に、
1/2にカットした超音波圧電振動子を2つ組み合わせ
るタイプはこの点は問題ない。
There is also an assembly in which the ultrasonic piezoelectric vibrator is cut in half and assembled (Japanese Patent Laid-Open No. 11-264).
No. 750), and finally, two of them are combined and assembled into an annular shape for use. However, in a semicircular shape,
This is not a problem for the type that combines two ultrasonic piezoelectric vibrators cut in half.

【0015】次に、超音波圧電振動子12,13等を収
めるケースも、超音波圧電振動子12,13と同様に、
測定管11を挟み込む形で設けられる必要がある。これ
は、一般的に、銀の焼き付け電極が使用される超音波圧
電振動子12,13の電極の腐食防止やリード線の保
護、あるいは、測定管11の両端に接する配管からの外
部応力に耐えられるようにするためである。
Next, the case in which the ultrasonic piezoelectric vibrators 12 and 13 are housed is the same as the ultrasonic piezoelectric vibrators 12 and 13,
The measurement tube 11 needs to be provided so as to sandwich it. In general, this is to prevent corrosion of the electrodes of the ultrasonic piezoelectric vibrators 12 and 13 using silver-baked electrodes, protect lead wires, or withstand external stress from pipes contacting both ends of the measuring tube 11. This is to ensure that

【0016】また、送受信器間の測定管11自体を伝播
する超音波は、ノイズとなるが、これを小さくするため
の減衰部材21,22を、超音波圧電振動子12,13
と同様に取り付けるために、接着等を行う必要がある。
The ultrasonic waves propagating in the measuring tube 11 itself between the transmitter and the receiver become noise, and the damping members 21 and 22 for reducing the noise are provided in the ultrasonic piezoelectric vibrators 12 and 13.
In order to attach it in the same manner as above, it is necessary to carry out adhesion or the like.

【0017】また、信号処理を行う変換部分は検出部分
と別体に作られるのが、一般的であるが、コスト的に高
価となる。
Further, it is general that the conversion portion for performing the signal processing is formed separately from the detection portion, but it is expensive in cost.

【0018】本発明の目的は、上記の課題を解決するも
ので、本発明は、組立て性が良好で、コストダウンが可
能となり、信頼性が高く、安価な超音波伝播装置を提供
することにある。
An object of the present invention is to solve the above problems, and the present invention provides an ultrasonic wave propagation device which is easy to assemble, enables cost reduction, is highly reliable, and is inexpensive. is there.

【0019】[0019]

【課題を解決するための手段】このような目的を達成す
るために、本発明では、請求項1記載の超音波伝播装置
においては、測定管内を流れる測定流体の流量あるいは
物理量を超音波を利用して計測する超音波伝播装置にお
いて、全長にわたって同直径をなす直管状の測定管と、
この測定管の上下流に所定間隔を置いて内周面が前記測
定管の外周面に取付けられ所定測定感度が得られ且つ半
円環以下の形状を有する2個の超音波圧電振動子と、一
方の前記超音波圧電振動子から発信した超音波を他方の
前記超音波圧電振動子で受信し発信側と受信側の前記超
音波圧電振動子を交互に切換える切換回路と、この切換
回路の切換えに基づいて上流側から下流側への超音波の
伝播時間と下流側から上流側への超音波の伝播時間とを
それぞれ計測する伝播時間計測回路と、この播時間計測
回路からの信号により測定流体の流量あるいは物理量を
演算する演算回路とを具備した事を特徴とする。
In order to achieve such an object, according to the present invention, in the ultrasonic wave propagation device according to claim 1, ultrasonic waves are used as the flow rate or physical quantity of the measuring fluid flowing in the measuring pipe. In the ultrasonic wave propagating device for measuring by a straight tube measuring tube having the same diameter over the entire length,
Two ultrasonic piezoelectric vibrators having an inner peripheral surface attached to the outer peripheral surface of the measuring tube at a predetermined interval upstream and downstream of the measuring tube to obtain a predetermined measurement sensitivity and having a shape of a semi-circular ring or less, A switching circuit that receives ultrasonic waves transmitted from one of the ultrasonic piezoelectric vibrators by the other ultrasonic piezoelectric vibrator and switches the ultrasonic piezoelectric vibrators on the transmitting side and the receiving side alternately, and switching of this switching circuit A propagation time measuring circuit that measures the propagation time of the ultrasonic wave from the upstream side to the downstream side and the propagation time of the ultrasonic wave from the downstream side to the upstream side, respectively, based on And a calculation circuit for calculating the flow rate or physical quantity of.

【0020】本発明の請求項2記載の超音波伝播装置に
おいては、測定管内を流れる測定流体の流量あるいは物
理量を超音波を利用して計測する超音波伝播装置におい
て、全長にわたって同直径をなす直管状の測定管と、こ
の測定管の上下流に所定間隔を置いて内周面が前記測定
管の外周面に取付けられ所定測定感度が得られ且つ半円
環以下の形状を有する2個の超音波圧電振動子と、一方
の前記超音波圧電振動子から発信した超音波を他方の前
記超音波圧電振動子で受信し受信レベルの大きさから物
理量を演算する演算回路とを具備したことを特徴とす
る。
In the ultrasonic wave propagating device according to the second aspect of the present invention, in the ultrasonic wave propagating device for measuring the flow rate or physical quantity of the measuring fluid flowing in the measuring pipe by using ultrasonic waves, a straight line having the same diameter over the entire length. A tubular measuring tube, and two superstructures having an inner peripheral surface attached to the outer peripheral surface of the measuring tube at predetermined intervals upstream and downstream of the measuring tube to obtain a predetermined measurement sensitivity and having a shape of a semicircular ring or less. A piezoelectric acoustic wave oscillator and an arithmetic circuit that receives an ultrasonic wave transmitted from one ultrasonic piezoelectric oscillator at the other ultrasonic piezoelectric oscillator and calculates a physical quantity from the magnitude of the reception level. And

【0021】本発明の請求項3においては、請求項1又
は請求項2記載の超音波伝播装置において、前記測定管
と継ぎ手部と前記超音波圧電振動子の保護ケースとが最
初から一体成形により形成されたことを特徴とする。
According to a third aspect of the present invention, in the ultrasonic wave propagation device according to the first or second aspect, the measuring tube, the joint portion, and the protective case for the ultrasonic piezoelectric vibrator are integrally formed from the beginning. It is characterized by being formed.

【0022】本発明の請求項4においては、請求項3記
載の超音波伝播装置において、前記2個の半円環状の超
音波圧電振動子間の前記測定管にそれぞれ設けられ前記
2個の超音波圧電振動子間の前記測定管を伝播する超音
波ノイズを減衰する減衰部材と前記測定管と継ぎ手部と
前記超音波圧電振動子の保護ケースとが最初から一体成
形により形成されたことを特徴とする。
According to a fourth aspect of the present invention, in the ultrasonic wave propagation device according to the third aspect, the two ultrasonic transducers provided in the measuring tubes between the two semi-annular ultrasonic piezoelectric vibrators are provided. An attenuating member for attenuating ultrasonic noise propagating in the measuring tube between the sonic piezoelectric vibrators, the measuring tube, a joint portion, and a protective case of the ultrasonic piezoelectric vibrator are integrally formed from the beginning. And

【0023】本発明の請求項5においては、請求項3又
は請求項4記載の超音波伝播装置において、変換回路を
収納する収納ケースが前記保護ケースと最初から一体成
形により形成されたことを特徴とする。
According to a fifth aspect of the present invention, in the ultrasonic wave propagation device according to the third or fourth aspect, the storage case for storing the conversion circuit is formed integrally with the protective case from the beginning. And

【0024】本発明の請求項6においては、請求項3乃
至請求項5の何れかに記載の超音波伝播装置において、
樹脂により最初から一体成形により形成されたことを特
徴とする。
According to a sixth aspect of the present invention, in the ultrasonic wave propagation device according to any one of the third to fifth aspects,
It is characterized by being integrally formed from the beginning with resin.

【0025】[0025]

【発明の実施の形態】以下図面を用いて本発明を詳しく
説明する。図1は本発明の一実施例の要部構成説明図、
図2は図1の平面図、図3は図1の側面図、図4は図1
のA−A断面図である。図において、図9と同一記号の
構成は同一機能を表す。以下、図9と相違部分のみ説明
する。
DETAILED DESCRIPTION OF THE INVENTION The present invention will be described in detail below with reference to the drawings. FIG. 1 is an explanatory view of the main configuration of an embodiment of the present invention,
2 is a plan view of FIG. 1, FIG. 3 is a side view of FIG. 1, and FIG.
FIG. In the figure, the same symbols as those in FIG. 9 represent the same functions. Only the parts different from FIG. 9 will be described below.

【0026】図において、31は、後述する2個の超音
波圧電振動子33,34間の測定管312を伝播する超
音波ノイズを減衰する減衰部材311と、測定管312
と、継ぎ手部313と、超音波圧電振動子33,34の
保護ケース314と、演算回路18を収納する収納ケー
ス315とが最初から一体成形により形成されたケース
本体である。
In the figure, reference numeral 31 denotes an attenuating member 311 for attenuating ultrasonic noise propagating in a measuring pipe 312 between two ultrasonic piezoelectric vibrators 33 and 34, which will be described later, and a measuring pipe 312.
The joint body 313, the protective case 314 for the ultrasonic piezoelectric vibrators 33 and 34, and the housing case 315 for housing the arithmetic circuit 18 are integrally formed from the beginning.

【0027】また、減衰部材311は、測定管312
に、変換器の支持台および配管の補強材をかねた構造部
材をも兼ねる。この場合は、樹脂で一体で成型されてい
る。32は、収納ケース315を覆うカバーである。
Further, the damping member 311 is the measuring pipe 312.
In addition, it also serves as a structural member that doubles as a support for the converter and a reinforcing material for the pipe. In this case, the resin is integrally molded. A cover 32 covers the storage case 315.

【0028】33,34は、測定管312の上下流に、
所定間隔Lを置いて,内周面が、測定管312の外周面に
取付けられ且つ所定測定感度が得られ且つ半円環以下の
形状を有する2個の超音波圧電振動子である。超音波圧
電振動子33,34は、この場合は、半円環状をなす。
33 and 34 are provided on the upstream and downstream sides of the measuring pipe 312,
These are two ultrasonic piezoelectric vibrators whose inner peripheral surface is attached to the outer peripheral surface of the measuring tube 312 at a predetermined interval L, has a predetermined measurement sensitivity, and has a shape of a semi-circular ring or smaller. In this case, the ultrasonic piezoelectric vibrators 33 and 34 have a semi-annular shape.

【0029】以上の構成において、測定管312に取り
付けられた2個の半円環状の超音波圧電振動子33,3
4から、交互に超音波の送受信を行うことにより配管内
の流体を伝播する超音波を検出し演算回路18により流
量信号に変換する。
In the above structure, two semi-annular ultrasonic piezoelectric vibrators 33, 3 attached to the measuring tube 312.
The ultrasonic waves propagating through the fluid in the pipe are detected by alternately transmitting and receiving ultrasonic waves from 4, and the arithmetic circuit 18 converts the ultrasonic waves into a flow rate signal.

【0030】ここにおいて、発明者の実験によれば、超
音波圧電振動子33,34は、円環状でなく、半円環状
であっても、超音波の送受信レベルにおいて、信号処理
上、十分な感度が得られることが分かった。
Here, according to the experiments conducted by the inventor, even if the ultrasonic piezoelectric vibrators 33 and 34 are not annular, but semi-annular, they are sufficient for signal processing at the ultrasonic transmission / reception level. It was found that sensitivity was obtained.

【0031】この結果、 (1)半円環状の超音波圧電振動子を測定管の外周に直
接に、組み付ければ良く、測定管の端部から所定位置ま
で超音波圧電振動子を通す必要も無く、測定管の直径よ
り大きなフランジあるいは管継ぎ手使用の場合、超音波
圧電振動子を測定管に組み立て後に測定管にフランジあ
るいは管継ぎ手を組み立てる必要も無く、組立て性が良
好で、コストダウンが可能となり、信頼性が高く、安価
な超音波伝播装置が得られる。
As a result, (1) the semi-annular ultrasonic piezoelectric vibrator may be directly attached to the outer circumference of the measuring tube, and the ultrasonic piezoelectric vibrator needs to be passed from the end of the measuring tube to a predetermined position. When using a flange or pipe joint larger than the diameter of the measuring pipe, it is not necessary to assemble the flange or pipe joint to the measuring pipe after assembling the ultrasonic piezoelectric vibrator to the measuring pipe, and the ease of assembly is good and the cost can be reduced. Therefore, a highly reliable and inexpensive ultrasonic wave propagation device can be obtained.

【0032】(2)測定管と継ぎ手部と前記超音波圧電
振動子の保護ケースとが最初から一体成形により形成さ
れれば、更に、組立て性が良好で、コストダウンが可能
となり、信頼性が高く、安価な超音波伝播装置が得られ
る。これは、半円環状の超音波圧電振動子が採用できた
為に可能と成ったものである。
(2) If the measuring tube, the joint, and the protective case for the ultrasonic piezoelectric vibrator are integrally formed from the beginning, the assembling property is further improved, the cost can be reduced, and the reliability can be improved. A high and inexpensive ultrasonic wave propagation device can be obtained. This is possible because a semi-annular ultrasonic piezoelectric vibrator can be adopted.

【0033】(3)2個の半円環状の超音波圧電振動子
間の測定管にそれぞれ設けられ、2個の半円環状の超音
波圧電振動子間の測定管を伝播する超音波を減衰する減
衰部材と、測定管とが最初から一体成形により形成され
た。
(3) An ultrasonic wave propagating through the measuring pipe between the two semi-annular ultrasonic piezoelectric vibrators is provided in each of the measuring pipes between the two semi-annular ultrasonic piezoelectric vibrators. The damping member and the measuring tube were integrally formed from the beginning.

【0034】従って、接着等を行う必要がなく、更に、
組立て性が良好で、コストダウンが可能となり、音響的
に一体であるために減衰効果が大きく、信頼性が高く、
安価な超音波伝播装置が得られる。これは、半円環状の
超音波圧電振動子が採用できた為に可能と成ったもので
ある。
Therefore, it is not necessary to perform adhesion, and further,
Assembleability is good, cost reduction is possible, and because it is acoustically integrated, the damping effect is large, the reliability is high,
An inexpensive ultrasonic wave propagation device can be obtained. This is possible because a semi-annular ultrasonic piezoelectric vibrator can be adopted.

【0035】(4)変換回路を収納する収納ケースが、
保護ケースと最初から一体成形により形成されたので、
別体で無く、コスト的に安価になり、組立て性が良好
で、コストダウンが可能となり、信頼性が高く、安価な
超音波伝播装置が得られる。
(4) The storage case for storing the conversion circuit is
As it was formed by integral molding from the beginning with the protective case,
It is not a separate body, the cost is low, the assemblability is good, the cost can be reduced, the reliability is high, and the inexpensive ultrasonic wave propagation device can be obtained.

【0036】また、わずか2点の樹脂部品により検出部
および保護ケースが構成でき、組み立てが容易でなおか
つ安価で、信頼性に優れた超音波流量計が得られる。
Further, since the detecting portion and the protective case can be constituted by only two resin parts, the ultrasonic flowmeter which is easy to assemble, inexpensive and excellent in reliability can be obtained.

【0037】(5)樹脂により最初から一体成形により
形成されたので、更に、組立て性が良好で、コストダウ
ンが可能となり、信頼性が高く、安価な超音波伝播装置
が得られる。
(5) Since the resin is integrally formed from the beginning, the assembling property is good, the cost can be reduced, the reliability is high, and the ultrasonic wave transmitting device is inexpensive.

【0038】図5は本発明の他の実施例の要部構成説明
図、図6は図5の側面図である。本実施例においては、
超音波圧電振動子33,34の測定管312への取付け
角度が90度互いに相違するものである。
FIG. 5 is an explanatory view of the essential structure of another embodiment of the present invention, and FIG. 6 is a side view of FIG. In this embodiment,
The mounting angles of the ultrasonic piezoelectric vibrators 33 and 34 to the measuring tube 312 are different from each other by 90 degrees.

【0039】図7は本発明の他の実施例の要部構成説明
図、図8は図7の側面図である。本実施例においては、
超音波圧電振動子33,34の測定管312への取付け
角度が180度互いに相違するものである。
FIG. 7 is an explanatory view of the essential structure of another embodiment of the present invention, and FIG. 8 is a side view of FIG. In this embodiment,
The attachment angles of the ultrasonic piezoelectric vibrators 33 and 34 to the measuring tube 312 are different from each other by 180 degrees.

【0040】なを、前述の実施例においては、半円環状
の超音波圧電振動子33,34について説明したが、こ
れに限る事は無く、たとえば、半円環状よりも小さくて
も良く、要するに、測定管312の上下流に所定間隔を
置いて内周面が、測定管312の外周面に取付けられ、
所定測定感度が得られ且つ半円環以下の形状を有する2
個の超音波圧電振動子であれば良い。
In the above-mentioned embodiments, the semi-annular ultrasonic piezoelectric vibrators 33 and 34 have been described, but the present invention is not limited to this, and may be smaller than the semi-annular, for example. , The inner peripheral surface is attached to the outer peripheral surface of the measuring pipe 312 at a predetermined interval upstream and downstream of the measuring pipe 312,
Has a predetermined measurement sensitivity and has a shape of a semi-ring or less 2
Any number of ultrasonic piezoelectric vibrators may be used.

【0041】また、前述の実施例においては、超音波圧
電振動子33,34の測定管312への取付け角度につ
いて、0度、90度、180度互いにずれたものに付い
て説明したが、これに限る事は無く、何度に互いにずれ
ても良いことは勿論である。
Further, in the above-mentioned embodiments, the mounting angles of the ultrasonic piezoelectric vibrators 33 and 34 to the measuring tube 312 are described as being offset from each other by 0 °, 90 ° and 180 °. It is not limited to the above, and it goes without saying that they may be displaced from each other any number of times.

【0042】また、本発明は超音波流量計だけでなく、
流体内の音あるいは超音波の伝播時間から音速を測定す
ることによる、あるいは、超音波の受信レベルを観測す
ることによる濃度計や成分分析装置、気泡検出器などに
も適用が可能である。
The present invention is not limited to the ultrasonic flowmeter,
It is also applicable to a densitometer, a component analyzer, a bubble detector, etc. by measuring the speed of sound from the propagation time of sound or ultrasonic waves in a fluid, or by observing the reception level of ultrasonic waves.

【0043】なお、以上の説明は、本発明の説明および
例示を目的として特定の好適な実施例を示したに過ぎな
い。したがって本発明は、上記実施例に限定されること
なく、その本質から逸脱しない範囲で更に多くの変更、
変形をも含むものである。
The above description merely shows specific preferred embodiments for the purpose of explaining and exemplifying the present invention. Therefore, the present invention is not limited to the above-mentioned embodiment, and many modifications are made without departing from the essence thereof.
It also includes deformation.

【0044】[0044]

【発明の効果】以上説明したように、本発明の請求項1
あるいは請求項2によれば、次のような効果がある。全
長にわたって同直径をなす直管状の測定管と、この測定
管の上下流に所定間隔を置いて内周面が前記測定管の外
周面に取付けられ所定測定感度が得られ且つ半円環以下
の形状を有する2個の超音波圧電振動子と、一方の前記
超音波圧電振動子から発信した超音波を他方の前記超音
波圧電振動子で受信し、伝播時間あるいは受信レベルの
大きさより測定流体の流量あるいは物理量を演算する演
算回路とを具備した。
As described above, according to the first aspect of the present invention.
Alternatively, according to claim 2, there is the following effect. A straight tubular measuring tube having the same diameter over its entire length, and an inner peripheral surface attached to the outer peripheral surface of the measuring tube at a predetermined interval upstream and downstream of the measuring tube to obtain a predetermined measurement sensitivity and a semi-circular ring or less. Two ultrasonic piezoelectric vibrators having a shape, and ultrasonic waves transmitted from one of the ultrasonic piezoelectric vibrators are received by the other ultrasonic piezoelectric vibrator, and the ultrasonic wave of the measurement fluid is measured based on the propagation time or the size of the reception level. An arithmetic circuit for calculating a flow rate or a physical quantity is provided.

【0045】従って、超音波圧電振動子を測定管の外周
に直接に、組み付ければ良く、測定管の端部から所定位
置まで超音波圧電振動子を通す必要も無く、測定管の直
径より大きなフランジあるいは管継ぎ手使用の場合、超
音波圧電振動子を測定管に組み立て後に測定管にフラン
ジあるいは管継ぎ手を組み立てる必要も無く、組立て性
が良好で、コストダウンが可能となり、信頼性が高く、
安価な超音波伝播装置が得られる。
Therefore, it suffices to mount the ultrasonic piezoelectric vibrator directly on the outer circumference of the measuring pipe, and it is not necessary to pass the ultrasonic piezoelectric vibrator from the end of the measuring pipe to a predetermined position, and the ultrasonic piezoelectric vibrator is larger than the diameter of the measuring pipe. When using a flange or pipe joint, it is not necessary to assemble the flange or pipe joint on the measuring pipe after assembling the ultrasonic piezoelectric vibrator to the measuring pipe, and the assemblability is good, the cost can be reduced, and the reliability is high.
An inexpensive ultrasonic wave propagation device can be obtained.

【0046】本発明の請求項3によれば、次のような効
果がある。測定管と継ぎ手部と前記超音波圧電振動子の
保護ケースとが最初から一体成形により形成されたの
で、更に、組立て性が良好で、コストダウンが可能とな
り、信頼性が高く、安価な超音波伝播装置が得られる。
According to claim 3 of the present invention, there are the following effects. Since the measuring tube, the joint and the protective case for the ultrasonic piezoelectric vibrator are integrally formed from the beginning, the assemblability is good, the cost can be reduced, the reliability is high, and the ultrasonic wave is inexpensive. A propagation device is obtained.

【0047】これは、測定管の上下流に所定間隔を置い
て内周面が、測定管の外周面に取付けられ、所定測定感
度が得られ且つ半円環以下の形状を有する2個の超音波
圧電振動子が採用できた為に可能と成ったものである。
This is because the inner peripheral surface is attached to the outer peripheral surface of the measuring tube at a predetermined interval in the upstream and downstream of the measuring tube so that a predetermined measuring sensitivity can be obtained and the shape of the semi-circular ring or less is two. This is possible because a piezoelectric acoustic wave oscillator can be adopted.

【0048】本発明の請求項4によれば、次のような効
果がある。2個の超音波圧電振動子間の測定管にそれぞ
れ設けられ、2個の超音波圧電振動子間の測定管を伝播
する超音波を減衰する減衰部材と、測定管とが最初から
一体成形により形成された。
According to claim 4 of the present invention, the following effects can be obtained. An attenuating member that is provided in each of the measuring tubes between the two ultrasonic piezoelectric vibrators and that attenuates the ultrasonic waves propagating through the measuring tubes between the two ultrasonic piezoelectric vibrators and the measuring tube are integrally molded from the beginning. Been formed.

【0049】従って、接着等を行う必要がなく、更に、
組立て性が良好で、コストダウンが可能となり、音響的
に一体であるために減衰効果が大きく、信頼性が高く、
安価な超音波伝播装置が得られる。
Therefore, it is not necessary to perform adhesion or the like, and further,
Assembleability is good, cost reduction is possible, and because it is acoustically integrated, the damping effect is large, the reliability is high,
An inexpensive ultrasonic wave propagation device can be obtained.

【0050】これは、この測定管の上下流に所定間隔を
置いて内周面が前記測定管の外周面に取付けられ所定測
定感度が得られ且つ半円環以下の形状を有する2個の超
音波圧電振動子が採用できた為に可能と成ったものであ
る。
This is because two superstructures having an inner peripheral surface attached to the outer peripheral surface of the measuring pipe at a predetermined interval upstream and downstream of the measuring pipe to obtain a predetermined measuring sensitivity and having a shape of a semi-circular ring or less. This is possible because a piezoelectric acoustic wave oscillator can be adopted.

【0051】本発明の請求項5によれば、次のような効
果がある。変換回路を収納する収納ケースが、保護ケー
スと最初から一体成形により形成されたので、別体で無
く、コスト的に安価になり、組立て性が良好で、コスト
ダウンが可能となり、信頼性が高く、安価な超音波伝播
装置が得られる。
According to claim 5 of the present invention, the following effects can be obtained. Since the storage case that houses the conversion circuit was formed integrally with the protective case from the beginning, it is not a separate body, it is cheaper in terms of cost, it is easy to assemble, cost can be reduced, and reliability is high. An inexpensive ultrasonic wave propagation device can be obtained.

【0052】本発明の請求項6によれば、次のような効
果がある。樹脂により最初から一体成形により形成され
たので、更に、組立て性が良好で、コストダウンが可能
となり、信頼性が高く、安価な超音波伝播装置が得られ
る。
According to claim 6 of the present invention, there are the following effects. Since the resin is integrally formed from the beginning, the assembling property is further improved, the cost can be reduced, the reliability is high, and the ultrasonic wave transmitting device is inexpensive.

【0053】また、わずか2点の樹脂部品により検出部
および保護ケースが構成でき、組み立てが容易でなおか
つ安価で、信頼性に優れた超音波流量計が得られる。
Further, since the detecting portion and the protective case can be constituted by only two resin parts, the ultrasonic flowmeter which is easy to assemble, inexpensive and excellent in reliability can be obtained.

【0054】従って、本発明によれば、組立て性が良好
で、コストダウンが可能となり、信頼性が高く、安価な
超音波伝播装置を実現することが出来る。
Therefore, according to the present invention, it is possible to realize an ultrasonic wave propagation device which has a good assembling property, enables cost reduction, has high reliability, and is inexpensive.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例の要部構成説明図である。FIG. 1 is an explanatory diagram of a main part configuration of an embodiment of the present invention.

【図2】図1の平面図である。FIG. 2 is a plan view of FIG.

【図3】図1の側面図である。FIG. 3 is a side view of FIG.

【図4】図1のA−A断面図である。FIG. 4 is a cross-sectional view taken along the line AA of FIG.

【図5】本発明の他の実施例の要部構成説明図である。FIG. 5 is an explanatory diagram of a main part configuration of another embodiment of the present invention.

【図6】図5の側面図である。FIG. 6 is a side view of FIG.

【図7】本発明の他の実施例の要部構成説明図である。FIG. 7 is an explanatory diagram of a main part configuration of another embodiment of the present invention.

【図8】図7の側面図である。FIG. 8 is a side view of FIG. 7.

【図9】従来より一般に使用されている従来例の要部構
成説明図である。
FIG. 9 is an explanatory diagram of a main part configuration of a conventional example that is generally used in the past.

【符号の説明】[Explanation of symbols]

11 測定管 12 第1の超音波圧電振動子 13 第2の超音波圧電振動子 14 切換回路 15 切換回路 16 伝播時間計測回路 17 伝播時間計測回路 18 演算回路 19 電源 21 減衰部材 22 減衰部材 31 ケース本体 311 減衰部材 312 測定管 313 継ぎ手部 314 保護ケース 315 収納ケース 32 カバー 33 超音波圧電振動子 34 超音波圧電振動子 FL 測定流体 11 measuring tubes 12 First ultrasonic piezoelectric vibrator 13 Second ultrasonic piezoelectric vibrator 14 Switching circuit 15 Switching circuit 16 Propagation time measurement circuit 17 Propagation time measurement circuit 18 Arithmetic circuit 19 power supply 21 Damping member 22 Damping member 31 Case body 311 Damping member 312 measuring tube 313 Joint part 314 protective case 315 storage case 32 covers 33 Ultrasonic piezoelectric vibrator 34 Ultrasonic Piezoelectric Transducer FL measuring fluid

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】測定管内を流れる測定流体の流量あるいは
物理量を超音波を利用して計測する超音波伝播装置にお
いて、 全長にわたって同直径をなす直管状の測定管と、 この測定管の上下流に所定間隔を置いて内周面が前記測
定管の外周面に取付けられ所定測定感度が得られ且つ半
円環以下の形状を有する2個の超音波圧電振動子と、 一方の前記超音波圧電振動子から発信した超音波を他方
の前記超音波圧電振動子で受信し発信側と受信側の前記
超音波圧電振動子を交互に切換える切換回路と、 この切換回路の切換えに基づいて上流側から下流側への
超音波の伝播時間と下流側から上流側への超音波の伝播
時間とをそれぞれ計測する伝播時間計測回路と、 この播時間計測回路からの信号により測定流体の流量あ
るいは物理量を演算する演算回路とを具備した事を特徴
とする超音波伝播装置。
1. An ultrasonic wave propagation device for measuring the flow rate or physical quantity of a measuring fluid flowing in a measuring tube using ultrasonic waves, wherein a straight tube measuring tube having the same diameter over its entire length and upstream and downstream of this measuring tube. Two ultrasonic piezoelectric vibrators having an inner peripheral surface attached to the outer peripheral surface of the measuring tube at a predetermined interval to obtain a predetermined measurement sensitivity and having a shape of a semi-circular ring or less, and one of the ultrasonic piezoelectric vibrations. A switching circuit that receives the ultrasonic wave transmitted from the child by the other ultrasonic piezoelectric vibrator and alternately switches the ultrasonic piezoelectric vibrators on the transmitting side and the receiving side, and from the upstream side to the downstream side based on the switching of this switching circuit. Side propagation time measurement circuit that measures the propagation time of the ultrasonic wave to the side and the propagation time of the ultrasonic wave from the downstream side to the upstream side respectively, and the flow rate or physical quantity of the measured fluid is calculated by the signal from this seeding time measurement circuit. Calculation Ultrasonic propagation apparatus characterized by comprising a road.
【請求項2】測定管内を流れる測定流体の流量あるいは
物理量を超音波を利用して計測する超音波伝播装置にお
いて、 全長にわたって同直径をなす直管状の測定管と、 この測定管の上下流に所定間隔を置いて内周面が前記測
定管の外周面に取付けられ所定測定感度が得られ且つ半
円環以下の形状を有する2個の超音波圧電振動子と、 一方の前記超音波圧電振動子から発信した超音波を他方
の前記超音波圧電振動子で受信し受信レベルの大きさか
ら物理量を演算する演算回路とを具備したことを特徴と
する超音波伝播装置
2. An ultrasonic wave propagation device for measuring the flow rate or physical quantity of a measuring fluid flowing in a measuring tube by using ultrasonic waves, wherein a straight tube measuring tube having the same diameter over its entire length and upstream and downstream of this measuring tube. Two ultrasonic piezoelectric vibrators having an inner peripheral surface attached to the outer peripheral surface of the measuring tube at a predetermined interval to obtain a predetermined measurement sensitivity and having a shape of a semi-circular ring or less, and one of the ultrasonic piezoelectric vibrations. An ultrasonic wave propagation device, comprising: an arithmetic circuit that receives an ultrasonic wave transmitted from a child by the other ultrasonic piezoelectric vibrator and calculates a physical quantity from the magnitude of the reception level.
【請求項3】前記測定管と継ぎ手部と前記超音波圧電振
動子の保護ケースとが最初から一体成形により形成され
たことを特徴とする請求項1又は請求項2記載の超音波
伝播装置。
3. The ultrasonic wave propagation device according to claim 1, wherein the measuring tube, the joint portion, and the protective case for the ultrasonic piezoelectric vibrator are integrally formed from the beginning.
【請求項4】前記2個の超音波圧電振動子間の前記測定
管にそれぞれ設けられ前記2個の超音波圧電振動子間の
前記測定管を伝播する超音波ノイズを減衰する減衰部材
と前記測定管と継ぎ手部と前記超音波圧電振動子の保護
ケースとが最初から一体成形により形成されたことを特
徴とする請求項3記載の超音波伝播装置。
4. An attenuating member, which is provided in each of the measuring pipes between the two ultrasonic piezoelectric vibrators and attenuates ultrasonic noise propagating in the measuring pipes between the two ultrasonic piezoelectric vibrators, and 4. The ultrasonic wave propagation device according to claim 3, wherein the measuring tube, the joint portion, and the protective case for the ultrasonic piezoelectric vibrator are integrally formed from the beginning.
【請求項5】変換回路を収納する収納ケースが前記保護
ケースと最初から一体成形により形成されたことを特徴
とする請求項3又は請求項4記載の超音波伝播装置。
5. The ultrasonic wave propagation device according to claim 3, wherein a housing case for housing the conversion circuit is formed integrally with the protective case from the beginning.
【請求項6】樹脂により最初から一体成形により形成さ
れたことを特徴とする請求項3乃至請求項5の何れかに
記載の超音波伝播装置。
6. The ultrasonic wave propagation device according to claim 3, wherein the ultrasonic wave propagation device is integrally formed from resin from the beginning.
JP2002105009A 2002-04-08 2002-04-08 Ultrasonic propagation device Pending JP2003302264A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002105009A JP2003302264A (en) 2002-04-08 2002-04-08 Ultrasonic propagation device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002105009A JP2003302264A (en) 2002-04-08 2002-04-08 Ultrasonic propagation device

Publications (1)

Publication Number Publication Date
JP2003302264A true JP2003302264A (en) 2003-10-24

Family

ID=29389914

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002105009A Pending JP2003302264A (en) 2002-04-08 2002-04-08 Ultrasonic propagation device

Country Status (1)

Country Link
JP (1) JP2003302264A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011162284A1 (en) * 2010-06-22 2011-12-29 株式会社泉技研 Ultrasonic flow rate measuring device and ultrasonic flow rate measuring method
WO2012008111A1 (en) * 2010-07-12 2012-01-19 パナソニック株式会社 Ultrasonic flow rate measurement unit
JP2013068589A (en) * 2011-11-04 2013-04-18 Masamichi Iwasa Ultrasonic sensor and ultrasonic flow meter using the same
CN105811803A (en) * 2016-03-16 2016-07-27 江苏大学 Piezoelectric material based fluid vibration energy collection apparatus
CN114354761A (en) * 2022-01-11 2022-04-15 重庆医科大学 Device and method for measuring loss of acoustic waveguide

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011162284A1 (en) * 2010-06-22 2011-12-29 株式会社泉技研 Ultrasonic flow rate measuring device and ultrasonic flow rate measuring method
JP2012027012A (en) * 2010-06-22 2012-02-09 Izumi Giken:Kk Ultrasonic flow rate measuring equipment and ultrasonic flow rate measuring method
WO2012008111A1 (en) * 2010-07-12 2012-01-19 パナソニック株式会社 Ultrasonic flow rate measurement unit
CN103003672A (en) * 2010-07-12 2013-03-27 松下电器产业株式会社 Ultrasonic flow rate measurement unit
JP2013068589A (en) * 2011-11-04 2013-04-18 Masamichi Iwasa Ultrasonic sensor and ultrasonic flow meter using the same
WO2013065231A1 (en) * 2011-11-04 2013-05-10 Iwasa Masamichi Ultrasonic sensor and ultrasonic flowmeter using same
CN105811803A (en) * 2016-03-16 2016-07-27 江苏大学 Piezoelectric material based fluid vibration energy collection apparatus
CN114354761A (en) * 2022-01-11 2022-04-15 重庆医科大学 Device and method for measuring loss of acoustic waveguide
CN114354761B (en) * 2022-01-11 2024-01-12 重庆医科大学 Device and method for measuring loss of acoustic waveguide tube

Similar Documents

Publication Publication Date Title
JP4233445B2 (en) Ultrasonic flow meter
US20050097968A1 (en) Ultrasonic flow meter and ultrasonic sensor
JP3569799B2 (en) Ultrasonic flow meter
JP3761399B2 (en) Ultrasonic flow meter
JP2012027012A (en) Ultrasonic flow rate measuring equipment and ultrasonic flow rate measuring method
WO2012008151A1 (en) Ultrasonic flow measurement unit and ultrasonic flowmeter using same
JP5046330B2 (en) Ultrasonic flowmeter and ultrasonic transducer unit
JP2008275607A (en) Ultrasonic flow meter
WO2005083371A1 (en) Doppler type ultrasonic flowmeter
JP2012028961A (en) Method for attaching ultrasonic transducer and ultrasonic flowmeter using the same
JP2003302264A (en) Ultrasonic propagation device
CN103080740B (en) Apparatus and method for non-invasive measurement of the sound velocity of a fluid flowing in a tubing
KR100311855B1 (en) Fluid flow meter
JP2004157101A (en) Ultrasonic flowmeter
JP4827008B2 (en) Ultrasonic flow meter, ultrasonic transducer, ultrasonic transmission / reception unit, and flow measurement method using ultrasonic flow meter
JPS61132823A (en) Ultrasonic flowmeter
JP2012018030A (en) Ultrasonic sensor attachment structure and ultrasonic flow measuring device using the same
KR101146518B1 (en) A Clamp-on type Multipath Ultrasonic Flowsensor and Installation Method thereof
JP4069222B2 (en) Ultrasonic vortex flowmeter
JP3738891B2 (en) Ultrasonic flow meter
JPH09189589A (en) Flow rate measuring apparatus
JP7246275B2 (en) Spiral ultrasonic flowmeter
JPH0716977Y2 (en) Ultrasonic probe and ultrasonic flowmeter using the same
JP3368305B2 (en) Ultrasonic flow meter
JP3480711B2 (en) Ultrasonic vortex flowmeter

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040315

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060322

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060327

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060523

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20060713