JP2003297340A - Positive electrode for non-aqueous electrolyte secondary battery and secondary battery using such positive electrode - Google Patents

Positive electrode for non-aqueous electrolyte secondary battery and secondary battery using such positive electrode

Info

Publication number
JP2003297340A
JP2003297340A JP2002093973A JP2002093973A JP2003297340A JP 2003297340 A JP2003297340 A JP 2003297340A JP 2002093973 A JP2002093973 A JP 2002093973A JP 2002093973 A JP2002093973 A JP 2002093973A JP 2003297340 A JP2003297340 A JP 2003297340A
Authority
JP
Japan
Prior art keywords
positive electrode
active material
aqueous electrolyte
secondary battery
electrode active
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002093973A
Other languages
Japanese (ja)
Inventor
Hiroaki Yoshida
吉田  浩明
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Storage Battery Co Ltd
Original Assignee
Japan Storage Battery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Storage Battery Co Ltd filed Critical Japan Storage Battery Co Ltd
Priority to JP2002093973A priority Critical patent/JP2003297340A/en
Publication of JP2003297340A publication Critical patent/JP2003297340A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a positive electrode having a high energy density, an excellent heavy load characteristic, and an excellent low-temperature characteristic and provide a non-aqueous electrolyte secondary battery using such a positive electrode. <P>SOLUTION: The positive electrode 3 includes positive electrode active material layers 15 and 16 located on the sides of a positive electrode current collector 13 and containing LiXNi<SB>1-</SB>Y<SB>-</SB>ZCoYMZO<SB>2</SB>provided that the conditions 0.95≤x≤1.25, 0.01≤y≤0.50, and 0.01≤z≤0.40 should be met (where M is one or more metals selected among Ti, Cr, Fe, Mn, Zn, Al, Mo, W), wherein the thickness T<SB>1</SB>of the positive electrode current collector 13 and the total (T<SB>2</SB>+T<SB>3</SB>) of the thicknesses of the positive electrode active material layers 15 and 16 should meet the conditions 2.5≤(T<SB>2</SB>+T<SB>3</SB>)/T<SB>1</SB>and (T<SB>2</SB>+T<SB>3</SB>)≤250 μm. <P>COPYRIGHT: (C)2004,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、非水電解質二次電
池用正極及びそれを用いた非水電解質二次電池に関す
る。
TECHNICAL FIELD The present invention relates to a positive electrode for a non-aqueous electrolyte secondary battery and a non-aqueous electrolyte secondary battery using the same.

【0002】[0002]

【従来の技術】非水電解質二次電池は従来の電池と比較
して高エネルギー密度、長寿命であり、例えば、携帯電
話、ノート型パソコンなどの電源として用いられてい
る。
2. Description of the Related Art Non-aqueous electrolyte secondary batteries have higher energy density and longer life than conventional batteries, and are used as power sources for, for example, mobile phones and notebook personal computers.

【0003】このような非水電解質二次電池では、例え
ば、負極活物質に炭素質材料、正極活物質にリチウム遷
移金属複合酸化物、電解質にリチウム塩を支持塩とする
非水電解質が用いられているが、特に正極活物質は非水
電解質二次電池の放電容量、放電電圧、サイクル寿命特
性、安全性などの性能を決定する重要な構成要素であ
る。
In such a non-aqueous electrolyte secondary battery, for example, a carbonaceous material is used as the negative electrode active material, a lithium transition metal composite oxide is used as the positive electrode active material, and a non-aqueous electrolyte having a lithium salt as a supporting salt is used as the electrolyte. However, in particular, the positive electrode active material is an important constituent element that determines performance such as discharge capacity, discharge voltage, cycle life characteristics, and safety of the non-aqueous electrolyte secondary battery.

【0004】非水電解質二次電池の正極活物質として
は、原材料として埋蔵量が多く安価なマンガンを使用し
たリチウムマンガン複合化合物について盛んに研究が行
われている。しかし、リチウムマンガン複合化合物はス
ピネル構造の活物質であるためリチウムの拡散係数が低
く、重負荷特性、及び低温特性が必ずしも十分とは言え
ない。また、エネルギー密度も低い。
As a positive electrode active material for a non-aqueous electrolyte secondary battery, a lithium manganese composite compound using manganese, which has a large amount of reserves and is inexpensive as a raw material, has been actively studied. However, since the lithium-manganese composite compound is an active material having a spinel structure, it has a low lithium diffusion coefficient, and cannot be said to have sufficient heavy load characteristics and low temperature characteristics. Also, the energy density is low.

【0005】一方、現在市販されている小型非水電解質
二次電池は、正極活物質として層状構造を有するコバル
ト酸リチウムが用いられている。コバルト酸リチウム
は、リチウムイオンの拡散係数がスピネル構造の活物質
の10〜100倍程度と著しく大きく、エネルギー密度
が高いが、原材料となるコバルトが希少金属で価格が不
安定であるという問題がある。
On the other hand, currently available small non-aqueous electrolyte secondary batteries use lithium cobalt oxide having a layered structure as a positive electrode active material. Lithium cobalt oxide has a remarkably large diffusion coefficient of lithium ions of about 10 to 100 times that of an active material having a spinel structure, and has a high energy density, but there is a problem that cobalt as a raw material is a rare metal and its price is unstable. .

【0006】[0006]

【発明が解決しようとする課題】本発明は上記のような
事情に基づいて完成されたものであって、コストが安
く、高いエネルギー密度、優れた重負荷特性、及び優れ
た低温特性を持つ正極、及び、これを用いた非水電解質
二次電池に関する。
The present invention has been completed based on the above circumstances, and is a positive electrode having low cost, high energy density, excellent heavy load characteristics, and excellent low temperature characteristics. And a non-aqueous electrolyte secondary battery using the same.

【0007】[0007]

【課題を解決するための手段】本発明者等は、かかる問
題点を解決し得る正極、及び、これを用いた非水電解質
二次電池を開発すべく鋭意研究を重ねた結果、従来のコ
バルトと比較して安価であり、かつコバルトと同様の層
状化合物を形成可能なニッケルをコバルトと併用するこ
ととした。すなわち、正極集電体の両側に、LiX Ni
1-Y-Z CoYZ 2 (0.95 ≦x≦1.25、0.
01≦y≦0.50、0.01≦z≦0.40、Mは、
Ti,Cr,Fe,Mn,Zn,Al,Mo,Wの中か
ら選んだ少なくとも1種以上の金属)を含有する正極活
物質層を配した正極において、正極集電体の厚さT1
と、正極活物質層の厚さの合計(T2+T3)とが、
2.5≦(T2+T3)/T1、且つ(T2+T3)≦
250μmの関係を満たすことを特徴とする非水電解質
二次電池用正極とすることにより、コストが易く、高い
エネルギー密度、優れた重負荷特性、及び優れた低温特
性を持つ非水電解質二次電池が得られることを見い出
し、本発明を完成するに至った。
Means for Solving the Problems
Positive electrode capable of solving the problems, and non-aqueous electrolyte using the same
As a result of intensive research to develop a secondary battery,
A layer that is cheaper than Baltic and similar to cobalt
Nickel capable of forming crystalline compounds should be used in combination with cobalt.
And That is, on both sides of the positive electrode current collector, LiXNi
1-YZCoYMZ O2(0.95 ≤ x ≤ 1.25, 0.
01 ≦ y ≦ 0.50, 0.01 ≦ z ≦ 0.40, and M is
Ti, Cr, Fe, Mn, Zn, Al, Mo, W
Positive electrode active material containing at least one metal selected from
In the positive electrode on which the material layer is arranged, the thickness T1 of the positive electrode current collector
And the total thickness (T2 + T3) of the positive electrode active material layer,
2.5 ≦ (T2 + T3) / T1, and (T2 + T3) ≦
Non-aqueous electrolyte characterized by satisfying a relationship of 250 μm
By using the positive electrode for a secondary battery, the cost is easy and the cost is high.
Energy density, excellent heavy load characteristics, and excellent low temperature characteristics
To find a non-aqueous electrolyte secondary battery with high performance
Then, the present invention has been completed.

【0008】即ち、請求項1の発明は、正極集電体の両
側に、LiX Ni1-Y-Z CoYZ2 (0.95 ≦x
≦1.25、0.01≦y≦0.50、0.01≦z≦
0.40、Mは、Ti,Cr,Fe,Mn,Zn,A
l,Mo,Wの中から選んだ少なくとも1種以上の金
属)を含有する正極活物質層を配した正極において、前
記正極集電体の厚さT1と、前記正極活物質層の厚さの
合計(T2+T3)とが、2.5≦(T2+T3)/T
1、且つ(T2+T3)≦250μmの関係を満たすこ
とを特徴とする非水電解質二次電池用正極とした。
That is, in the invention of claim 1, Li X Ni 1 -YZ Co Y M Z O 2 (0.95 ≤ x is provided on both sides of the positive electrode current collector.
≦ 1.25, 0.01 ≦ y ≦ 0.50, 0.01 ≦ z ≦
0.40, M is Ti, Cr, Fe, Mn, Zn, A
In a positive electrode in which a positive electrode active material layer containing at least one metal selected from the group consisting of 1, Mo and W) is arranged, the positive electrode active material layer having a thickness T1 and a thickness of the positive electrode active material layer Total (T2 + T3) is 2.5 ≦ (T2 + T3) / T
The positive electrode for a non-aqueous electrolyte secondary battery was characterized by satisfying the relationship of 1 and (T2 + T3) ≦ 250 μm.

【0009】請求項2の発明は、正極集電体の両側に、
LiX Ni1-Y-Z CoYZ 2 (0.95 ≦x≦1.
25、0.01≦y≦0.50、0.01≦z≦0.4
0、Mは、Ti,Cr,Fe,Mn,Zn,Al,M
o,Wの中から選んだ少なくとも1種以上の金属)を含
有する正極活物質層を配した正極と、負極集電体に負極
活物質層を備えた負極と、非水電解質とを備える非水電
解質二次電池において、前記正極集電体の厚さT1と、
前記正極活物質層の厚さの合計(T2+T3)が、2.
5≦(T2+T3)/T1、且つ(T2+T3)≦25
0μmの関係を満たすことを特徴とする非水電解質二次
電池とした。
According to a second aspect of the present invention, the positive electrode current collector is provided on both sides,
Li X Ni 1-YZ Co Y M Z O 2 (0.95 ≦ x ≦ 1.
25, 0.01 ≦ y ≦ 0.50, 0.01 ≦ z ≦ 0.4
0, M are Ti, Cr, Fe, Mn, Zn, Al, M
a positive electrode having a positive electrode active material layer containing at least one or more metals selected from o and W), a negative electrode having a negative electrode active material layer on a negative electrode current collector, and a non-aqueous electrolyte. In the water electrolyte secondary battery, the thickness T1 of the positive electrode current collector,
The total thickness (T2 + T3) of the positive electrode active material layer is 2.
5 ≦ (T2 + T3) / T1, and (T2 + T3) ≦ 25
The non-aqueous electrolyte secondary battery was characterized by satisfying the relationship of 0 μm.

【0010】[0010]

【発明の実施の形態】以下、本発明の一実施形態につい
て、図面を参照しつつ説明する。図1は、本発明の一実
施形態にかかる角形非水電解質二次電池1の概略断面図
である。この角形非水電解質二次電池1は、正極3と、
負極4とがセパレータ5を介して巻回された扁平巻状電
極群2と、電解質塩を含有した図示しない非水電解液と
を電池ケース6に収納してなるものである。
BEST MODE FOR CARRYING OUT THE INVENTION An embodiment of the present invention will be described below with reference to the drawings. FIG. 1 is a schematic cross-sectional view of a prismatic non-aqueous electrolyte secondary battery 1 according to an embodiment of the present invention. The prismatic non-aqueous electrolyte secondary battery 1 includes a positive electrode 3 and
A flat wound electrode group 2 in which a negative electrode 4 is wound via a separator 5 and a non-aqueous electrolytic solution (not shown) containing an electrolyte salt are housed in a battery case 6.

【0011】そして、電池ケース6には、安全弁8を設
けた電池蓋7がレーザー溶接によって取り付けられ、正
極端子10は正極リード11を介して正極3と接続さ
れ、負極4は電池ケース6の内壁と接触により電気的に
接続されている。
A battery lid 7 provided with a safety valve 8 is attached to the battery case 6 by laser welding, the positive electrode terminal 10 is connected to the positive electrode 3 via a positive electrode lead 11, and the negative electrode 4 is an inner wall of the battery case 6. Is electrically connected by contact with.

【0012】そして、正極3は、図2に示すように例え
ばアルミニウム、チタン、又はステンレス鋼製の正極集
電体13の両面にリチウムイオンを吸蔵・放出する物質
を構成要素とする正極合剤からなる正極活物質層15,
16を設けた構造となっている。この正極活物質層1
5,16は、正極活物質として、LiX Ni1-Y-Z Co
YZ 2 (0.95 ≦x≦1.25、0.01≦y≦
0.50、0.01≦z≦0.40、Mは、Ti,C
r,Fe,Mn,Zn,Al,Mo,Wの中から選んだ
少なくとも1種以上の金属)を含有する。このようなリ
チウムニッケルコバルト複合酸化物では、層状構造をと
っている。リチウムイオンはリチウム単独の二次元拡散
層を通じて移動可能であり、この特徴から層状構造型リ
チウムニッケルコバルト複合酸化物は非水電解質電池の
正極活物質として利用でき、特に、非水電解質リチウム
二次電池の正極活物質として適している。
The positive electrode 3 is, for example, as shown in FIG.
For example, aluminum, titanium, or stainless steel positive electrode collection
A substance that absorbs and releases lithium ions on both sides of the electric body 13
A positive electrode active material layer 15 composed of a positive electrode mixture containing
16 is provided. This positive electrode active material layer 1
5 and 16 are Li as a positive electrode active material.XNi1-YZCo
YMZO2(0.95 ≤ x ≤ 1.25, 0.01 ≤ y ≤
0.50, 0.01 ≦ z ≦ 0.40, M is Ti, C
Selected from r, Fe, Mn, Zn, Al, Mo, W
At least one metal). Like this
A layered structure is formed in the titanium nickel cobalt composite oxide.
ing. Lithium ion is a two-dimensional diffusion of lithium alone
It is movable through the layers, and this feature makes it a layered structure type
Titanium-nickel-cobalt composite oxide is used for non-aqueous electrolyte batteries.
It can be used as positive electrode active material, especially non-aqueous electrolyte lithium
It is suitable as a positive electrode active material for secondary batteries.

【0013】なお、このようなリチウムニッケルコバル
ト複合酸化物は、公知の方法、例えば、リチウムの炭酸
塩、リチウムの硝酸塩、リチウムの酸化物、リチウムの
水酸化物と、ニッケルの炭酸塩、ニッケルの硝酸塩、ニ
ッケルの酸化物、ニッケルの水酸化物と、コバルトの炭
酸塩、コバルトの硝酸塩、コバルトの酸化物、コバルト
の水酸化物とを所定割合で粉砕混合して、酸素含有の雰
囲気中で例えば600〜900℃で焼成して得ることが
できる。
Such a lithium nickel cobalt composite oxide can be prepared by a known method, for example, lithium carbonate, lithium nitrate, lithium oxide, lithium hydroxide, nickel carbonate or nickel carbonate. Nitrate, nickel oxide, nickel hydroxide and cobalt carbonate, cobalt nitrate, cobalt oxide, cobalt hydroxide are pulverized and mixed in a predetermined ratio, for example in an oxygen-containing atmosphere It can be obtained by firing at 600 to 900 ° C.

【0014】そして、正極3は例えば以下のようにして
製造される。正極活物質をグラファイトやカーボンブラ
ック等の導電剤とポリフッ化ビニリデン等の結着剤と共
に混合して、正極合剤とする。そして、この正極合剤を
N−メチルピロリドン等の溶媒に分散させてスラリーと
する。これを正極集電体13の両面に塗布、乾燥後、ロ
ールプレス等により圧縮平滑化して正極3が製造され
る。
The positive electrode 3 is manufactured as follows, for example. A positive electrode active material is mixed with a conductive agent such as graphite or carbon black and a binder such as polyvinylidene fluoride to prepare a positive electrode mixture. Then, this positive electrode mixture is dispersed in a solvent such as N-methylpyrrolidone to obtain a slurry. This is applied to both surfaces of the positive electrode current collector 13, dried, and then compressed and smoothed by a roll press or the like to manufacture the positive electrode 3.

【0015】ここで、正極3の正極集電体13の厚みを
T1とし、正極活物質層15,16の厚みをそれぞれ、
T2、T3とする。本実施形態では、正極集電体13の
厚さT1と、正極活物質層の厚さの合計(T2+T3)
とが、2.5≦(T2+T3)/T1、且つ(T2+T
3)≦250μmの関係を満たしている。
Here, the thickness of the positive electrode current collector 13 of the positive electrode 3 is T1, and the thicknesses of the positive electrode active material layers 15 and 16 are respectively
Let T2 and T3. In this embodiment, the total thickness T1 of the positive electrode current collector 13 and the thickness of the positive electrode active material layer (T2 + T3).
And 2.5 ≦ (T2 + T3) / T1, and (T2 + T
3) The relationship of ≦ 250 μm is satisfied.

【0016】(T2+T3)/T1の値は、2.5≦
(T2+T3)/T1であることを要し、好ましくは、
4.0≦(T2+T3)/T1、特に5.0≦(T2+
T3)/T1であることが好ましい。(T2+T3)/
T1の値が2.5未満の場合には、正極3に占める正極
集電体13の割合が大きくなってしまいエネルギー密度
が低下するからである。
The value of (T2 + T3) / T1 is 2.5 ≦
(T2 + T3) / T1 is required, and preferably
4.0 ≦ (T2 + T3) / T1, especially 5.0 ≦ (T2 +
It is preferably T3) / T1. (T2 + T3) /
This is because when the value of T1 is less than 2.5, the proportion of the positive electrode current collector 13 in the positive electrode 3 increases and the energy density decreases.

【0017】さらに(T2+T3)≦250μmである
ことを要し、好ましくは(T2+T3)≦200μm、
特に(T2+T3)≦150μmであることが好まし
い。このように、250μm以下である場合には、以下
の理由から重負荷時における放電容量の向上が図られる
と考えられる。
Further, it is necessary that (T2 + T3) ≦ 250 μm, preferably (T2 + T3) ≦ 200 μm,
It is particularly preferable that (T2 + T3) ≦ 150 μm. As described above, when the thickness is 250 μm or less, it is considered that the discharge capacity at the time of heavy load can be improved for the following reason.

【0018】非水電解質二次電池では、放電時において
リチウムイオンが、負極4から正極3に電解質を介して
移動する。そして、正極3に移動してきたリチウムは、
正極3表面から内部に向かって、拡散していく。
In the non-aqueous electrolyte secondary battery, lithium ions move from the negative electrode 4 to the positive electrode 3 via the electrolyte during discharging. Then, the lithium that has moved to the positive electrode 3 is
It diffuses from the surface of the positive electrode 3 toward the inside.

【0019】ここで、リチウムニッケルコバルト複合酸
化物は、従来から非水電解質二次電池に使用されている
リチウムコバルト複合酸化物と同様の層状化合物である
が、同一結晶内に原子半径の異なるニッケルとコバルト
とが混在するために、リチウムイオンの拡散速度がリチ
ウムコバルト複合酸化物と比較して遅い。このため、活
物質層15,16が250μmよりも厚いと、リチウム
イオンが正極3表面の正極活物質層15,16から正極
3内部の正極活物質層15,16、すなわち正極集電体
13近傍の正極活物質層15,16に到達するまで非常
に時間がかかってしまう。
Here, the lithium-nickel-cobalt composite oxide is a layered compound similar to the lithium-cobalt composite oxide conventionally used in non-aqueous electrolyte secondary batteries, but nickel having different atomic radii in the same crystal. And lithium are mixed, the diffusion rate of lithium ions is slower than that of the lithium-cobalt composite oxide. Therefore, when the active material layers 15 and 16 are thicker than 250 μm, lithium ions are transferred from the positive electrode active material layers 15 and 16 on the surface of the positive electrode 3 to the positive electrode active material layers 15 and 16 inside the positive electrode 3, that is, in the vicinity of the positive electrode current collector 13. It takes a very long time to reach the positive electrode active material layers 15 and 16.

【0020】この結果、正極集電体13近傍の正極活物
質層15,16が有効に利用できずに重負荷時における
放電容量が低下してしまうのである。
As a result, the positive electrode active material layers 15 and 16 in the vicinity of the positive electrode current collector 13 cannot be effectively used, and the discharge capacity under heavy load is reduced.

【0021】そこで、本実施形態では、(T2+T3)
≦250μmであることとし、リチウムイオンが、正極
集電体13近傍の正極活物質層15,16にも速やかに
移動して、正極集電体13近傍の正極活物質層15,1
6を有効に利用することにより、重負荷時における放電
容量の向上を図っているのである。
Therefore, in this embodiment, (T2 + T3)
It is assumed that ≦ 250 μm, and the lithium ions rapidly move to the positive electrode active material layers 15 and 16 near the positive electrode current collector 13, and the positive electrode active material layers 15 and 1 near the positive electrode current collector 13.
By effectively using No. 6, the discharge capacity under heavy load is improved.

【0022】なお、(T2+T3)≦250μmとすれ
ば、リチウムイオンのリチウムニッケルコバルト複合酸
化物中での拡散速度がさらに遅い低温時においても、放
電容量を確保することができる。
When (T2 + T3) ≦ 250 μm, the discharge capacity can be secured even at low temperature where the diffusion rate of lithium ions in the lithium nickel cobalt composite oxide is slower.

【0023】このように正極集電体13の厚さT1と、
正極活物質層15,16の厚さの合計(T2+T3)
が、2.5≦(T2+T3)/T1、且つ(T2+T
3)≦250μmの関係を満たす必要がある。
Thus, the thickness T1 of the positive electrode current collector 13
Total thickness of positive electrode active material layers 15 and 16 (T2 + T3)
2.5 ≦ (T2 + T3) / T1, and (T2 + T
3) It is necessary to satisfy the relationship of ≦ 250 μm.

【0024】負極4は、図3に示すように例えば銅、ニ
ッケル、チタン、ステンレス鋼製の負極集電体の両面に
リチウムイオンを吸蔵・放出する物質を構成要素とする
負極合剤からなる負極活物質層を設けた構造となってい
る。なお、両面のみならず、片面のみ負極活物質層を設
けた構造となっていても構わない。
As shown in FIG. 3, the negative electrode 4 is made of, for example, a negative electrode current collector made of copper, nickel, titanium, or stainless steel, and is composed of a negative electrode mixture containing a substance that absorbs and releases lithium ions on both sides. The structure has an active material layer. Note that the negative electrode active material layer may be provided not only on both surfaces but also on one surface.

【0025】この負極4は例えば以下のようにして製造
される。負極活物質をポリフッ化ビニリデン等の結着剤
と共に混合して、負極合剤とする。そして、この負極合
剤をN−メチルピロリドン等の溶媒に分散させてスラリ
ーとする。これを負極集電体の両面に塗布、乾燥後、ロ
ールプレス等により圧縮平滑化して負極4が製造され
る。
The negative electrode 4 is manufactured, for example, as follows. The negative electrode active material is mixed with a binder such as polyvinylidene fluoride to prepare a negative electrode mixture. Then, this negative electrode mixture is dispersed in a solvent such as N-methylpyrrolidone to form a slurry. This is applied on both surfaces of the negative electrode current collector, dried, and then compressed and smoothed by a roll press or the like to manufacture the negative electrode 4.

【0026】負極活物質としては、特に限定されず、例
えば公知のコークス類、ガラス状炭素類、グラファイト
類、難黒鉛化性炭素類、熱分解炭素類、炭素繊維などの
炭素質材料、あるいは金属リチウム、リチウム合金、ポ
リアセン、あるいは、酸化スズ系ガラス、リチウム/チ
タン複合酸化物、酸化鉄、酸化ルテニウム、酸化モリブ
デン、酸化タングステン、酸化チタン、酸化スズ、酸化
硅素等の金属酸化物等を単独でまたは二種以上を混合し
て使用することができるが、特に、安全性の高さから炭
素質材料を用いるのが望ましい。
The negative electrode active material is not particularly limited, and examples thereof include known cokes, glassy carbons, graphites, non-graphitizable carbons, pyrolytic carbons, carbonaceous materials such as carbon fibers, or metals. Lithium, lithium alloy, polyacene, or tin oxide glass, lithium / titanium composite oxide, iron oxide, ruthenium oxide, molybdenum oxide, tungsten oxide, titanium oxide, tin oxide, metal oxides such as tin oxide, etc. alone. Alternatively, two or more kinds may be mixed and used, but it is particularly preferable to use a carbonaceous material because of its high safety.

【0027】セパレータ5としては、特に限定されず、
例えば公知の織布、不織布、合成樹脂微多孔膜等を用い
ることができ、特に合成樹脂微多孔膜が好適に用いるこ
とができる。中でもポリエチレン及びポリプロピレン製
微多孔膜、又はこれらを複合した微多孔膜等のポリオレ
フィン系微多孔膜が、厚さ、膜強度、膜抵抗等の面で好
適に用いられる。
The separator 5 is not particularly limited,
For example, a known woven fabric, non-woven fabric, synthetic resin microporous film, or the like can be used, and a synthetic resin microporous film can be preferably used. Among them, a polyolefin-based microporous film such as a polyethylene and polypropylene microporous film or a composite microporous film thereof is preferably used in terms of thickness, film strength, film resistance and the like.

【0028】さらに高分子固体電解質等の固体電解質を
用いることで、セパレータを兼ねさせることもできる。
この場合、高分子固体電解質として多孔性高分子固体電
解質膜を使用する等して高分子固体電解質にさらに電解
液を含有させても良い。
Further, by using a solid electrolyte such as a polymer solid electrolyte, it can also serve as a separator.
In this case, the solid polymer electrolyte may further contain an electrolytic solution, for example, by using a porous solid polymer electrolyte membrane as the solid polymer electrolyte.

【0029】本発明の非水電解質としては、非水電解液
又は固体電解質のいずれも使用することができる。非水
電解液を用いる場合には特に限定されず、例えばエチレ
ンカーボネートとエチルメチルカーボネートとの混合溶
媒あるいはエチレンカーボネートとジメチルカーボネー
トとの混合溶媒を用いる。前記混合溶媒に、プロピレン
カーボネート、ブチレンカーボネート、ビニレンカーボ
ネート、トリフルオロプロピレンカーボネート、γ−ブ
チロラクトン、2−メチル−γ−ブチルラクトン、アセ
チル−γ−ブチロラクトン、γ−バレロラクトン、スル
ホラン、1,2−ジメトキシエタン、1,2−ジエトキ
シエタン、テトラヒドロフラン、2−メチルテトラヒド
ロフラン、3−メチル−1,3−ジオキソラン、酢酸メ
チル、酢酸エチル、プロピオン酸メチル、プロピオン酸
エチル、ジメチルカーボネート、ジエチルカーボネー
ト、メチルエチルカーボネート、ジプロピルカーボネー
ト、メチルプロピルカーボネート、エチルイソプロピル
カーボネート、ジブチルカーボネート等を単独でまたは
二種以上用いてこれを混合して使用しても良い。
As the non-aqueous electrolyte of the present invention, either a non-aqueous electrolytic solution or a solid electrolyte can be used. When the non-aqueous electrolyte is used, it is not particularly limited, and for example, a mixed solvent of ethylene carbonate and ethyl methyl carbonate or a mixed solvent of ethylene carbonate and dimethyl carbonate is used. In the mixed solvent, propylene carbonate, butylene carbonate, vinylene carbonate, trifluoropropylene carbonate, γ-butyrolactone, 2-methyl-γ-butyl lactone, acetyl-γ-butyrolactone, γ-valerolactone, sulfolane, 1,2-dimethoxy. Ethane, 1,2-diethoxyethane, tetrahydrofuran, 2-methyltetrahydrofuran, 3-methyl-1,3-dioxolane, methyl acetate, ethyl acetate, methyl propionate, ethyl propionate, dimethyl carbonate, diethyl carbonate, methyl ethyl carbonate , Dipropyl carbonate, methyl propyl carbonate, ethyl isopropyl carbonate, dibutyl carbonate, etc. may be used alone or in admixture of two or more.

【0030】非水電解液の溶質としての電解質塩は、特
に限定されず例えばLiClO、LiAsF、Li
PF、LiBF、LiCFSO、LiCF
SO、LiCFCFCFSO、LiN
(CFSO、LiN(CSO等を
単独でまたは二種以上を混合して使用することができ
る。電解質塩としては中でもLiPFを用いるのが好
ましい。
The electrolyte salt as a solute of the non-aqueous electrolyte is not particularly limited, and may be, for example, LiClO 4 , LiAsF 6 , Li.
PF 6 , LiBF 4 , LiCF 3 SO 3 , LiCF 3 C
F 2 SO 3 , LiCF 3 CF 2 CF 2 SO 3 , LiN
(CF 3 SO 2) 2, LiN (C 2 F 5 SO 2) 2 and the like may be used alone or as a mixture of two or more. Among them, LiPF 6 is preferably used as the electrolyte salt.

【0031】固体電解質としては、公知の固体電解質を
用いることができ、例えば無機固体電解質、ポリマー固
体電解質を用いることができる。
As the solid electrolyte, a known solid electrolyte can be used, for example, an inorganic solid electrolyte or a polymer solid electrolyte can be used.

【0032】[0032]

【実施例】以下、本発明の実施例を示すが、本発明はこ
れに限定されるものではない。実施例1〜7、比較例1
〜4では、図1に示す角形非水電解質二次電池1を作製
した。まず、正極活物質として、炭酸リチウム1.0モ
ルと、水酸化ニッケル1.0モルと、水酸化コバルト
1.0モルとを混合し、この混合物を、空気中、温度7
50℃で15時間焼成した。生成物についてX線回折測
定を行ったところ、単相化合物が得られることから、こ
の生成物は、LiNi0.5 Co0.5 2と推察される。
EXAMPLES Examples of the present invention will be shown below, but the present invention is not limited thereto. Examples 1 to 7 and Comparative Example 1
4 to 4, the prismatic non-aqueous electrolyte secondary battery 1 shown in FIG. 1 was produced. First, as a positive electrode active material, 1.0 mol of lithium carbonate, 1.0 mol of nickel hydroxide, and 1.0 mol of cobalt hydroxide were mixed, and this mixture was heated in air at a temperature of 7
It was baked at 50 ° C. for 15 hours. When the product was subjected to X-ray diffraction measurement, a single-phase compound was obtained. Therefore, the product is presumed to be LiNi 0.5 Co 0.5 O 2 .

【0033】このLi Ni0.5 Co0.5 2を91重量
部と、導電材のアセチレンブラック3重量部と、結着剤
のポリフッ化ビニリデン5重量部とを混合し、N−メチ
ル−2−ピロリドンを適宜加えて分散させ、スラリーを
調製した。このスラリーを表1に示すように、厚さ(T
1)が、15〜30μmのアルミ製の正極集電体13の
両面に均一に塗布、乾燥させた後、ロールプレスで圧縮
成形することにより、(T2+T3)/T1(T2、T
3は正極活物質層15,16の厚さ)の値が異なる正極
3を用意した(表1参照)。なお、実施例1〜7、比較
例1〜4では、この正極3のみそれぞれ異なり、後述す
る他の構成要素は同一とした。
This Li 91 parts by weight of Ni 0.5 Co 0.5 O 2 , 3 parts by weight of acetylene black as a conductive material, and 5 parts by weight of polyvinylidene fluoride as a binder are mixed, and N-methyl-2-pyrrolidone is appropriately added and dispersed. , A slurry was prepared. The slurry (T
1) is uniformly applied to both surfaces of the positive electrode current collector 13 made of aluminum having a thickness of 15 to 30 μm, dried, and then compression-molded by a roll press to obtain (T2 + T3) / T1 (T2, T
For No. 3, the positive electrodes 3 having different values of the positive electrode active material layers 15 and 16 were prepared (see Table 1). In addition, in Examples 1 to 7 and Comparative Examples 1 to 4, only the positive electrode 3 is different, and the other components described later are the same.

【0034】負極合剤は、鱗片状黒鉛90重量部と、ポ
リフッ化ビニリデン10重量部とを混合し、N−メチル
−2−ピロリドンを適宜加えて分散させ、スラリーを調
製した。このスラリーを厚さ10μmの銅製の負極集電
体に均一に塗布、乾燥させた後、ロールプレスで圧縮成
形することにより負極4を作製した。
The negative electrode mixture was prepared by mixing 90 parts by weight of scaly graphite and 10 parts by weight of polyvinylidene fluoride and adding N-methyl-2-pyrrolidone as appropriate to disperse the slurry. The slurry was uniformly applied to a copper negative electrode current collector having a thickness of 10 μm, dried, and compression-molded with a roll press to prepare a negative electrode 4.

【0035】セパレータ5には、厚さ25μmの微多孔
性ポリエチレンフィルムを用いた。
As the separator 5, a 25 μm thick microporous polyethylene film was used.

【0036】上述の構成要素を用いて、幅48mm、高
さ90mm、厚み4.15mmの角形非水電解質二次電
池1を作製した。
A prismatic non-aqueous electrolyte secondary battery 1 having a width of 48 mm, a height of 90 mm and a thickness of 4.15 mm was produced using the above-mentioned components.

【0037】非水電解質としては、エチレンカーボネー
ト(EC)とジエチルカーボネート(DEC)とを容積
比30:70で混合し、この溶液にLiPFを1.2
モル/リットル溶解したものを用いた。
As the non-aqueous electrolyte, ethylene carbonate (EC) and diethyl carbonate (DEC) were mixed at a volume ratio of 30:70, and LiPF 6 was added to this solution in an amount of 1.2.
Mol / liter dissolved therein was used.

【0038】次に、実施例8〜12、比較例5〜6とし
て、正極活物質LiNi0.5 Co0. 5 2の比表面積を
変化させて、電極の比表面積が異なる角形非水電解質二
次電池を上記実施例1〜7と同様の方法で作製した(表
3および表4参照)。(T2+T3)/T1=4とし、
電極の比表面積以外の構成要素は、上記実施例1〜7お
よび比較例1〜4と同様とした。なお、ここでいう電極
の比表面積とは、気体吸着BET法によって測定した値
により定義する。
Next, Examples 8 to 12, as a comparative example 5-6, by varying the specific surface area of the cathode active material LiNi 0.5 Co 0. 5 O 2, prismatic nonaqueous electrolyte secondary specific surface area of the electrode is different Batteries were prepared in the same manner as in Examples 1 to 7 above (see Tables 3 and 4). (T2 + T3) / T1 = 4,
The components other than the specific surface area of the electrode were the same as those in Examples 1 to 7 and Comparative Examples 1 to 4 above. The specific surface area of the electrode here is defined by the value measured by the gas adsorption BET method.

【0039】(常温低負荷電池容量試験)上述の実施例
1〜12と比較例1〜6の角形非水電解質二次電池1を
23℃の環境下、0.5Aの定電流で最大電圧4.2V
の定電流定電圧充電(初期充電)を6時間行った後に、
23℃の環境下0.5Aの電流で終止電圧2.75Vま
で定電流放電を行う常温低負荷電池容量試験を行った。
なお、この常温低負荷電池容量試験の容量をC1で表
す。
(Normal temperature low load battery capacity test) The rectangular non-aqueous electrolyte secondary batteries 1 of Examples 1 to 12 and Comparative Examples 1 to 6 described above were placed in an environment of 23 ° C. and a maximum voltage of 4 at a constant current of 0.5 A. .2V
After carrying out constant current constant voltage charging (initial charging) for 6 hours,
A room temperature low load battery capacity test was conducted in which constant current discharge was performed at a current of 0.5 A in a 23 ° C. environment to a final voltage of 2.75 V.
The capacity of this room temperature low load battery capacity test is represented by C1.

【0040】(常温重負荷電池容量試験)上述の実施例
1〜7と比較例1〜4の角形非水電解質二次電池1を2
3℃の環境下、0.5Aの定電流で最大電圧4.2Vの
定電流定電圧充電(初期充電)を6時間行った後に、2
3℃の環境下3Aの電流で終止電圧2.75Vまで定電
流放電を行う常温重負荷電池容量試験を行った。ここ
で、常温重負荷電池容量試験の放電容量をC2とし、上
述の常温低負荷電池容量試験の容量をC1とした場合
に、重負荷特性は、C2/C1で表される。
(Normal temperature heavy load battery capacity test) Two prismatic non-aqueous electrolyte secondary batteries 1 of Examples 1 to 7 and Comparative Examples 1 to 4 described above were used.
In a 3 ° C. environment, a constant current constant voltage of 0.5 A and a constant current constant voltage charge (initial charge) with a maximum voltage of 4.2 V were performed for 6 hours, and then 2
A room temperature heavy load battery capacity test was performed in which constant current discharge was performed at a current of 3 A in a 3 ° C. environment to a final voltage of 2.75 V. Here, when the discharge capacity in the room temperature heavy load battery capacity test is C2 and the capacity in the room temperature low load battery capacity test is C1, the heavy load characteristic is represented by C2 / C1.

【0041】(低温低負荷電池容量試験)上述の実施例
1〜12と比較例1〜6の角形非水電解質二次電池1を
23℃の環境下、0.5Aの定電流で最大電圧4.2V
の定電流定電圧充電(初期充電)を6時間行った後に、
0℃の環境下に1時間放置後、0.5Aの電流で終止電
圧2.75Vまで定電流放電を行う低温低負荷電池容量
試験を行った。ここで、低温低負荷電池容量試験の放電
容量をC3とし、上述の常温低負荷電池容量試験の容量
をC1とした場合に、低温負荷特性は、C3/C1で表
される。
(Low-temperature low-load battery capacity test) The rectangular nonaqueous electrolyte secondary batteries 1 of Examples 1 to 12 and Comparative Examples 1 to 6 described above were subjected to a maximum voltage of 4 at a constant current of 0.5 A under an environment of 23 ° C. .2V
After carrying out constant current constant voltage charging (initial charging) for 6 hours,
After left in an environment of 0 ° C. for 1 hour, a low temperature low load battery capacity test was conducted in which constant current discharge was performed at a current of 0.5 A to a final voltage of 2.75 V. Here, when the discharge capacity of the low temperature low load battery capacity test is C3 and the capacity of the above room temperature low load battery capacity test is C1, the low temperature load characteristic is represented by C3 / C1.

【0042】(試験結果)常温低負荷電池容量試験、常
温重負荷電池容量試験、および低温低負荷電池容量試験
の試験結果を表1〜表5、および図3〜図7に示す。
(Test Results) The test results of the room temperature low load battery capacity test, the room temperature heavy load battery capacity test, and the low temperature low load battery capacity test are shown in Tables 1 to 5 and FIGS. 3 to 7.

【0043】[0043]

【表1】 [Table 1]

【0044】まず、(T2+T3)/T1の値が、常温
低負荷電池容量試験の容量C1に与える影響について検
討する。表1および図3において、2.5≦(T2+T
3)/T1である実施例1〜7は、2.5>(T2+T
3)/T1の比較例1〜2と比べて、エネルギー密度が
増加したため放電容量C1が大きいことが分かった。ま
た、実施例5のC1が、実施例6,7のC1よりも大き
いことから、4.0≦(T2+T3)/T1であること
が好ましいことが分かった。さらに、実施例3のC1
が、実施例5のC1よりも大きいことから、特に5.0
≦(T2+T3)/T1であることが好ましいことが分
かった。
First, the influence of the value of (T2 + T3) / T1 on the capacity C1 in the room temperature low load battery capacity test will be examined. In Table 1 and FIG. 3, 2.5 ≦ (T2 + T
3) / T1 in Examples 1 to 7, 2.5> (T2 + T
It was found that the discharge capacity C1 was large because the energy density was increased as compared with Comparative Examples 1 and 2 of 3) / T1. Further, since C1 of Example 5 is larger than C1 of Examples 6 and 7, it was found that 4.0 ≦ (T2 + T3) / T1 is preferable. Furthermore, C1 of Example 3
However, since it is larger than C1 of Example 5, especially 5.0
It has been found that it is preferable that ≦ (T2 + T3) / T1.

【0045】[0045]

【表2】 [Table 2]

【0046】[0046]

【表3】 [Table 3]

【0047】次に、(T2+T3)の値が、重負荷特性
C2/C1、低温負荷特性C3/C1に与える影響につ
いて検討する。表2および図4において、(T2+T
3)≦250μmである実施例1〜7のC2/C1は、
(T2+T3)>250μmである比較例3〜4のC2
/C1と比べて大きいことが分かった。また、実施例2
のC2/C1が、実施例1のC2/C1よりも大きいこ
とから、(T2+T3)≦200μmであることが好ま
しいことが分かった。さらに、実施例3,4のC2/C
1が、実施例2のC2/C1よりも大きいことから、特
に(T2+T3)≦150μmであることが好ましいこ
とが分かった。
Next, the influence of the value of (T2 + T3) on the heavy load characteristic C2 / C1 and the low temperature load characteristic C3 / C1 will be examined. In Table 2 and FIG. 4, (T2 + T
3) C2 / C1 of Examples 1 to 7 in which ≦ 250 μm is:
(T2 + T3)> 250 μm C2 of Comparative Examples 3 to 4
It was found to be larger than / C1. Example 2
C2 / C1 in Example 2 was larger than C2 / C1 in Example 1, it was found that (T2 + T3) ≦ 200 μm was preferable. Furthermore, C2 / C of Examples 3 and 4
Since 1 is larger than C2 / C1 in Example 2, it was found that (T2 + T3) ≦ 150 μm is particularly preferable.

【0048】また表3および図5に示す低温負荷特性C
3/C1については、(T2+T3)≦250μmであ
る実施例1〜7のC3/C1は、(T2+T3)>25
0μmである比較例3〜4のC3/C1と比べて大きい
ことが分かった。
Further, low temperature load characteristics C shown in Table 3 and FIG.
For 3 / C1, (T2 + T3) ≦ 250 μm, C3 / C1 of Examples 1 to 7 is (T2 + T3)> 25.
It was found to be larger than C3 / C1 of Comparative Examples 3 to 4 which is 0 μm.

【0049】このような結果が得られたのは、活物質層
15,16が250μmよりも厚いと、リチウムイオン
が正極3表面の正極活物質層15,16から正極3内部
の正極活物質層15,16、すなわち正極集電体13近
傍の正極活物質層15,16に到達するまで非常に時間
がかかってしまう。この結果、正極集電体13近傍の正
極活物質層15,16が有効に利用できずに、重負荷特
性および低温負荷特性が低下したものと考えられる。
The above results were obtained because, when the active material layers 15 and 16 were thicker than 250 μm, lithium ions were transferred from the positive electrode active material layers 15 and 16 on the surface of the positive electrode 3 to the positive electrode active material layer inside the positive electrode 3. It takes a very long time to reach the positive electrode active material layers 15 and 16 in the vicinity of the positive electrode current collectors 15 and 16, that is, the positive electrode current collector 13. As a result, it is considered that the positive electrode active material layers 15 and 16 in the vicinity of the positive electrode current collector 13 could not be effectively used and the heavy load characteristics and the low temperature load characteristics were deteriorated.

【0050】以上の結果から、正極集電体の厚さT1
と、正極活物質層の厚さの合計(T2+T3)とが、
2.5≦(T2+T3)/T1、且つ(T2+T3)≦
250μmの関係を満たすこととすることによって、高
いエネルギー密度、優れた重負荷特性、優れた低温特性
を持つ非水電解質二次電池を得ることができる。
From the above results, the thickness T1 of the positive electrode current collector is
And the total thickness (T2 + T3) of the positive electrode active material layer,
2.5 ≦ (T2 + T3) / T1, and (T2 + T3) ≦
By satisfying the relationship of 250 μm, a non-aqueous electrolyte secondary battery having high energy density, excellent heavy load characteristics, and excellent low temperature characteristics can be obtained.

【0051】[0051]

【表4】 [Table 4]

【0052】次に、正極活物質Li Ni0.5 Co0.5
2の比表面積を変化させて、電極の比表面積が常温低
負荷電池容量試験の容量C1に与える影響について検討
する。表4および図6において、電極の比表面積が大き
いほど放電容量が小さくなる傾向がみられ、特に電極の
比表面積が3m/gと大きい比較例5では、放電容量
が大きく低下することが分かった。
Next, the positive electrode active material Li Ni 0.5 Co 0.5
The influence of the specific surface area of the electrode on the capacity C1 in the room temperature low load battery capacity test is examined by changing the specific surface area of O 2 . In Table 4 and FIG. 6, it can be seen that the discharge capacity tends to decrease as the specific surface area of the electrode increases, and particularly in Comparative Example 5 in which the electrode has a large specific surface area of 3 m 2 / g, the discharge capacity decreases significantly. It was

【0053】[0053]

【表5】 [Table 5]

【0054】[0054]

【表6】 [Table 6]

【0055】また、電極の比表面積が、常温重負荷特性
C2/C1、低温負荷特性C3/C1に与える影響につ
いて検討する。表5および図7において、電極の比表面
積が低い比較例6では、常温重負荷特性が悪くなること
がわかった。
The influence of the specific surface area of the electrode on the room temperature heavy load characteristic C2 / C1 and the low temperature load characteristic C3 / C1 will be examined. In Table 5 and FIG. 7, it was found that the comparative example 6 in which the specific surface area of the electrode is low has poor normal temperature heavy load characteristics.

【0056】また表6および図8に示す低温負荷特性C
3/C1については、比電極の表面積が0.01m
gと小さい比較例6が43%と低いことが分かった。
The low temperature load characteristic C shown in Table 6 and FIG.
For 3 / C1, the surface area of the specific electrode is 0.01 m 2 /
It was found that Comparative Example 6 having a small g was as low as 43%.

【0057】以上の結果は、電極の比表面積を大きくす
ると電極が嵩高くなるため、電池に充填できる活物質量
が減少し、放電容量が低くなったと推察される。一方、
電極の比表面積が小さい場合には、電極の活性が低下
し、電極内のリチウム拡散速度が遅くなって集電体に近
い部分の活物質を利用できないため、重負荷特性および
低温特性が悪くなったと推察される。
From the above results, it is speculated that when the specific surface area of the electrode is increased, the electrode becomes bulky, so that the amount of active material that can be filled in the battery is decreased and the discharge capacity is decreased. on the other hand,
When the specific surface area of the electrode is small, the activity of the electrode decreases, the lithium diffusion rate in the electrode slows down, and the active material in the portion close to the current collector cannot be used, resulting in poor heavy load characteristics and low temperature characteristics. It is presumed that

【0058】以上の結果より、エネルギー密度と低温特
性とを高いレベルで両立させるには、電極の比表面積を
0.03〜2.2m/gとすることが好ましい。
From the above results, it is preferable to set the specific surface area of the electrode to 0.03 to 2.2 m 2 / g in order to achieve a high level of both energy density and low temperature characteristics.

【0059】なお、本実施例においては、正極活物質と
してLiNiCo0.5 2を用いたが、LiNi0.5
0.5 2は、一般式LiX Ni1-Y-ZCo
2(0.95 ≦x≦1.25、0.01≦y≦0.5
0、0.01≦z≦0.40、Mは、Ti,Cr,F
e,Mn,Zn,Al, Mo,Wの中から選んだ少なく
とも1種以上の金属)で表される活物質を用いても同様
の効果が得られることは明らかである。
In this embodiment, LiNiCo 0.5 O 2 was used as the positive electrode active material, but LiNi 0.5 C
o 0.5 O 2 is a general formula Li X Ni 1-YZ Co Y M Z O
2 (0.95 ≤ x ≤ 1.25, 0.01 ≤ y ≤ 0.5
0, 0.01 ≦ z ≦ 0.40, M is Ti, Cr, F
It is clear that the same effect can be obtained by using an active material represented by at least one kind of metal selected from e, Mn, Zn, Al, Mo and W).

【0060】<他の実施形態>本発明は上記記述及び図
面によって説明した実施形態に限定されるものではな
く、例えば次のような実施形態も本発明の技術的範囲に
含まれ、さらに、下記以外にも要旨を逸脱しない範囲内
で種々変更して実施することができる。
<Other Embodiments> The present invention is not limited to the embodiments described above and illustrated in the drawings. For example, the following embodiments are also included in the technical scope of the present invention. In addition to the above, various modifications can be made without departing from the scope of the invention.

【0061】上記した実施形態では、角形非水電解質二
次電池1として説明したが、電池構造は特に限定され
ず、円筒形、リチウムポリマー電池、短冊状の電極をセ
パレータを介して積層してなる角形電池等としてもよい
ことは勿論である。
In the above embodiment, the prismatic non-aqueous electrolyte secondary battery 1 has been described, but the battery structure is not particularly limited, and a cylindrical, lithium polymer battery, and strip-shaped electrodes are laminated with a separator interposed therebetween. Of course, a prismatic battery or the like may be used.

【0062】[0062]

【発明の効果】本発明による非水電解質二次電池用正極
及びそれを用いた非水電解質二次電池によれば、コスト
が安く、高いエネルギー密度、優れた重負荷特性、及び
優れた低温特性を得ることができる。
According to the positive electrode for a non-aqueous electrolyte secondary battery and the non-aqueous electrolyte secondary battery using the same according to the present invention, the cost is low, the high energy density, the excellent heavy load characteristic, and the excellent low temperature characteristic are provided. Can be obtained.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施形態の角形非水電解質二次電池
の縦断面図
FIG. 1 is a vertical cross-sectional view of a prismatic nonaqueous electrolyte secondary battery according to an embodiment of the present invention.

【図2】本発明の一実施形態の正極の縦断面図FIG. 2 is a vertical sectional view of a positive electrode according to an embodiment of the present invention.

【図3】本発明の正極集電体の厚さT1と活物質層の厚
さ(T2+T3)の比(T2+T3)/T1と常温低負
荷放電容量C1との関係を示す特性図
FIG. 3 is a characteristic diagram showing the relationship between the ratio (T2 + T3) / T1 of the thickness T1 of the positive electrode current collector of the present invention and the thickness (T2 + T3) of the active material layer, and the room temperature low load discharge capacity C1.

【図4】本発明の正極活物質層の厚さ(T2+T3)と
常温低負荷放電容量C1と常温重負荷放電容量C2との
比C2/C1との関係を示す特性図
FIG. 4 is a characteristic diagram showing the relationship between the thickness (T2 + T3) of the positive electrode active material layer of the present invention and the ratio C2 / C1 of the room temperature low load discharge capacity C1 and the room temperature heavy load discharge capacity C2.

【図5】本発明の正極活物質層の厚さ(T2+T3)と
常温低負荷放電容量C1と低温低負荷放電容量C3との
比C3/C1との関係を示す特性図
FIG. 5 is a characteristic diagram showing the relationship between the thickness (T2 + T3) of the positive electrode active material layer of the present invention and the ratio C3 / C1 of the room temperature low load discharge capacity C1 and the low temperature low load discharge capacity C3.

【図6】本発明の正極電極の比表面積と常温低負荷放電
容量C1との関係を示す特性図
FIG. 6 is a characteristic diagram showing the relationship between the specific surface area of the positive electrode of the present invention and room temperature low load discharge capacity C1.

【図7】本発明の正極電極の比表面積と常温低負荷放電
容量C1と低温重負荷放電容量C2との比C2/C1と
の関係を示す特性図
FIG. 7 is a characteristic diagram showing the relationship between the specific surface area of the positive electrode of the present invention and the ratio C2 / C1 of the room temperature low load discharge capacity C1 and the low temperature heavy load discharge capacity C2.

【図8】本発明の正極電極の比表面積と常温低負荷放電
容量C1と低温低負荷放電容量C3との比C3/C1と
の関係を示す特性図
FIG. 8 is a characteristic diagram showing the relationship between the specific surface area of the positive electrode of the present invention and the ratio C3 / C1 of the room temperature low load discharge capacity C1 and the low temperature low load discharge capacity C3.

【符号の説明】[Explanation of symbols]

3…正極 13…正極集電体 15…正極活物質層 16…正極活物質層 3 ... Positive electrode 13 ... Positive electrode current collector 15 ... Positive electrode active material layer 16 ... Positive electrode active material layer

───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 5H029 AJ02 AJ03 AK03 AL02 AL06 AL07 AL12 AM03 AM04 AM05 AM07 DJ07 HJ02 HJ04 5H050 AA02 AA06 AA08 BA17 CA07 CA08 CB02 CB07 CB08 CB12 DA02 DA04 HA02 HA04    ─────────────────────────────────────────────────── ─── Continued front page    F term (reference) 5H029 AJ02 AJ03 AK03 AL02 AL06                       AL07 AL12 AM03 AM04 AM05                       AM07 DJ07 HJ02 HJ04                 5H050 AA02 AA06 AA08 BA17 CA07                       CA08 CB02 CB07 CB08 CB12                       DA02 DA04 HA02 HA04

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 正極集電体の両側に、LiX Ni1-Y-Z
CoYZ 2 (0.95 ≦x≦1.25、0.01≦
y≦0.50、0.01≦z≦0.40、Mは、Ti,
Cr,Fe,Mn,Zn,Al,Mo,Wの中から選ん
だ少なくとも1種以上の金属)を含有する正極活物質層
を配した正極において、 前記正極集電体の厚さT1と、前記正極活物質層の厚さ
の合計(T2+T3)とが、2.5≦(T2+T3)/
T1、且つ(T2+T3)≦250μmの関係を満たす
ことを特徴とする非水電解質二次電池用正極。
1. Li X Ni 1-YZ on both sides of the positive electrode current collector.
Co Y M Z O 2 (0.95 ≦ x ≦ 1.25, 0.01 ≦
y ≦ 0.50, 0.01 ≦ z ≦ 0.40, M is Ti,
A positive electrode provided with a positive electrode active material layer containing at least one metal selected from the group consisting of Cr, Fe, Mn, Zn, Al, Mo, and W. The total thickness (T2 + T3) of the positive electrode active material layer is 2.5 ≦ (T2 + T3) /
A positive electrode for a non-aqueous electrolyte secondary battery, which satisfies T1 and (T2 + T3) ≦ 250 μm.
【請求項2】 正極集電体の両側に、LiX Ni1-Y-Z
CoYZ 2 (0.95 ≦x≦1.25、0.01≦
y≦0.50、0.01≦z≦0.40、Mは、Ti,
Cr,Fe,Mn,Zn,Al,Mo,Wの中から選ん
だ少なくとも1種以上の金属)を含有する正極活物質層
を配した正極と、 負極集電体に負極活物質層を備えた負極と、非水電解質
とを備える非水電解質二次電池において、 前記正極集電体の厚さT1と、前記正極活物質層の厚さ
の合計(T2+T3)が、2.5≦(T2+T3)/T
1、且つ(T2+T3)≦250μmの関係を満たすこ
とを特徴とする非水電解質二次電池。
2. Li X Ni 1-YZ on both sides of the positive electrode current collector.
Co Y M Z O 2 (0.95 ≦ x ≦ 1.25, 0.01 ≦
y ≦ 0.50, 0.01 ≦ z ≦ 0.40, M is Ti,
A positive electrode provided with a positive electrode active material layer containing at least one metal selected from Cr, Fe, Mn, Zn, Al, Mo and W), and a negative electrode current collector provided with a negative electrode active material layer. In a non-aqueous electrolyte secondary battery including a negative electrode and a non-aqueous electrolyte, the total thickness (T2 + T3) of the positive electrode current collector and the positive electrode active material layer is 2.5 ≦ (T2 + T3). / T
1. A non-aqueous electrolyte secondary battery which satisfies the relationship of 1 and (T2 + T3) ≦ 250 μm.
JP2002093973A 2002-03-29 2002-03-29 Positive electrode for non-aqueous electrolyte secondary battery and secondary battery using such positive electrode Pending JP2003297340A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002093973A JP2003297340A (en) 2002-03-29 2002-03-29 Positive electrode for non-aqueous electrolyte secondary battery and secondary battery using such positive electrode

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002093973A JP2003297340A (en) 2002-03-29 2002-03-29 Positive electrode for non-aqueous electrolyte secondary battery and secondary battery using such positive electrode

Publications (1)

Publication Number Publication Date
JP2003297340A true JP2003297340A (en) 2003-10-17

Family

ID=29386876

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002093973A Pending JP2003297340A (en) 2002-03-29 2002-03-29 Positive electrode for non-aqueous electrolyte secondary battery and secondary battery using such positive electrode

Country Status (1)

Country Link
JP (1) JP2003297340A (en)

Similar Documents

Publication Publication Date Title
JP4897223B2 (en) Nonaqueous electrolyte secondary battery
EP1391959B1 (en) Non-aqueous electrolyte secondary battery
JP5095098B2 (en) Nonaqueous electrolyte secondary battery
EP2600444B1 (en) Secondary battery with an improved lithium ion mobility and cell capacity
JP4742866B2 (en) Positive electrode active material for secondary battery, positive electrode for secondary battery, secondary battery, and method for producing positive electrode active material for secondary battery
EP1936718B1 (en) Cathode active material for a lithium battery
JP4877898B2 (en) Nonaqueous electrolyte secondary battery
EP1655793B1 (en) Nonaqueous electrolyte secondary battery and charge/discharge system thereof
EP2991138B1 (en) Method for producing positive electrode active material layer for lithium ion battery, and positive electrode active material layer for lithium ion battery
WO2011161755A1 (en) Lithium secondary battery
JP2003142101A (en) Positive electrode for secondary battery and secondary battery using the same
JPWO2004105162A6 (en) Positive electrode active material for secondary battery, positive electrode for secondary battery, secondary battery, and method for producing positive electrode active material for secondary battery
US9979012B2 (en) Lithium ion secondary battery and method for manufacturing the same
JP2002042889A (en) Nonaqueous electrolyte secondary battery
WO2022138451A1 (en) Electrode, nonaqueous electrolyte battery, and battery pack
JP4224995B2 (en) Secondary battery and current collector for secondary battery
JPH09120815A (en) Nonaqueous electrolyte secondary battery and its manufacture
JP5017010B2 (en) Lithium secondary battery
JP2003297354A (en) Lithium secondary battery
JP2017188424A (en) Positive electrode active material for lithium ion secondary battery and lithium ion secondary battery positive electrode using the same, and lithium ion secondary battery
JP2007317539A (en) Positive electrode material and battery
JP3530174B2 (en) Positive electrode active material and lithium ion secondary battery
JP7117539B2 (en) Negative electrode active material and battery
JP4530844B2 (en) Nonaqueous electrolyte secondary battery and charging method thereof
JP4530843B2 (en) Nonaqueous electrolyte secondary battery and charging method thereof