JP2003294449A - Driving unit for vibration type angular velocity sensor - Google Patents

Driving unit for vibration type angular velocity sensor

Info

Publication number
JP2003294449A
JP2003294449A JP2002097311A JP2002097311A JP2003294449A JP 2003294449 A JP2003294449 A JP 2003294449A JP 2002097311 A JP2002097311 A JP 2002097311A JP 2002097311 A JP2002097311 A JP 2002097311A JP 2003294449 A JP2003294449 A JP 2003294449A
Authority
JP
Japan
Prior art keywords
drive
amplitude
angular velocity
displacement
signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002097311A
Other languages
Japanese (ja)
Other versions
JP3988505B2 (en
Inventor
Manabu Kato
加藤  学
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Aisin Corp
Original Assignee
Aisin Seiki Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Aisin Seiki Co Ltd filed Critical Aisin Seiki Co Ltd
Priority to JP2002097311A priority Critical patent/JP3988505B2/en
Publication of JP2003294449A publication Critical patent/JP2003294449A/en
Application granted granted Critical
Publication of JP3988505B2 publication Critical patent/JP3988505B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a means for reducing an unevenness of a sensor sensitivity due to a change of sensitivity caused by a temperature change and an unevenness of a resonance frequency of a vibrator. <P>SOLUTION: A driving unit for a vibration type angular velocity sensor comprises: a drive force applying means for vibration-driving a vibration element; a drive displacement detecting means for detecting a displacement vibrated by receiving a force of the drive force applying means by the element; a drive signal generating means having an amplitude regulating means for controlling a drive signal output by the drive fore applying means base don a displacement signal detected by the drive displacement detecting means; and an angular velocity detecting means for detecting a displacement in the angular velocity detecting direction of the element by a Coriolis force. In this drive unit, the drive amplitude is controlled so that the ratio of the drive frequency of the element driven by the drive force applying means to the drive amplitude becomes constant. <P>COPYRIGHT: (C)2004,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、たとえば振動型角
速度センサが備える振動子を振動駆動するための振動型
角速度センサの駆動回路に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a drive circuit of a vibration type angular velocity sensor for driving a vibrator of a vibration type angular velocity sensor, for example.

【0002】[0002]

【従来の技術】従来、たとえば振動型角速度センサが備
える振動子を振動駆動する振動動型角速度センサとして
は、図11のブロック図に示されるものが知られてい
る。図11に示されるように、振動子の駆動方向の振動
による変位は、駆動方向変位検出電極81から変位信号
として変位信号検出部82に出力される。変位信号検出
部82に出力された変位信号は、同期検波回路83にお
いて、駆動方向の変位に同期したタイミングにて同期検
波されて振動振幅情報として振幅調節器84に出力され
る。また同時に、振動型振動子を発振しやすくするため
に、変位信号検出部82に出力された変位信号は、別に
90deg移相85されて同じく振幅調節器84に出力
される。このように変位信号検出部82に出力された変
位信号を90deg移相85することで、上記振幅調節
器84において変位信号に対して略90度の位相差を有
する駆動信号の交流電圧成分を生成している。上記振幅
調節器84に出力された振動振幅情報は、振幅調節器8
4において振幅設定値と比較されて、振動振幅情報が小
さいときには、増加調節された振幅を有する駆動信号の
交流電圧成分が生成される。一方、振動振幅情報が大き
いときには、低減調節された振幅を有する駆動信号の交
流電圧成分が生成される。このように駆動信号の交流電
圧成分の振幅調節は、上記振動子の駆動方向の振動振幅
が一定になるように、同振動子の振動駆動力を制御する
ためである。このように振幅調節された駆動信号の交流
電圧成分は、加算器86に出力される。この加算器86
において、上記振幅調節された駆動信号の交流電圧成分
と所定値を有する駆動信号の直流電圧成分(バイアス電
圧)とが加算されて駆動信号が生成される。そして、こ
のように生成された駆動信号が駆動電極87に印加され
る。この生成された駆動信号(印加電圧)の2乗に比例
し、上記振動子との間で発生する静電引力(振動駆動
力)の振動により、上記振動子は駆動方向の振動振幅が
一定になるように振動駆動される。
2. Description of the Related Art Conventionally, as a vibration dynamic angular velocity sensor for driving a vibrator provided in a vibration angular velocity sensor, for example, one shown in a block diagram of FIG. 11 is known. As shown in FIG. 11, the displacement due to the vibration in the driving direction of the vibrator is output from the driving direction displacement detection electrode 81 to the displacement signal detection unit 82 as a displacement signal. The displacement signal output to the displacement signal detector 82 is synchronously detected by the synchronous detection circuit 83 at a timing synchronized with the displacement in the driving direction, and output to the amplitude adjuster 84 as vibration amplitude information. At the same time, the displacement signal output to the displacement signal detection unit 82 is additionally 90 deg phase shifted 85 and output to the amplitude adjuster 84 in order to facilitate the oscillation of the vibration type vibrator. By thus shifting the displacement signal output to the displacement signal detector 82 by 90 deg phase shift 85, the amplitude adjuster 84 generates an AC voltage component of the drive signal having a phase difference of approximately 90 degrees with respect to the displacement signal. is doing. The vibration amplitude information output to the amplitude adjuster 84 is the amplitude adjuster 8
When the vibration amplitude information is small compared with the amplitude setting value in 4, the AC voltage component of the drive signal having the increased adjusted amplitude is generated. On the other hand, when the vibration amplitude information is large, the AC voltage component of the drive signal having the reduced and adjusted amplitude is generated. In this way, the amplitude adjustment of the AC voltage component of the drive signal is for controlling the vibration driving force of the vibrator so that the vibration amplitude of the vibrator in the driving direction becomes constant. The AC voltage component of the drive signal whose amplitude has been adjusted in this way is output to the adder 86. This adder 86
In, the AC voltage component of the amplitude-adjusted drive signal and the DC voltage component (bias voltage) of the drive signal having a predetermined value are added to generate the drive signal. Then, the drive signal thus generated is applied to the drive electrode 87. The vibrator has a constant vibration amplitude in the driving direction due to the vibration of the electrostatic attractive force (vibration driving force) that is proportional to the square of the generated drive signal (applied voltage) and is generated between the vibrator. It is driven to vibrate.

【0003】[0003]

【発明が解決しようとする課題】上記振動型角速度セン
サにおいては、上述したように振動駆動するために外部
から駆動周波数となる交流信号を印加するため、振動状
態を検出する信号やセンサの角速度を検出する信号に駆
動信号が混入するという問題が発生する。この駆動信号
となる交流信号が混入した成分は、センサの角速度を検
出する信号と略同周波数であるため、振動状態を測定す
る際の誤差となる。またセンサの角速度を検出する信号
に駆動信号が混入した場合、センサ出力のオフセットと
なる。
In the above-mentioned vibration type angular velocity sensor, since an AC signal having a driving frequency is externally applied to drive the vibration as described above, the signal for detecting the vibration state and the angular velocity of the sensor are detected. There is a problem that the drive signal is mixed with the signal to be detected. The component in which the AC signal as the drive signal is mixed has substantially the same frequency as the signal for detecting the angular velocity of the sensor, and therefore becomes an error when measuring the vibration state. Further, when the drive signal is mixed with the signal for detecting the angular velocity of the sensor, it becomes an offset of the sensor output.

【0004】振動型角速度センサにおいては、上記理由
により駆動電圧を下げて、略駆動方向の共振周波数で振
動子を振動駆動しており、駆動周波数と角速度の検出方
向の共振周波数とを近づけて、コリオリの力による変位
を大きくすることでセンサの角速度検出感度の向上を図
っている。このように通常の振動型角速度センサにおい
ては、駆動方向の駆動振幅が温度変化に対して一定とな
るように制御されている。
In the vibration type angular velocity sensor, the driving voltage is lowered for the above reason to vibrate and drive the vibrator at the resonance frequency in the substantially driving direction, and the driving frequency and the resonance frequency in the angular velocity detecting direction are brought close to each other. The angular velocity detection sensitivity of the sensor is improved by increasing the displacement due to the Coriolis force. As described above, in the normal vibration type angular velocity sensor, the drive amplitude in the drive direction is controlled to be constant with respect to the temperature change.

【0005】通常、駆動方向の共振周波数を決めるばね
と、検出方向の共振周波数を決めるばねは、ともに同一
素材で構成されており、ばね定数の比は温度に対してほ
ぼ一定となる。また振動子を駆動する方向の駆動周波数
と角速度を検出する方向の共振周波数の比はほぼ一定で
あり、コリオリの力による検出方向への変位を増幅する
比率もほぼ一定である。しかし、温度変化に対して駆動
振幅を一定となるように制御する場合、温度変化による
駆動周波数および角速度の検出方向の共振周波数の変化
に対して、コリオリの力は、駆動方向の速度に比例した
力が発生するので、駆動周波数に比例した力が発生す
る。一方、角速度の検出方向の変位は、検出方向のばね
定数に反比例し、検出方向のばね定数は、検出方向の共
振周波数の二乗に比例する。このため、温度変化による
ばね材料の物性の温度特性により、駆動および検出の共
振周波数が変動した場合には、検出方向のコリオリの力
による変位は、駆動共振周波数または検出共振周波数に
反比例してしまい、検出感度の温度特性劣化を招いてい
た。また、製造条件のばらつきにより駆動周波数がばら
ついた場合、従来駆動方向と検出方向の共振周波数の比
を調節するだけでは、別途センサの角速度の検出感度の
調節が広範囲にわたって必要となり、特に駆動周波数が
高くなると検出信号が小さくなるので、S/N比の劣化
を招いていた。
Usually, the spring that determines the resonance frequency in the driving direction and the spring that determines the resonance frequency in the detection direction are made of the same material, and the ratio of spring constants is substantially constant with respect to temperature. Further, the ratio of the driving frequency in the direction of driving the vibrator and the resonance frequency in the direction of detecting the angular velocity is substantially constant, and the ratio of amplifying the displacement in the detection direction due to the Coriolis force is also substantially constant. However, when controlling the drive amplitude to be constant with respect to temperature changes, the Coriolis force was proportional to the speed in the drive direction with respect to changes in the drive frequency and the resonance frequency in the angular velocity detection direction due to temperature changes. Since the force is generated, the force proportional to the driving frequency is generated. On the other hand, the displacement of the angular velocity in the detection direction is inversely proportional to the spring constant in the detection direction, and the spring constant in the detection direction is proportional to the square of the resonance frequency in the detection direction. Therefore, when the resonance frequency of the drive and detection changes due to the temperature characteristic of the physical properties of the spring material due to temperature change, the displacement due to the Coriolis force in the detection direction is inversely proportional to the drive resonance frequency or the detection resonance frequency. However, the temperature characteristic of the detection sensitivity was deteriorated. Also, if the drive frequency varies due to variations in manufacturing conditions, it is necessary to separately adjust the angular velocity detection sensitivity of the sensor over a wide range only by adjusting the ratio of the resonance frequency in the conventional drive direction to the detection direction. The higher the signal, the smaller the detection signal, resulting in deterioration of the S / N ratio.

【0006】よって、本発明は上記の問題点に鑑みてな
されたものであり、温度変化による感度の変動、および
振動体の共振周波数のばらつきに起因するセンサ感度の
ばらつきを低減する手段を提供することを技術的課題と
する。
Therefore, the present invention has been made in view of the above problems, and provides means for reducing fluctuations in sensitivity due to temperature changes and variations in sensor sensitivity due to variations in resonance frequency of a vibrating body. This is a technical issue.

【0007】[0007]

【課題を解決するための手段】上記課題を解決するため
に講じた請求項1の発明は、振動子を振動駆動するため
の駆動力印加手段と、前記振動子が前記駆動力印加手段
による力を受けて振動する変位を検出する駆動変位検出
手段と、該駆動変位検出手段により検出された変位信号
に基づき前記駆動力印加手段に出力される駆動信号を制
御する振幅調節手段を有する駆動信号生成手段と、コリ
オリの力による振動子の角速度検出方向の変位を検出す
る角速度検出手段と、を備える振動型角速度センサにお
いて、前記駆動力印加手段によって駆動される前記振動
子の駆動周波数と駆動振幅の比が一定となるように駆動
振幅を制御振動型角速度センサの駆動装置とする。
In order to solve the above-mentioned problems, the invention of claim 1 is to provide a driving force applying means for vibrating and driving a vibrator, and a force generated by the driving force applying means for the vibrator. Drive signal generation having drive displacement detection means for detecting a displacement oscillated in response to the vibration, and amplitude adjustment means for controlling the drive signal output to the drive force application means based on the displacement signal detected by the drive displacement detection means. A vibration-type angular velocity sensor including a driving force applying unit and a driving frequency and a driving amplitude of the vibrator driven by the driving force applying unit. The drive amplitude of the control vibration type angular velocity sensor is set so that the ratio becomes constant.

【0008】この請求項1によれば、駆動力印加手段に
よって駆動される振動子の周波数と駆動振幅の比が一定
となるように駆動制御されるので、振動子の駆動方向の
振動振幅は駆動共振周波数に比例した振幅となる。コリ
オリの力は駆動方向の速度に比例し、駆動速度は駆動振
幅に比例する。上記のように検出感度は駆動共振周波数
に反比例するので、本発明を適用した振動型角速度セン
サでは、駆動周波数による検出感度の変動が駆動振幅の
変動でキャンセルされるので、駆動周波数に依存されな
い。つまり温度変化に対して感度が安定となるので、セ
ンサ素子のばらつきに対してセンサ感度のばらつきの小
さい振動型角速度センサとなる。
According to the present invention, since the drive is controlled so that the ratio of the frequency and the drive amplitude of the vibrator driven by the drive force applying means becomes constant, the vibration amplitude of the vibrator in the drive direction is driven. The amplitude is proportional to the resonance frequency. The Coriolis force is proportional to the speed in the driving direction, and the driving speed is proportional to the driving amplitude. As described above, since the detection sensitivity is inversely proportional to the drive resonance frequency, the vibration type angular velocity sensor to which the present invention is applied does not depend on the drive frequency because the change in detection sensitivity due to the drive frequency is canceled by the change in drive amplitude. That is, since the sensitivity is stable with respect to the temperature change, the vibration type angular velocity sensor has a small variation in the sensor sensitivity with respect to the variation in the sensor element.

【0009】そしてさらに好ましくは、請求項2に示さ
れるように、前記駆動力印加手段による駆動力として静
電引力を用いるとともに、前記駆動信号は直流成分にバ
イアスされた交流成分よりなり、前期交流成分の振幅は
略一定であり、前記駆動信号の直流電圧を調節すること
によって、前記駆動力印加手段によって駆動される駆動
力を制御し、前記振動振幅の制御を行う振動型角速度セ
ンサの駆動装置とする。
More preferably, as described in claim 2, the electrostatic force is used as the driving force by the driving force applying means, and the driving signal is composed of an alternating current component biased to a direct current component. The amplitude of the component is substantially constant, and by controlling the DC voltage of the drive signal, the drive force driven by the drive force applying means is controlled to control the vibration amplitude. And

【0010】駆動力印加手段による駆動力として具体的
には静電引力を用いる。そして駆動信号は直流成分にバ
イアスされた交流成分よりなり、交流成分の振幅は略一
定であり、前記駆動信号の直流電圧を調節するので、簡
略な回路構成で実現できる。
Specifically, electrostatic attraction is used as the driving force by the driving force applying means. The drive signal is composed of an alternating current component biased to the direct current component, the amplitude of the alternating current component is substantially constant, and the direct current voltage of the drive signal is adjusted, so that it can be realized with a simple circuit configuration.

【0011】さらに請求項3に示されるように、前記駆
動変位検出手段で検出される変位信号と前記駆動信号の
交流成分の位相差が略90degである振動型角速度セ
ンサの駆動装置とする。
Further, according to a third aspect of the present invention, there is provided a vibration type angular velocity sensor drive device in which the phase difference between the displacement signal detected by the drive displacement detection means and the AC component of the drive signal is approximately 90 deg.

【0012】本発明では駆動信号の振幅が一定となるよ
うに制御されているので、駆動信号の交流成分の振幅も
一定となる。これにより駆動方向および検出方向の変位
信号に混入する駆動信号が温度変化等による駆動方向の
Q値の変動に対しても安定となる。
In the present invention, since the amplitude of the drive signal is controlled to be constant, the amplitude of the AC component of the drive signal is also constant. As a result, the drive signal mixed in the displacement signals in the drive direction and the detection direction becomes stable even if the Q value in the drive direction changes due to temperature changes or the like.

【0013】また混入する駆動信号の交流成分は一定と
なるように制御されているので変位信号への駆動信号の
混入量の変動は抑制され、零点および感度の変動が抑制
されるので高精度なセンサが実現できる。
Further, since the AC component of the driving signal to be mixed is controlled to be constant, the fluctuation of the mixing amount of the driving signal into the displacement signal is suppressed, and the fluctuation of the zero point and the sensitivity is suppressed, so that it is highly accurate. A sensor can be realized.

【0014】そして請求項4において、前記駆動変位検
出手段で検出される変位信号の交流成分を積分した信号
の振幅が一定となるように制御される振動型角速度セン
サの駆動装置とする。
According to a fourth aspect of the present invention, there is provided a vibration type angular velocity sensor drive device controlled so that the amplitude of a signal obtained by integrating the AC component of the displacement signal detected by the drive displacement detection means is constant.

【0015】振動子の駆動方向の変位信号をもとに、変
位信号の交流成分を積分した信号の振幅が一定となるよ
うに制御される。
Based on the displacement signal in the driving direction of the vibrator, the amplitude of the signal obtained by integrating the AC component of the displacement signal is controlled to be constant.

【0016】そして請求項5において、前記駆動変位検
出手段で検出される変位信号の交流成分の振幅の設定値
が駆動周波数に比例する振動型角速度センサの駆動装置
とする。
According to a fifth aspect of the present invention, the vibration type angular velocity sensor driving device is such that the set value of the amplitude of the AC component of the displacement signal detected by the driving displacement detecting means is proportional to the driving frequency.

【0017】駆動変位検出手段で検出される変位信号の
交流成分の振幅の設定値と駆動周波数が比例した電圧が
生成される。この生成された電圧と変位信号で駆動振幅
に比例した電圧との比が一定となるように駆動力を変え
るため、駆動信号が調節される。
A voltage is generated in which the drive frequency is proportional to the set value of the amplitude of the AC component of the displacement signal detected by the drive displacement detection means. The driving signal is adjusted in order to change the driving force so that the ratio of the generated voltage and the voltage proportional to the driving amplitude of the displacement signal becomes constant.

【0018】そしてさらに請求項9においては、前記駆
動信号は互いにその交流成分が反転した対となる2つの
信号を出力する振動型角速度センサの駆動装置とする。
According to a ninth aspect of the present invention, the drive signal is a drive device of a vibration type angular velocity sensor which outputs two signals which are a pair of which the AC components are inverted from each other.

【0019】以上請求項9に示すように、駆動信号の2
出力を対とし、その交流成分が互いに反転するので、不
要な力がキャンセルされるとともに、ノイズについても
相殺される。
As described above, the drive signal 2
Since the outputs are paired and their AC components are inverted from each other, unnecessary force is canceled and noise is also canceled.

【0020】[0020]

【発明の実施の形態】以下、本発明の実施の形態を図面
を参照して説明する。まず角速度センサの振動ジャイロ
センサ素子について説明する。図12には本発明の振動
型角速度センサに用いる振動ジャイロセンサ素子の一例
を示す。センサ素子の基板18上に形成される可動部2
5は、非晶質、多結晶、または単結晶からなる導体、ま
たは半導体よりなり、駆動電極27、駆動変位電極9お
よび角速度検出電極10を具備して、梁26およびアン
カー8を介して基板上に空隙をはさんで保持されてい
る。この可動部25は、駆動方向(図示X方向)および検
出方向(図示Y方向)に変位可能となっており、駆動方向
の共振周波数に対する検出方向の共振周波数の比は1よ
りやや高くなっている。通常、振動子の駆動方向のばね
定数を決める梁と、角速度検出方向のばね定数を決める
梁は同一の材料で構成する。そのため温度変化によっ
て、上記材料の物性が変動して駆動方向と検出方向の共
振周波数は変動しても、駆動方向と検出方向のばね定数
の比はほとんど変動しない。また駆動方向と検出方向の
共振周波数の比の変動も殆ど生じない。このため、検出
方向の共振のQ値が上記振幅増幅率に対して十分高けれ
ば、振幅増幅率は温度変化に対して安定となる。角速度
を検出する感度は、角速度を検出する振動子の駆動方向
の振幅、角速度検出方向のばね定数および同検出方向の
振幅増幅率で決まる。この角速度検出方向の振幅増幅率
は、同検出方向の共振周波数と振動子の駆動周波数との
比、および角速度検出方向のQ値で決まるが、同検出方
向の振幅増幅率に対してQ値が充分大きければ、角速度
検出方向の共振周波数と振動子の駆動周波数の比で決ま
ると考えてよい。以下の説明においては別段の断りがな
い場合には、「角速度検出」と同義で「検出」を、また「振
動子の駆動」は「駆動」と略して使用する。
BEST MODE FOR CARRYING OUT THE INVENTION Embodiments of the present invention will be described below with reference to the drawings. First, the vibration gyro sensor element of the angular velocity sensor will be described. FIG. 12 shows an example of a vibration gyro sensor element used in the vibration type angular velocity sensor of the present invention. Movable part 2 formed on substrate 18 of sensor element
Reference numeral 5 is a conductor or semiconductor made of amorphous, polycrystalline, or single crystal, and includes a drive electrode 27, a drive displacement electrode 9 and an angular velocity detection electrode 10, and is provided on the substrate via the beam 26 and the anchor 8. It is held with a gap in between. The movable portion 25 is displaceable in the drive direction (X direction in the drawing) and the detection direction (Y direction in the drawing), and the ratio of the resonance frequency in the detection direction to the resonance frequency in the drive direction is slightly higher than 1. . Usually, the beam that determines the spring constant in the driving direction of the vibrator and the beam that determines the spring constant in the angular velocity detection direction are made of the same material. Therefore, even if the physical properties of the material change due to temperature changes and the resonance frequency in the driving direction and the detecting direction also change, the ratio of the spring constants in the driving direction and the detecting direction hardly changes. Further, the ratio of the resonance frequency in the drive direction to the detection direction hardly fluctuates. Therefore, if the Q value of resonance in the detection direction is sufficiently higher than the amplitude amplification factor, the amplitude amplification factor will be stable with respect to temperature changes. The sensitivity for detecting the angular velocity is determined by the amplitude of the vibrator for detecting the angular velocity in the driving direction, the spring constant in the angular velocity detecting direction, and the amplitude amplification factor in the detecting direction. The amplitude amplification factor in the angular velocity detection direction is determined by the ratio between the resonance frequency in the detection direction and the drive frequency of the vibrator, and the Q value in the angular velocity detection direction. If it is sufficiently large, it can be considered that it is determined by the ratio of the resonance frequency in the angular velocity detection direction and the driving frequency of the vibrator. In the following description, unless otherwise specified, “detection” is synonymous with “angular velocity detection” and “driving the transducer” is abbreviated as “driving”.

【0021】この角速度センサのセンサ部では、駆動方
向の変位信号をもとに駆動信号の周波数、位相、交流成
分の振幅が調節され、センサ部の駆動電極に供給され
る。このとき、センサ部の可動部25は、供給された駆
動信号により駆動方向に駆動され、その駆動された変位
が駆動方向変位検出電極5、変位信号検出部6を介して
駆動回路に戻り、駆動方向の共振周波数で、振幅が調節
された状態で駆動される。図1において、変位信号検出
部41の出力は、振幅調節器44で駆動信号として位相
を調節され、さらに図1において検出された駆動方向の
変位信号は積分回路42で90deg移相されると同時
に周波数に反比例した係数が乗算される。一方、変位信
号はタイミング信号生成部48で変位信号に同期しデュ
ーティが略50%の矩形波となり、位相が90deg移
相される。90deg移相されたタイミング信号により
積分回路の出力を同期検波することで積分回路42の出
力の振幅に比例した、すなわち変位信号を駆動周波数で
割った値に比例した電圧が出力される。上記同期検波4
3の出力と振幅設定値を振幅調節器44で比較し、同期
検波43の出力を振幅設定値にあわせるように駆動信号
の交流成分の振幅を調節するための増幅率が出力され
る。そして、上記積分回路42の出力と上記増幅率の積
である駆動信号の交流成分に所定の直流電圧成分をバイ
アス電圧として加算し、駆動信号が駆動電極13に供給
する。また別に、メモリ50には、検出方向の共振周波
数の温度特性を基礎データとして、検出方向の共振周波
数と駆動周波数の比が一定となる駆動周波数と温度との
関係が記録されている。温度センサ49によって振動子
または振動子近傍の温度が検出され、その温度センサ4
9で検出された温度を基にして、メモリ50から振動子
が駆動すべき周波数情報が発振器51に出力される。そ
して、発振器51ではメモリ50からの情報に基づく駆
動周波数の交流成分が生成される。一方一部前述したよ
うに、駆動方向の変位信号は、積分回路42で交流成分
のみ積分され、同変位信号に対して、1/周波数の係数
が乗算された信号となり、この信号を同期検波して積分
回路42の出力の振幅情報とする。つぎの振幅調節器4
4では、同振幅情報と振幅設定値との比較がなされ、振
動振幅情報が小さい場合には、増加調節された振幅を有
する駆動信号の交流電圧成分が生成され、一方、同振動
振幅情報が大きい場合には、低減調節された振幅を有す
る駆動信号の交流電圧成分が生成される。乗算器45で
は、前記振幅調節器44からの出力と発振器51より出
力された交流信号が乗算されて、振幅が調節された駆動
信号の交流成分が生成される。この駆動信号を駆動電極
13に印加することにより駆動振幅が制御された駆動が
可能となる。
In the sensor section of this angular velocity sensor, the frequency, phase and amplitude of the AC component of the drive signal are adjusted based on the displacement signal in the drive direction and supplied to the drive electrodes of the sensor section. At this time, the movable section 25 of the sensor section is driven in the drive direction by the supplied drive signal, and the driven displacement is returned to the drive circuit via the drive direction displacement detection electrode 5 and the displacement signal detection section 6, and driven. It is driven at a resonant frequency in the direction with the amplitude adjusted. In FIG. 1, the output of the displacement signal detector 41 has its phase adjusted as a drive signal by an amplitude adjuster 44, and the displacement signal in the drive direction detected in FIG. A coefficient inversely proportional to the frequency is multiplied. On the other hand, the displacement signal becomes a rectangular wave with a duty of approximately 50% in synchronization with the displacement signal in the timing signal generator 48, and the phase is shifted by 90 deg. By synchronously detecting the output of the integrating circuit by the 90 deg phase-shifted timing signal, a voltage proportional to the amplitude of the output of the integrating circuit 42, that is, a value proportional to the value obtained by dividing the displacement signal by the driving frequency is output. Synchronous detection 4
The output of No. 3 and the amplitude setting value are compared by the amplitude adjuster 44, and the amplification factor for adjusting the amplitude of the AC component of the drive signal is output so that the output of the synchronous detection 43 matches the amplitude setting value. Then, a predetermined DC voltage component is added as a bias voltage to the AC component of the drive signal, which is the product of the output of the integration circuit 42 and the amplification factor, and the drive signal is supplied to the drive electrode 13. Separately, in the memory 50, the relationship between the drive frequency and the temperature at which the ratio between the resonance frequency in the detection direction and the drive frequency is constant is recorded using the temperature characteristic of the resonance frequency in the detection direction as basic data. The temperature sensor 49 detects the temperature of the vibrator or the vicinity of the vibrator, and the temperature sensor 4
Based on the temperature detected at 9, the memory 50 outputs frequency information for driving the vibrator to the oscillator 51. Then, the oscillator 51 generates an AC component of the drive frequency based on the information from the memory 50. On the other hand, as described above in part, the displacement signal in the driving direction is a signal in which only the AC component is integrated by the integrator circuit 42 and the displacement signal is multiplied by a 1 / frequency coefficient, and this signal is synchronously detected. It is used as amplitude information of the output of the integrating circuit 42. Next amplitude controller 4
In 4, the same amplitude information is compared with the amplitude setting value, and when the vibration amplitude information is small, the AC voltage component of the drive signal having the increased and adjusted amplitude is generated, while the same vibration amplitude information is large. In that case, an alternating voltage component of the drive signal having a reduced adjusted amplitude is generated. The multiplier 45 multiplies the output from the amplitude adjuster 44 and the AC signal output from the oscillator 51 to generate the AC component of the amplitude-adjusted drive signal. By applying this drive signal to the drive electrode 13, it becomes possible to perform drive in which the drive amplitude is controlled.

【0022】以上のように検出方向の共振周波数に対す
る駆動周波数の比を一定とすることにより、検出方向の
振幅増幅率が一定となる。駆動方向の変位信号は積分さ
れた後、同期検波され、同期検波後の振幅が一定になる
ことにより、駆動振幅が駆動周波数に比例する。駆動方
向の振動子の速度は、駆動周波数の2乗に比例し、コリ
オリの力が駆動方向の速度に比例することにより、コリ
オリの力は駆動周波数の2乗に比例する。一方、検出方
向のばね定数は、駆動周波数と検出方向の共振周波数の
比が一定であるので、駆動周波数の2乗に比例する。以
上によって温度変化により振動子の検出方向の共振周波
数が変動しても、振幅増幅率は一定であるので、角速度
の検出感度は、温度変化に対して安定となる。この結
果、積分回路の出力の振幅が一定となるように駆動制御
されるため、駆動方向の振動振幅は駆動共振周波数に比
例した振幅となる。本発明を適用した振動型角速度セン
サでは、駆動周波数による検出感度の変動が駆動振幅の
変動でキャンセルされるので、駆動周波数に依存されな
い。つまり温度変化に対して感度が安定となるので、セ
ンサ素子のばらつきに対してセンサ感度のばらつきの小
さい振動型角速度センサとなる。図2では図1のメモリ
50において、温度に対する駆動周波数および駆動周波
数に比例した駆動振幅のデータをメモリ52に記録し,
このデータを基に駆動制御してもよい。以上のメモリ5
2で構成することにより、図1における積分回路42が
不要になり、積分回路で増幅または混入する低周波ノイ
ズによる振幅制御の誤差が低減できる。振動子を静電引
力を用いて駆動を行なう場合、図3および図4では、駆
動信号の交流成分の振幅を一定としたバイアス電圧を調
節することによって駆動力を制御し、駆動振幅を制御し
てもよい。以上の構成とすることで、角速度検出電極と
駆動電極間の寄生容量等を介して、角速度検出信号に混
入する駆動信号の交流信号成分が低減されるので、セン
サ出力のオフセット変動が低減できセンサ性能の向上が
はかれる。つぎに図5には本発明の別の実施例について
ブロック図を用いて説明する。図1は温度センサにより
センサもしくはセンサ近傍の温度を検出してその情報を
もとに制御される構成であるが、図5においては、積分
回路62の出力と振幅調節器66における増幅率の積で
ある駆動信号の交流成分に所定の直流電圧成分をバイア
ス電圧として加算し駆動電極13に供給している。この
結果、積分回路の出力の振幅が一定となるように駆動制
御される。そしてその結果、振動振幅は、駆動共振周波
数に比例した振幅となる。図6は、図5の実施例におい
ては駆動方向の変位信号によりタイミング信号を生成し
て、上記タイミング信号の位相を移相器により90de
g移相して同期検波のタイミング信号としていたが、図
6では、積分回路の出力より同期検波のタイミング信号
を生成している。これにより回路構成の簡略化が可能と
なるので、構成回路のコスト低減が可能となる。図7で
は、駆動信号の交流成分は積分回路の出力を増幅または
減衰させて生成し、振幅調節器(AGC)で駆動のバイ
アス電圧を生成し、加算器で駆動のバイアス電圧と上記
駆動信号の交流成分を加算して駆動信号を生成してい
る。本発明の駆動回路では積分回路の出力の振幅が一定
となるように制御されているので、駆動信号の交流成分
の振幅も一定となる。これにより駆動方向および検出方
向の変位信号に混入する駆動信号が温度変化等による駆
動方向のQ値の変動に対しても安定となる。駆動方向お
よび検出方向の変位信号に混入する駆動信号は、誤差成
分となり特に検出方向の変位信号への混入量が変動する
と、零点が変動してセンサ特性の劣化を招く。そして駆
動方向の変位信号への駆動信号の混入量の変動は、検出
信号の同期検波のタイミングの変動の要因となり感度の
変動を引き起こしセンサ性能の劣化を招く。図3に示す
実施例によれば、混入する駆動信号の交流成分は一定と
なるように制御されているので変位信号への駆動信号の
混入量の変動は抑制され、零点および感度の変動が抑制
されるので高精度なセンサが実現できる。図8において
は、駆動方向の変位信号をもとに、変位信号をF/Vコ
ンバータにより駆動周波数に比例した電圧を生成し、こ
の生成された電圧を増幅または減衰させて駆動周波数に
比例した基準電圧を生成し、変位信号を同期検波して駆
動振幅に比例した電圧を生成し、これを上記基準電圧に
合うように駆動力を変えるために駆動信号のバイアス電
圧を調節しており別途変位信号を積分および増幅または
減衰させた駆動信号の交流成分と上記駆動信号のバイア
ス電圧を加算して駆動信号を生成する。これにより、図
7の実施例と同等の効果が得られる。図9においては、
駆動方向の変位信号をもとにこれをF/Vコンバータに
よって駆動周波数に比例した電圧を生成し、この駆動周
波数に比例した電圧と変位信号を同期検波して駆動振幅
に比例した電圧との比が一定となるようにに駆動力を変
えるために駆動信号のバイアス電圧を調節している。ま
た別に変位信号検出部を経た変位信号を積分および増幅
または減衰させ、駆動信号の交流成分と上記駆動信号の
バイアス電圧を加算して駆動信号を生成する。つぎに本
発明を適用した駆動回路の振幅調節器の実施例をブロッ
ク図を用いて図13、図14、および図15に示す。図
13においては、同期検波された振動振幅信号と振幅設
定値の差に比例した電圧がバイアス電圧として出力され
る。これにより駆動力の位相遅れが抑えられ、応答性の
良い制御が可能となる。また図14においては、駆動振
幅信号と振幅設定値の差の時間積分値に比例した電圧
が、バイアス電圧として出力される。これにより駆動振
幅信号と振幅設定値の差が零になるように制御され精度
の良い制御が可能となる。図8においては、駆動振幅信
号と振幅設定値の差の時間積分値に比例した電圧と、駆
動振幅信号と振幅定値の差に比例した電圧の和がバイア
ス電圧として出力される。これにより応答性が良く精度
の良い制御が可能となる。図10に、本発明を適用した
駆動回路の実施例のブロック図を示す。図7の駆動回路
に対して同じバイアス電位上に反転した交流成分を重畳
した駆動信号を生成し、振動子に働く静電引力が反対に
なる電極に供給することにより駆動信号混入源として反
転した信号で打ち消し合い、図7の場合に比べて混入す
る駆動信号を低減することが可能となる。また、駆動電
極の構成を反転する駆動信号に対して同一構成とするこ
とにより交流成分の2乗に比例して働く力の成分および
直流電圧の2乗に比例して働く力の成分が打ち消し合い
不要な動きを低減することが可能となる。図13に、本
発明を適用した駆動回路の実施例のブロック図を示す。
図6の駆動回路に対して、同じバイアス電位上に反転し
た交流成分を重畳した駆動信号を生成し、振動子に働く
静電引力が反対になる電極に供給することにより、駆動
信号混入源として反転した信号で打ち消し合い図6の場
合に比べて混入する駆動信号を低減することが可能とな
る。また、駆動電極の構成を反転する駆動信号に対して
同一構成とすることにより、交流成分の2乗に比例して
働く力の成分および直流電圧の2乗に比例して働く力の
成分が打ち消し合い、不要な動きを低減することが可能
となる。
By making the ratio of the drive frequency to the resonance frequency in the detection direction constant as described above, the amplitude amplification factor in the detection direction becomes constant. The displacement signal in the driving direction is integrated and then synchronously detected, and the amplitude after the synchronous detection becomes constant, so that the driving amplitude is proportional to the driving frequency. The speed of the vibrator in the driving direction is proportional to the square of the driving frequency, and the Coriolis force is proportional to the speed in the driving direction, so that the Coriolis force is proportional to the square of the driving frequency. On the other hand, the spring constant in the detection direction is proportional to the square of the drive frequency because the ratio between the drive frequency and the resonance frequency in the detection direction is constant. As described above, even if the resonance frequency in the detection direction of the vibrator fluctuates due to temperature change, the amplitude amplification factor is constant, so the angular velocity detection sensitivity is stable with respect to temperature change. As a result, the drive is controlled so that the amplitude of the output of the integrating circuit is constant, and thus the vibration amplitude in the drive direction becomes an amplitude proportional to the drive resonance frequency. In the vibration type angular velocity sensor to which the present invention is applied, the fluctuation of the detection sensitivity due to the driving frequency is canceled by the fluctuation of the driving amplitude, so that it does not depend on the driving frequency. That is, since the sensitivity is stable with respect to the temperature change, the vibration type angular velocity sensor has a small variation in the sensor sensitivity with respect to the variation in the sensor element. 2, in the memory 50 of FIG. 1, the driving frequency with respect to the temperature and the data of the driving amplitude proportional to the driving frequency are recorded in the memory 52,
Drive control may be performed based on this data. More memory 5
The configuration of 2 eliminates the need for the integrating circuit 42 in FIG. 1 and reduces errors in amplitude control due to low-frequency noise amplified or mixed in the integrating circuit. When the vibrator is driven by using electrostatic attraction, the driving force is controlled by adjusting the bias voltage in which the amplitude of the AC component of the driving signal is constant in FIG. 3 and FIG. 4 to control the driving amplitude. May be. With the above configuration, the AC signal component of the drive signal mixed in the angular velocity detection signal is reduced through the parasitic capacitance between the angular velocity detection electrode and the drive electrode, etc., so that the offset fluctuation of the sensor output can be reduced. Performance can be improved. Next, another embodiment of the present invention will be described with reference to the block diagram of FIG. In FIG. 1, the temperature sensor detects the temperature of the sensor or in the vicinity of the sensor and the temperature is controlled based on the information. In FIG. 5, the product of the output of the integration circuit 62 and the amplification factor of the amplitude adjuster 66 is used. A predetermined DC voltage component is added as a bias voltage to the AC component of the drive signal and is supplied to the drive electrode 13. As a result, drive control is performed so that the amplitude of the output of the integrating circuit becomes constant. As a result, the vibration amplitude becomes an amplitude proportional to the drive resonance frequency. In FIG. 6, in the embodiment of FIG. 5, a timing signal is generated by a displacement signal in the driving direction, and the phase of the timing signal is 90 de by a phase shifter.
Although the phase is shifted by g to obtain the timing signal for synchronous detection, in FIG. 6, the timing signal for synchronous detection is generated from the output of the integrating circuit. As a result, the circuit configuration can be simplified, and the cost of the configuration circuit can be reduced. In FIG. 7, the AC component of the driving signal is generated by amplifying or attenuating the output of the integrating circuit, the amplitude adjuster (AGC) generates a driving bias voltage, and the adder generates the driving bias voltage and the driving signal. A driving signal is generated by adding AC components. Since the drive circuit of the present invention is controlled so that the amplitude of the output of the integrating circuit is constant, the amplitude of the AC component of the drive signal is also constant. As a result, the drive signal mixed in the displacement signals in the drive direction and the detection direction becomes stable even if the Q value in the drive direction changes due to temperature changes or the like. The drive signal mixed in the displacement signal in the drive direction and the detection direction becomes an error component, and in particular, when the amount mixed in the displacement signal in the detection direction changes, the zero point changes and the sensor characteristics deteriorate. The fluctuation of the mixing amount of the driving signal into the displacement signal in the driving direction causes the fluctuation of the timing of the synchronous detection of the detection signal, which causes the fluctuation of the sensitivity and the deterioration of the sensor performance. According to the embodiment shown in FIG. 3, since the AC component of the mixed drive signal is controlled to be constant, the variation of the mixed amount of the drive signal into the displacement signal is suppressed, and the variation of the zero point and the sensitivity is suppressed. Therefore, a highly accurate sensor can be realized. In FIG. 8, based on the displacement signal in the driving direction, a voltage proportional to the driving frequency is generated by the F / V converter, and the generated voltage is amplified or attenuated to obtain a reference proportional to the driving frequency. A voltage is generated and the displacement signal is synchronously detected to generate a voltage proportional to the drive amplitude, and the bias voltage of the drive signal is adjusted in order to change the drive force so that it matches the above reference voltage. Is added and the bias voltage of the drive signal is added to generate the drive signal. As a result, the same effect as that of the embodiment of FIG. 7 can be obtained. In FIG.
Based on the displacement signal in the driving direction, a voltage proportional to the driving frequency is generated by the F / V converter, and the ratio between the voltage proportional to the driving frequency and the voltage proportional to the driving amplitude by synchronously detecting the displacement signal. The bias voltage of the drive signal is adjusted in order to change the drive power so as to keep constant. Separately, the displacement signal that has passed through the displacement signal detector is integrated, amplified, or attenuated, and the AC component of the drive signal and the bias voltage of the drive signal are added to generate the drive signal. Next, an embodiment of an amplitude adjuster of a drive circuit to which the present invention is applied is shown in FIGS. 13, 14 and 15 using block diagrams. In FIG. 13, a voltage proportional to the difference between the synchronously detected vibration amplitude signal and the amplitude setting value is output as the bias voltage. As a result, the phase delay of the driving force is suppressed, and control with good responsiveness becomes possible. In FIG. 14, a voltage proportional to the time integral value of the difference between the drive amplitude signal and the amplitude setting value is output as the bias voltage. As a result, the difference between the drive amplitude signal and the amplitude setting value is controlled to be zero, and accurate control is possible. In FIG. 8, the sum of the voltage proportional to the time integral value of the difference between the drive amplitude signal and the amplitude setting value and the voltage proportional to the difference between the drive amplitude signal and the constant amplitude value is output as the bias voltage. As a result, responsiveness and accurate control are possible. FIG. 10 shows a block diagram of an embodiment of a drive circuit to which the present invention is applied. A drive signal in which the inverted AC component is superimposed on the same bias potential with respect to the drive circuit of FIG. 7 is generated, and the drive signal is inverted as a drive signal mixing source by supplying the drive signal to the electrode where the electrostatic attraction acting on the vibrator is opposite. The signals cancel each other out, and it is possible to reduce drive signals mixed in as compared with the case of FIG. 7. Further, by making the drive electrodes the same in configuration with respect to the drive signal that is inverted, the force component that works in proportion to the square of the AC component and the force component that works in proportion to the square of the DC voltage cancel each other out. It is possible to reduce unnecessary movement. FIG. 13 shows a block diagram of an embodiment of a drive circuit to which the present invention is applied.
As a drive signal mixing source, the drive circuit of FIG. 6 generates a drive signal in which an inverted AC component is superimposed on the same bias potential and supplies the drive signal to the electrode where the electrostatic attraction acting on the vibrator is opposite. The inverted signals cancel each other out, and it is possible to reduce drive signals mixed in as compared with the case of FIG. Further, by making the drive electrodes the same in configuration for the drive signal that is inverted, the force component acting in proportion to the square of the AC component and the force component acting in proportion to the square of the DC voltage are canceled out. Therefore, it is possible to reduce unnecessary movement.

【0023】なお、変位信号検出部の初段にはチャージ
アンプを用いてもよい。また、駆動の交流成分は実施例
では変位信号を積分して形成しているが図5、図6、図
7、図10、および図16においては、同期検波のタイ
ミング信号から矩形波の駆動信号の交流成分を生成して
もよい。
A charge amplifier may be used in the first stage of the displacement signal detecting section. Further, the AC component of the drive is formed by integrating the displacement signal in the embodiment, but in FIG. 5, FIG. 6, FIG. 7, FIG. 10 and FIG. The AC component of may be generated.

【0024】なお、図12および実施例では説明してい
ないが、検出方向の共振周波数を調整するための調律電
極および調律回路、駆動時の可動部側検出電極10を具
備した可動部25の振動方向を調節するためのサーボ電
極およびサーボ回路を追加することによりセンサ性能の
向上が図れる。
Although not described with reference to FIG. 12 and the embodiment, the vibration of the movable part 25 having the tuning electrode and tuning circuit for adjusting the resonance frequency in the detection direction and the moving part side detection electrode 10 during driving. The sensor performance can be improved by adding a servo electrode and a servo circuit for adjusting the direction.

【0025】[0025]

【発明の効果】本発明によれば、積分回路の出力の振幅
が一定となるように駆動制御されるため、駆動方向の振
動振幅は駆動共振周波数に比例した振幅となる。コリオ
リの力は駆動方向の速度に比例し、駆動速度は駆動振幅
に比例する。上記のように検出感度は駆動共振周波数に
反比例するので、本発明を適用した振動型角速度センサ
では、駆動周波数による検出感度の変動が駆動振幅の変
動でキャンセルされるので、駆動周波数に依存されな
い。つまり温度変化に対して感度が安定となるので、セ
ンサ素子のばらつきに対してセンサ感度のばらつきの小
さい振動型角速度センサとなる。本発明の駆動回路では
積分回路の出力の振幅が一定となるように制御されてい
るので、駆動信号の交流成分の振幅も一定となる。これ
により駆動方向および検出方向の変位信号に混入する駆
動信号が温度変化等による駆動方向のQ値の変動に対し
ても安定となる。混入する駆動信号の交流成分は一定と
なるように制御されているので、変位信号への駆動信号
の混入量の変動は抑制される。そして、零点および感度
の変動が抑制されるので高精度なセンサ制御が実現でき
る。
According to the present invention, since the drive control is performed so that the amplitude of the output of the integrating circuit is constant, the vibration amplitude in the drive direction becomes an amplitude proportional to the drive resonance frequency. The Coriolis force is proportional to the speed in the driving direction, and the driving speed is proportional to the driving amplitude. As described above, since the detection sensitivity is inversely proportional to the drive resonance frequency, the vibration type angular velocity sensor to which the present invention is applied does not depend on the drive frequency because the change in detection sensitivity due to the drive frequency is canceled by the change in drive amplitude. That is, since the sensitivity is stable with respect to the temperature change, the vibration type angular velocity sensor has a small variation in the sensor sensitivity with respect to the variation in the sensor element. Since the drive circuit of the present invention is controlled so that the amplitude of the output of the integrating circuit is constant, the amplitude of the AC component of the drive signal is also constant. As a result, the drive signal mixed in the displacement signals in the drive direction and the detection direction becomes stable even if the Q value in the drive direction changes due to temperature changes or the like. Since the AC component of the mixed drive signal is controlled to be constant, the variation of the mixed amount of the drive signal into the displacement signal is suppressed. Further, since the zero point and the fluctuation of the sensitivity are suppressed, highly accurate sensor control can be realized.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施の形態における駆動回路の一実施
例である。
FIG. 1 is an example of a drive circuit according to an embodiment of the present invention.

【図2】本発明の実施の形態における駆動回路の一実施
例である。
FIG. 2 is an example of a drive circuit according to an embodiment of the present invention.

【図3】本発明の実施の形態における駆動回路の一実施
例である。
FIG. 3 is an example of a drive circuit according to an embodiment of the present invention.

【図4】本発明の実施の形態における駆動回路の一実施
例である。
FIG. 4 is an example of a drive circuit according to an embodiment of the present invention.

【図5】本発明の実施の形態における駆動回路の一実施
例である。
FIG. 5 is an example of a drive circuit according to an embodiment of the present invention.

【図6】本発明の実施の形態における駆動回路の一実施
例である。
FIG. 6 is an example of a drive circuit according to an embodiment of the present invention.

【図7】本発明の実施の形態における駆動回路の一実施
例である。
FIG. 7 is an example of a drive circuit according to an embodiment of the present invention.

【図8】本発明の実施の形態における駆動回路の一実施
例である。
FIG. 8 is an example of a drive circuit according to an embodiment of the present invention.

【図9】本発明の実施の形態における駆動回路の一実施
例である。
FIG. 9 is an example of a drive circuit according to an embodiment of the present invention.

【図10】本発明の実施の形態における駆動回路の一実
施例である。
FIG. 10 is an example of a drive circuit according to an embodiment of the present invention.

【図11】本発明の実施の形態における駆動回路の一実
施例である。
FIG. 11 is an example of a drive circuit according to an embodiment of the present invention.

【図12】本発明が適用される振動ジャイロセンサ素子
の一例である。
FIG. 12 is an example of a vibration gyro sensor element to which the present invention is applied.

【図13】本発明を適用した駆動回路のAGC部の一実
施例である。
FIG. 13 is an example of an AGC section of a drive circuit to which the present invention is applied.

【図14】本発明を適用した駆動回路のAGC部の一実
施例である。
FIG. 14 is an example of an AGC section of a drive circuit to which the present invention is applied.

【図15】本発明を適用した駆動回路のAGC部の一実
施例である。
FIG. 15 is an example of an AGC section of a drive circuit to which the present invention is applied.

【図16】本発明を適用した駆動回路の一実施例であ
る。
FIG. 16 is an example of a drive circuit to which the present invention is applied.

【符号の説明】[Explanation of symbols]

5:駆動方向変位検出用電極 6:角速度検出方向変位検出用電極 7:駆動力印加用電極 8:アンカー(梁と基板の接続部) 9:可動部側駆動変位検出電極 10:可動部側角速度検出電極 13:電極 14:角速度検出方向の変位を検出するための固定電極
の電極パッド 15:駆動方向の変位を検出するための固定電極の電極
パッド 16:駆動方向に力を印加するための固定電極の電極パ
ッド 17:駆動力を印可するための固定電極と電極パッドを
つなぐ配線 18:基板 25:可動部 26:梁
5: Driving direction displacement detection electrode 6: Angular velocity detection direction displacement detection electrode 7: Driving force application electrode 8: Anchor (connection part between beam and substrate) 9: Movable part side drive displacement detection electrode 10: Movable part side angular velocity Detection electrode 13: Electrode 14: Electrode pad of fixed electrode for detecting displacement in angular velocity detection direction 15: Electrode pad of fixed electrode for detecting displacement in drive direction 16: Fixation for applying force in drive direction Electrode electrode pad 17: Wiring connecting fixed electrode and electrode pad for applying driving force 18: Substrate 25: Movable part 26: Beam

Claims (9)

【特許請求の範囲】[Claims] 【請求項1】 振動子を振動駆動するための駆動力印加
手段と、前記振動子が前記駆動力印加手段による力を受
けて振動する変位を検出する駆動変位検出手段と、該駆
動変位検出手段により検出された変位信号に基づき前記
駆動力印加手段に出力される駆動信号を制御する振幅調
節手段を有する駆動信号生成手段と、コリオリの力によ
る振動子の角速度検出方向の変位を検出する角速度検出
手段と、を備える振動型角速度センサにおいて、前記駆
動力印加手段によって駆動される前記振動子の駆動周波
数と駆動振幅の比が一定となるように駆動振幅を制御す
ること、を特徴とする振動型角速度センサの駆動装置。
1. A driving force applying means for driving an oscillator to vibrate, a driving displacement detecting means for detecting a displacement in which the oscillator vibrates by receiving a force from the driving force applying means, and the driving displacement detecting means. Drive signal generating means having an amplitude adjusting means for controlling the drive signal output to the drive force applying means on the basis of the displacement signal detected by, and angular velocity detection for detecting the displacement of the vibrator in the angular velocity detecting direction due to the Coriolis force. A vibration type angular velocity sensor comprising: a vibration type angular velocity sensor including: a vibration type angular velocity sensor including: Driving device for angular velocity sensor.
【請求項2】 前記駆動力印加手段による駆動力として
静電引力を用いるとともに、前記駆動信号は直流成分に
バイアスされた交流成分よりなり、前期交流成分の振幅
は略一定であり、前記駆動信号の直流電圧を調節するこ
とによって、前記駆動力印加手段によって駆動される駆
動力を制御し、前記振動振幅の制御を行うこと、を特徴
とした請求項1に記載の振動型角速度センサの駆動装
置。
2. An electrostatic attractive force is used as the driving force by the driving force applying means, the driving signal is composed of an alternating current component biased by a direct current component, and the amplitude of the alternating current component is substantially constant in the previous period. 2. The drive device for a vibration type angular velocity sensor according to claim 1, wherein the drive force driven by the drive force applying means is controlled by adjusting the DC voltage of the control means to control the vibration amplitude. .
【請求項3】 前記駆動変位検出手段で検出される変位
信号と前記駆動信号の交流成分の位相差が略90deg
であること、を特徴とする請求項1または請求項2のい
ずれかに記載の振動型角速度センサの駆動装置。
3. The phase difference between the displacement signal detected by the drive displacement detection means and the AC component of the drive signal is approximately 90 deg.
The drive device for the vibration type angular velocity sensor according to claim 1 or 2, characterized in that
【請求項4】 前記駆動変位検出手段で検出される変位
信号の交流成分を積分した信号の振幅が一定となるよう
に制御されること、を特徴とする請求項1から請求項3
のいずれかに記載の振動型角速度センサの駆動装置。
4. The control according to claim 1, wherein the amplitude of a signal obtained by integrating the AC component of the displacement signal detected by the drive displacement detecting means is constant.
The drive device for the vibration type angular velocity sensor according to any one of 1.
【請求項5】 前記駆動変位検出手段で検出される変位
信号の交流成分の振幅の設定値が駆動周波数に比例する
こと、を特徴とする請求項1から請求項3のいずれかに
記載の振動型角速度センサの駆動装置。
5. The vibration according to claim 1, wherein the set value of the amplitude of the AC component of the displacement signal detected by the drive displacement detection means is proportional to the drive frequency. Driving device for mold angular velocity sensor.
【請求項6】 前記駆動信号の直流電圧または前記駆動
信号の交流成分の振幅は振動振幅と設定振幅との差に比
例して変動すること、を特徴とする請求項1から請求項
5のいずれかに記載の振動型角速度センサの駆動装置。
6. The method according to claim 1, wherein the DC voltage of the drive signal or the amplitude of the AC component of the drive signal varies in proportion to the difference between the vibration amplitude and the set amplitude. The drive device of the vibration type angular velocity sensor described in (1).
【請求項7】 前記駆動信号の直流電圧または前記駆動
信号の交流成分の振幅は振動振幅と設定振幅との差を時
間積分した値に比例して変動すること、を特徴とする請
求項1から請求項5のいずれかに記載の振動型角速度セ
ンサの駆動装置。
7. The DC voltage of the drive signal or the amplitude of the AC component of the drive signal fluctuates in proportion to a value obtained by time-integrating the difference between the vibration amplitude and the set amplitude. The drive device for the vibration-type angular velocity sensor according to claim 5.
【請求項8】 前記駆動信号の直流電圧または前記駆動
信号の交流成分の振幅は振動振幅と設定振幅との差を時
間積分した値と振動振幅と設定振幅との差に比例した値
の和に比例して変動すること、を特徴とする請求項1か
ら請求項5のいずれかに記載の振動型角速度センサの駆
動装置。
8. The amplitude of the DC voltage of the drive signal or the AC component of the drive signal is the sum of a value obtained by time-integrating the difference between the vibration amplitude and the set amplitude and a value proportional to the difference between the vibration amplitude and the set amplitude. The drive device for the vibration type angular velocity sensor according to any one of claims 1 to 5, wherein the drive device varies in proportion.
【請求項9】 前記駆動信号は互いにその交流成分が反
転した対となる2つの信号を出力すること、を特徴とす
る請求項1から請求項8のいずれかに記載の振動型角速
度センサの駆動装置。
9. The drive of the vibration type angular velocity sensor according to claim 1, wherein the drive signal outputs two signals forming a pair in which alternating current components thereof are inverted from each other. apparatus.
JP2002097311A 2002-03-29 2002-03-29 Drive device for vibration type angular velocity sensor Expired - Fee Related JP3988505B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002097311A JP3988505B2 (en) 2002-03-29 2002-03-29 Drive device for vibration type angular velocity sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002097311A JP3988505B2 (en) 2002-03-29 2002-03-29 Drive device for vibration type angular velocity sensor

Publications (2)

Publication Number Publication Date
JP2003294449A true JP2003294449A (en) 2003-10-15
JP3988505B2 JP3988505B2 (en) 2007-10-10

Family

ID=29239926

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002097311A Expired - Fee Related JP3988505B2 (en) 2002-03-29 2002-03-29 Drive device for vibration type angular velocity sensor

Country Status (1)

Country Link
JP (1) JP3988505B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012117984A (en) * 2010-12-02 2012-06-21 Sony Corp Oscillation gyro sensor and circuit for oscillation gyro
JP2012202768A (en) * 2011-03-24 2012-10-22 Denso Corp Angular velocity sensor
JP2013213728A (en) * 2012-04-02 2013-10-17 Seiko Epson Corp Gyro sensor and electronic apparatus
WO2015197030A1 (en) * 2014-06-26 2015-12-30 无锡华润上华半导体有限公司 Method and system for correcting driving amplitude of gyro sensor
JP2016206207A (en) * 2016-08-19 2016-12-08 セイコーエプソン株式会社 Gyro sensor and electronic apparatus

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012117984A (en) * 2010-12-02 2012-06-21 Sony Corp Oscillation gyro sensor and circuit for oscillation gyro
JP2012202768A (en) * 2011-03-24 2012-10-22 Denso Corp Angular velocity sensor
JP2013213728A (en) * 2012-04-02 2013-10-17 Seiko Epson Corp Gyro sensor and electronic apparatus
US9243908B2 (en) 2012-04-02 2016-01-26 Seiko Epson Corporation Gyro sensor and electronic apparatus
WO2015197030A1 (en) * 2014-06-26 2015-12-30 无锡华润上华半导体有限公司 Method and system for correcting driving amplitude of gyro sensor
US10466065B2 (en) 2014-06-26 2019-11-05 Csmc Technologies Fab2 Co., Ltd. Method and system for correcting driving amplitude of gyro sensor
US10782148B2 (en) 2014-06-26 2020-09-22 Csmc Technologies Fab2 Co., Ltd. Method and system for correcting driving amplitude of gyro sensor
JP2016206207A (en) * 2016-08-19 2016-12-08 セイコーエプソン株式会社 Gyro sensor and electronic apparatus

Also Published As

Publication number Publication date
JP3988505B2 (en) 2007-10-10

Similar Documents

Publication Publication Date Title
JP4729801B2 (en) Vibrator driving device and angular velocity sensor provided with the vibrator driving device
US5806364A (en) Vibration-type angular velocity detector having sensorless temperature compensation
JP4668407B2 (en) Angular velocity sensor
US7849746B2 (en) Driver device, physical quantity measuring device, and electronic instrument
JP2005227234A (en) Angular velocity sensor
WO2005103618A1 (en) Gyroscope device
KR20060096063A (en) Rotational speed sensor
JP2001264072A (en) Angular velocity sensor
JPH1144540A (en) Vibration-type angular velocity sensor
JP2001264071A (en) Vibrator driving device
US20020100322A1 (en) Vibrating gyroscope and temperature-drift adjusting method therefor
JP3988505B2 (en) Drive device for vibration type angular velocity sensor
JP3627643B2 (en) Vibrating gyro
US7692506B2 (en) Oscillation driver device, physical quantity measuring device, and electronic instrument
KR100198308B1 (en) Vibrating gyroscope
US6316942B1 (en) Electrical potential sensor
JP2000283767A (en) Angular velocity measuring apparatus
JP2003247829A (en) Angular velocity sensor
JPH10206166A (en) Vibration-type gyroscope
JP2003247828A (en) Angular velocity sensor
JP3035161B2 (en) Vibrating gyroscope
JP2005127978A (en) Oscillating circuit and angular velocity sensor
US5533396A (en) Vibrating gyroscope
JPH10227643A (en) Vibration gyro
JP3395394B2 (en) Vibration control device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050216

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060510

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070626

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070709

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100727

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110727

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120727

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120727

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130727

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees