JP2003293093A - Method of producing stainless steel formed article having excellent shape precision - Google Patents

Method of producing stainless steel formed article having excellent shape precision

Info

Publication number
JP2003293093A
JP2003293093A JP2002097174A JP2002097174A JP2003293093A JP 2003293093 A JP2003293093 A JP 2003293093A JP 2002097174 A JP2002097174 A JP 2002097174A JP 2002097174 A JP2002097174 A JP 2002097174A JP 2003293093 A JP2003293093 A JP 2003293093A
Authority
JP
Japan
Prior art keywords
stainless steel
less
rich phase
cutting
machinability
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002097174A
Other languages
Japanese (ja)
Other versions
JP2003293093A5 (en
JP3942934B2 (en
Inventor
Satoshi Suzuki
聡 鈴木
Hideki Tanaka
秀記 田中
Naoto Hiramatsu
直人 平松
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Nisshin Co Ltd
Original Assignee
Nisshin Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nisshin Steel Co Ltd filed Critical Nisshin Steel Co Ltd
Priority to JP2002097174A priority Critical patent/JP3942934B2/en
Publication of JP2003293093A publication Critical patent/JP2003293093A/en
Publication of JP2003293093A5 publication Critical patent/JP2003293093A5/ja
Application granted granted Critical
Publication of JP3942934B2 publication Critical patent/JP3942934B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method of easily producing a stainless steel formed article having an excellent shape precision by press forming and the subsequent machining with stainless steel having excellent machinability as the stock. <P>SOLUTION: Stainless steel containing, by mass, ≤0.5% C, ≤1.0% Si, ≤1.0% Mn, 10 to 30% Cr, ≤0.60% Ni, 0.5 to 6.0% Cu, ≥0.005% Sn or In and ≤1.0% Al, and in which a second phase essentially consisting of Cu, and containing ≥10% Sn or In is dispersed into a matrix in the ratio of ≥0.2 vol.% is press- formed, and is thereafter subjected to machining. The stainless steel can be subjected to the press forming as heated. <P>COPYRIGHT: (C)2004,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、毒性のないCuの添加
によって被削性を改善したフェライト系およびマルテン
サイト系ステンレス鋼を素材として、プレス成形と仕上
げ切削により、機械部品,電子電機部品、ハードディス
ク用ハブ等の厳しい寸法精度が要求される金属成形部品
を容易に製造できる形状精度に優れたステンレス鋼成形
品の製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention is made of ferritic and martensitic stainless steels whose machinability has been improved by adding non-toxic Cu, by press molding and finish cutting, and mechanical parts, electronic electrical parts, The present invention relates to a method for manufacturing a stainless steel molded product having excellent shape accuracy, which can easily manufacture a metal molded component such as a hard disk hub that requires strict dimensional accuracy.

【0002】[0002]

【従来の技術】精密機械工業の著しい発達や家庭電気器
具、家具調度品等の需要増加により、従来使用されてい
なかった部分にもステンレス鋼が使用されるようになっ
てきた。このような機械部品の中でも、高速回転されて
使用される部品や、組み込み精度が必要とされる部品な
ど、厳しい寸法精度が要求されるものがあり、従来は、
バルク材からの削り出しにより加工(総削り出し加工)
されている。このような用途では、JISG4303に
規定されるSUS430Fのように快削性元素としてS
を添加し、SAEに規定される51430(AISI規
格でType430Se相当)のようにSeを添加し、
被削性を改善したフェライト系ステンレス鋼が使用され
てきた。さらにマルテンサイト系ステンレス鋼として
は、JISG4303に規定されるSUS410F2や
SUS410F2のように快削性元素としてPbを添加
し、またはSUS416,SUS420FのようにSを
添加して被削性を改善したステンレス鋼が使用されてき
た。
2. Description of the Related Art Due to the remarkable development of the precision machinery industry and the increasing demand for household appliances, furniture and the like, stainless steel has come to be used even in the parts which have not been used in the past. Among such machine parts, there are some that require strict dimensional accuracy, such as parts that are rotated at high speed and parts that require built-in accuracy.
Processing by cutting from bulk material (total cutting)
Has been done. In such applications, S is used as a free-cutting element such as SUS430F specified in JIS G4303.
Is added and Se is added like 51430 (corresponding to Type430Se in AISI standard) defined in SAE,
Ferritic stainless steels with improved machinability have been used. Further, as martensitic stainless steel, a stainless steel with improved machinability by adding Pb as a free-cutting element such as SUS410F2 or SUS410F2 specified in JIS G4303, or adding S such as SUS416 or SUS420F. Has been used.

【0003】[0003]

【発明が解決しようとする課題】しかし、切削加工は成
形に要する時間が長く、多くの加工エネルギーが必要な
上、投入素材に占める使用素材の割合が低いため製造の
コストアップを招くだけでなく、部品製造に必要なトー
タルエネルギーが多くなり、結果的に、地球環境への負
荷が大きくなると言う問題点があった。加えて、従来の
切削用鋼である、S含有鋼では耐食性が著しく低下する
こと、PbやSe含有鋼では有害な元素を含むため、環
境対策上の問題となる。
However, the cutting process takes a long time for forming, requires a lot of processing energy, and the ratio of the used material to the input material is low, which not only causes an increase in manufacturing cost. However, there has been a problem that the total energy required for manufacturing the parts is increased and, as a result, the load on the global environment is increased. In addition, S-containing steel, which is a conventional steel for cutting, has a significantly reduced corrosion resistance, and Pb and Se-containing steel contains harmful elements, which is a problem in terms of environmental measures.

【0004】これまでに、切削用鋼を使用しない方法と
して、通常のステンレス鋼を素材としてプレス加工によ
る成形や、目標に近い形状までプレス成形し、引き続き
軽度の仕上げ切削加工をする成形により問題解決を試み
た。しかし、プレス加工では、板素材の塑性異方性のた
めに、塑性流動に方向性が出てしまい、目標とする寸法
精度が得られなかった。さらにプレス品を仕上げ切削す
ると、プレス成形後の応力、歪みバランスが壊れること
によって、さらに寸法精度が低下すると言う問題があっ
た。また、通常のステンレス鋼を素材とした場合には、
プレス成形後の仕上げ切削においてバイトが摩耗し、著
しく製造性が低下した。そこで、環境上問題となるPb
やSeを快削性元素として使用している鋼を除いた従来
の快削ステンレス鋼を素材として使用したが、快削性元
素として使用しているS等を含む介在物が起点となり、
プレス成形時に割れが生じ、目標製品形状に成形できな
いと言う問題があった。
[0004] So far, as a method which does not use cutting steel, the problem is solved by press forming using ordinary stainless steel or press forming to a shape close to a target and then performing light finishing cutting. Tried. However, in the press working, due to the plastic anisotropy of the plate material, the plastic flow has directionality, and the target dimensional accuracy cannot be obtained. Further, when the press product is subjected to finish cutting, there is a problem that the stress and strain balance after press molding is broken and the dimensional accuracy further deteriorates. Also, when using ordinary stainless steel as the material,
During the final cutting after press molding, the bite was worn and the productivity was significantly reduced. Therefore, Pb which becomes an environmental problem
The conventional free-cutting stainless steel excluding the steels using Se and Se as free-cutting elements was used as the raw material, but the inclusions containing S etc. used as free-cutting elements were the starting points,
There was a problem that the target product shape could not be formed due to cracking during press forming.

【0005】ところで、本発明者等は、環境に悪影響を
及ぼすことなく被削性を著しく向上させる手段として、
一定量以上のSnまたはInを含むCuを主体とした第
2相を所定量以上析出させたフェライト系およびマルテ
ンサイト系ステンレス鋼を紹介した(特願2001−2
05349号)。本発明は、上記のような問題を解消す
べく案出されたものであり、先に紹介した被削性に優れ
たステンレス鋼を素材とし、プレス成形とその後の切削
加工で容易に形状精度に優れたステンレス鋼成形品の製
造方法を提供することを目的とする。
By the way, the inventors of the present invention, as a means for significantly improving machinability without adversely affecting the environment,
Introduced a ferritic and martensitic stainless steel in which a predetermined amount of a second phase mainly composed of Cu containing a certain amount or more of Sn or In was precipitated (Japanese Patent Application No. 2001-2).
05349). The present invention has been devised to solve the above problems, using the stainless steel excellent in machinability introduced above as a raw material, and easily shape accuracy by press molding and subsequent cutting. It is an object of the present invention to provide a method for manufacturing an excellent stainless steel molded product.

【0006】[0006]

【課題を解決するための手段】本発明の形状精度に優れ
たステンレス鋼成形品の製造方法は、その目的を達成す
るため、質量%で、C:0.5%以下,Si:1.0%
以下,Mn:1.0%以下,Cr:10.0〜30.0
%,Ni:0.60%以下,Cu:0.5〜6.0%,
SnまたはIn:0.005〜0.8%,Al:1.0
%以下を含み、SnまたはInを10%以上含むCuを
主体とする第2相が0.2体積%以上の割合でマトリッ
クスに分散しているステンレス鋼を、プレス成形後、切
削加工することを特徴とする。
In order to achieve the object, the method for producing a stainless steel molded product excellent in shape accuracy according to the present invention has a mass% of C: 0.5% or less and Si: 1.0. %
Hereinafter, Mn: 1.0% or less, Cr: 10.0 to 30.0
%, Ni: 0.60% or less, Cu: 0.5 to 6.0%,
Sn or In: 0.005-0.8%, Al: 1.0
%, And a second phase mainly composed of Cu containing 10% or more of Sn or In dispersed in a matrix at a ratio of 0.2% by volume or more is subjected to cutting after press forming. Characterize.

【0007】このステンレス鋼には、質量%でさらに、
S:0.15%未満,Nb:0.01〜1.0%,T
i:0.01〜1.0%,Mo:3.0%以下,Zr:
1.0%以下,V:1.0%以下,B:0.05%以下
および希土類元素(REM):0.05%以下の1種ま
たは2種以上を含むこともできる。また、このようなス
テンレス鋼としては、熱間圧延後から最終製品となるま
での間に500℃以上で、下記(1)式で定義されるA
C以下の温度範囲で1時間以上加熱保持する時効処理を1
回以上施し、SnまたはInを10%以上含むCuを主
体とする第2相の析出を促進させた物が好ましい。さら
に、プレス成形を、下記(1)式で定義されるAC以下
の温度範囲に加熱した状態で行うことが好ましい。 AC=35Cr+75Si+60Mo+170Nb+620Ti+750Al-250C-280N -120Ni-70Mn-20(Cu+Sn+In)+500 ・・・(1) なお、本明細書中にあっては、Cuを主体とする第2相
を、以下、“Cuリッチ相”と称することにする。ま
た、鋼中の各元素の含有量を示す「%」は、特に示さな
い限り「質量%」を意味することとする。
This stainless steel also contains, in mass%,
S: less than 0.15%, Nb: 0.01 to 1.0%, T
i: 0.01 to 1.0%, Mo: 3.0% or less, Zr:
One or more of 1.0% or less, V: 1.0% or less, B: 0.05% or less, and rare earth element (REM): 0.05% or less can be contained. Further, such a stainless steel has a temperature A of 500 ° C. or higher after hot rolling until it becomes a final product, and is defined by the following formula (1).
One aging treatment in which the material is heated and held for 1 hour or more in the temperature range of C or less
A material that has been applied more than once to promote the precipitation of the second phase mainly composed of Cu containing 10% or more of Sn or In is preferable. Further, it is preferable that the press molding is performed in a state of being heated to a temperature range equal to or lower than AC defined by the following formula (1). AC = 35Cr + 75Si + 60Mo + 170Nb + 620Ti + 750Al-250C-280N -120Ni-70Mn-20 (Cu + Sn + In) +500 (1) In the present specification, Cu The second phase mainly composed of will be hereinafter referred to as "Cu-rich phase". Further, “%” indicating the content of each element in steel means “mass%” unless otherwise specified.

【0008】[0008]

【実施の態様】ステンレス鋼は、全般的に被削性が悪
く、難削材の一つに数えられている。被削性が悪い原因
として、熱伝導率が低いこと,加工硬化の程度が大きい
こと,凝着しやすいこと等が挙げられる。本発明者等
は、工具−被削材との潤滑および熱伝導に及ぼすε−C
u等のCuリッチ相の作用に着目し、ステンレス鋼中に
Cuを添加し、一部がCuリッチ相として微細にかつ均
一に析出していると、被削性が改善されることを見出し
た。Cuリッチ相による被削性の改善は、切削時におい
て工具掬い面上でのCuリッチ相による潤滑,熱伝導作
用に基づく減摩により、切削抵抗が減少すると共に工具
寿命を延ばし、結果として被削性が向上するものと考え
られる。特にフェライト系ステンレス鋼や焼き鈍し状態
のマルテンサイト系ステンレス鋼では、結晶構造が体心
立方晶b.c.c.であり、この中に面心立方晶f.c.c.のCu
リッチ相を析出させることは、Cuリッチ相と同じ結晶
構造をもつオーステナイト系ステンレス鋼にCuリッチ
相を析出させた場合に比較して被削性向上に関してさら
に大きな効果が得られる。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Stainless steel is generally poor in machinability and is regarded as one of difficult-to-cut materials. The causes of poor machinability include low thermal conductivity, high degree of work hardening, and easy adhesion. The present inventors have found that ε-C affects the lubrication and heat conduction between the tool and the work material.
Focusing on the action of the Cu-rich phase such as u, it was found that machinability is improved when Cu is added to stainless steel and a part thereof is finely and uniformly precipitated as the Cu-rich phase. . The improvement of machinability due to the Cu-rich phase is due to lubrication due to the Cu-rich phase on the tool scooping surface at the time of cutting, and wear due to the heat conduction effect to reduce the cutting resistance and prolong the tool life, resulting in the machinability. It is thought that the property will be improved. Especially in ferritic stainless steels and annealed martensitic stainless steels, the crystal structure is body-centered cubic bcc.
Precipitation of the rich phase has an even greater effect on machinability improvement as compared with the case of precipitating the Cu rich phase in austenitic stainless steel having the same crystal structure as the Cu rich phase.

【0009】Cuリッチ相の分散析出がオーステナイト
系とマルテンサイト系,フェライト系で異なる原因は次
のように推察される。体心立方晶の結晶構造をもつマル
テンサイト系またはフェライト系ステンレス鋼のマトリ
ックスに面心立方晶のCuリッチ相を析出させると、C
uリッチ相によって結晶整合性が低下し、大きな転位の
集積が可能になる。さらに本発明の根幹であるSnまた
はInを0.005%以上添加することにより、Cuリ
ッチ相中に10%以上のSnまたはInが濃化し、融点
の低いCu−Sn合金またはCu−In合金を形成す
る。このように転位の集積が高く、かつ融点が低いCu
リッチ相が異物としてマトリックスに分散するため、破
壊現象である被削性が向上し、かつ低融点の異物が切削
工具との間で潤滑作用をするため、工具寿命が著しく向
上することになる。このようなSnまたはInが濃化し
たCuリッチ相を0.2体積%以上の割合でマトリック
ス中に分散析出させておくと被削性が向上することを確
認している。
The reason why the dispersed precipitation of the Cu-rich phase is different between the austenite type, the martensite type and the ferrite type is presumed as follows. When a face-centered cubic Cu-rich phase is precipitated in a martensitic or ferritic stainless steel matrix having a body-centered cubic crystal structure, C
The u-rich phase reduces the crystal conformity and enables the accumulation of large dislocations. Further, by adding 0.005% or more of Sn or In, which is the basis of the present invention, 10% or more of Sn or In is concentrated in the Cu-rich phase, and a Cu-Sn alloy or Cu-In alloy having a low melting point is obtained. Form. As described above, Cu has a high accumulation of dislocations and a low melting point.
Since the rich phase is dispersed as foreign matter in the matrix, the machinability, which is a fracture phenomenon, is improved, and the foreign matter having a low melting point has a lubricating action with the cutting tool, so that the tool life is significantly improved. It has been confirmed that machinability is improved by dispersing and precipitating such a Cu-rich phase in which Sn or In is concentrated in the matrix at a ratio of 0.2 vol% or more.

【0010】切削加工は、非常に早い歪み速度による加
工、すなわち、破壊現象である。プレス成形は切削加工
に比べて歪み速度が3桁から4桁低い塑性変形現象であ
る。上記したように、Cuリッチ相は、高速変形時に
は、転移の集積作用があり、亀裂起点として有効に作用
し、切削性向上に寄与する。しかし、プレス加工のよう
に低速歪み加工の場合には、転移がCuリッチ相を通り
ぬけることが可能で、転移を集積することはない。Cu
リッチ相は、降伏点の低いCuを主体とする合金相であ
るから、降伏点が低く、したがって、本相が分散してい
ると形状凍結性が向上する。よって、Cuリッチ相が分
散していれば、形状凍結性が良好となり、引き続く切削
加工量を低減しても、所定の寸法制度の製品を得ること
が可能になる。
The cutting process is a process with a very high strain rate, that is, a fracture phenomenon. Press forming is a plastic deformation phenomenon in which the strain rate is three to four orders of magnitude lower than that in cutting. As described above, the Cu-rich phase has an action of accumulating dislocations at the time of high-speed deformation, effectively acts as a crack starting point, and contributes to improvement of machinability. However, in the case of low-speed strain processing such as press working, the dislocation can pass through the Cu-rich phase and does not accumulate the dislocation. Cu
Since the rich phase is an alloy phase mainly composed of Cu having a low yield point, the rich point has a low yield point. Therefore, when the main phase is dispersed, the shape fixability is improved. Therefore, if the Cu-rich phase is dispersed, the shape fixability is improved, and it is possible to obtain a product having a predetermined dimensional accuracy even if the amount of subsequent cutting is reduced.

【0011】このような被削性に優れたフェライト系お
よびマルテンサイト系ステンレス鋼を素材として、予め
目標形状に近い形状にプレス成形した後、切削加工すれ
ば、従来法に比べて切削量が格段に少ない加工で、形状
精度に優れたステンレス製品を容易に製造できる。ま
た、SnまたはInが濃化したCuリッチ相は、割れの
起点になるようなことはないので、プレス成形の際の加
工性を妨げることはない。
If a ferritic and martensitic stainless steel having excellent machinability is used as a material and press-formed into a shape close to a target shape in advance, and then cutting is performed, the cutting amount is significantly higher than that of the conventional method. Stainless steel products with excellent shape accuracy can be easily manufactured with very little processing. Moreover, since the Cu-rich phase in which Sn or In is concentrated does not become a starting point of cracking, it does not hinder workability during press molding.

【0012】プレス成形の際、ステンレス鋼素材を高い
温度にしておくことが好ましい。通常の温度でプレス成
形すると、素材の異方性に起因して部品形状が対称な位
置であっても、塑性流動に差異が生じ、寸法精度が悪く
なることがある。そこで、素材を加熱して加工すると、
耐力が低下して形状凍結性が向上するとともに、変形抵
抗が低減して塑性流動が容易化し、異方性が低くなって
加工性がよくなり、寸法精度が良くなる。加熱温度は高
い方が加工性向上には有効であるが、高すぎると母相が
変態し、CuやSnに対する固溶度が上昇してCuリッ
チ相は固溶し、被削性が低下する。
During press forming, it is preferable to keep the stainless steel material at a high temperature. When press-molding at normal temperature, due to the anisotropy of the material, even if the shape of the part is symmetrical, plastic flow may differ, and the dimensional accuracy may deteriorate. So, if you heat and process the material,
The yield strength is reduced to improve the shape fixability, the deformation resistance is reduced to facilitate plastic flow, the anisotropy is reduced to improve the workability, and the dimensional accuracy is improved. A higher heating temperature is more effective for improving workability, but if it is too high, the parent phase transforms, the solid solubility with respect to Cu and Sn increases, the Cu-rich phase forms a solid solution, and the machinability decreases. .

【0013】ところで、本発明は、寸法精度の優れたス
テンレス鋼製成形品を製造する方法に関するものであ
る。成形品の寸法精度は、サイズ,形状により異なるた
め、これを絶対値で定義することは困難である。回転部
位に使用される成形品や、平坦度が必要な成形品は、点
対称、もしくは数回対称系であり、これらをまとめて寸
法精度指標として表現し、d値とした。このd値は、中
心点からの距離rにおける対称位置での高さ、外径等の
測定値をXとして次の(2)式で定義した。 ΔX/r=(Xmax−Xmin)/r ・・・・(2) なお、総削り出し加工で部品を製造すると、このd値は
5.0×10-4以下になるので、本発明においても、こ
の5.0×10-4以下を目標にすることにする。
By the way, the present invention relates to a method for producing a stainless steel molded article having excellent dimensional accuracy. Since the dimensional accuracy of a molded product differs depending on the size and shape, it is difficult to define this as an absolute value. Molded articles used for rotating parts and molded articles requiring flatness are point-symmetrical or several-time symmetric systems, and these are collectively expressed as a dimensional accuracy index and defined as the d value. This d value was defined by the following equation (2), where X is a measured value of height, outer diameter, etc. at a symmetrical position at a distance r from the center point. ΔX / r = (X max −X min ) / r (2) When the component is manufactured by the total shaving process, the d value becomes 5.0 × 10 −4 or less, so the present invention In this case, the target is 5.0 × 10 −4 or less.

【0014】以下、まず、本発明のステンレス鋼素材に
含まれる合金成分,含有量およびCuリッチ相等につい
て説明する。C:0.5%以下 過剰なC含有量は製造性や耐食性を低下させる原因とな
るので、本発明では、C含有量の上限を0.5%に設定
した。なお、Cは、Cuリッチ相の析出サイトとして有
効なCr炭化物を生成し、微細なCuリッチ相をマトリ
ックス全体に渡って均一分散させる作用を呈する。この
ような作用を呈するためには、フェライト系では0.0
01%以上含有させることが好ましい。
First, the alloy components, content, Cu-rich phase, etc. contained in the stainless steel material of the present invention will be described below. C: 0.5% or less Excessive C content causes reduction in manufacturability and corrosion resistance, so in the present invention, the upper limit of C content is set to 0.5%. It should be noted that C has a function of generating Cr carbide which is effective as a precipitation site of the Cu-rich phase and uniformly dispersing the fine Cu-rich phase throughout the matrix. In order to exhibit such an effect, in a ferrite system, 0.0
It is preferable that the content is 01% or more.

【0015】Si:1.0%以下 耐食性の改善に有効な合金成分である。しかし、1.0
%を超える過剰量でSiが含まれると、製造性が劣化す
る。Mn:1.0%以下 製造性を改善すると共に、鋼中の有害なSをMnSとし
て固定する作用を呈する。MnSは、被削性の向上にも
有効に働くと共に、Cuリッチ相生成の核として作用す
るため、微細なCuリッチ相の生成に有効な合金成分で
ある。しかし、1.0%を超える過剰量のMnが含まれ
ると、耐食性が劣化する傾向を示す。
Si: 1.0% or less An alloy component effective for improving the corrosion resistance. But 1.0
If Si is contained in an excessive amount exceeding%, manufacturability deteriorates. Mn: 1.0% or less It has the effect of improving manufacturability and fixing harmful S in steel as MnS. MnS is an alloy component that is effective in forming a fine Cu-rich phase because it works effectively in improving machinability and also acts as a nucleus for Cu-rich phase formation. However, when an excessive amount of Mn exceeding 1.0% is included, the corrosion resistance tends to deteriorate.

【0016】Cr:10.0〜30.0% ステンレス鋼本来の耐食性を維持するために必要な合金
成分であり、要求される耐食性を確保するために10.
0%以上のCrを添加する。しかし、30.0%を超え
る過剰量のCrが含まれると、製造性,加工性に悪影響
を及ぼす。Ni:0.60%以下 ステンレス鋼の工業的な製造工程では、原料から不可避
的に混入する成分である。本発明では、通常の生産ライ
ンで混入するレベルの上限値として0.60%を設定し
た。
Cr: 10.0 to 30.0% Cr is an alloy component required to maintain the original corrosion resistance of stainless steel, and to ensure the required corrosion resistance, 10.
Add 0% or more of Cr. However, if an excessive amount of Cr exceeding 30.0% is contained, the manufacturability and workability are adversely affected. Ni: 0.60% or less It is a component that is inevitably mixed from the raw materials in the industrial manufacturing process of stainless steel. In the present invention, 0.60% is set as the upper limit value of the level mixed in a normal production line.

【0017】Cu:0.5〜6.0% 本発明のステンレス鋼において最も重要な合金成分であ
り、良好な被削性を発現させるためには、0.2体積%
以上の割合でCuリッチ相がマトリックスに析出してい
ることが必要である。各合金成分の含有量が前述のよう
に特定された組成のステンレス鋼で0.2体積%以上の
Cuリッチ相を析出させるため、Cu含有量を0.5%
以上としている。しかし、6.0%を超える過剰量のC
u添加は、製造性,加工性,耐食性等に悪影響を及ぼ
す。マトリックスに析出するCuリッチ相は、析出物の
サイズに特別な制約を受けるものではないが、表面およ
び内部においても均一分散していることが好ましい。C
uリッチ相の均一分散は、被削性を安定して改善する。
Cu: 0.5-6.0% This is the most important alloying component in the stainless steel of the present invention, and 0.2% by volume is required for exhibiting good machinability.
It is necessary that the Cu-rich phase is precipitated in the matrix at the above ratio. In order to precipitate a Cu-rich phase of 0.2 volume% or more in the stainless steel having the composition of each alloy component specified as described above, the Cu content is 0.5%.
That is all. However, an excess amount of C exceeding 6.0%
Addition of u adversely affects manufacturability, workability, corrosion resistance and the like. The Cu-rich phase precipitated in the matrix is not particularly limited by the size of the precipitate, but it is preferable that the Cu-rich phase is uniformly dispersed on the surface and inside. C
The uniform dispersion of the u-rich phase stably improves the machinability.

【0018】SnまたはIn:0.005〜0.8% Cu同様、本発明において最も重要な合金成分であり、
良好な被削性を発現させるためには、10%以上の割合
でCuリッチ相に含まれている必要がある。この割合で
Cuリッチ相にSnまたはInのいずれかまたは両方が
含まれているとき、Cuリッチ相自身が低融点化するた
め被削性が著しく向上する。この低融点化を発現させる
ためには、合金全体としてSnまたはInの含有量を
0.005%以上とする必要がある。ただし、含有量の
増加により、過度に低融点化すると液膜脆化により熱間
圧延性が著しく低下するため、その上限値は0.8%と
する。
Sn or In: 0.005-0.8% Like Cu, it is the most important alloy component in the present invention,
In order to develop good machinability, it is necessary to be contained in the Cu-rich phase in a proportion of 10% or more. When either or both of Sn and In are contained in the Cu-rich phase at this ratio, the Cu-rich phase itself has a low melting point, so that the machinability is remarkably improved. In order to realize this lowering of the melting point, the content of Sn or In in the entire alloy needs to be 0.005% or more. However, if the melting point is excessively lowered due to the increase in the content, the hot rolling property is significantly deteriorated due to the embrittlement of the liquid film, so the upper limit value is 0.8%.

【0019】Al:1.0%以下 耐食性を改善する作用を有するとともに、微細なCuリ
ッチ相の核サイトとして有効な化合物として析出する。
しかし、過剰なAl添加は製造性および加工性を劣化さ
せるので、その上限値を1.0%に設定した。S:0.15%以下 被削性の改善に有効なMnSを形成する元素である。ま
た硫化物の形成によりCuリッチ相の核サイトを形成す
る作用も有している。しかし、S含有量が0.15%を
超えると熱間加工性および延性が著しく低下する。した
がって、本発明においてはS含有量の上限を0.15%
に設定した。
Al: 1.0% or less It has a function of improving the corrosion resistance and precipitates as a compound effective as a nuclear site of a fine Cu-rich phase.
However, excessive addition of Al deteriorates manufacturability and workability, so the upper limit was set to 1.0%. S: 0.15% or less An element that forms MnS that is effective in improving machinability. It also has a function of forming Cu-rich phase nuclear sites by the formation of sulfides. However, if the S content exceeds 0.15%, the hot workability and ductility are significantly reduced. Therefore, in the present invention, the upper limit of the S content is set to 0.15%.
Set to.

【0020】Nb:0.01〜1.0% Cuリッチ相は、各種析出物のなかでもNb系析出物の
周囲に析出する傾向が強い。したがって、Cuリッチ相
を均一に析出分散させるためには、必要に応じてNbの
炭化物,窒化物,炭窒化物等を微細に析出させた組織が
好ましい。しかし、過剰量のNb添加は、製造性や加工
性に悪影響を及ぼす。したがって、Nbを添加する場
合、Nb含有量を0.01〜1.0%の範囲で選定す
る。Ti:0.02〜1.0% 必要に応じて添加される合金成分であり、Nbと同様に
Cuリッチ相の析出サイトとして有効な炭窒化物を形成
する合金成分である。しかし、過剰量のTi添加は、製
造性や加工性を劣化させ、製品表面に疵を発生させ易く
する原因となる。したがって、Tiを添加する場合、T
i含有量を0.02〜1.0%の範囲で選定する。
Nb: 0.01 to 1.0% The Cu-rich phase has a strong tendency to precipitate around Nb-based precipitates among various precipitates. Therefore, in order to uniformly precipitate and disperse the Cu-rich phase, a structure in which Nb carbides, nitrides, carbonitrides, and the like are finely precipitated as necessary is preferable. However, the addition of an excessive amount of Nb adversely affects the manufacturability and workability. Therefore, when Nb is added, the Nb content is selected within the range of 0.01 to 1.0%. Ti: 0.02 to 1.0% This is an alloy component added as needed and, like Nb, is an alloy component that forms a carbonitride effective as a precipitation site of a Cu-rich phase. However, the addition of an excessive amount of Ti deteriorates manufacturability and workability and causes defects on the product surface. Therefore, when adding Ti, T
The i content is selected within the range of 0.02 to 1.0%.

【0021】Mo:3.0%以下 必要に応じて添加される合金成分であり、耐食性を向上
させると共に、微細なCuリッチ相の核サイトとして有
効なFe2Mo等の金属間化合物として析出する。しか
し、3.0%を超える過剰なMo含有は、製造性および
加工性に悪影響を及ぼす。Zr:1.0%以下 必要に応じて添加される合金成分であり、微細なCuリ
ッチ相の核サイトとして有効な炭窒化物となって析出す
る。しかし、Zrの過剰添加は製造性や加工性に悪影響
を及ぼすので、Zrを添加する場合には含有量の上限を
1.0%に規制する。
Mo: 3.0% or less An alloy component added as necessary, which improves corrosion resistance and precipitates as an intermetallic compound such as Fe 2 Mo that is effective as a nuclear site of a fine Cu-rich phase. . However, excessive Mo content exceeding 3.0% adversely affects manufacturability and workability. Zr: 1.0% or less It is an alloy component added as necessary, and is deposited as a carbonitride effective as a nuclear site of a fine Cu-rich phase. However, excessive addition of Zr adversely affects the manufacturability and workability, so that the upper limit of the content is regulated to 1.0% when Zr is added.

【0022】V:1.0%以下 必要に応じて添加される合金成分であり、Zrと同様に
微細なCuリッチ相の核サイトとして有効な炭窒化物と
なって析出する。しかし、Zrの過剰添加は製造性や加
工性に悪影響を及ぼすので、Zrを添加する場合には含
有量の上限を1.0%に規制する。
V: 1.0% or less It is an alloy component added as necessary and, like Zr, it precipitates as a carbonitride effective as a nuclear site of a fine Cu-rich phase. However, excessive addition of Zr adversely affects the manufacturability and workability, so that the upper limit of the content is regulated to 1.0% when Zr is added.

【0023】B:0.05%以下 必要に応じて添加される合金成分であり、熱間加工性を
改善すると共に、析出物となってマトリックスに分散す
る。Bの析出物も、Cuリッチ相の析出サイトとして働
く。しかし、Bの過剰添加は熱間加工性を低下させるこ
とになるので、Bを添加する場合には含有量の上限を
0.05%に規制する。希土類元素(REM):0.05%以下 必要に応じて添加される合金成分であり、適量の添加に
よってBと同様に熱間加工性を改善する。また、Cuリ
ッチ相の析出に有効な析出物となってマトリックスに分
散する。しかし、過剰に添加すると熱間加工性が劣化す
るので、希土類元素を添加する場合には含有量の上限を
0.05%に規制する。
B: 0.05% or less An alloy component added as necessary, which improves hot workability and also becomes a precipitate and is dispersed in the matrix. The B precipitate also acts as a Cu-rich phase precipitation site. However, since excessive addition of B will reduce hot workability, the upper limit of the content is regulated to 0.05% when B is added. Rare earth element (REM): 0.05% or less It is an alloy component added as necessary, and improves the hot workability in the same manner as B by adding an appropriate amount. Further, it becomes a precipitate effective for the precipitation of the Cu-rich phase and is dispersed in the matrix. However, if added excessively, the hot workability deteriorates, so when adding a rare earth element, the upper limit of the content is restricted to 0.05%.

【0024】熱処理温度:500℃以上、AC以下 Cuリッチ相の析出により優れた被削性を得るために
は、500℃以上の温度での時効処理が有効である。時
効処理温度が低くなるほど、マトリックス中の固溶Cu
量が少なくなり、Cuリッチ相の析出量が増加する。し
かし、低すぎる時効処理温度では、拡散速度が遅くなる
ため、析出量が却って減少する傾向がみられる。被削性
に有効なCuリッチ相の析出に及ぼす時効処理温度の影
響を種々の実験から調査したところ、500〜900℃
の温度域で時効処理するとき、被削性に最も有効なCu
リッチ相が0.2体積%以上の割合で析出することを見
出した。
Heat treatment temperature: 500 ° C. or higher, AC or lower In order to obtain excellent machinability due to precipitation of a Cu-rich phase, aging treatment at a temperature of 500 ° C. or higher is effective. The lower the aging temperature, the more solid solution Cu in the matrix
The amount decreases and the amount of precipitation of the Cu-rich phase increases. However, if the aging treatment temperature is too low, the diffusion rate becomes slow, so that the precipitation amount tends to decrease rather. When the influence of the aging temperature on the precipitation of the Cu-rich phase effective for machinability was investigated from various experiments, it was 500 to 900 ° C.
Most effective for machinability when aging in the temperature range of
It was found that the rich phase precipitates at a ratio of 0.2 vol% or more.

【0025】しかし、(1)式で定義したAC温度を超
えると、母相がオーステナイト相に変態し、CuやS
n,Inに対する固溶度が大きくなり、Cuリッチ相が
減少する。 AC=35Cr+75Si+60Mo+170Nb+620Ti+750Al-250C-280N -120Ni-70Mn-20(Cu+Sn+In)+500 ・・・(1) したがって、上記上限温度900℃は一応の目安とし、
厳密な上限温度はAC点以下とする。Cuリッチ相の析
出は、炭窒化物や析出物を形成し易いNb,Ti,Mo
等の元素の添加や、S含有量を増やして硫化物を形成す
ることによっても促進される。炭窒化物や硫化物等は、
析出サイトとして働き、マトリックス中にCuリッチ相
を均一に分散させ、被削性、成形品の製造時には製造性
を効率よく改善する。時効処理は、好ましくは1時間以
上で施され、熱間圧延終了後から製品となるまでの何れ
の段階で実施しても良い。
However, when the AC temperature defined by the equation (1) is exceeded, the mother phase transforms into an austenite phase, and Cu or S
The solid solubility with respect to n and In becomes large, and the Cu rich phase decreases. AC = 35Cr + 75Si + 60Mo + 170Nb + 620Ti + 750Al-250C-280N -120Ni-70Mn-20 (Cu + Sn + In) +500 ・ ・ ・ (1) Therefore, the upper limit temperature of 900 ℃ is a rough guideline. ,
The strict upper limit temperature is equal to or lower than the AC point. Precipitation of the Cu-rich phase is easy to form carbonitrides or precipitates Nb, Ti, Mo
It is also promoted by the addition of elements such as, or by increasing the S content to form sulfides. Carbonitrides and sulfides,
It acts as a precipitation site and uniformly disperses the Cu-rich phase in the matrix to efficiently improve the machinability and the manufacturability at the time of manufacturing a molded product. The aging treatment is preferably performed for 1 hour or more, and may be performed at any stage from the end of hot rolling to the production of a product.

【0026】プレス成形温度:AC以下 素材を加熱して加工すると、耐力が低下して形状凍結性
が向上するとともに、変形抵抗が低減して塑性流動が容
易化し、異方性が低くなって、加工性がよくなる。本発
明ステンレス鋼においても、加熱することで異方性を低
減させた状態でプレス成形したことによって、優れた寸
法精度が得られる。加熱温度は高いほど効果的ではある
が、(1)式に示したACを超えて高温に加熱すると、
母相が変態し、CuやSnに対する固溶度が上昇するた
めに、Cuリッチ相が固溶して減少し、被削性が低下す
る。また、ACを超えて加熱してプレス成形すると、プ
レス後の冷却で、相変態により製品内の歪みが大きくな
り、目的の寸法精度が得られなくなるため、その上限は
AC点とする。
Press forming temperature: AC or less When a material is heated and processed, the yield strength is lowered and the shape fixability is improved, and the deformation resistance is reduced to facilitate plastic flow and the anisotropy is lowered, Workability is improved. Also in the stainless steel of the present invention, excellent dimensional accuracy can be obtained by press-molding in a state in which anisotropy is reduced by heating. The higher the heating temperature is, the more effective it is. However, if the heating temperature is higher than AC shown in equation (1),
Since the parent phase is transformed and the solid solubility with respect to Cu or Sn is increased, the Cu-rich phase is solid-solved and reduced, and the machinability is deteriorated. In addition, if heating is performed in excess of AC and press-molding, distortion in the product increases due to phase transformation due to cooling after pressing, and the desired dimensional accuracy cannot be obtained. Therefore, the upper limit is the AC point.

【0027】均熱時間は、0秒以上あれば目的は達成さ
れるが、より長時間均熱保持しても良い。しかし、過度
に長時間加熱すると、被削性を発現するCuリッチ相の
大きさが小さくなり、また量も少なくなって被削性効果
は薄れる。さらに、加熱保持中に多量の酸化スケールが
生成して肉圧ロスを生じるので、均熱時間の上限は10
分にすることが好ましい。加熱方法は、加工部位で均一
な温度分布が得られる方法であれば十分である。通電加
熱や誘導加熱が望ましい。素材が目的の温度に均一に加
熱されことが満たされれば、金型全体を加熱炉で加熱す
る方法でも良い。なお、上記したように、SnまたはI
nが濃化したCuリッチ相を析出させたステンレス鋼は
プレス成形後の形状凍結性に優れている。したがって、
必ずしも熱間でプレス成形する必要はなく、冷間でプレ
ス成形した後、通常の切削加工を行えば、被削性にも優
れているので寸法精度の良い成形品が得られることは言
うまでもない。
The purpose is achieved if the soaking time is 0 seconds or more, but soaking may be maintained for a longer time. However, if the heating is performed for an excessively long time, the size of the Cu-rich phase that expresses the machinability becomes small, and the amount thereof becomes small, so that the machinability effect is diminished. Further, since a large amount of oxide scale is generated during heating and holding to cause meat pressure loss, the upper limit of the soaking time is 10
It is preferable to make the minutes. The heating method is sufficient if it is a method capable of obtaining a uniform temperature distribution at the processed portion. Electrical heating or induction heating is desirable. A method of heating the entire mold in a heating furnace may be used as long as the material is uniformly heated to a target temperature. As described above, Sn or I
Stainless steel in which a Cu-rich phase in which n is concentrated is deposited has excellent shape fixability after press forming. Therefore,
Needless to say, it is not always necessary to perform hot press forming, and if cold cutting is performed and then ordinary cutting is performed, a machinability is excellent and a molded product with good dimensional accuracy can be obtained.

【0028】[0028]

【実施例】実施例1:表1に示す化学成分のステンレス
鋼A,Bを真空溶解炉で溶製、鍛造し、1230℃で1
時間加熱後、熱間圧延し、引き続き750℃で12時間
の時効処理を施した後、酸洗して板厚2mm,幅40m
mの鋼帯を作製した。プレス成形により所定形状に成形
後、寸法精度指標d値を求めた。さらに同一加工品を、
表層から約0.1mm深さを回転切削により仕上げ、同
様にd値を測定した。加工品の形状と寸法精度測定位置
を図1に示す。加工品は外径φ35mmのつば付きのハ
ット形状であり、中心位置から16mmの円周上で、内
角45度で等分された8点における寸法精度を評価し
た。
EXAMPLES Example 1: Stainless steels A and B having the chemical composition shown in Table 1 were melted and forged in a vacuum melting furnace, and were then heated at 1230 ° C. for 1 hour.
After heating for an hour, hot rolling is performed, followed by aging treatment at 750 ° C for 12 hours, then pickling, and plate thickness 2 mm, width 40 m.
m steel strip was produced. After forming into a predetermined shape by press molding, the dimensional accuracy index d value was obtained. Furthermore, the same processed product,
About 0.1 mm depth from the surface layer was finished by rotary cutting, and d value was similarly measured. Figure 1 shows the shape and dimensional accuracy measurement position of the processed product. The processed product was a hat-shaped hat with an outer diameter of φ35 mm, and the dimensional accuracy was evaluated at eight points equally divided by an internal angle of 45 ° on the circumference of 16 mm from the center position.

【0029】 [0029]

【0030】プレス成形品および切削仕上げ加工品の寸
法精度測定結果を表2に示す。プレス成形ままのA1お
よびB1は、d値が5.0×10-4を超えており十分な
寸法精度は得られていない。しかし、表層をわずか0.
1mm深さ切削しただけのA2では、d値が5.0×1
-4であり、良好な寸法精度を示していた。一方、B2
は寸法精度の向上は認められるものの、Cu,Snの含
有量が少ないために、十分な寸法精度は得られていな
い。
Table 2 shows the measurement results of the dimensional accuracy of the press-formed product and the cut-finished product. In the as-press-molded A1 and B1, the d value exceeds 5.0 × 10 −4 , and sufficient dimensional accuracy is not obtained. However, only 0.
With A2, which was only cut to a depth of 1 mm, the d value was 5.0 x 1
It was 0 -4 , indicating good dimensional accuracy. On the other hand, B2
Although the dimensional accuracy is improved, the dimensional accuracy is not sufficient because the Cu and Sn contents are small.

【0031】 [0031]

【0032】実施例2:表3に示す化学成分のステンレ
ス鋼C〜Lを用いて実施例1と同様な方法で、板厚2m
m,幅40mmの鋼帯を作製した。これをプレス成形
し、図1に示す形状の製品を1000個作製した。プレ
ス成形結果を表4に示す。本発明鋼である鋼種C〜Kで
は、1000個中での割れはなく、良好なプレス成形性
を示していた。一方、比較品として用いた、快削元素と
してSを利用した従来のステンレス鋼Lでは、263個
のプレス品で加工割れが発生し、歩留まりが著しく低下
していた。
Example 2 Using stainless steels C to L having the chemical composition shown in Table 3, the thickness was 2 m in the same manner as in Example 1.
A steel strip having a width of m and a width of 40 mm was produced. This was press-molded to produce 1000 products having the shape shown in FIG. Table 4 shows the press molding results. In the steel types C to K, which are the steels of the present invention, there was no cracking in 1000 pieces and good press formability was exhibited. On the other hand, in the conventional stainless steel L used as a comparative product and using S as a free-cutting element, work cracking occurred in 263 pressed products and the yield was remarkably reduced.

【0033】 [0033]

【0034】 [0034]

【0035】プレス成形性が良好であった鋼種C〜Kに
ついて、各加工品を実施例1と同様に約0.1mm深さ
で仕上げ切削加工を行った。なお、同一素材加工品毎に
新しい刃物を用いて切削した。それぞれ仕上げ切削10
00個目の製品について、実施例1と同様、同じ位置で
寸法精度を測定した。その結果を表5に示す。d値はい
ずれも5.0×10-4以下であり、優れた寸法精度を示
していた。
For the steel types C to K, which had good press formability, each processed product was subjected to finish cutting at a depth of about 0.1 mm in the same manner as in Example 1. It should be noted that each processed product of the same material was cut using a new blade. Finish cutting 10
For the 00th product, the dimensional accuracy was measured at the same position as in Example 1. The results are shown in Table 5. All d values were 5.0 × 10 −4 or less, indicating excellent dimensional accuracy.

【0036】 [0036]

【0037】実施例3:表6に示す化学成分のステンレ
ス鋼M〜Uと市販鋼を真空溶解炉で溶製、鍛造し、12
30℃で1時間加熱後、熱間圧延し、引き続き750℃
で12時間の時効処理を施した後、酸洗して板厚2m
m,幅37mmの鋼帯を作製した。図2に示すようなプ
レス装置を使用してプレス成形した。すなわち、鋼帯を
連続的に供給し、プレス金型前後に配置した電極で挟み
込みながら通電加熱し、所定温度に達成後速やかに図1
に示す形状にプレス成形し、引き続き大気中で冷却し
た。プレス成形の段階で割れなかった加工品について
は、冷却後は、実施例1と同様に表層から、約0.1m
m深さに切削加工した。そして、実施例1と同様にd値
を測定し、寸法精度を評価した。プレス温度と加工性、
切削加工後の寸法精度の関係の測定結果を表7に示す。
Example 3: Stainless steels M to U having the chemical components shown in Table 6 and commercially available steels were melted and forged in a vacuum melting furnace, and 12
After heating at 30 ° C for 1 hour, hot rolling, then 750 ° C
After aging treatment for 12 hours, pickled and plate thickness 2m
A steel strip having a width of m and a width of 37 mm was produced. Press molding was performed using a pressing device as shown in FIG. That is, a steel strip is continuously supplied and heated by energizing while sandwiching it between electrodes arranged before and after the press die, and immediately after reaching a predetermined temperature, as shown in FIG.
It was press-formed into the shape shown in, and subsequently cooled in the atmosphere. About the processed product which was not cracked at the stage of press molding, after cooling, about 0.1 m from the surface layer as in Example 1.
It was cut to a depth of m. Then, the d value was measured in the same manner as in Example 1 to evaluate the dimensional accuracy. Press temperature and workability,
Table 7 shows the measurement results of the relationship of dimensional accuracy after cutting.

【0038】 [0038]

【0039】 [0039]

【0040】AC点を超える温度でプレスした試験N
o.M3はポンチ肩部で加工割れが発生していた。同様
にCu含有量が多い試験No.P1やSn含有量が0.
8%を超える試験No.S1でも、プレス成形時にポン
チ肩部で加工割れが発生していた。これ以外の試験N
o.では、プレス成形性は良好であった。なお、比較に
用いた従来の快削鋼であるSUS430FやSUS41
0Fは、プレス時にポンチ肩部で加工割れを起こしてい
た。加工割れを起こした試験No.M3、P1,S1を
除いたプレス成形品に切削加工を施した製品の寸法精度
は、d値がいずれも5.0×10-4以下であり、良好な
寸法精度を示していた。
Test N pressed at temperatures above the AC point
o. In M3, a work crack was generated at the punch shoulder. Similarly, the test No. with a large Cu content was used. P1 and Sn contents are 0.
Test No. over 8% Also in S1, work cracks were generated in the punch shoulder during press molding. Other tests N
o. Then, the press formability was good. The conventional free-cutting steels SUS430F and SUS41 used for comparison were used.
0F had a work crack in the punch shoulder during pressing. Test No. that caused work cracking The dimensional accuracy of the press-molded products excluding M3, P1, and S1 which were subjected to the cutting process were d values of 5.0 × 10 −4 or less, indicating good dimensional accuracy.

【0041】[0041]

【発明の効果】以上に説明したように、SnまたはIn
が濃化したCuリッチ相を析出させ、プレス成形性と被
削性を良くしたステンレス鋼を素材として使用した本発
明方法は、プレス成形後の切削量を少なくし、かつその
切削も容易に行えるので、バルク素材から削り出し加工
された製品と同等以上の寸法精度を有している。また削
り量も少なくなるので、総削り出しで成形品を製造する
場合と比べて、素材歩留まりが向上し、短時間で加工で
きるため、製造コストを大幅に削減できる。
As described above, Sn or In
According to the method of the present invention in which a Cu-rich phase enriched in Cu is deposited and stainless steel having improved press formability and machinability is used as a material, the cutting amount after press forming can be reduced and the cutting can be easily performed. Therefore, it has dimensional accuracy equal to or better than that of a product machined from a bulk material. In addition, since the amount of shaving is reduced, the material yield is improved and processing can be performed in a short time, compared with the case where a molded product is manufactured by total shaving, so that the manufacturing cost can be significantly reduced.

【図面の簡単な説明】[Brief description of drawings]

【図1】 加工成形品の形状と寸法精度測定位置を説明
する図
FIG. 1 is a diagram for explaining the shape of a processed product and the measurement position for dimensional accuracy.

【図2】 加熱した状態でプレス成形する装置の概要を
説明する図
FIG. 2 is a diagram illustrating an outline of an apparatus for press-molding in a heated state.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) C22C 38/42 C22C 38/42 38/54 38/54 (72)発明者 平松 直人 山口県新南陽市野村南町4976番地 日新製 鋼株式会社ステンレス事業本部内─────────────────────────────────────────────────── ─── Continuation of front page (51) Int.Cl. 7 Identification code FI theme code (reference) C22C 38/42 C22C 38/42 38/54 38/54 (72) Inventor Naoto Hiramatsu Nomura, Shinnanyo-shi, Yamaguchi Prefecture 4976 Minamimachi Nisshin Steel Co., Ltd. Stainless Business Division

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 質量%で、C:0.5%以下,Si:
1.0%以下,Mn:1.0%以下,Cr:10.0〜
30.0%,Ni:0.60%以下,Cu:0.5〜
6.0%,SnまたはIn:0.005〜0.8%,A
l:1.0%以下を含み、SnまたはInを10%以上
含むCuを主体とする第2相が0.2体積%以上の割合
でマトリックスに分散しているステンレス鋼を、プレス
成形後、切削加工することを特徴とする形状精度に優れ
たステンレス鋼成形品の製造方法。
1. In mass%, C: 0.5% or less, Si:
1.0% or less, Mn: 1.0% or less, Cr: 10.0 to
30.0%, Ni: 0.60% or less, Cu: 0.5 to
6.0%, Sn or In: 0.005-0.8%, A
l: 1.0% or less, and a second phase mainly composed of Cu containing 10% or more of Sn or In dispersed in a matrix in a proportion of 0.2% by volume or more, after press molding, A method for manufacturing a stainless steel molded product excellent in shape accuracy, which is characterized by cutting.
【請求項2】 ステンレス鋼が、質量%でさらに、S:
0.15%未満,Nb:0.01〜1.0%,Ti:
0.01〜1.0%,Mo:3.0%以下,Zr:1.
0%以下,V:1.0%以下,B:0.05%以下およ
び希土類元素(REM):0.05%以下の1種または
2種以上を含むものである請求項1に記載の形状精度に
優れたステンレス鋼成形品の製造方法。
2. Stainless steel, further comprising S:
Less than 0.15%, Nb: 0.01 to 1.0%, Ti:
0.01-1.0%, Mo: 3.0% or less, Zr: 1.
The shape accuracy according to claim 1, which includes one or more of 0% or less, V: 1.0% or less, B: 0.05% or less, and a rare earth element (REM): 0.05% or less. An excellent method for manufacturing stainless steel molded products.
【請求項3】 請求項1または2に記載の組成をもつス
テンレス鋼を、熱間圧延後から最終製品となるまでの間
に500℃以上で、下記(1)式で定義されるAC以下
の温度範囲で1時間以上加熱保持する時効処理を1回以上
施し、SnまたはInを10%以上含むCuを主体とす
る第2相の析出を促進させた後、成形と切削を行う請求
項1または2に記載の形状精度に優れたステンレス鋼成
形品の製造方法。 AC=35Cr+75Si+60Mo+170Nb+620Ti+750Al-250C-280N -120Ni-70Mn-20(Cu+Sn+In)+500 ・・・(1)
3. A stainless steel having the composition according to claim 1 or 2, at a temperature of 500 ° C. or higher after hot rolling until it becomes a final product, and having an AC of not more than AC defined by the following formula (1). The aging treatment in which the material is heated and held in the temperature range for 1 hour or more is performed once or more to promote the precipitation of the second phase mainly containing Cu containing 10% or more of Sn or In, and then the forming and cutting are performed. 2. A method for producing a stainless steel molded product having excellent shape accuracy according to 2. AC = 35Cr + 75Si + 60Mo + 170Nb + 620Ti + 750Al-250C-280N -120Ni-70Mn-20 (Cu + Sn + In) +500 ・ ・ ・ (1)
【請求項4】 プレス成形を、下記(1)式で定義され
るAC以下の温度範囲に加熱した状態で行う請求項1〜
3のいずれか1に記載の形状精度に優れたステンレス鋼
成形品の製造方法。 AC=35Cr+75Si+60Mo+170Nb+620Ti+750Al-250C-280N -120Ni-70Mn-20(Cu+Sn+In)+500 ・・・(1)
4. The press molding is performed in a state of being heated in a temperature range of AC or lower defined by the following formula (1).
3. The method for producing a stainless steel molded product according to any one of 3 above, which is excellent in shape accuracy. AC = 35Cr + 75Si + 60Mo + 170Nb + 620Ti + 750Al-250C-280N -120Ni-70Mn-20 (Cu + Sn + In) +500 ・ ・ ・ (1)
JP2002097174A 2002-03-29 2002-03-29 Manufacturing method of stainless steel molded products with excellent shape accuracy Expired - Fee Related JP3942934B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002097174A JP3942934B2 (en) 2002-03-29 2002-03-29 Manufacturing method of stainless steel molded products with excellent shape accuracy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002097174A JP3942934B2 (en) 2002-03-29 2002-03-29 Manufacturing method of stainless steel molded products with excellent shape accuracy

Publications (3)

Publication Number Publication Date
JP2003293093A true JP2003293093A (en) 2003-10-15
JP2003293093A5 JP2003293093A5 (en) 2005-09-02
JP3942934B2 JP3942934B2 (en) 2007-07-11

Family

ID=29239866

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002097174A Expired - Fee Related JP3942934B2 (en) 2002-03-29 2002-03-29 Manufacturing method of stainless steel molded products with excellent shape accuracy

Country Status (1)

Country Link
JP (1) JP3942934B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2677055A1 (en) * 2011-02-17 2013-12-25 Nippon Steel & Sumikin Stainless Steel Corporation High-purity ferritic stainless steel sheet having excellent oxidation resistance and high-temperature strength, and method for producing same
JP2014145097A (en) * 2013-01-28 2014-08-14 Nippon Steel & Sumikin Stainless Steel Corp Ferritic stainless steel sheet for automotive exhaust system member suitable for high temperature press molding and manufacturing method of ferritic stainless steel molding part
JP2014169491A (en) * 2013-03-05 2014-09-18 Nippon Steel & Sumikin Stainless Steel Corp Ferritic stainless steel for exhaust system member excellent in corrosion resistance
JP2016117925A (en) * 2014-12-19 2016-06-30 日新製鋼株式会社 Four wheel stainless steel disk brake rotor and method for manufacturing the same
EP3034642A4 (en) * 2013-08-12 2017-04-26 Nippon Steel & Sumikin Stainless Steel Corporation Martensitic stainless steel having excellent wear resistance and corrosion resistance, and method for producing same
EP3258522A4 (en) * 2015-02-13 2018-01-24 Nippon Steel & Sumitomo Metal Corporation Ferritic stainless steel material, separator, solid polymer fuel cell, and method for producing separator
JP6351780B1 (en) * 2017-03-17 2018-07-04 日新製鋼株式会社 Ferritic stainless steel and spacer

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54143763A (en) * 1978-04-28 1979-11-09 Kawasaki Steel Co Deep drawing working of ferrite stainless steel
JPS5662902A (en) * 1979-10-27 1981-05-29 Daido Steel Co Ltd Free cutting stainless steel powder
JPS62211351A (en) * 1986-03-11 1987-09-17 Daido Steel Co Ltd Tool steel having superior machinability
JPH08120419A (en) * 1994-08-31 1996-05-14 Nisshin Steel Co Ltd Austenitic stainless steel sheet for warm drawing or warm and cold drawing and warm drawing method therefor
JPH09256116A (en) * 1996-03-19 1997-09-30 Nisshin Steel Co Ltd High strength martensitic stainless steel excellent in antibacterial characteristic
JP2000008145A (en) * 1998-06-25 2000-01-11 Sumitomo Metal Ind Ltd Ferritic stainless steel excellent in antifungal property and its production
JP2001355048A (en) * 2000-04-13 2001-12-25 Nippon Steel Corp Ferritic free-cutting stainless steel
JP2002212680A (en) * 2001-01-15 2002-07-31 Nippon Steel Corp Martensitic free cutting stainless steel
WO2002092869A1 (en) * 2001-05-15 2002-11-21 Nisshin Steel Co., Ltd. Ferritic stainless steal and martensitic stainless steel both being excellent in machinability

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54143763A (en) * 1978-04-28 1979-11-09 Kawasaki Steel Co Deep drawing working of ferrite stainless steel
JPS5662902A (en) * 1979-10-27 1981-05-29 Daido Steel Co Ltd Free cutting stainless steel powder
JPS62211351A (en) * 1986-03-11 1987-09-17 Daido Steel Co Ltd Tool steel having superior machinability
JPH08120419A (en) * 1994-08-31 1996-05-14 Nisshin Steel Co Ltd Austenitic stainless steel sheet for warm drawing or warm and cold drawing and warm drawing method therefor
JPH09256116A (en) * 1996-03-19 1997-09-30 Nisshin Steel Co Ltd High strength martensitic stainless steel excellent in antibacterial characteristic
JP2000008145A (en) * 1998-06-25 2000-01-11 Sumitomo Metal Ind Ltd Ferritic stainless steel excellent in antifungal property and its production
JP2001355048A (en) * 2000-04-13 2001-12-25 Nippon Steel Corp Ferritic free-cutting stainless steel
JP2002212680A (en) * 2001-01-15 2002-07-31 Nippon Steel Corp Martensitic free cutting stainless steel
WO2002092869A1 (en) * 2001-05-15 2002-11-21 Nisshin Steel Co., Ltd. Ferritic stainless steal and martensitic stainless steel both being excellent in machinability

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2677055A1 (en) * 2011-02-17 2013-12-25 Nippon Steel & Sumikin Stainless Steel Corporation High-purity ferritic stainless steel sheet having excellent oxidation resistance and high-temperature strength, and method for producing same
EP2677055A4 (en) * 2011-02-17 2014-11-19 Nippon Steel & Sumikin Sst High-purity ferritic stainless steel sheet having excellent oxidation resistance and high-temperature strength, and method for producing same
JP2014145097A (en) * 2013-01-28 2014-08-14 Nippon Steel & Sumikin Stainless Steel Corp Ferritic stainless steel sheet for automotive exhaust system member suitable for high temperature press molding and manufacturing method of ferritic stainless steel molding part
JP2014169491A (en) * 2013-03-05 2014-09-18 Nippon Steel & Sumikin Stainless Steel Corp Ferritic stainless steel for exhaust system member excellent in corrosion resistance
EP3034642A4 (en) * 2013-08-12 2017-04-26 Nippon Steel & Sumikin Stainless Steel Corporation Martensitic stainless steel having excellent wear resistance and corrosion resistance, and method for producing same
JP2016117925A (en) * 2014-12-19 2016-06-30 日新製鋼株式会社 Four wheel stainless steel disk brake rotor and method for manufacturing the same
EP3258522A4 (en) * 2015-02-13 2018-01-24 Nippon Steel & Sumitomo Metal Corporation Ferritic stainless steel material, separator, solid polymer fuel cell, and method for producing separator
JP6351780B1 (en) * 2017-03-17 2018-07-04 日新製鋼株式会社 Ferritic stainless steel and spacer
JP2018154876A (en) * 2017-03-17 2018-10-04 日新製鋼株式会社 Ferritic stainless steel and spacer

Also Published As

Publication number Publication date
JP3942934B2 (en) 2007-07-11

Similar Documents

Publication Publication Date Title
TWI440726B (en) Method for producing cold-work die
JP3886933B2 (en) Ferritic stainless steel sheet excellent in press formability and secondary workability and manufacturing method thereof
JP5412851B2 (en) Steel for plastic molds and plastic molds
JP2002256397A (en) High hardness martensitic stainless steel having excellent corrosion resistance
JP3691341B2 (en) Austenitic stainless steel sheet with excellent precision punchability
JP4465057B2 (en) High carbon steel sheet for precision punching
JP2009299189A (en) High carbon steel sheet for precision blanking
JP6337524B2 (en) Steel for mold
JP4272394B2 (en) Ferritic stainless steel with excellent precision punchability
JP2003293093A (en) Method of producing stainless steel formed article having excellent shape precision
CN103703150A (en) Hot-work tool steel and a process for making a hot-work tool steel
JP2002212679A (en) EDGE TOOL AND Fe-BASED ALLOY FOR EDGE TOOL USED THEREFOR
JP4830239B2 (en) Manufacturing method of low carbon martensitic stainless hot rolled steel sheet with excellent punchability
JP5869919B2 (en) Case-hardening bar steel with excellent cold workability
JP7444018B2 (en) Steel plates, their manufacturing methods, and members
JP2003213376A (en) Ferritic stainless steel sheet having excellent secondary hole enlargementability and production method therefor
JP5345415B2 (en) Steel for cold press dies and press dies excellent in machinability, heat treatment sizing characteristics and impact characteristics
JP4322239B2 (en) Cold tool steel and manufacturing method thereof
JPH09263912A (en) High strength double phase structure chromium stainless steel sheet for punching and its production
WO2012133833A1 (en) Stainless-steel sheet for metal mask
JP3886864B2 (en) Ferritic stainless steel cold-rolled annealed material excellent in secondary workability and manufacturing method thereof
JP3367414B2 (en) High carbon cold rolled steel strip and method for producing the same
JPH07278737A (en) Preharden steel for plastic molding and its production
JP2000192195A (en) Free cutting cold working tool steel
JP5466897B2 (en) Low carbon martensitic stainless steel and its manufacturing method

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050303

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050303

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20061220

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070109

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20070301

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070305

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070403

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070404

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070305

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100413

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110413

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110413

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120413

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130413

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees