JP3367414B2 - High carbon cold rolled steel strip and method for producing the same - Google Patents

High carbon cold rolled steel strip and method for producing the same

Info

Publication number
JP3367414B2
JP3367414B2 JP06668098A JP6668098A JP3367414B2 JP 3367414 B2 JP3367414 B2 JP 3367414B2 JP 06668098 A JP06668098 A JP 06668098A JP 6668098 A JP6668098 A JP 6668098A JP 3367414 B2 JP3367414 B2 JP 3367414B2
Authority
JP
Japan
Prior art keywords
steel
steel strip
cementite
cold
rolling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP06668098A
Other languages
Japanese (ja)
Other versions
JPH11264049A (en
Inventor
清 福井
岩美 品川
洋二 八並
秋男 永井
浩行 中川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP06668098A priority Critical patent/JP3367414B2/en
Publication of JPH11264049A publication Critical patent/JPH11264049A/en
Application granted granted Critical
Publication of JP3367414B2 publication Critical patent/JP3367414B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、自動車部品、チェ
ーン部品、編み針などの素材として好適な、打抜き加工
時に、滑らかな形状を有する切り口面が得られる高炭素
冷延鋼帯およびその製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a high carbon material which is suitable as a material for automobile parts, chain parts, knitting needles and the like and which can obtain a cut face having a smooth shape during punching.
The present invention relates to a cold rolled steel strip and a method for manufacturing the same.

【0002】[0002]

【従来の技術】自動車の駆動系部品、チェーン部品、編
み針等に用いられる高炭素鋼帯は、加工された後、焼入
れやオーステンパー等の熱処理が施され、高強度かつ高
硬度の性質が付与されて使用される。鋼帯には目的とす
る強度や硬度に応じて炭素や合金元素を含有させる。鋼
中の炭素は硬質なセメンタイトとして析出し、その量が
多いので、熱間圧延のままでは加工が困難である。この
ため、通常は熱間圧延後に焼鈍を施してセメンタイトを
球状化し、加工性を改善して使用される。
2. Description of the Related Art High carbon steel strips used for automobile drive system parts, chain parts, knitting needles, etc. are processed and then heat treated such as quenching and austempering to impart high strength and high hardness properties. Has been used. The steel strip contains carbon and alloying elements depending on the intended strength and hardness. Since carbon in steel precipitates as hard cementite and its amount is large, it is difficult to work it as it is in hot rolling. For this reason, normally, after hot rolling, annealing is performed to make the cementite spherical and the workability is improved before use.

【0003】高炭素鋼帯の加工方法としてはダイとパン
チを用いた打抜き加工(剪断加工)が基本である。図1
は打抜き加工の切り口面を示す概念図であり、図1
(a)は切り口面の正面図、図(b)はそのA−A断面
図である。打抜き加工に際しては、図1に示すように、
工具によって切断部近傍の材料が引き込まれて生じるダ
レ(歪み)1や、打抜き工程の最後にかど部にバリ(カ
エリ)4等が生じるので部品としての寸法精度が損なわ
れる。
As a method of processing a high carbon steel strip, punching (shearing) using a die and a punch is a basic method. Figure 1
FIG. 1 is a conceptual diagram showing a cut surface of a punching process.
(A) is a front view of a cut surface, and FIG. (B) is its AA sectional view. When punching, as shown in Fig. 1,
Since the tool causes sagging (distortion) 1 caused by drawing the material in the vicinity of the cut portion and burrs (burrs) 4 and the like at the corner portion at the end of the punching process, the dimensional accuracy of the component is impaired.

【0004】ダレやバリは鋼の延性やn値が大きいほど
発生しやすいとされている。たとえばセメンタイトの球
状化焼鈍時などに際して軟質化しすぎると、これらの不
良が問題になる。他方、焼鈍が不十分で鋼帯が硬すぎる
と、ダレやバリは抑制できるが、打抜き金型の摩耗が著
しくなり、加工費用が増して量産には適さない。このた
め、高炭素鋼帯は長さ方向や幅方向を含めた全体が適正
な硬度領域になるように、熱間圧延後焼鈍してセメンタ
イトを球状化した後に冷間圧延を施して硬さを調整する
場合が多い。
It is said that sagging and burrs are more likely to occur as the ductility of steel and the n value increase. For example, when the cementite is spheroidized and annealed, if it is excessively softened, these defects become a problem. On the other hand, if annealing is insufficient and the steel strip is too hard, sagging and burrs can be suppressed, but wear of the punching die becomes remarkable, and the processing cost increases, which is not suitable for mass production. Therefore, the high carbon steel strip is annealed by hot rolling to spheroidize the cementite, and then cold rolled to make the hardness so that the entire length and width are in an appropriate hardness region. Often adjusted.

【0005】切断部の切り口面は、通常は、切れ刃に接
して塑性変形して滑らかに切断されて生じた剪断面2
と、亀裂が発生して材料が分離する際に生じる破断面3
で構成されている。破断面3には、材料が分離するとき
に多数の微小亀裂が発生し、微小な凹凸が多数存在した
形状になる。部材に応力が作用する場合にこれらの凹部
に応力が集中して疲労亀裂が発生しやすいために、破断
面が多い部材は疲労寿命が短くなる。これは寸法不良と
共に大きい問題点とされており、破断面3を極力少なく
し、全体が滑らかな剪断面2で構成された切り口面を得
る方法が求められている。
The cut surface of the cutting portion is usually in contact with the cutting edge and plastically deforms to smoothly cut the sheared surface 2.
And a fracture surface 3 that occurs when a material is separated by a crack.
It is composed of. A large number of microcracks are generated on the fracture surface 3 when the material is separated, so that the fracture surface 3 has a shape in which a large number of fine irregularities are present. When stress acts on a member, stress concentrates on these recesses and fatigue cracks are likely to occur. Therefore, the fatigue life of a member having many fracture surfaces becomes short. This is considered to be a serious problem along with dimensional defects. Therefore, there is a demand for a method of reducing the fracture surface 3 as much as possible and obtaining a cut surface composed of a smooth shear surface 2.

【0006】平滑で欠陥のない切り口面を得る方法とし
て精密打抜き法が開発されている。この方法は、機械的
に材料に静水圧を作用させて亀裂発生を抑制する方法で
あり、剪断加工した後の破面を切削して削り取る工程を
省略する方法である。しかしこれらの方法を採用するに
は専用設備や付加工程が必要であり、容易に行える方法
ではない。
A precision punching method has been developed as a method for obtaining a smooth and defect-free cut surface. This method is a method in which hydrostatic pressure is mechanically applied to the material to suppress the occurrence of cracks, and is a method in which the step of cutting and scraping the fracture surface after shearing is omitted. However, adopting these methods requires specialized equipment and additional steps, and is not an easy method.

【0007】上述したように、ダレやバリは焼鈍条件や
冷間圧延条件を調整して、加工素材鋼帯の延性を適正な
範囲に管理すれば抑制できる。しかしながら切り口面の
形状に関しては、このような延性を最適範囲に管理する
方法では良好な形状にすることが困難である。
As described above, the sagging and burrs can be suppressed by adjusting the annealing conditions and the cold rolling conditions to control the ductility of the work material steel strip within an appropriate range. However, regarding the shape of the cut surface, it is difficult to obtain a good shape by the method of controlling the ductility in the optimum range.

【0008】特開昭59−28527号公報には、球状
炭化物を微細に分散させた冷延特殊帯鋼の製造法が開示
されている。この方法は、鋼の相変態が熱間圧延後に完
全に終了するように熱間圧延後、低温で巻取った熱延鋼
帯に、冷間圧延と低温の中間焼鈍を反復実施して炭化物
の形状を微細にし、熱処理性を向上させるものである。
しかしこの発明においては、剪断加工時の切り口面の形
状に関しては言及されておらず、また、単に炭化物を微
細に分散せても、切り口面の形状を安定して良好にする
のは困難である。
Japanese Unexamined Patent Publication (Kokai) No. 59-28527 discloses a method for producing a cold rolled special strip steel in which spherical carbides are finely dispersed. In this method, after hot rolling so that the phase transformation of the steel is completely completed after hot rolling, the cold rolled hot rolled steel strip is repeatedly subjected to cold rolling and intermediate annealing at low temperature to remove carbides. The shape is made fine and the heat treatment property is improved.
However, in this invention, there is no mention of the shape of the cut face during shearing, and it is difficult to make the shape of the cut face stable and good even if the carbide is simply finely dispersed. .

【0009】[0009]

【発明が解決しようとする課題】本発明は、剪断加工性
が良好な、焼入れ等の熱処理を前提とした高炭素冷延
帯およびその製造方法を提供することにある。更に詳し
くは、ダレ等の形状不良が発生せず、しかも滑らかな剪
断面で構成される切り口面が得られる高炭素冷延鋼帯お
よびその製造方法を提供することにある。
SUMMARY OF THE INVENTION It is an object of the present invention to provide a high carbon cold rolled steel strip which has good shearing workability and is premised on heat treatment such as quenching, and a method for producing the same. More specifically, it is an object of the present invention to provide a high-carbon cold-rolled steel strip and a method for producing the same, which does not cause shape defects such as sagging and can obtain a cut face having a smooth sheared surface.

【0010】[0010]

【課題を解決するための手段】本発明の要旨は下記
(1)に記載の打抜き破面が滑らかな高炭素冷延鋼帯お
よび(2)に記載のその製造方法にある。
The gist of the present invention resides in a high-carbon cold-rolled steel strip having a smooth punched fracture surface as described in (1) below and a manufacturing method thereof as described in (2).

【0011】(1)重量%でC:0.20〜0.80
%、Si:0.30%以下、Mn:0.60〜1.60
%、sol.Al:0.010〜0.100%、N:
0.0020〜0.0100%、Ca:0〜0.010
0%、残部がFeおよび不可避的不純物からなり、か
つ、sol.Al/Nが5〜10の範囲にあるととも
に、鋼中のセメンタイトの球状化率が80%以上、平均
粒径が0.80μm以下であり、鋼の引張度さが600
〜700N/mm、引張強さ(N/mm)×{10
0−伸び(%)}が50×10〜65×10の関係
を満たす高炭素冷延鋼帯。
(1) In% by weight , C: 0.20 to 0.80
%, Si: 0.30% or less, Mn: 0.60 to 1.60
%, Sol. Al: 0.010 to 0.100%, N:
0.0020-0.0100%, Ca: 0-0.010
0%, the balance consisting of Fe and inevitable impurities, and sol. Al / N is in the range of 5 to 10, the spheroidization rate of cementite in the steel is 80% or more, the average grain size is 0.80 μm or less, and the tensile strength of the steel is 600.
~ 700 N / mm 2 , tensile strength (N / mm 2 ) × {10
High carbon cold rolled steel strip satisfying the relationship of 0-elongation (%)} of 50 × 10 3 to 65 × 10 3 .

【0012】(2)上記(1)に記載の化学組成を有す
る鋼を、熱間圧延して500〜680℃で巻取り、酸洗
した後、圧下率10〜80%で1回目の冷間圧延をおこ
ない、650〜725℃で中間焼鈍を施した後、圧下率
5〜25%で2回目の冷間圧延をおこない、その後熱処
理を施すことなく製品とする上記(1)の高炭素冷延
帯の製造方法。
(2) The steel having the chemical composition described in (1) above is hot-rolled, wound at 500 to 680 ° C., pickled, and then cold-rolled at a reduction rate of 10 to 80% for the first time. perform rolling, was subjected to intermediate annealing at six hundred fifty to seven hundred and twenty-five ° C., have such to put the second cold rolling at a reduction rate of 5-25%, then the thermal treatment
The method for producing a high carbon cold-rolled steel strip according to the above (1), which is a product without any reason .

【0013】本発明者らは、高炭素冷延鋼帯の熱処理後
の必要強度を得るために、C含有量を0.20〜0.8
0%とし、一定の伸びを付与した鋼帯の打抜き性の改善
方法について詳細な研究をおこなった。
The present inventors have set the C content to 0.20 to 0.8 in order to obtain the necessary strength after heat treatment of a high carbon cold rolled steel strip.
A detailed study was conducted on a method for improving the punchability of a steel strip having a constant elongation of 0%.

【0014】その結果、切り口面での破断面の発生を抑
制するには、炭化物を微細な球状にすることに加えて、
鋼の強度と延性を適正な範囲に管理することが重要であ
ることを知った。
As a result, in order to suppress the generation of a fracture surface on the cut surface, in addition to making the carbide fine spherical,
We have learned that it is important to control the strength and ductility of steel within appropriate ranges.

【0015】鋼の引張強さが低く、延性が過度に大きい
場合にはダレが大きくなる。引張強さが大きくなるにつ
れてダレが減少して良好になるが、切り口面の形状を良
好にするには延性が大きい程好ましい。強度が増し、延
性が小さくなると塑性変形能が減少するので、剪断面が
得難くなるものと推測される。さらに、鋼の化学組成と
熱間圧延後の冷間圧延条件および焼鈍条件を適正に管理
することにより、上述の好ましい特性バランスが効率的
に得られることも知った。本発明はこれらの知見を基に
して完成されたものである。
When the tensile strength of steel is low and the ductility is excessively large, the sag becomes large. As the tensile strength increases, sagging decreases and becomes better, but in order to improve the shape of the cut surface, the larger the ductility, the better. As the strength increases and the ductility decreases, the plastic deformability decreases, so it is presumed that it becomes difficult to obtain a sheared surface. Furthermore, it was also found that the preferable property balance described above can be efficiently obtained by appropriately controlling the chemical composition of steel, the cold rolling condition after hot rolling and the annealing condition. The present invention has been completed based on these findings.

【0016】[0016]

【発明の実施の形態】以下に本発明の実施の形態につい
て詳細に説明する。なお、以下に記す化学組成の%表示
は重量%を表す。
BEST MODE FOR CARRYING OUT THE INVENTION Embodiments of the present invention will be described in detail below. The chemical composition% shown below represents% by weight.

【0017】a.鋼の化学組成 C:Cは、鋼の焼入れ性を高め、熱処理後の耐摩耗性や
疲労強度を向上させる作用がある。熱処理後の耐摩耗性
や疲労強度を確保するには、熱処理後の鋼の引張強さが
100kgf/mm2 以上(ヴィッカース硬度でHv:
300以上)であることが好ましく、この強度を確保す
るためにCを0.20%以上含有させる。C含有量が過
度に増すと熱処理後の靱性が損なわれる。靭性が得られ
る範囲である引張強さ210kgf/mm2 (ヴィッカ
ース硬度で600)以下とするため、C含有量の上限は
0.80%とする。
A. The chemical composition C: C of steel has the effects of enhancing the hardenability of steel and improving the wear resistance and fatigue strength after heat treatment. In order to secure wear resistance and fatigue strength after heat treatment, the tensile strength of steel after heat treatment is 100 kgf / mm 2 or more (Hv: Vickers hardness:
300 or more), and 0.20% or more of C is contained to secure this strength. If the C content is excessively increased, the toughness after heat treatment is impaired. In order to obtain a tensile strength of 210 kgf / mm 2 (600 in Vickers hardness) or less, which is a range in which toughness is obtained, the upper limit of the C content is 0.80%.

【0018】Si:Siは、鋼を精錬する際にAlとと
もに脱酸剤として添加されるが、過度にSiを含有させ
ると、熱処理時にSi酸化物が生じ、疲労強度を低下さ
せるおそれが増すので、Si含有量は0.30%以下と
する。本発明では、sol.Alを少なくとも0.01
0%含むので、Siは含有させなくてもよい。
Si: Si is added as a deoxidizing agent together with Al when refining steel. However, if Si is excessively contained, Si oxide is generated during heat treatment, which may lower the fatigue strength. , Si content is 0.30% or less. In the present invention, sol. Al at least 0.01
Since it contains 0%, Si may not be contained.

【0019】Mn:Mnは、鋼を加熱した際の軟化抵抗
を増す作用があり、焼戻し温度や、オーステンパー温度
を高くすることができるので焼入れ性や靱性を向上させ
ることができる。この効果を得るために0.60%以上
含有させる。しかし、1.60%を超えて含有させる
と、鋼が過度に硬化し、酸洗や冷間圧延等が困難になる
ため、Mn含有量の上限は1.60%とする。
Mn: Mn has the effect of increasing the softening resistance when the steel is heated, and can increase the tempering temperature and the austempering temperature, so that the hardenability and toughness can be improved. To obtain this effect, it is contained by 0.60% or more. However, if the content exceeds 1.60%, the steel excessively hardens, and pickling and cold rolling become difficult, so the upper limit of the Mn content is set to 1.60%.

【0020】sol.Al:熱処理のための加熱時に生
じやすいオーステナイト粒の異常成長を抑制し、靭性の
低下を防ぐ作用があるAlN析出物を確保するために、
sol.Alは0.010%以上含有させる。一方、s
ol.Al含有量が0.100%を超えるとオーステナ
イトの粒成長抑制効果が損なわれる上に、Al23など
の酸化物が増して、熱処理後の靱性や疲労強度を損なう
原因になる。このため、sol.Al含有量の上限は
0.100%とする。
Sol. Al: In order to secure an AlN precipitate that suppresses abnormal growth of austenite grains that are likely to occur during heating for heat treatment and prevents a decrease in toughness,
sol. Al is contained by 0.010% or more. On the other hand, s
ol. When the Al content exceeds 0.100%, not only the grain growth suppressing effect of austenite is impaired, but also oxides such as Al 2 O 3 increase, which causes the toughness and fatigue strength after heat treatment to be impaired. Therefore, sol. The upper limit of the Al content is 0.100%.

【0021】N:Nは、Alと結合して窒化物(AlN
等)を形成し、熱処理の際に生じるおそれがあるオース
テナイト粒の粗大化を抑制する作用があり、ダレの発生
や熱処理前後の寸法変化を防止し、熱処理後の靭性を向
上させる効果がある。この効果を得るためにNを0.0
020%以上含有させる。一方、N含有量が0.010
0%を超えると伸びが劣化し加工性が損なわれるので、
その上限を0.0100%とする。さらにsol.Al
含有量とN含有量との比(sol.Al/N)が5〜1
0の範囲になるようにこれらの元素を含有させるのがよ
い。この比が5に満たない場合や10を超える場合に
は、オーステンパー処理を施す際にオーステナイト粒径
が粗大化することがあるので好ましくない。
N: N combines with Al to form a nitride (AlN
Etc.) to suppress coarsening of austenite grains that may occur during heat treatment, prevent sagging and dimensional change before and after heat treatment, and improve toughness after heat treatment. N is 0.0 to obtain this effect.
020% or more is contained. On the other hand, the N content is 0.010
If it exceeds 0%, the elongation deteriorates and the workability is impaired.
The upper limit is 0.0100%. Furthermore, sol. Al
The ratio of the content to the N content (sol.Al/N) is 5 to 1
It is preferable that these elements are contained in the range of 0. If this ratio is less than 5 or exceeds 10, the austenite grain size may become coarse during the austempering treatment, which is not preferable.

【0022】Ca:Caは、必須元素ではないが、鋼中
の固溶酸素を低減するとともに、Al酸化物を低減する
作用がある。また、不可避的不純物としてのSと結合し
てCa系硫化物を形成し、Sによる弊害を無害化する作
用もある。これらの効果を得るためにCaを含有させて
も構わない。これらの効果を得るにはCaを0.001
0%以上含有量させるのが好ましい。一方、Caを過剰
に含有させると、製造コストが高くなるうえ、Ca系酸
化物の増大による疲労限の低下や、Ca系硫化物の増加
による打抜き時の破断面の増加の可能性があるので、含
有させる場合でもその上限はを0.0100%とするの
がよい。
Ca: Ca is not an essential element, but it has the effect of reducing the solid solution oxygen in the steel and reducing the amount of Al oxides. In addition, it also has a function of forming a Ca-based sulfide by combining with S as an unavoidable impurity, and rendering the harmful effects of S harmless. Ca may be contained to obtain these effects. To obtain these effects, Ca is 0.001
The content is preferably 0% or more. On the other hand, if Ca is contained excessively, the manufacturing cost becomes high, and the fatigue limit may decrease due to the increase of Ca-based oxides, and the fracture surface at the time of punching may increase due to the increase of Ca-based sulfides. , The upper limit of the content is preferably 0.0100%.

【0023】上記以外の化学成分は、Feおよび不可避
的不純物である。
Chemical components other than the above are Fe and inevitable impurities.

【0024】b.炭化物 炭化物(セメンタイト)は球状化されている方が鋼の延
性が改善されて加工性がよくなるので好ましい。球状化
率が80%以上であれば打抜き加工時の破断面が抑制さ
れるので、本発明の高炭素冷延鋼帯のセメンタイトの球
状化率は80%以上とする。本発明では、鋼帯の断面を
倍率2000倍の光学顕微鏡で観察し、アスペクト比
(長軸/短軸)が5以下の炭化物を球状化セメンタイト
とする。球状化率は、上述の球状化セメンタイトが占め
る面積を画像処理などの方法で測定できる。
B. Carbide Carbide (cementite) is preferably spherical because the ductility of the steel is improved and the workability is improved. If the spheroidization rate is 80% or more, the fracture surface during punching is suppressed, so the spheroidization rate of the cementite of the high carbon cold-rolled steel strip of the present invention is 80% or more. In the present invention, the cross section of the steel strip is observed with an optical microscope at a magnification of 2000, and carbides having an aspect ratio (long axis / short axis) of 5 or less are used as spheroidized cementite. As for the spheroidization rate, the area occupied by the above-mentioned spheroidized cementite can be measured by a method such as image processing.

【0025】なお、粒径が大きいセメンタイトが存在す
ると、打抜き加工時に破砕され、これを起点として破断
面が生じることがあるので、セメンタイトの平均粒径は
0.80μm以下とする。他方、セメンタイトが微細化
し過ぎると、引張強さや硬度が著しく高くなり、逆に切
り口面で破断面が増すことがあるので、セメンタイトの
平均粒径の下限は0.50μmであることが望ましい。
この平均粒径は、鋼帯試験片の断面を研磨し、エッチン
グした後、走査型電子顕微鏡等で倍率2000倍で検出
される炭化物全ての長径を測定して求めた平均値であ
る。
If cementite with a large grain size is present, it may be crushed during punching, and a fracture surface may occur starting from this, so the average grain size of cementite is 0.80 μm or less. On the other hand, if the cementite is excessively refined, the tensile strength and hardness may be remarkably increased, and conversely, the fracture surface may increase at the cut face, so the lower limit of the average particle diameter of the cementite is preferably 0.50 μm.
This average particle diameter is an average value obtained by measuring the major axis of all the carbides detected with a scanning electron microscope or the like at a magnification of 2000 times after polishing and etching the cross section of the steel strip test piece.

【0026】c.機械的性質 チェーン等の製品の寸法精度や耐久性を良好にするに
は、b項に述べたように打抜き時の切り口面の破断面の
形成を抑制するためのセメンタイトの形状制御に加え
て、機械的性質の制御も重要である。引張強さが低い場
合には、打抜き加工時に反りやダレ等の変形が生じ、外
観形状や寸法精度を損なうので好ましくない。鋼帯の厚
さが薄い場合でもこれらの変形を生じさせないために、
引張強さ(以下、単に「TS」とも記す)を600N/
mm2 以上とする必要がある。しかし、引張強さが70
0N/mm2 を超えると切り口面で破断面が増すうえ、
金型の損耗が著しくなるので、引張強さの上限は700
N/mm2 とする。
C. Mechanical properties In order to improve the dimensional accuracy and durability of products such as chains, in addition to the shape control of cementite for suppressing the formation of the fracture surface of the cut surface during punching, as described in item b, Controlling mechanical properties is also important. When the tensile strength is low, deformation such as warpage or sagging occurs during punching, which impairs the external shape and dimensional accuracy, which is not preferable. To prevent these deformations even when the steel strip is thin,
Tensile strength (hereinafter also simply referred to as "TS") is 600 N /
It must be at least mm 2 . However, the tensile strength is 70
If it exceeds 0 N / mm 2 , the fracture surface increases at the cut surface and
The upper limit of the tensile strength is 700, because the wear of the mold becomes significant.
N / mm 2 .

【0027】さらに、破断面の発生を抑制するために、
引張強さに応じて延性を確保する必要がある。特に、鋼
帯の強度が増すほど延性を高くするのが好ましい。本発
明では、切り口面の破断面を抑制する鋼帯として、加工
時の鋼板の、JIS Z 2201に規定される5号試
験片で測定した引張強さ(TS)と全伸び(El)との
間に、次の式、TS(N/mm2 )×{100−El
(%)}で計算される値(以下、単に「強度−伸びバラ
ンス」とも記す)が50×103 〜65×103の範囲
になるような関係を満たすものとする。この値が50×
103 に満たない場合には打抜き端面にダレが生じるの
で好ましくない。65×103 を超える場合には破断面
が生じるので好ましくない。
Further, in order to suppress the generation of a fracture surface,
It is necessary to ensure ductility according to the tensile strength. In particular, it is preferable to increase the ductility as the strength of the steel strip increases. In the present invention, as a steel strip that suppresses the fracture surface of the cut surface, the tensile strength (TS) and the total elongation (El) of a steel plate during processing measured with a No. 5 test piece specified in JIS Z 2201 are used. In between, the following equation, TS (N / mm 2 ) × {100-El
(%)} (Hereinafter, also simply referred to as “strength-elongation balance”) satisfies the relation that the value is in the range of 50 × 10 3 to 65 × 10 3 . This value is 50 ×
If it is less than 10 3 , sagging occurs on the punched end face, which is not preferable. If it exceeds 65 × 10 3 , a fractured surface is generated, which is not preferable.

【0028】d.製造方法 本発明の鋼帯の好ましい製造方法を以下に述べる。D. Production method A preferred method for producing the steel strip of the present invention will be described below.

【0029】前述のa項に規定する化学組成を有する鋼
を、転炉、電気炉など公知の方法により溶製し、連続鋳
造など公知の方法で鋳造して鋳片とした後、熱間圧延す
る。熱間圧延は、巻取温度を下記の範囲とすること以外
は公知の方法および条件でおこなえる。
Steel having the chemical composition defined in the above item a is melted by a known method such as a converter or an electric furnace, cast into a cast piece by a known method such as continuous casting, and then hot rolled. To do. The hot rolling can be performed by known methods and conditions except that the winding temperature is within the following range.

【0030】熱間圧延後の巻取温度を過度に低くすると
鋼が硬くなり、巻取作業が困難になるおそれがあるう
え、酸洗作業や冷間圧延にも支障を来たす。このため、
巻取温度は550℃以上とするのがよい。さらに好まし
くは、冷間圧延性を向上させるために625℃以上とす
るのがよい。一方、680℃を超える温度域で巻取る
と、熱延鋼帯でのセメンタイトが粗大になり、これを冷
間圧延してもセメンタイトを微細にするのが難しくな
る。このため、巻取温度は680℃以下とするのがよ
い。
If the coiling temperature after the hot rolling is excessively lowered, the steel becomes hard and the coiling work may become difficult, and the pickling and cold rolling may be hindered. For this reason,
The winding temperature is preferably 550 ° C or higher. More preferably, the temperature is 625 ° C. or higher in order to improve the cold rolling property. On the other hand, if it is wound in a temperature range exceeding 680 ° C., the cementite in the hot-rolled steel strip becomes coarse, and it becomes difficult to make the cementite fine even by cold rolling. Therefore, the winding temperature is preferably 680 ° C or lower.

【0031】熱間圧延後にはデスケーリングを行う。デ
スケーリングの方法は任意であり、酸洗やショットブラ
ストなどの公知の方法が適用できる。その後に1回目の
冷間圧延(以下、単に「1次冷延」と記す)をおこな
う。
After hot rolling, descaling is performed. The descaling method is arbitrary, and known methods such as pickling and shot blasting can be applied. After that, the first cold rolling (hereinafter, simply referred to as "primary cold rolling") is performed.

【0032】1次冷延での圧下率は、後の焼鈍における
セメンタイトの球状化率と粒径に影響する。圧下率が1
0%に満たない場合にはセメンタイトが球状化しにく
く、球状化率を80%以上にするのが困難になる。一
方、圧下率が80%を超えると、冷間圧延が困難になる
ので量産には適さない。また、過度に圧下率を高めると
熱間圧延で形成された炭化物が細かく破砕され、中間焼
鈍時に却って炭化物が凝集し成長してセメンタイトが粗
大になることがあるので好ましくない。これらの理由か
ら圧下率の範囲は10〜80%とするのがよい。より好
ましいのは30〜70%の範囲である。
The reduction ratio in the primary cold rolling affects the spheroidization ratio and grain size of cementite in the subsequent annealing. Reduction rate is 1
When it is less than 0%, cementite is difficult to be spheroidized, and it becomes difficult to make the spheroidization rate 80% or more. On the other hand, if the rolling reduction exceeds 80%, cold rolling becomes difficult, which is not suitable for mass production. Further, if the rolling reduction is excessively increased, the carbide formed by hot rolling may be finely crushed, and during intermediate annealing, the carbide may aggregate and grow, which may cause coarse cementite, which is not preferable. For these reasons, the rolling reduction range is preferably 10 to 80%. The more preferred range is 30 to 70%.

【0033】1次冷延された鋼帯には中間焼鈍を施した
後、2回目の冷間圧延(以下、単に「2次冷延」と記
す)を施すのがよい。中間焼鈍温度は、セメンタイトが
粗大化しないように725℃以下とするのがよい。中間
焼鈍温度が低すぎる場合にはセメンタイトの球状化が不
十分になるので、中間焼鈍温度は650℃以上にするの
がよい。中間焼鈍の均熱時間は特に規定していないが、
セメンタイトの粒径を微細に抑制するため、24時間以
内とするのが好ましい。
It is preferable that the first cold rolled steel strip is subjected to intermediate annealing and then subjected to a second cold rolling (hereinafter simply referred to as "secondary cold rolling"). The intermediate annealing temperature is preferably 725 ° C. or lower so that cementite does not become coarse. If the intermediate annealing temperature is too low, the spheroidization of cementite will be insufficient, so the intermediate annealing temperature is preferably 650 ° C or higher. The soaking time for intermediate annealing is not specified, but
In order to suppress the particle size of cementite finely, it is preferable to set it within 24 hours.

【0034】2次冷延の際の圧下率が5%に満たない場
合には、鋼帯の全伸びが高すぎて切り口面に破断面が発
生しやすくなるので好ましくない。2次冷延の圧下率が
25%を超える場合には、鋼帯の引張強さが高くなり、
全伸びが低くなりすぎて破断面が生じ易くなる。このた
め、2次冷延での圧下率は5〜25%の範囲とするのが
よい。
If the reduction ratio in the secondary cold rolling is less than 5%, the total elongation of the steel strip is too high, and a fractured surface is likely to occur at the cut surface, which is not preferable. When the reduction ratio of the secondary cold rolling exceeds 25%, the tensile strength of the steel strip becomes high,
The total elongation becomes too low and a fracture surface is likely to occur. Therefore, the reduction rate in the secondary cold rolling is preferably in the range of 5 to 25%.

【0035】本発明の鋼帯は、2回目の冷延後には、常
法に従って脱脂などの処理を施し、そのまま打抜き加工
などに供することができる。打抜き加工は常法に従って
おこなえばよいが、良好な打抜き破面を得るために通常
おこなわれている、例えばダイとパンチ間のクリアラン
スを適宜選択するなどの条件でおこなうのが好ましい。
加工が終了した後は、常法に従って焼入れ、焼戻しやオ
ーステンパー処理などの熱処理を施すことができ、これ
により良好な引張強さや硬さが得られる。
After the second cold rolling, the steel strip of the present invention can be subjected to a degreasing treatment or the like according to a conventional method, and can be directly subjected to punching work or the like. The punching process may be carried out according to a conventional method, but it is preferably carried out under the conditions which are usually carried out in order to obtain a good punching fracture surface, for example, the clearance between the die and the punch is appropriately selected.
After the processing is completed, heat treatment such as quenching, tempering, and austempering can be performed according to a conventional method, whereby good tensile strength and hardness can be obtained.

【0036】[0036]

【実施例】(実施例1) 表1に示す化学組成の鋼A〜Tを真空溶解し、鋳造した
後鍛造して鋼片とし、1200℃で1時間加熱後、仕上
温度850℃で圧延して厚さ2.5mm、幅200mm
の熱間圧延板とし、625℃で巻取った後、通常の巻取
後の冷却速度に準じた速度で冷却した。冷却後酸洗して
脱スケールし、厚さ1.2mmに1次冷延し(圧下率5
2%)、水素ガス100体積%の雰囲気で655℃で2
0時間焼鈍し、厚さ1.0mmに2次冷延(圧下率1
6.7%)した。
EXAMPLES Example 1 Steels A to T having the chemical compositions shown in Table 1 were vacuum melted, cast, and then forged into steel pieces, heated at 1200 ° C. for 1 hour, and then rolled at a finishing temperature of 850 ° C. Thickness 2.5 mm, width 200 mm
After being wound at 625 ° C., it was cooled at a rate according to the normal cooling rate after winding. After cooling, it was pickled, descaled, and cold-rolled to a thickness of 1.2 mm (rolling ratio 5
2%) and 2 at 655 ° C. in an atmosphere of 100% by volume of hydrogen gas.
Annealed for 0 hours and cold-rolled to a thickness of 1.0 mm (reduction ratio 1
6.7%).

【0037】[0037]

【表1】 [Table 1]

【0038】これらの鋼帯の板幅方向中央部から結晶組
織調査用の試験片を採取し、断面を研磨し、ナイタール
腐食液で腐食して腐食面を2000倍の倍率で拡大して
写真撮影し、セメンタイトの平均粒径と球状化率を測定
した。また、鋼帯の板幅中央部の圧延方向からJIS5
号引張試験片を採取し引張試験をおこない、強度−伸び
バランスを求めた。
Test pieces for crystallographic structure investigation were taken from the central portion in the plate width direction of these steel strips, the cross-sections were polished, corroded with a Nital corrosive solution, and the corroded surface was enlarged at a magnification of 2000 times and photographed. Then, the average particle size and spheroidization rate of cementite were measured. In addition, JIS5
A tensile test piece was sampled and subjected to a tensile test to determine the strength-elongation balance.

【0039】打抜き性は以下の方法で調査した。SKD
11(Hv900)製のクリアランスが板厚の0.5%
である金型を用いて、打抜き速度20mm/秒で、外径
10mmの円盤を打抜いた。得られた円盤の打抜き端面
全周を拡大鏡で50倍に拡大して切り口面の状況を観察
し、ダレの大きさdを測定し、板厚tに対する比率d/
tが0.1に満たない場合を良好(○)、0.1以上の
場合を不良(×)として評価した。破断面は、破断面が
認められない場合を良好(○)、多少とも認められる場
合を不良(×)として評価した。得られた評価結果は、
化学組成と合わせて表1に示した。
The punchability was investigated by the following method. SKD
11 (Hv900) clearance is 0.5% of plate thickness
Using the mold, a disc having an outer diameter of 10 mm was punched at a punching speed of 20 mm / sec. The entire circumference of the punched end surface of the obtained disk was magnified 50 times with a magnifying glass and the state of the cut surface was observed, the size d of the sag was measured, and the ratio d /
When t was less than 0.1, it was evaluated as good (◯), and when t was 0.1 or more, it was evaluated as bad (x). The fracture surface was evaluated as good (∘) when no fracture surface was observed, and as poor (x) when there was any fracture surface. The evaluation results obtained are
It is shown in Table 1 together with the chemical composition.

【0040】表1の結果からわかるように、本発明が規
定する範囲内の化学組成を有する鋼A〜Kは、いずれも
ダレがなく、切り口面には破断面がなく良好な製品が得
られた。これに対し、C含有量が低すぎた鋼LおよびM
n含有量が低すぎた鋼Nは、引張強さが低く、強度−伸
びバランスも低く、ダレが大きかった。C含有量が高す
ぎた鋼MおよびMn含有量が高すぎた鋼Oは引張強さが
高すぎたために破断面が発生した。鋼Pはsol.Al
含有量およびN含有量が低いためにセメンタイトが粗大
になり、全伸びが大きくなりすぎてダレが発生した。鋼
Qはsol.Al含有量およびN含有量が過度に高いた
めにセメンタイトの球状化が不足し、全伸びが小さいた
めに破断面が発生した。鋼Rはsol.Al/Nが高す
ぎたために、鋼Sは逆にsol.Al/Nが低すぎたた
めに、いずれも結晶組織が混粒組織になり、全伸びが不
均一になって破断面が発生した。
As can be seen from the results in Table 1, all of the steels A to K having the chemical composition within the range specified by the present invention have no sagging, and the cut surface has no fracture surface, and good products can be obtained. It was On the other hand, steels L and M whose C content was too low
Steel N having an excessively low n content had a low tensile strength, a low strength-elongation balance, and a large sag. Steel M with too high C content and steel O with too high Mn content had fracture surfaces because the tensile strength was too high. Steel P is sol. Al
Since the content and N content were low, the cementite became coarse, and the total elongation became too large, causing sagging. Steel Q is sol. The spheroidization of cementite was insufficient due to the excessively high Al content and N content, and the fracture surface occurred due to the small total elongation. Steel R is sol. On the contrary, the steel S was sol. Since Al / N was too low, the crystal structure became a mixed grain structure in all cases, and the total elongation became non-uniform and a fracture surface was generated.

【0041】鋼TはCa含有量が多すぎたために介在物
が多くなり破断面が発生した。
Steel T had too much Ca content, and therefore had many inclusions and fractured surfaces.

【0042】(実施例2)表2に示す、いずれも本発明
の規定する範囲内の化学組成を有する鋼3種類を真空溶
解し、鋳造し、鍛造して幅200mmの鋼片とた。
Example 2 Three kinds of steels shown in Table 2 each having a chemical composition within the range specified by the present invention were vacuum-melted, cast and forged to form a steel piece having a width of 200 mm.

【0043】[0043]

【表2】 [Table 2]

【0044】これらの鋼片を1200℃で1時間加熱
後、仕上温度850℃で熱間圧延し、種々の温度で巻取
った後、通常の巻取後の冷却速度に準じた速度で冷却し
た。これらの熱間圧延鋼帯を酸洗してた後、種々の圧下
率で1次冷延し、さらに中間焼鈍および2次冷延を施し
て厚さ1.0mmの冷間圧延鋼帯を得た。これらの冷間
圧延鋼帯のセメンタイトの平均粒径、球状化率、機械的
性質および打抜き性を実施例1に記載したのと同様の方
法により調査した。巻取温度、圧延条件、中間焼鈍条件
および性能評価結果をまとめて表3に示した。
After heating these steel slabs at 1200 ° C. for 1 hour, they were hot rolled at a finishing temperature of 850 ° C. and wound at various temperatures.
After that , it was cooled at a rate according to the normal cooling rate after winding. After these hot-rolled steel strips have been pickled, they are first cold-rolled at various reduction ratios, and then subjected to intermediate annealing and secondary cold-rolling to obtain 1.0-mm-thick cold-rolled steel strips. It was The average particle size, spheroidizing rate, mechanical properties and punchability of cementite of these cold rolled steel strips were investigated by the same method as described in Example 1. The winding temperature, rolling conditions, intermediate annealing conditions and performance evaluation results are summarized in Table 3.

【0045】[0045]

【表3】 [Table 3]

【0046】表3の結果からわかるように、セメンタイ
トの平均粒径と球状化率、および機械的性質が本発明の
規定する範囲内である試番21〜29では、いずれもダ
レおよび破断面が無く良好な製品が得られた。これに対
し、試番30〜32では巻取温度が低すぎて1次冷延が
困難であったので圧下率を低くせざるを得ず、所定の板
厚にするために2次冷延の圧下率を高くし過ぎたために
引張強さ(TS)が過大になり、あるいは全伸び(E
l)が低くなりすぎて強度−伸びバランス{TS×(1
00−El)}が高くなり、破断面が発生した。試番3
3〜35では巻取温度が高すぎたうえ1次冷延の圧下率
が高すぎたためにセメンタイトが粗大になり、さらに2
次冷延の圧下率が低すぎたために延性が過大になり、強
度−伸びバランスが低くなってダレが発生した。試番3
6〜38では巻取温度と中間焼鈍温度が高すぎたために
セメンタイトが粗大になり破断面が発生した。また、結
晶組織が混粒になったためにダレが大きくなった。
As can be seen from the results shown in Table 3, in the case of trial Nos. 21 to 29 in which the average particle size and spheroidizing rate of cementite and the mechanical properties are within the ranges specified by the present invention, sagging and fracture surface are all observed. A good product was obtained. On the other hand, in the trial Nos. 30 to 32, the coiling temperature was too low and the primary cold rolling was difficult. Therefore, the reduction ratio had to be lowered, and the secondary cold rolling was performed to obtain a predetermined plate thickness. The tensile strength (TS) becomes excessive because the rolling reduction is too high, or the total elongation (E
1) becomes too low and the strength-elongation balance {TS × (1
00-El)} became high, and a fracture surface occurred. Trial number 3
In Nos. 3 to 35, the coiling temperature was too high, and the reduction ratio of the primary cold rolling was too high, resulting in coarse cementite.
Since the reduction ratio of the next cold rolling was too low, the ductility became excessive, the balance between strength and elongation became low, and sagging occurred. Trial number 3
In Nos. 6 to 38, since the coiling temperature and the intermediate annealing temperature were too high, the cementite became coarse and a fracture surface was generated. In addition, since the crystal structure was a mixed grain, the sag increased.

【0047】試番39〜41では1次冷延の圧下率が低
すぎたために球状化が不十分になり、引張強さが高くな
りすぎて破断面が発生した。試番42〜44では中間焼
鈍温度が低すぎたために球状化が不足し、引張強さが高
くなりすぎたために破断面が発生した。
In Test Nos. 39 to 41, the reduction ratio of the primary cold rolling was too low, so that the spheroidization was insufficient and the tensile strength became too high, and a fracture surface was generated. In the trial Nos. 42 to 44, the intermediate annealing temperature was too low, so that spheroidization was insufficient, and the tensile strength was too high, so that a fracture surface was generated.

【0048】[0048]

【発明の効果】本発明の高炭素鋼帯は、打抜き加工に際
してダレが発生せず、破断面が無く滑らかな剪断面を有
する切り口面が得られる。従ってこれを熱処理すれば、
寸法精度がよく疲労強度の低下がない高強度かつ耐摩耗
性に優れた機械構造部品が得られる。また、本発明の製
造方法によれば、通常の製造設備を用いて本発明の鋼帯
を製造できるので、良質の製品を安価に供給することが
できる。
EFFECTS OF THE INVENTION The high carbon steel strip of the present invention does not cause sagging during punching, and has a cut surface having a smooth sheared surface with no fracture surface. Therefore, if this is heat treated,
It is possible to obtain a machine structural part having high dimensional accuracy and high strength and excellent wear resistance without deterioration in fatigue strength. Further, according to the manufacturing method of the present invention, the steel strip of the present invention can be manufactured using ordinary manufacturing equipment, so that a good quality product can be supplied at low cost.

【図面の簡単な説明】[Brief description of drawings]

【図1】打抜き加工の切り口面を示す概念図であり、図
1(a)は切り口面の正面図、図(b)はそのA−A断
面図である。
1A and 1B are conceptual views showing a cut surface of a punching process, FIG. 1A is a front view of the cut surface, and FIG. 1B is a sectional view taken along line AA.

【符号の説明】[Explanation of symbols]

1・・・ダレ、2・・・剪断面、3・・・破断面、4・
・・カエリ。
1 ... sagging, 2 ... sheared surface, 3 ... fracture surface, 4 ...
.. Flies.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 永井 秋男 和歌山県和歌山市湊1850番地住友金属工 業株式会社和歌山製鉄所内 (72)発明者 中川 浩行 大阪府大阪市中央区北浜4丁目5番33号 住友金属工業株式会社内 (56)参考文献 特開 平5−9588(JP,A) 特開 昭59−28527(JP,A) 特開 平9−157758(JP,A) 特開 平8−337843(JP,A) 特開 平8−176726(JP,A) 特開 平9−316595(JP,A) (58)調査した分野(Int.Cl.7,DB名) C22C 38/00 - 38/60 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Akio Nagai 1850 Minato, Wakayama, Wakayama Sumitomo Metal Industries, Ltd. Wakayama Works (72) Inventor Hiroyuki Nakagawa 4-533 Kitahama, Chuo-ku, Osaka-shi, Osaka Sumitomo Metal Industries, Ltd. (56) Reference JP-A-5-9588 (JP, A) JP-A-59-28527 (JP, A) JP-A-9-157758 (JP, A) JP-A-8-337843 (JP, A) JP-A-8-176726 (JP, A) JP-A-9-316595 (JP, A) (58) Fields investigated (Int.Cl. 7 , DB name) C22C 38/00-38 / 60

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】重量%でC:0.20〜0.80%、S
i:0.30%以下、Mn:0.60〜1.60%、s
ol.Al:0.010〜0.100%、N:0.00
20〜0.0100%、Ca:0〜0.0100%、残
部がFeおよび不可避的不純物からなり、かつ、so
l.Al/Nが5〜10の範囲にあるとともに、鋼中の
セメンタイトの球状化率が80%以上、平均粒径が0.
80μm以下であり、鋼の引張度さが600〜700N
/mm、引張強さ(N/mm)×{100−伸び
(%)}が50×10〜65×10の関係を満たす
高炭素冷延鋼帯。
1. By weight% , C: 0.20 to 0.80%, S
i: 0.30% or less, Mn: 0.60 to 1.60%, s
ol. Al: 0.010 to 0.100%, N: 0.00
20-0.0100%, Ca: 0-0.0100%, the balance consisting of Fe and unavoidable impurities, and so
l. Al / N is in the range of 5 to 10, the spheroidization rate of cementite in steel is 80% or more, and the average grain size is 0.
80 μm or less, the tensile strength of steel is 600 to 700 N
/ Mm 2 , high carbon cold-rolled steel strip satisfying the relation of tensile strength (N / mm 2 ) × {100-elongation (%)} of 50 × 10 3 to 65 × 10 3 .
【請求項2】請求項1に記載の化学組成を有する鋼を、
熱間圧延して500〜680℃で巻取り、酸洗した後、
圧下率10〜80%で1回目の冷間圧延をおこない、6
50〜725℃で中間焼鈍を施した後、圧下率5〜25
%で2回目の冷間圧延をおこない、その後熱処理を施す
ことなく製品とすることを特徴とする請求項1に記載の
高炭素冷延鋼帯の製造方法。
2. A steel having the chemical composition according to claim 1,
After hot rolling, winding at 500 to 680 ° C., pickling,
The first cold rolling was performed at a reduction rate of 10 to 80%, and 6
After performing intermediate annealing at 50 to 725 ° C, a reduction rate of 5 to 25
Not such to put a second cold rolling, the subsequent heat treatment is performed in%
Method for producing a high-carbon cold-rolled steel strip according to claim 1, characterized in that the product without.
JP06668098A 1998-03-17 1998-03-17 High carbon cold rolled steel strip and method for producing the same Expired - Fee Related JP3367414B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP06668098A JP3367414B2 (en) 1998-03-17 1998-03-17 High carbon cold rolled steel strip and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP06668098A JP3367414B2 (en) 1998-03-17 1998-03-17 High carbon cold rolled steel strip and method for producing the same

Publications (2)

Publication Number Publication Date
JPH11264049A JPH11264049A (en) 1999-09-28
JP3367414B2 true JP3367414B2 (en) 2003-01-14

Family

ID=13322896

Family Applications (1)

Application Number Title Priority Date Filing Date
JP06668098A Expired - Fee Related JP3367414B2 (en) 1998-03-17 1998-03-17 High carbon cold rolled steel strip and method for producing the same

Country Status (1)

Country Link
JP (1) JP3367414B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002060888A (en) * 2000-08-17 2002-02-28 Nisshin Steel Co Ltd Steel sheet for blanking
US6673171B2 (en) 2000-09-01 2004-01-06 United States Steel Corporation Medium carbon steel sheet and strip having enhanced uniform elongation and method for production thereof
JP5173290B2 (en) * 2007-07-09 2013-04-03 Ntn株式会社 Chain tensioner
JP5280324B2 (en) * 2009-09-08 2013-09-04 日新製鋼株式会社 High carbon steel sheet for precision punching
MX2020008776A (en) 2018-02-23 2020-10-01 Jfe Steel Corp High-carbon cold-rolled steel sheet and production method therefor.
CN114055082B (en) * 2021-11-15 2024-02-06 江苏九天光电科技有限公司 Production method of high-grade special steel precision steel strip for crochet hook

Also Published As

Publication number Publication date
JPH11264049A (en) 1999-09-28

Similar Documents

Publication Publication Date Title
KR20050075019A (en) Steel excellent in machinability and method for production thereof
JP2007270329A (en) Manufacturing method of steel plate having excellent fine blanking workability
JP3848444B2 (en) Medium and high carbon steel plates with excellent local ductility and hardenability
JP4465057B2 (en) High carbon steel sheet for precision punching
JP6927427B2 (en) High carbon hot-rolled steel sheet and its manufacturing method
JP2002235151A (en) High strength heat treated stel wire for spring
JP2013057114A (en) Medium carbon steel plate having excellent workability and hardenability and method for producing the same
JP2009299189A (en) High carbon steel sheet for precision blanking
JP3125978B2 (en) Method for producing high carbon steel strip with excellent workability
JP3367414B2 (en) High carbon cold rolled steel strip and method for producing the same
JP6977880B2 (en) High carbon hot-rolled steel sheet and its manufacturing method
JP3474545B2 (en) Machine parts
JP3534083B2 (en) Martensitic stainless steel sheet and method for producing the same
JP2007031761A (en) Method for producing high-carbon cold-rolled steel sheet excellent in punching-workability and high-carbon cold-rolled steel sheet
JP4377973B2 (en) Steel sheet with excellent local ductility and heat treatment
JP3921040B2 (en) Method for producing high carbon steel sheet with excellent workability
JP3909939B2 (en) Manufacturing method for medium and high carbon steel sheets with excellent stretch flangeability
JP4161090B2 (en) High carbon steel plate with excellent punchability
CN111742076B (en) High carbon cold rolled steel sheet and method for manufacturing same
JP3819255B2 (en) Method for producing martensitic stainless steel strip with excellent punchability
JP2021116477A (en) High carbon steel sheet
JP2002155339A (en) Medium and high carbon steel having excellent deep drawability
TWI794118B (en) Steel part and manufacturing method of steel part
JP2000034542A (en) High carbon steel strip excellent in cold workability and fatigue life after heat treatment, and its production
WO2022153790A1 (en) Martensite-based stainless steel material and method for producing same

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071108

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081108

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091108

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091108

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101108

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111108

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees