JP2003292373A - Dielectric porcelain composition - Google Patents

Dielectric porcelain composition

Info

Publication number
JP2003292373A
JP2003292373A JP2002098471A JP2002098471A JP2003292373A JP 2003292373 A JP2003292373 A JP 2003292373A JP 2002098471 A JP2002098471 A JP 2002098471A JP 2002098471 A JP2002098471 A JP 2002098471A JP 2003292373 A JP2003292373 A JP 2003292373A
Authority
JP
Japan
Prior art keywords
small
composition
dielectric
becomes
resonance frequency
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002098471A
Other languages
Japanese (ja)
Inventor
Kiyohisa Yamauchi
清久 山内
Hisao Sato
久夫 佐藤
Emi Kunii
恵美 国井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
FDK Corp
Original Assignee
FDK Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by FDK Corp filed Critical FDK Corp
Priority to JP2002098471A priority Critical patent/JP2003292373A/en
Publication of JP2003292373A publication Critical patent/JP2003292373A/en
Pending legal-status Critical Current

Links

Landscapes

  • Compositions Of Oxide Ceramics (AREA)
  • Inorganic Insulating Materials (AREA)
  • Control Of Motors That Do Not Use Commutators (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To obtain a dielectric porcelain composition for a high-frequency, which constitutes a resonator, a dielectric substrate, or the like, used in a microwave region, and which has a high specific dielectric constant preferable from the view point of environmental protection and is sintered at a relatively low temperature. <P>SOLUTION: The main component of the composition is expressed by the formula: xBaO-y[(1-a)Nd<SB>2</SB>O<SB>3</SB>.aSm<SB>2</SB>O<SB>3</SB>]-zTiO<SB>2</SB>[wherein 14<x<18, 11<y<15, 67<z<75, 0.07<a<0.6 (preferably 0.4<a<0.6), and x+y+z=100% (molar ratio)]. Bi<SB>2</SB>O<SB>3</SB>of 10-20% (preferably 12-19%), Al<SB>2</SB>O<SB>3</SB>of 0.1-1.5% (preferably 0.4-1%), and MnO of 0.01-1.5% (preferably 0.1-0.2%), based on the main component, are contained as auxiliary components. Thus, the dielectric porcelain composition having a high quality coefficient, a low absolute value of the temperature coefficient of resonance frequency, and stable quality is obtained. <P>COPYRIGHT: (C)2004,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、例えばマイクロ波
領域において使用される共振器、誘電体基板などを構成
する高周波用の誘電体磁器組成物に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a high frequency dielectric porcelain composition which constitutes, for example, a resonator or a dielectric substrate used in the microwave region.

【0002】[0002]

【従来の技術】近年、自動車電話、携帯電話、コードレ
ス電話などの無線通信機に使用されるアンテナ、電圧制
御発信器などに用いられる共振器、あるいはケーブルテ
レビ用チューナに使用されるフィルタなどに高周波用誘
電体磁器が多く用いられている。このような共振器など
において高誘電率材料を使用することにより、高周波の
波長を真空中のεr-1/2の長さに短縮し、かかる周波数
における1波長、1/2波長あるいは1/4波長のマイ
クロ波を高周波誘電体磁器の中に閉じ込め、所定の作用
効果が得られるように小型に構成したものが一般的に知
られている。このような高周波用誘電体磁器に要求され
る特性としては、(1)誘電体中では電磁波の波長がε
-1/2に短縮され、同じ共振周波数ならば誘電率が大き
いほど小型化できるため、可能な限り比誘電率が大きい
こと、(2)高周波帯域での品質係数が高いこと、
(3)共振周波数の温度変化が少ないことの3つが挙げ
られる。
2. Description of the Related Art In recent years, high frequencies have been used in antennas used in wireless communication devices such as car phones, mobile phones, cordless phones, resonators used in voltage controlled oscillators, filters used in cable TV tuners, etc. Dielectric porcelain for use is often used. By using a high dielectric constant material in such a resonator or the like, the high frequency wavelength is shortened to a length of εr −1/2 in a vacuum, and one wavelength, 1/2 wavelength or 1/4 wavelength at that frequency is reduced. It is generally known that a microwave of a wavelength is confined in a high-frequency dielectric ceramic and is miniaturized so as to obtain a predetermined effect. The characteristics required for such a high frequency dielectric porcelain include (1) the wavelength of the electromagnetic wave is ε in the dielectric.
Since the size is reduced to r -1/2 and the same resonance frequency makes the size smaller as the permittivity increases, the relative permittivity is as high as possible, and (2) the quality factor in the high frequency band is high,
(3) There are three reasons that the temperature change of the resonance frequency is small.

【0003】そして、これらの条件を満たすものとし
て、特開昭62−72558号公報に開示されているよ
うなBaO-Nd2 3 -TiO2 -Bi2 3 系の誘電
体磁器組成物や、特開平6−333425号公報に開示
されているようなPbO-Re2 3 -TiO2 -Bi2
3 (Reは希土類金属)系の誘電体磁器組成物が提案さ
れている。
And it is assumed that these conditions are satisfied.
Japanese Patent Laid-Open No. 62-72558.
Una BaO-Nd2O3-TiO2-Bi2O3System dielectric
Disclosed in body porcelain composition and JP-A-6-333425
Like PbO-Re2 O3-TiO2-Bi2O
3A dielectric ceramic composition based on (Re is a rare earth metal) is proposed.
Has been.

【0004】[0004]

【発明が解決しようとする課題】しかし、これでは次の
ような不都合があった。
However, this has the following disadvantages.

【0005】まず、前者(BaO-Nd2 3 -TiO2
-Bi2 3 系の誘電体磁器組成物)においては、比誘
電率が90前後であり、高周波モジュールをさらに小型
化するためには誘電率が小さい。また、後者(PbO-
Re2 3 -TiO2 -Bi23 系の誘電体磁器組成
物)では、誘電率が100以上の組成もあるが、近年、
環境保護の観点からPbの使用を廃止する動きが高まっ
ている点を考慮すると、必ずしも適当な組成とは言い難
い。さらに、前後者とも、ほとんどの場合、焼成温度が
1300〜1400℃と、かなり高温である。
First, the former (BaO-Nd 2 O 3 -TiO 2
In (-Bi 2 O 3 -based dielectric ceramic composition), the relative dielectric constant is around 90, and the dielectric constant is small in order to further downsize the high frequency module. The latter (PbO-
Re 2 O 3 —TiO 2 —Bi 2 O 3 -based dielectric ceramic composition) has a composition having a dielectric constant of 100 or more, but in recent years,
Considering the fact that the use of Pb is abolished from the viewpoint of environmental protection, it cannot be said that the composition is appropriate. Furthermore, in both cases, the firing temperature is 1300 to 1400 ° C., which is a fairly high temperature in most cases.

【0006】本発明は、このような事情に鑑み、比誘電
率が高くて環境保護の点でも好ましく、比較的低温で焼
結し、しかも品質係数が高く、共振周波数温度係数の絶
対値が低く、品質が安定した誘電体磁器組成物を提供す
ることを目的とする。
In view of such circumstances, the present invention has a high relative permittivity and is also preferable from the viewpoint of environmental protection, is sintered at a relatively low temperature, has a high quality factor, and has a low absolute value of the resonance frequency temperature coefficient. An object of the present invention is to provide a dielectric ceramic composition with stable quality.

【0007】[0007]

【課題を解決するための手段】本発明は、組成式xBa
O-y((1−a)Nd2 3 ・aSm2 3 )-zTi
2 (ここで、14<x<18、11<y<15、67
<z<75、0.07<a<0.6(好ましくは、0.
4<a<0.6)、x+y+z=100%(モル比))
で表される主成分に対して、副成分としてBi2 3
10〜20%(好ましくは、12〜19%)、Al2
3 を0.1〜1.5%(好ましくは、0.4〜1%)、
MnOを0.01〜1.5%(好ましくは、0.1〜
0.2%)の割合で含有させて構成される。
The present invention provides a compositional formula xBa.
O-y ((1-a) Nd 2 O 3 · aSm 2 O 3 ) -zTi
O 2 (where 14 <x <18, 11 <y <15, 67
<Z <75, 0.07 <a <0.6 (preferably 0.
4 <a <0.6), x + y + z = 100% (molar ratio))
In respect to the main component expressed, the Bi 2 O 3 as an auxiliary component 10-20% (preferably, 12~19%), Al 2 O
3 to 0.1 to 1.5% (preferably 0.4 to 1%),
0.01 to 1.5% of MnO (preferably 0.1 to 1.5%)
0.2%).

【0008】ここで、主成分の組成限定理由は次のとお
りである。すなわち、xが大きすぎると、品質係数Qが
小さくなり、また共振周波数温度係数τfが−側に大き
くなる。逆に、xが小さすぎると、共振周波数温度係数
τfが+側に大きくなりすぎる。また、yが大きすぎる
と、比誘電率εrが小さくなり、yが小さすぎると、比
誘電率εrおよび品質係数Qが小さくなる。また、zが
大きすぎると、共振周波数温度係数τfが大きなり、z
が小さすぎると、品質係数Qが小さくなる。また、aが
小さすぎると、共振周波数温度係数τfが大きくなりす
ぎ、aが小さすぎると、比誘電率εrが小さくなりすぎ
る。
Here, the reasons for limiting the composition of the main component are as follows. That is, if x is too large, the quality coefficient Q becomes small, and the resonance frequency temperature coefficient τf becomes large in the − side. On the other hand, if x is too small, the resonance frequency temperature coefficient τf becomes too large on the + side. Further, if y is too large, the relative permittivity εr becomes small, and if y is too small, the relative permittivity εr and the quality factor Q become small. If z is too large, the temperature coefficient of resonance frequency τf becomes large, and z
Is too small, the quality factor Q becomes small. If a is too small, the resonance frequency temperature coefficient τf becomes too large, and if a is too small, the relative dielectric constant εr becomes too small.

【0009】一方、副成分の組成限定理由は次のとおり
である。すなわち、酸化ビスマスの添加量が多すぎる
と、品質係数Qが小さくなり、酸化ビスマスの添加量が
少なすぎると、誘電率が小さくなりすぎる。また、酸化
アルミニウムの添加量が多すぎると、比誘電率εrが小
さくなり、酸化アルミニウムの添加量が少なすぎると、
共振周波数温度係数τfが大きくなりすぎる。また、酸
化マンガンの添加量が多すぎると、比誘電率εrおよび
品質係数Qが小さくなり、酸化マンガンの添加量が少な
すぎると、焼結性が悪くなり、かつ誘電特性が安定しな
い。
On the other hand, the reasons for limiting the composition of the subcomponents are as follows. That is, if the amount of bismuth oxide added is too large, the quality factor Q becomes small, and if the amount of bismuth oxide added is too small, the dielectric constant becomes too small. Further, if the added amount of aluminum oxide is too large, the relative dielectric constant εr becomes small, and if the added amount of aluminum oxide is too small,
The resonance frequency temperature coefficient τf becomes too large. If the amount of manganese oxide added is too large, the relative permittivity εr and the quality factor Q are small, and if the amount of manganese oxide added is too small, the sinterability is poor and the dielectric properties are not stable.

【0010】なお、本明細書における単位「%」は、特
に断らない限り質量百分率を表す。
The unit "%" in the present specification represents a mass percentage unless otherwise specified.

【0011】[0011]

【発明の実施の形態】以下、本発明の実施形態について
説明する。
BEST MODE FOR CARRYING OUT THE INVENTION Embodiments of the present invention will be described below.

【0012】本発明に係る誘電体磁器組成物は、酸化バ
リウム、酸化チタン、酸化ネオジウムおよび酸化サマリ
ウムを主成分として含み、これら酸化バリウム、酸化チ
タン、酸化ネオジウムおよび酸化サマリウムをそれぞれ
BaO、TiO2 、Nd2 3 、Sm2 3 に換算し、
主成分を組成式xBaO-y((1−a)Nd2 3・a
Sm2 3 )-zTiO2 で表したとき、x+y+z=
100%(モル比)として、それぞれの含有量が、14
<x<18、11<y<15、67<z<75、0.0
7<a<0.6(好ましくは、0.4<a<0.6)と
なっているものである。
The dielectric ceramic composition according to the present invention contains a barium oxide.
Lithium, titanium oxide, neodymium oxide and summary
Contains barium as a main component, and these barium oxides and titanium oxides
Tan, neodymium oxide and samarium oxide respectively
BaO, TiO2, Nd2O 3, Sm2O3Converted to
The main component is a composition formula xBaO-y ((1-a) Nd2O3・ A
Sm2O3) -ZTiO2When expressed by, x + y + z =
Assuming 100% (molar ratio), each content is 14
<X <18, 11 <y <15, 67 <z <75, 0.0
7 <a <0.6 (preferably 0.4 <a <0.6)
It has become.

【0013】そして、この主成分に対し、酸化ビスマ
ス、酸化アルミニウム、酸化マンガンを添加する。その
添加量としては、酸化ビスマス、酸化アルミニウムおよ
び酸化マンガンをそれぞれBi2 3 、Al2 3 およ
びMnOに換算したとき、主成分に対し、Bi2 3
10〜20%(好ましくは、12〜19%)、Al2
3 が0.1〜1.5%(好ましくは、0.4〜1%)、
MnOが0.01〜1.5%(好ましくは、0.1〜
0.2%)である。
Then, bismuth oxide is added to the main component.
Sodium, aluminum oxide and manganese oxide are added. That
The added amount is bismuth oxide, aluminum oxide and
Bi and manganese oxide2O3, Al2O3And
When converted to MnO and Bi2O3But
10-20% (preferably 12-19%), Al2O
3Is 0.1 to 1.5% (preferably 0.4 to 1%),
MnO is 0.01 to 1.5% (preferably 0.1 to 1.5%).
0.2%).

【0014】本発明に係る誘電体磁器組成物は以上のよ
うな構成を有するので、製造時の焼成温度が1250〜
1290℃と比較的低い温度で、比誘電率εrが85以
上、1GHzにおける品質係数Qが2500以上、さら
に−30〜80℃における共振周波数温度係数τfが絶
対値で20ppm以下で、比較的低温で、特性の安定な
誘電体磁器組成物が得られる。
Since the dielectric ceramic composition according to the present invention has the above-mentioned constitution, the firing temperature during production is 1250 to 1250.
At a relatively low temperature of 1290 ° C., the relative dielectric constant εr is 85 or more, the quality factor Q at 1 GHz is 2500 or more, and the resonance frequency temperature coefficient τf at −30 to 80 ° C. is 20 ppm or less in absolute value. A dielectric ceramic composition having stable characteristics can be obtained.

【0015】本発明の誘電体磁器組成物は、このような
組成物に混合、仮焼、粉砕、混練、成形、焼成などの処
理を施すことにより得られる。
The dielectric ceramic composition of the present invention can be obtained by subjecting such a composition to treatments such as mixing, calcination, pulverization, kneading, molding and firing.

【0016】ここで用いる原料に特に制限はないが、通
常は前記各酸化物を構成する金属成分を含む原料粉末も
混合していることが好ましい。この際原料粉末として
は、酸化物あるいは後の焼成により酸化物となるもので
ある。すなわち、通常前記の各酸化物を構成する元素を
含む酸化物、炭酸塩、水酸化物などから選択する。これ
らの原料粉末の平均粒径は、5μm以下(好ましくは、
1μm以下)である。
The raw material used here is not particularly limited, but it is usually preferable to also mix the raw material powder containing the metal component constituting each oxide. At this time, the raw material powder is an oxide or an oxide which is formed by subsequent firing. That is, it is usually selected from oxides, carbonates, hydroxides, etc., which contain the elements composing each of the above oxides. The average particle size of these raw material powders is 5 μm or less (preferably,
1 μm or less).

【0017】このような原料粉末を最終組成が前記組成
になるように秤量して混合するが、混合する方法や時間
などに特に制限はなく、成分が十分に分散する方法およ
び時間を選択する。
Such raw material powders are weighed and mixed so that the final composition becomes the above composition, but the mixing method and time are not particularly limited, and the method and time for sufficiently dispersing the components are selected.

【0018】こうして得られた混合物は、適当な方法で
脱水、乾燥などを行った後、仮焼を行う。さらに仮焼に
より得られた仮焼物は、平均粒径0.5〜3μm程度に
粉砕する。このとき粉砕方法には特に制限はないが、例
えば湿式粉砕を用いるとよい。
The mixture thus obtained is dehydrated and dried by an appropriate method and then calcined. Further, the calcined product obtained by calcination is pulverized to an average particle size of about 0.5 to 3 μm. At this time, the pulverization method is not particularly limited, but wet pulverization may be used, for example.

【0019】粉砕後の粉末に、粉末100重量部に対し
て、1〜4重量部程度のバインダを加え、混合した後、
加圧成形を行う。バインダとしてはポリビニルアルコー
ルなどが一般的に用いられる。また、加圧成形は、例え
ば適当なサイズの金型にバインダなどを混合した前記粉
末を充填し、成形圧1〜5t/cm2 程度で行う。
About 1 to 4 parts by weight of a binder is added to 100 parts by weight of the powder after mixing and mixed,
Perform pressure molding. Polyvinyl alcohol or the like is generally used as the binder. Further, the pressure molding is performed, for example, by filling the powder obtained by mixing a binder or the like in a mold of an appropriate size and molding pressure of about 1 to 5 t / cm 2 .

【0020】焼成は、昇温速度50〜300℃/h程
度、降温速度50〜300℃/h程度で1〜5時間程
度、大気中などの酸素雰囲気下で行えばよい。
The firing may be carried out at a rate of temperature increase of about 50 to 300 ° C./h and a rate of temperature decrease of about 50 to 300 ° C./h for about 1 to 5 hours in an oxygen atmosphere such as the atmosphere.

【0021】このような本発明の誘電体磁器組成物は、
100MHz〜3GHz程度の周波数帯域で用いられ
る。代表的な用途例としては、全地球測位システム(G
PS)用アンテナ、電圧制御発信器などに使用される共
振器の材料を挙げることができる。さらに、マイクロ波
集積回路基板、高周波用コンデンサ材料としても使用で
きる。
Such a dielectric ceramic composition of the present invention is
It is used in the frequency band of about 100 MHz to 3 GHz. A typical application example is the Global Positioning System (G
The material of the resonator used for a PS) antenna, a voltage control oscillator, etc. can be mentioned. Further, it can be used as a microwave integrated circuit board and a high frequency capacitor material.

【0022】[0022]

【実施例】以下、本発明の実施例について説明する。EXAMPLES Examples of the present invention will be described below.

【0023】出発原料として、BaCO3 、TiO2
Nd2 3 、Sm2 3 、Bi2 3 、Al2 3 、M
nOの粉末を用い、焼結後の最終組成が表1に示す試料
番号の組成になるように各成分粉末を秤量し、ボールミ
ル中でジルコニア球と共に、溶媒として水を用いて20
時間だけ湿式混合した後、脱水、乾燥して混合物を得
た。
As the starting material, BaCO3, TiO2,
Nd2O3, Sm2O3, Bi2O 3, Al2O3, M
Sample whose final composition after sintering is shown in Table 1 using nO powder
Weigh each component powder to make the composition of the number, and
With zirconia spheres in a solvent
After wet mixing for a period of time, dehydration and drying are performed to obtain a mixture.
It was

【表1】 [Table 1]

【0024】この混合物を1000〜1200℃で2時
間だけ仮焼した後、得られた仮焼物をボールミル中でジ
ルコニア球と共に、溶媒として水を用いて湿式粉砕を行
った。
This mixture was calcined at 1000 to 1200 ° C. for 2 hours, and the obtained calcined product was wet-ground in a ball mill together with zirconia balls using water as a solvent.

【0025】こうして得られた粉砕物にバインダとして
ポリビニルアルコールを加えて混合・造粒し、直径1
3.8mm、高さ6mmの円柱状に加圧成形した後、1
240〜1290℃で3時間だけ焼成して誘電体磁器を
得た。
Polyvinyl alcohol was added as a binder to the pulverized product thus obtained, and the mixture was mixed and granulated to give a diameter of 1
After pressure molding into a cylindrical shape of 3.8 mm and a height of 6 mm, 1
A dielectric ceramic was obtained by firing at 240 to 1290 ° C. for 3 hours only.

【0026】こうして得られた誘電体磁器を直径11.
5mm、高さ5mmに加工してそれぞれ試料番号1〜1
7とし、2枚の平行な金属の間に前記円柱状の各誘電体
磁器試料を挟んで共振器を構成し、下記に示す方法によ
り諸特性を測定した。その結果を表1に示す。
The dielectric ceramic thus obtained has a diameter of 11.
Processed to 5 mm and 5 mm in height, and sample numbers 1 to 1 respectively
7, each of the cylindrical dielectric ceramic samples was sandwiched between two parallel metals to form a resonator, and various characteristics were measured by the following methods. The results are shown in Table 1.

【0027】<誘電特性測定方法>比誘電率εrおよび
品質係数Qは誘電体共振器法により測定した。測定器は
アジレント社製ネットワークアナラザ:8753ESを使用し
た。
<Method of Measuring Dielectric Properties> The relative permittivity εr and the quality factor Q were measured by the dielectric resonator method. As the measuring instrument, a network analyzer made by Agilent: 8753ES was used.

【0028】<共振周波数温度係数τfの測定方法>測
定温度−30〜80℃における共振周波数f0 の変化を
誘電体共振器法により測定し、数1に示す計算式よって
共振周波数温度係数τfを算出した。
<Measurement Method of Resonance Frequency Temperature Coefficient τf> The change of the resonance frequency f0 at the measurement temperature of −30 to 80 ° C. is measured by the dielectric resonator method, and the resonance frequency temperature coefficient τf is calculated by the formula shown in Formula 1. did.

【数1】 [Equation 1]

【0029】表1中のQは、共振周波数f0 と品質係数
Qとの間の関係式f0 ×Q=一定の関係を用いて1GH
zでの値に換算して示した。
Q in Table 1 is 1 GH using a relational expression f 0 × Q = constant relation between the resonance frequency f 0 and the quality factor Q.
The values are shown in terms of z.

【0030】誘電特性の測定結果は表1の実施例に示す
とおりであった。なお、表1中で組成は、主成分の組成
式xBaO-y((1−a)Nd2 3 ・aSm
2 3 )-zTiO2 で表したとき、x+y+z=10
0%(モル比)、0<a<1とし、主成分に対し、副成
分として、Bi2 3 、Al2 3 、MnOをそれぞれ
質量百分率(%)で表した。
The measurement results of the dielectric properties are shown in the examples of Table 1. In Table 1, the composition is represented by the composition formula of the main component xBaO-y ((1-a) Nd 2 O 3 · aSm.
2 O 3 ) -zTiO 2 represents x + y + z = 10
0% (molar ratio), 0 to <a <1 and, with respect to the main component, as a subcomponent, expressed Bi 2 O 3, Al 2 O 3, MnO and each mass percentage (%).

【0031】ここで本発明の組成限定理由について具体
的に説明する。xが大きすぎると、比較例1に示すとお
り、品質係数Qが小さくなり、また共振周波数温度係数
τfが−側に大きくなる。逆に、xが小さすぎると、比
較例2に示すように、共振周波数温度係数τfが+側に
大きくなりすぎる。また、yが大きすぎると、比較例
3、4、5に示すように、比誘電率εrが小さくなり、
かつ1300℃と焼成温度が上昇する。yが小さすぎる
と、比較例6に示すように、比誘電率εr、品質係数Q
ともに小さくなる。また、aが小さすぎると、比較例7
に示すように、共振周波数温度係数τfが大きくなりす
ぎ、aが小さすぎると、比誘電率εrが小さくなりすぎ
る。
Here, the reason for limiting the composition of the present invention will be specifically described. When x is too large, the quality coefficient Q becomes small and the resonance frequency temperature coefficient τf becomes large toward the − side, as shown in Comparative Example 1. On the other hand, if x is too small, the resonance frequency temperature coefficient τf becomes too large on the + side, as shown in Comparative Example 2. Further, if y is too large, the relative permittivity εr becomes small as shown in Comparative Examples 3, 4, and 5,
And the firing temperature rises to 1300 ° C. If y is too small, as shown in Comparative Example 6, the relative permittivity εr and the quality factor Q
Both become smaller. Further, when a is too small, Comparative Example 7
As shown in (3), if the resonance frequency temperature coefficient τf becomes too large and a becomes too small, the relative dielectric constant εr becomes too small.

【0032】他方、酸化ビスマスの添加量が多すぎる
と、比較例8、9に示すとおり、品質係数Qが小さくな
り、酸化ビスマスの添加量が少なすぎると、誘電率が小
さくなりすぎる。また、酸化アルミニウムの添加量が多
すぎると、比較例10に示すとおり、比誘電率εrが小
さくなり、酸化アルミニウムの添加量が少なすぎると、
比較例11に示すとおり、共振周波数温度係数τfが大
きくなりすぎる。さらに、酸化マンガンの添加量が多す
ぎると、比較例12に示すとおり、比誘電率εrおよび
品質係数Qが小さくなり、酸化マンガンの添加量が少な
すぎると、比較例13に示すとおり、焼結性が悪くな
り、焼成温度が上がり、かつ誘電特性が安定しない。
On the other hand, if the amount of bismuth oxide added is too large, the quality factor Q becomes small as shown in Comparative Examples 8 and 9, and if the amount of bismuth oxide added is too small, the dielectric constant becomes too small. Further, when the amount of aluminum oxide added is too large, the relative dielectric constant εr becomes small as shown in Comparative Example 10, and when the amount of aluminum oxide added is too small,
As shown in Comparative Example 11, the temperature coefficient τf of the resonance frequency becomes too large. Further, if the addition amount of manganese oxide is too large, as shown in Comparative Example 12, the relative dielectric constant εr and the quality factor Q are small, and if the addition amount of manganese oxide is too small, as shown in Comparative Example 13, sintering is performed. Properties deteriorate, the firing temperature rises, and the dielectric properties are not stable.

【0033】[0033]

【発明の効果】以上説明したように、本発明によれば、
酸化バリウム、酸化チタン、酸化ネオジウム、酸化サマ
リウムを主成分として用い、これに酸化ビスマス、酸化
アルミニウム、酸化マンガンを添加して構成したので、
比誘電率が高くて環境保護の点でも好ましく、比較的低
温で焼結し、しかも品質係数が高く、共振周波数温度係
数τfの絶対値が低く、品質が安定した誘電体磁器組成
物を提供することが可能となり、100MHz〜3GH
z程度で使用される誘電体磁器材料として特に好適であ
る。
As described above, according to the present invention,
Since barium oxide, titanium oxide, neodymium oxide, and samarium oxide were used as main components, and bismuth oxide, aluminum oxide, and manganese oxide were added to the composition,
Provided is a dielectric ceramic composition which has a high relative dielectric constant and is preferable from the viewpoint of environmental protection, is sintered at a relatively low temperature, has a high quality coefficient, has a low absolute value of the resonance frequency temperature coefficient τf, and has stable quality. It becomes possible, and 100MHz-3GH
It is particularly suitable as a dielectric ceramic material used at about z.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 国井 恵美 東京都港区新橋5丁目36番11号 エフ・デ ィー・ケイ株式会社内 Fターム(参考) 4G031 AA06 AA07 AA11 AA19 AA29 AA35 BA09 GA02 5G303 AA02 AB06 AB11 AB15 BA12 CA01 CB01 CB03 CB05 CB22 CB35 CB41 5J006 HC07    ─────────────────────────────────────────────────── ─── Continued front page    (72) Inventor Emi Kunii             F-de, 5-36-1 Shimbashi, Minato-ku, Tokyo             K.K Co., Ltd. F-term (reference) 4G031 AA06 AA07 AA11 AA19 AA29                       AA35 BA09 GA02                 5G303 AA02 AB06 AB11 AB15 BA12                       CA01 CB01 CB03 CB05 CB22                       CB35 CB41                 5J006 HC07

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 組成式xBaO-y((1−a)Nd2
3 ・aSm2 3 )-zTiO2 (ここで、14<x
<18、11<y<15、67<z<75、0.07<
a<0.6、x+y+z=100%(モル比))で表さ
れる主成分に対して、副成分としてBi2 3 を10〜
20%、Al2 3 を0.1〜1.5%、MnOを0.
01〜1.5%の割合で含有させたことを特徴とする誘
電体磁器組成物。
1. A composition formula xBaO-y ((1-a) Nd 2
O 3 · aSm 2 O 3 ) -zTiO 2 (where, 14 <x
<18, 11 <y <15, 67 <z <75, 0.07 <
a <0.6, x + y + z = 100% (molar ratio)) with respect to the main component represented by Bi 2 O 3 as an auxiliary component
20%, Al 2 O 3 0.1-1.5%, MnO 0.
A dielectric ceramic composition characterized by being contained in a proportion of 01 to 1.5%.
【請求項2】 組成式xBaO-y((1−a)Nd2
3 ・aSm2 3 )-zTiO2 (ここで、14<x
<18、11<y<15、67<z<75、0.4<a
<0.6、x+y+z=100%(モル比))で表され
る主成分に対して、副成分としてBi2 3 を12〜1
9%、Al2 3 を0.4〜1%、MnOを0.1〜
0.2%の割合で含有させたことを特徴とする誘電体磁
器組成物。
2. The composition formula xBaO-y ((1-a) Nd 2
O 3 · aSm 2 O 3 ) -zTiO 2 (where, 14 <x
<18, 11 <y <15, 67 <z <75, 0.4 <a
<0.6, x + y + z = 100% (molar ratio)) to the main component represented by Bi 2 O 3 as a sub-component of 12 to 1
9%, Al 2 O 3 0.4-1%, MnO 0.1-
A dielectric ceramic composition characterized by being contained in a proportion of 0.2%.
JP2002098471A 2002-04-01 2002-04-01 Dielectric porcelain composition Pending JP2003292373A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002098471A JP2003292373A (en) 2002-04-01 2002-04-01 Dielectric porcelain composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002098471A JP2003292373A (en) 2002-04-01 2002-04-01 Dielectric porcelain composition

Publications (1)

Publication Number Publication Date
JP2003292373A true JP2003292373A (en) 2003-10-15

Family

ID=29240449

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002098471A Pending JP2003292373A (en) 2002-04-01 2002-04-01 Dielectric porcelain composition

Country Status (1)

Country Link
JP (1) JP2003292373A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20160046127A (en) * 2014-10-20 2016-04-28 경기대학교 산학협력단 Dielectric ceramic compositions for high frequency and the manufacturing method of the same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20160046127A (en) * 2014-10-20 2016-04-28 경기대학교 산학협력단 Dielectric ceramic compositions for high frequency and the manufacturing method of the same
KR101668253B1 (en) * 2014-10-20 2016-10-21 경기대학교 산학협력단 Dielectric ceramic compositions for high frequency and the manufacturing method of the same

Similar Documents

Publication Publication Date Title
JP2002080273A (en) Porcelain for high frequency wave, dielectric antenna, supporting base, dielectric resonator, dielrctric filter, dielectric duplexer and communication equipment device
JPH04285046A (en) Dielectric porcelain composition
US5846892A (en) Ceramic dielectrics and methods for forming the same
JP2003292373A (en) Dielectric porcelain composition
JP5247561B2 (en) Dielectric ceramics and dielectric resonator
JP4765367B2 (en) Dielectric porcelain composition
JPH0717444B2 (en) Dielectric porcelain composition
JPH1171171A (en) Dielectric ceramic composition and dielectric resonator produced by using the composition
JP2977707B2 (en) High frequency dielectric ceramic composition
JP2003146748A (en) Dielectric ceramic composition
JP3330024B2 (en) High frequency dielectric ceramic composition
JP2004143033A (en) Dielectric ceramic composition for high-frequency, dielectric resonator, dielectric filter, dielectric duplexer and communication apparatus
JPH06309926A (en) Dielectric ceramic composition
JPH0520925A (en) Dielectric porcelain composition
JPH0729415A (en) Dielectric porcelain serving also as antenna
JP2000203934A (en) Dielectric porcelain composition for high frequency and dielectric resonator
JP4552369B2 (en) Method for manufacturing microwave dielectric material
JP3098763B2 (en) Dielectric resonator
JPH06325620A (en) Dielectric ceramic composition
JPH0971457A (en) Dielectric porcelain composition for high-frequency wave
JPH06275126A (en) Dielectric ceramic composition
KR100234019B1 (en) Dielectric ceramic compositions
JPH06239661A (en) Dielectric material porcelain composition for high-frequency wave and its production
JP2001151569A (en) Microwave dielectric porcelain composition
JP4006655B2 (en) Dielectric porcelain composition for microwave