JP2000203934A - Dielectric porcelain composition for high frequency and dielectric resonator - Google Patents

Dielectric porcelain composition for high frequency and dielectric resonator

Info

Publication number
JP2000203934A
JP2000203934A JP11008307A JP830799A JP2000203934A JP 2000203934 A JP2000203934 A JP 2000203934A JP 11008307 A JP11008307 A JP 11008307A JP 830799 A JP830799 A JP 830799A JP 2000203934 A JP2000203934 A JP 2000203934A
Authority
JP
Japan
Prior art keywords
value
dielectric
composition
weight
high frequency
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP11008307A
Other languages
Japanese (ja)
Other versions
JP3493316B2 (en
Inventor
Shunichi Murakawa
俊一 村川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP00830799A priority Critical patent/JP3493316B2/en
Priority to KR10-2000-0001389A priority patent/KR100415757B1/en
Priority to US09/481,972 priority patent/US6503861B1/en
Priority to DE60024338T priority patent/DE60024338T2/en
Priority to EP00300256A priority patent/EP1020416B1/en
Publication of JP2000203934A publication Critical patent/JP2000203934A/en
Application granted granted Critical
Publication of JP3493316B2 publication Critical patent/JP3493316B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Inorganic Insulating Materials (AREA)
  • Control Of Motors That Do Not Use Commutators (AREA)
  • Compositions Of Oxide Ceramics (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a dielectric porcelain composition for a high frequency, which has a high relative dielectric constant, high Q value and small temp. dependence of the relative dielectric constant and, further, is capable of maintaining high retentivity of Q-value at 120 deg.C based on the room temp. (25 deg.C), and a dielectric resonator. SOLUTION: The formula, based on molar ratio of metal elements, of the composition of main components is expressed by aLa2O3.bAl2O3.cSrO.dTiO2, wherein a, b, c and d satisfy the following relations; 0.1061<=a<=0.2162, 0.1050<=b<=0.2086, 0.3040<=c<=0.4185, 0.2747<=d<=0.4373, 0.75<=b/a<=1.25, 0.75<=d/c<=1.25 (a+b+c+d=1). The dielectric porcelain composition for a high frequency contains Mn in an amount of 0.01-3.0 parts by weight expressed in term of MnO2 per 100 parts by weight of the composition of the main components.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、マイクロ波、ミリ
波等の高周波領域において、高いQ値を有する高周波用
誘電体磁器組成物および誘電体共振器に関するものであ
り、例えば、マイクロ波やミリ波などの高周波領域にお
いて使用される種々の共振器用材料やMIC用誘電体基
板材料、誘電体導波路用材料や積層型セラミックコンデ
ンサ等に用いることができる高周波用誘電体磁器組成物
および誘電体共振器に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a high frequency dielectric ceramic composition and a dielectric resonator having a high Q value in a high frequency region such as a microwave and a millimeter wave. High frequency dielectric ceramic composition and dielectric resonance which can be used for various resonator materials, MIC dielectric substrate materials, dielectric waveguide materials, multilayer ceramic capacitors, etc. used in high frequency regions such as waves. About the vessel.

【0002】[0002]

【従来技術】誘電体磁器は、マイクロ波やミリ波等の高
周波領域において、誘電体共振器、MIC用誘電体基板
や導波路等に広く利用されている。そこに要求される特
性として(1)誘電体中では波長が1/εr1/2 に短縮
されるので、小型化の要求に対して比誘電率が大きいこ
と、(2)高周波での誘電損失が小さいこと、すなわち
高Q値であること、(3)共振周波数の温度に対する変
化が小さく、且つ安定であること、以上の3つの特性が
主として挙げられる。
2. Description of the Related Art Dielectric ceramics are widely used in dielectric resonators, MIC dielectric substrates, waveguides, and the like in high-frequency regions such as microwaves and millimeter waves. The required characteristics are (1) since the wavelength is reduced to 1 / εr 1/2 in the dielectric, the relative dielectric constant is large for the demand for miniaturization, and (2) the dielectric loss at high frequencies Are small, that is, a high Q value, and (3) the change in resonance frequency with respect to temperature is small and stable.

【0003】従来、この種の誘電体磁器としては、例え
ば、BaO−TiO2 系材料、BaO−REO−TiO
2 (但し、REOは希土類元素酸化物) 系材料、MgT
iO3 −CaTiO3 系材料などの酸化物磁器材料が知
られている(例えば、特開昭61−10806号公報、
特開昭63−100058号公報等参照)。
Conventionally, as this kind of dielectric porcelain, for example, BaO-TiO 2 material, BaO-REO-TiO
2 (However, REO is a rare earth oxide) based material, MgT
iO 3 oxide ceramic materials such as -CaTiO 3 based materials are known (e.g., JP 61-10806, JP-
See JP-A-63-100058).

【0004】[0004]

【発明が解決しようとする課題】しかしながら、BaO
−TiO2 系材料では、比誘電率εrが37〜40と高
く、Q値は40000と大きいが、単一相では共振周波
数の温度依存性τfが0のものが得にくく、組成変化に
対する比誘電率及び比誘電率の温度依存性の変化も大き
い。そのため、高い比誘電率と低い誘電損失を維持した
まま、共振周波数の温度係数τfを安定に小さく制御す
ることが困難であった。
SUMMARY OF THE INVENTION However, BaO
-TiO 2 -based material has a relative dielectric constant εr of as high as 37 to 40 and a Q value of as large as 40000, but it is difficult to obtain a single phase having a temperature dependence τf of resonance frequency of 0, and the relative dielectric constant with respect to composition change The change in the temperature dependence of the dielectric constant and the relative dielectric constant is also large. Therefore, it has been difficult to stably control the temperature coefficient τf of the resonance frequency to be small while maintaining a high relative permittivity and a low dielectric loss.

【0005】また、BaO−REO−TiO2 系材料に
ついては、BaO−Nd2 3 −TiO2 系あるいはB
aO−Sm2 3 −TiO2 系等が知られているが、こ
れらの系では比誘電率εrが60〜100と非常に高
く、また共振周波数の温度係数τfが0のものも得られ
ているが、Q値が5000以下と小さい。
Further, BaO-REO-TiO 2 based materials include BaO—Nd 2 O 3 —TiO 2
aO-Sm 2 O 3 but -TiO 2 system and the like are known, in these systems is the relative dielectric constant εr very high as 60-100, also been obtained that the temperature coefficient τf of resonance frequency of 0 However, the Q value is as small as 5000 or less.

【0006】さらに、MgTiO3 −CaTiO3 系材
料ではQ値が30000と大きく、共振周波数の温度係
数τfが0のものも得られているが、比誘電率が16〜
25と小さい。
[0006] Further, in the case of MgTiO 3 -CaTiO 3 material, a Q value as large as 30000 and a temperature coefficient τf of the resonance frequency of 0 are obtained, but the relative dielectric constant is 16 to
25 and small.

【0007】このように、上記のいずれの材料において
も高周波用誘電体材料に要求される前記3つの特性を共
に充分には満足していない。
As described above, none of the above-mentioned materials sufficiently satisfies the above three characteristics required for the high-frequency dielectric material.

【0008】さらに、これらの材料は、高周波領域にお
いて高いQ値が得られるものの、高温でのQ値が、室温
でのQ値より大きく低下し、高Q値のメリットを十分享
受出来ず、共振器の無負荷Qが小さくなるという問題が
あった。
Further, these materials can obtain a high Q value in a high-frequency region, but the Q value at a high temperature is much lower than the Q value at a room temperature. There was a problem that the no-load Q of the vessel became small.

【0009】そして、従来、Ln(希土類元素)−Al
−Ca−Tiからなる誘電体磁器組成物が知られてお
り、このような誘電体磁器組成物でも、比誘電率が38
〜45と高く、Q値も高く、共振周波数の温度係数τf
が0のものが得られるという優れた特性を有することが
できるが、高温(120℃)でのQ値の保持率が不十分
であるという問題があった。また、通信業界の発展に伴
ってもっと高いQ値の材料が要求されている。
Conventionally, Ln (rare earth element) -Al
-Ca-Ti dielectric porcelain composition is known, and even such a dielectric porcelain composition has a relative dielectric constant of 38.
~ 45, high Q value, temperature coefficient τf of resonance frequency
However, there is a problem that the retention of the Q value at a high temperature (120 ° C.) is insufficient. Further, with the development of the telecommunications industry, materials having higher Q values are required.

【0010】従って、本発明は、比誘電率が大きく、高
Q値で、共振周波数の温度依存性が小さく、且つ室温に
対する高温でのQ値の保持率を高く維持できる高周波用
誘電体磁器組成物を提供することを目的とする。
Accordingly, the present invention provides a high-frequency dielectric ceramic composition having a large relative dielectric constant, a high Q value, a small temperature dependency of a resonance frequency, and a high retention of the Q value at a high temperature with respect to room temperature. The purpose is to provide things.

【0011】[0011]

【課題を解決するための手段】本発明者は、上記問題に
対して、検討を重ねた結果、金属元素として少なくとも
La、Al、SrおよびTiを含有する複合酸化物から
なり、これらの金属元素酸化物のモル比を制御するとと
もに、Mnを特定量含有することにより、比誘電率が大
きく、高Q値で、共振周波数の温度依存性が小さく、室
温におけるQ値に対する高温におけるQ値の保持率が高
い高周波用誘電体磁器組成物が得られることを知見し
た。
Means for Solving the Problems The present inventor has studied the above problems, and as a result, it has been found that the present invention comprises a composite oxide containing at least La, Al, Sr and Ti as metal elements. By controlling the molar ratio of the oxide and containing a specific amount of Mn, the relative dielectric constant is large, the Q value is high, the temperature dependence of the resonance frequency is small, and the Q value at a high temperature with respect to the Q value at room temperature is maintained. It has been found that a high frequency dielectric ceramic composition for high frequency can be obtained.

【0012】即ち、本発明の高周波用誘電体磁器組成物
は、金属元素として少なくともLa、Al、Srおよび
Tiを含有する複合酸化物からなり、前記金属元素のモ
ル比による組成式を aLa2 3 ・bAl2 3 ・cSrO・dTiO2 と表したとき、前記a、b、c、dが 0.1061≦a≦0.2162 0.1050≦b≦0.2086 0.3040≦c≦0.4185 0.2747≦d≦0.4373 0.75 ≦b/a≦1.25 0.75 ≦d/c≦1.25 (ただし a+b+c+d=1) を満足する主
成分組成物100重量部に対して、MnをMnO2 換算
で0.01〜3.0重量部含有するものである。
That is, the high frequency dielectric ceramic composition of the present invention comprises a composite oxide containing at least La, Al, Sr and Ti as metal elements, and has a composition formula based on the molar ratio of the metal elements: aLa 2 O When expressed as 3 · bAl 2 O 3 · cSrO · dTiO 2 , the a, b, c, and d are 0.1061 ≦ a ≦ 0.2162 0.1050 ≦ b ≦ 0.2086 0.3040 ≦ c ≦ 0 0.4185 0.2747 ≦ d ≦ 0.4373 0.75 ≦ b / a ≦ 1.25 0.75 ≦ d / c ≦ 1.25 (where a + b + c + d = 1) where 100 parts by weight of the main component composition is satisfied. In contrast, Mn contains 0.01 to 3.0 parts by weight in terms of MnO 2 .

【0013】ここで、磁器組成物中におけるカーボン含
有量が全量中0.02重量%以下であることが望まし
い。また、120℃におけるQf値は、25℃における
Qf値の75%以上であることが望ましい。
Here, the carbon content in the porcelain composition is desirably 0.02% by weight or less based on the total amount. The Qf value at 120 ° C. is desirably 75% or more of the Qf value at 25 ° C.

【0014】また、本発明の誘電体共振器は、一対の入
出力端子間に誘電体磁器を配置してなり、電磁界結合に
より作動する誘電体共振器において、前記誘電体磁器
が、上記高周波用誘電体磁器組成物からなるものであ
る。
In the dielectric resonator according to the present invention, a dielectric porcelain is arranged between a pair of input / output terminals, and the dielectric porcelain operates by electromagnetic field coupling. It comprises a dielectric ceramic composition for use.

【0015】[0015]

【作用】本発明の高周波用誘電体磁器組成物によれば、
主成分組成物として、金属元素として少なくともLa、
Al、SrおよびTiを含有し、これらの金属元素のモ
ル比による組成式をaLa2 3 ・bAl2 3 ・cS
rO・dTiO2 と表した時、a、b、c、dを特定の
範囲に制御することにより、比誘電率が大きく、高Q値
で、共振周波数の温度特性が良好で、安定となる。特
に、本発明では、LaとSrを組み合わせて用いること
に特徴があり、これにより、LaAlO3 とSrTiO
3 の固溶体を形成でき、Qf値を向上できるのである。
According to the high frequency dielectric ceramic composition of the present invention,
As a main component composition, at least La as a metal element,
Al, Sr and Ti are contained, and the composition formula based on the molar ratio of these metal elements is aLa 2 O 3 .bAl 2 O 3 .cS
When expressed as rO · dTiO 2 , by controlling a, b, c, and d to specific ranges, the relative dielectric constant is large, the Q value is high, and the temperature characteristics of the resonance frequency are good and stable. In particular, the present invention is characterized in that La and Sr are used in combination, whereby LaAlO 3 and SrTiO 3 are used.
The solid solution of No. 3 can be formed, and the Qf value can be improved.

【0016】また、上記主成分組成物に対して、Mnを
所定量の割合で含有することにより、安定したQf値を
示し、25℃のQf値に対する高温(120℃)でのQ
f値の保持率を大きくすることができ、共振器の無負荷
Qを大きくすることが可能となる。
Further, by containing Mn in a predetermined amount ratio with respect to the main component composition, a stable Qf value is exhibited, and the Qf value at a high temperature (120 ° C.) with respect to the Qf value of 25 ° C.
The retention of the f-value can be increased, and the unloaded Q of the resonator can be increased.

【0017】さらに、本発明では、磁器組成物中におけ
るカーボン含有量を全量中0.02重量%以下とするこ
とにより、25℃のQf値に対する高温(120℃)で
のQf値の保持率をさらに向上することができる。
Further, in the present invention, by keeping the carbon content in the porcelain composition at 0.02% by weight or less in the total amount, the retention of the Qf value at a high temperature (120 ° C.) with respect to the Qf value at 25 ° C. is improved. It can be further improved.

【0018】また、120℃におけるQf値が25℃に
おけるQf値の75%以上である場合には、Q値の温度
に対する安定性を高めることができる結果、さらに共振
器の安定性を高めることができる。
Further, when the Qf value at 120 ° C. is 75% or more of the Qf value at 25 ° C., the stability of the Q value with respect to temperature can be improved, so that the stability of the resonator can be further improved. it can.

【0019】[0019]

【発明の実施の形態】本発明の高周波用誘電体磁器組成
物は、金属元素として少なくともLa、Al、Srおよ
びTiを含有する複合酸化物を主成分組成物とするもの
である。かかる主成分組成物における前記金属元素のモ
ル比による組成式を aLa2 3 ・bAl2 3 ・cSrO・dTiO2 と表したとき、前記a、b、c、dが 0.1061≦a≦0.2162 0.1050≦b≦0.2086 0.3040≦c≦0.4185 0.2747≦d≦0.4373 0.75 ≦b/a≦1.25 0.75 ≦d/c≦1.25 (ただし a+b+c+d=1) であることが
重要である。これらのa、b、c、dを上記の範囲に限
定した理由は以下の通りである。
BEST MODE FOR CARRYING OUT THE INVENTION The high frequency dielectric ceramic composition of the present invention contains a composite oxide containing at least La, Al, Sr and Ti as metal elements as a main component composition. When a composition formula based on the molar ratio of the metal element in such a main component composition is expressed as aLa 2 O 3 .bAl 2 O 3 .cSrO.dTiO 2 , the a, b, c, and d are 0.1061 ≦ a ≦ 0.2162 0.1050 ≦ b ≦ 0.2086 0.3040 ≦ c ≦ 0.4185 0.2747 ≦ d ≦ 0.4373 0.75 ≦ b / a ≦ 1.25 0.75 ≦ d / c ≦ 1 .25 (where a + b + c + d = 1). The reasons for limiting a, b, c, and d to the above ranges are as follows.

【0020】即ち、0.1061≦a≦0.2162と
したのは、0.1061>aの場合、共振周波数の温度
係数τfが正に大きくなり、共振周波数の温度係数τf
の絶対値が30を大きく越えてしまい、a>0.216
2の場合はτfが負に大きくなり、τfの絶対値が30
を越えてしまい、また、比誘電率εrも低下するからで
ある。aは、共振周波数の温度係数τfおよびQf値の
点から、0.1211≦a≦0.1450の範囲が好ま
しい。
That is, the reason for setting 0.1061 ≦ a ≦ 0.2162 is that when 0.1061> a, the temperature coefficient τf of the resonance frequency becomes positive and the temperature coefficient τf of the resonance frequency becomes large.
Absolute value greatly exceeds 30, and a> 0.216
In the case of 2, τf becomes large negatively, and the absolute value of τf becomes 30.
And the relative dielectric constant εr also decreases. a is preferably in the range of 0.1211 ≦ a ≦ 0.1450 in terms of the temperature coefficient τf of the resonance frequency and the Qf value.

【0021】また、0.1050≦b≦0.2086と
したのは、0.1050>bの場合は共振周波数の温度
係数τfが正に大きくなり、τfの絶対値が30を大き
く越え、Qf値も低下するからであり、b>0.208
6の場合はτfが負に大きくなり、τfの絶対値が30
を越えてしまうからである。bは、特に、0.1211
≦b≦0.1623の範囲が好ましい。
The reason why 0.1050 ≦ b ≦ 0.2086 is that when 0.1050> b, the temperature coefficient τf of the resonance frequency becomes positive, the absolute value of τf greatly exceeds 30, and Qf This is because the value also decreases, and b> 0.208
In the case of 6, τf becomes large negatively, and the absolute value of τf becomes 30.
It is because it exceeds. b is, in particular, 0.1211
The range of ≦ b ≦ 0.1623 is preferred.

【0022】さらに、0.3040≦c≦0.4185
としたのは、0.3040>cの場合には、共振周波数
の温度係数τfが負に大きくなり、τfの絶対値が30
を越えてしまうからである。c>0.4185の場合に
は、共振周波数の温度係数τfが正に大きくなったり、
Q値が30000よりも低下するからである。cは、特
に、0.3377≦c≦0.3789の範囲が好まし
い。
Further, 0.3040 ≦ c ≦ 0.4185
The reason is that when 0.3040> c, the temperature coefficient τf of the resonance frequency becomes negative and the absolute value of τf becomes 30
It is because it exceeds. In the case of c> 0.4185, the temperature coefficient τf of the resonance frequency becomes positive,
This is because the Q value is lower than 30,000. c is particularly preferably in the range of 0.3377 ≦ c ≦ 0.3789.

【0023】また、0.2747≦d≦0.4373と
したのは、0.2747>dの場合には、共振周波数の
温度係数τfが負に大きくなり、τfの絶対値が30を
越えてしまうからであり、d>0.4373の場合に
は、共振周波数の温度係数τfが正に大きくなり、τf
の絶対値が30を越えてしまうからであり、また、Q値
が30000よりも低下するからである。特に、0.3
377≦d≦0.3789の範囲が好ましい。
The reason that 0.2747 ≦ d ≦ 0.4373 is that when 0.2747> d, the temperature coefficient τf of the resonance frequency becomes negative and the absolute value of τf exceeds 30. When d> 0.4373, the temperature coefficient τf of the resonance frequency becomes positive, and τf
Is more than 30, and the Q value is lower than 30,000. In particular, 0.3
The range of 377 ≦ d ≦ 0.3789 is preferable.

【0024】さらに、0.75≦b/a≦1.25とし
たのは、0.75>b/aの場合や、b/a>1.25
の場合には、Qf値が大きく低下し、30000より低
下するからである。b/aは、Q値向上の点から、0.
85≦b/a≦1.15であることが望ましい。
Further, 0.75 ≦ b / a ≦ 1.25 is satisfied when 0.75> b / a or b / a> 1.25.
This is because, in the case of (1), the Qf value drops significantly, and drops below 30,000. b / a is set at 0.
It is desirable that 85 ≦ b / a ≦ 1.15.

【0025】また、0.75≦d/c≦1.25とした
のは、0.75>d/cの場合は、比誘電率εrが小さ
くなり、d/c>1.25の場合には、比誘電率εrが
大きくなるからである。d/cは、比誘電率εrの点か
ら、0.85≦d/c≦1.15であることが望まし
い。
Further, the reason that 0.75 ≦ d / c ≦ 1.25 is satisfied is that when 0.75> d / c, the relative permittivity εr becomes small, and when d / c> 1.25, Is because the relative permittivity εr increases. d / c is desirably 0.85 ≦ d / c ≦ 1.15 from the viewpoint of the relative dielectric constant εr.

【0026】さらに、本発明は、上記主成分組成物10
0重量部に対して、MnをMnO2換算で0.01〜
3.0重量部を含有することが重要である。即ち、Mn
を含有させることによって、比誘電率εrや共振周波数
の温度係数τfを変化させずに、Qf値を安定させ、さ
らに、25℃のQf値に対する、高温(120℃)のQ
f値の低下率を小さくすることができるのである。
Further, the present invention provides the above-mentioned main component composition 10
Relative to 0 parts by weight, 0.01 to Mn in MnO 2 in terms of
It is important to contain 3.0 parts by weight. That is, Mn
To stabilize the Qf value without changing the relative permittivity εr and the temperature coefficient τf of the resonance frequency, and further, to the high temperature (120 ° C.) with respect to the Qf value of 25 ° C.
The rate of decrease of the f value can be reduced.

【0027】ここで、Mnの含有量をMnO2 換算で
0.01〜3.0重量部としたのは、3.0重量部を越
えるとQf値が極端に小さくなり、共振周波数の温度係
数τfが正側にシフトするためである。一方、Mnの含
有量がMnO2 換算で0.01重量部よりも少ない場合
には、添加効果が殆どないからである。Mnの含有量
は、誘電特性向上の点から、MnO2 換算で0.05〜
2.0重量部であることが望ましい。
Here, the content of Mn is set to 0.01 to 3.0 parts by weight in terms of MnO 2 because, if it exceeds 3.0 parts by weight, the Qf value becomes extremely small, and the temperature coefficient of the resonance frequency becomes large. This is because τf shifts to the positive side. On the other hand, when the content of Mn is less than 0.01 part by weight in terms of MnO 2 , there is almost no effect of addition. The content of Mn is from the viewpoint of dielectric characteristics improve, 0.05 in MnO 2 in terms of
It is desirably 2.0 parts by weight.

【0028】さらに、本発明の高周波用誘電体磁器組成
物では、25℃のQf値に対する高温(120℃)のQ
f値の低下率を小さくするという点から、磁器組成物中
のカーボン含有量が全量中0.02重量%以下、特に
0.01重量%以下であることが望ましい。
Furthermore, in the high frequency dielectric ceramic composition of the present invention, the high temperature (120 ° C.) Qf value with respect to the Qf value of 25 ° C.
From the viewpoint of reducing the rate of decrease of the f-value, it is desirable that the carbon content in the porcelain composition is 0.02% by weight or less, particularly 0.01% by weight or less based on the total amount.

【0029】このカーボンは、磁器の一般的な作製過程
で、成形用の有機バインダを添加する場合、通常、0.
04重量%程度含有される。そこで、本発明によれば、
有機バインダを含有する成形体を大気などの酸化性雰囲
気中で、600℃以上で10時間以上、特に800℃以
上で15時間以上の条件で脱バインダ処理することが望
ましい。
This carbon is usually used in an ordinary process of producing porcelain, when an organic binder for molding is added.
About 04% by weight is contained. Therefore, according to the present invention,
It is desirable to subject the molded body containing the organic binder to a binder removal treatment in an oxidizing atmosphere such as the air at a temperature of 600 ° C. or more for 10 hours or more, particularly at a temperature of 800 ° C. or more for 15 hours or more.

【0030】本発明によれば、カーボン量を上記の範囲
に制御することにより、120℃におけるQf値を25
℃におけるQf値の75%以上とすることができる。
According to the present invention, by controlling the amount of carbon within the above range, the Qf value at 120 ° C. is reduced to 25%.
75% or more of the Qf value at ° C.

【0031】本発明の高周波用誘電体磁器組成物は、例
えば、以下のようにして作製される。出発原料として、
高純度の酸化ランタン、酸化アルミニウム、炭酸ストロ
ンチウム、酸化チタンの各粉末を用いて、前述した所望
の割合となるように秤量後、純水を加え、混合原料の平
均粒径が2.0μm以下となるまで10〜30時間、ジ
ルコニアボール等を使用したミルにより湿式混合・粉砕
を行う。
The high frequency dielectric ceramic composition of the present invention is produced, for example, as follows. As a starting material,
Using each powder of high-purity lanthanum oxide, aluminum oxide, strontium carbonate, and titanium oxide, after weighing to the desired ratio described above, pure water was added, and the average particle size of the mixed raw material was 2.0 μm or less. The wet mixing and pulverization are carried out by a mill using zirconia balls or the like for 10 to 30 hours until the mixture is obtained.

【0032】この混合物を乾燥後、1000〜1300
℃で2〜10時間仮焼処理する。得られた仮焼物に、M
nO2 を前述した特定の範囲で添加し混合粉砕する。さ
らに所定量、例えば5重量%程度の成形用の有機バイン
ダを加えてから整粒し、得られた粉末を所望の成形手
段、例えば、金型プレス、冷間静水圧プレス、押し出し
成形等により任意の形状に成形後、大気などの酸化性雰
囲気中で温度が600℃以上、かつ保持時間が10時間
以上の条件で脱バインダ処理し、この後、1500〜1
700℃の温度で1〜10時間大気中において焼成する
ことにより誘電体磁器が得られる。
After drying the mixture, 1000 to 1300
Calcination treatment is performed at a temperature of 2 to 10 hours. In the obtained calcined material, M
nO 2 is added in the specific range described above and mixed and pulverized. Further, a predetermined amount, for example, about 5% by weight of an organic binder for molding is added, and the resulting powder is sized. The obtained powder is optionally molded by a desired molding means, for example, a die press, a cold isostatic press, an extrusion molding or the like. After forming into a shape, the binder is removed in an oxidizing atmosphere such as air at a temperature of 600 ° C. or more and a holding time of 10 hours or more.
By firing in the air at a temperature of 700 ° C. for 1 to 10 hours, a dielectric porcelain can be obtained.

【0033】本発明における誘電体磁器組成物では、L
a、Al、Sr、Tiの出発原料としては、酸化物以外
に炭酸塩、酢酸塩、硝酸塩、水酸化物等のように、酸化
性雰囲気での熱処理によって酸化物を生成し得る化合物
を用いても良い。
In the dielectric ceramic composition of the present invention, L
As a starting material for a, Al, Sr, and Ti, a compound that can generate an oxide by a heat treatment in an oxidizing atmosphere, such as a carbonate, an acetate, a nitrate, or a hydroxide, in addition to the oxide, is used. Is also good.

【0034】本発明においては、磁器中に不可避不純物
としてCa、Zr、Si、Ba等が混入する場合がある
が、これらは、酸化物換算で0.1重量%程度混入して
も特性上問題ない。
In the present invention, Ca, Zr, Si, Ba, and the like may be mixed as inevitable impurities in the porcelain. Absent.

【0035】本発明の上記誘電体磁器組成物は、誘電体
共振器用として最も有用である。本発明の誘電体共振器
として、図1にTEモード型誘電体共振器の概略図を示
した。図1の共振器は、金属ケース1の両側に入力端子
2及び出力端子3を形成し、これらの端子2、3の間に
上記したような組成からなる誘電体磁器4を配置して構
成される。このように、TEモード型の誘電体共振器
は、入力端子2からマイクロ波が入力され、マイクロ波
は誘電体磁器4と自由空間との境界の反射によって誘電
体磁器4内に閉じこめられ、特定の周波数で共振を起こ
す。
The above-mentioned dielectric ceramic composition of the present invention is most useful for a dielectric resonator. FIG. 1 shows a schematic diagram of a TE mode dielectric resonator as the dielectric resonator of the present invention. The resonator shown in FIG. 1 is formed by forming an input terminal 2 and an output terminal 3 on both sides of a metal case 1 and arranging a dielectric ceramic 4 having the above-described composition between these terminals 2 and 3. You. As described above, in the TE mode type dielectric resonator, the microwave is input from the input terminal 2, and the microwave is confined in the dielectric ceramic 4 by the reflection of the boundary between the dielectric ceramic 4 and the free space, and is specified. Resonance occurs at the frequency of

【0036】この信号が出力端子3と電磁界結合し出力
される。また、図示しないが、本発明の誘電体磁器組成
物をTEMモードを用いた同軸形共振器やストリップ線
路共振器、TMモードの誘電体磁器共振器、その他の共
振器に適用しても良いことは勿論である。
This signal is electromagnetically coupled to the output terminal 3 and output. Although not shown, the dielectric ceramic composition of the present invention may be applied to a coaxial resonator, a strip line resonator, a TM mode dielectric ceramic resonator, and other resonators using a TEM mode. Of course.

【0037】[0037]

【実施例】実施例1 出発原料として高純度の酸化ランタン(La2 3 )、
酸化アルミニウム(Al2 3 )、炭酸ストロンチウム
(SrCO3 )、酸化チタン(TiO2 )の各粉末を用
いて、それらを表1となるように秤量後、純水を加え、
混合原料の平均粒径が2.0μm以下となるまで、Zr
2 ボールを用いたミルにより約20時間湿式混合、粉
砕を行った。
Example 1 High-purity lanthanum oxide (La 2 O 3 ) as a starting material
Using each powder of aluminum oxide (Al 2 O 3 ), strontium carbonate (SrCO 3 ), and titanium oxide (TiO 2 ), weighing them as shown in Table 1, and adding pure water,
Zr until the average particle size of the mixed raw material becomes 2.0 μm or less.
The wet mixing and pulverization were performed for about 20 hours using a mill using O 2 balls.

【0038】この混合物を乾燥後、1200℃で2時間
仮焼し、さらに5重量%のバインダーを加えてから整粒
し、得られた粉末を約1ton/cm2 の圧力で円板状
に成形し、大気中で、脱バイ温度800℃、保持時間1
0時間の条件で脱バインダー処理を行い、この後、15
00〜1700℃の温度で2時間大気中において焼成し
た。
After the mixture is dried, it is calcined at 1200 ° C. for 2 hours, and after adding 5% by weight of a binder, the particles are sized. The obtained powder is formed into a disk at a pressure of about 1 ton / cm 2. Then, in the atmosphere, the debuoying temperature is 800 ° C., and the holding time is 1
The binder was removed under the condition of 0 hour, and thereafter,
It baked in the air at the temperature of 00-1700 degreeC for 2 hours.

【0039】得られた磁器を平面研磨しアセトン中で超
音波洗浄し、150℃で1時間乾燥した後、室温(25
℃)において、円柱共振器法により測定周波数3.5〜
4.5GHzで比誘電率εr、Qf値、共振周波数の温
度係数τfを測定した。Qf値は、マイクロ波誘電体に
おいて一般に成立するQ値×測定周波数f=一定の関係
から1GHzでのQf値に換算した。
The obtained porcelain was polished, ultrasonically cleaned in acetone, dried at 150 ° C. for 1 hour, and then room temperature (25 ° C.).
C), the measurement frequency is 3.5 to 3.5 by the cylindrical resonator method.
The relative permittivity εr, Qf value, and temperature coefficient τf of the resonance frequency were measured at 4.5 GHz. The Qf value was converted to a Qf value at 1 GHz from a relationship that is generally established in a microwave dielectric × a measurement frequency f = constant.

【0040】共振周波数の温度係数τfは、−40〜8
5℃の範囲で測定した。さらに、Qf値については、1
20℃でのQf値も測定し、室温(25℃)でのQf値
に対する120℃でのQf値の比をQf値の保持率とし
て算出した。カーボン含有量は、管状抵抗炉を用い、赤
外吸収法により測定した。これらの結果を表1に示す。
The temperature coefficient τf of the resonance frequency is -40 to 8
It was measured in the range of 5 ° C. Further, regarding the Qf value, 1
The Qf value at 20 ° C. was also measured, and the ratio of the Qf value at 120 ° C. to the Qf value at room temperature (25 ° C.) was calculated as the retention of the Qf value. The carbon content was measured by an infrared absorption method using a tubular resistance furnace. Table 1 shows the results.

【0041】[0041]

【表1】 [Table 1]

【0042】表1からも明らかなように、本発明の範囲
外の誘電体磁器組成物では、比誘電率又はQf値が低い
か、あるいはτfの絶対値が30を超えていた。
As is clear from Table 1, in the dielectric ceramic composition outside the range of the present invention, the relative dielectric constant or the Qf value was low, or the absolute value of τf exceeded 30.

【0043】これらに対し、本発明の誘電体磁器組成物
では、比誘電率が30以上、Q値が30000(1GH
zにおいて)以上、τfが±30(ppm/℃)以内、
120℃でのQf値が25℃でQf値に対して75%以
上の保持率を有しており、優れた誘電特性が得られるこ
とが判る。
On the other hand, the dielectric ceramic composition of the present invention has a relative dielectric constant of 30 or more and a Q value of 30,000 (1 GHz).
z), τf is within ± 30 (ppm / ° C.),
The Qf value at 120 ° C. has a retention of 75% or more of the Qf value at 25 ° C., indicating that excellent dielectric properties can be obtained.

【0044】実施例2 次に、上記表1中の試料No.1、10、13と全く同様
の主成分組成物に対して、表2に示す種々の割合でMn
2 粉末を添加した。その後、実施例1と同様にして得
られた磁器の比誘電率εr、Qf値、共振周波数の温度
係数τf、Qf値の保持率を測定した。その結果を表2
に記載する。
Example 2 Next, Mn was prepared at various ratios as shown in Table 2 with respect to the main component compositions exactly the same as Samples Nos. 1, 10 and 13 in Table 1 above.
O 2 powder was added. Thereafter, the relative permittivity εr, Qf value, temperature coefficient of resonance frequency τf, and retention rate of Qf value of the porcelain obtained in the same manner as in Example 1 were measured. Table 2 shows the results.
It describes in.

【0045】[0045]

【表2】 [Table 2]

【0046】表2から、0.01〜3.0重量部のMn
を加えることにより、Mn無添加の試料No.31に比べ
てQf値が高くかつ安定するとともに、高温(120
℃)での室温(25℃)に対するQ値の保持率が高くな
ることがわかる。
From Table 2, it can be seen that 0.01 to 3.0 parts by weight of Mn.
, The Qf value is higher and more stable than the sample No. 31 without Mn added, and the high temperature (120
It can be seen that the retention of the Q value at room temperature (25 ° C.) at room temperature (° C.) increases.

【0047】実施例3 次に、上記表1中の試料No.1、10、13の組成物に
対して、脱バインダ温度や時間を表3に示すように変更
する以外は、全く同様にしてカーボン含有量が異なる複
数の磁器を作製した。そして、得られた磁器に対して、
実施例1と同様にして比誘電率εr、Qf値、共振周波
数の温度係数τf、Qf値の保持率を測定し、その結果
を表3に記載する。
Example 3 Next, the binder removal temperature and time were changed as shown in Table 3 with respect to the compositions of Samples Nos. 1, 10 and 13 in Table 1 above, and were completely the same. A plurality of porcelains having different carbon contents were produced. And for the obtained porcelain,
The relative permittivity εr, the Qf value, the temperature coefficient τf of the resonance frequency, and the holding ratio of the Qf value were measured in the same manner as in Example 1, and the results are shown in Table 3.

【0048】[0048]

【表3】 [Table 3]

【0049】表3の結果から明らかなように、磁器中の
カーボン含有量が0.02重量%以下である場合には、
カーボン量が0.02重量%よりも多い場合に比べてQ
値が高くかつ安定するとともに、高温(120℃)での
室温(25℃)に対するQ値の保持率がさらに高くなる
ことがわかる。
As is clear from the results in Table 3, when the carbon content in the porcelain is 0.02% by weight or less,
Q compared to the case where the amount of carbon is more than 0.02% by weight
It can be seen that the value is high and stable, and the retention of the Q value at room temperature (25 ° C.) at a high temperature (120 ° C.) is further increased.

【0050】[0050]

【発明の効果】以上詳述した通り、本発明によれば、少
なくともLa、Al、SrおよびTiを含有する特定比
率の複合酸化物に対してさらにMnを添加することによ
り、高周波領域において高い誘電率及び高いQf値を有
するとともに、共振周波数の温度係数τfを安定に小さ
く制御することができるとともに、高Q値を安定させ、
室温(25℃)に対する高温(120℃)でのQ値の保
持率を高く維持することができる。
As described in detail above, according to the present invention, by adding Mn to a composite oxide containing at least La, Al, Sr and Ti in a specific ratio, a high dielectric constant in a high frequency region is obtained. Rate and a high Qf value, the temperature coefficient τf of the resonance frequency can be stably controlled to be small, and the high Q value is stabilized.
The retention of the Q value at a high temperature (120 ° C.) with respect to a room temperature (25 ° C.) can be kept high.

【0051】これにより、本発明の高周波用誘電体磁器
組成物は、例えば、自動車電話、コードレステレホン、
パーソナル無線機、衛星放送受信機等の装置において、
マイクロ波やミリ波領域において使用される共振器用材
料やMIC用誘電体基板材料、誘電体導波線路、誘電体
アンテナ、その他の各種電子部品等に適用され、特に、
誘電体共振器用として好適である。
Thus, the dielectric ceramic composition for high frequency wave of the present invention can be used for, for example, automobile telephones, cordless telephones,
In devices such as personal radios and satellite broadcast receivers,
It is applied to resonator materials and MIC dielectric substrate materials, dielectric waveguides, dielectric antennas and other various electronic components used in microwave and millimeter wave regions.
It is suitable for dielectric resonators.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の誘電体共振器を示す概略図である。FIG. 1 is a schematic diagram showing a dielectric resonator of the present invention.

【符号の説明】[Explanation of symbols]

1・・・金属ケース 2・・・入力端子 3・・・出力端子 4・・・誘電体磁器 DESCRIPTION OF SYMBOLS 1 ... Metal case 2 ... Input terminal 3 ... Output terminal 4 ... Dielectric porcelain

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】金属元素として少なくともLa、Al、S
rおよびTiを含有する複合酸化物からなり、前記金属
元素のモル比による組成式を aLa2 3 ・bAl2 3 ・cSrO・dTiO2 と表したとき、前記a、b、c、dが 0.1061≦a≦0.2162 0.1050≦b≦0.2086 0.3040≦c≦0.4185 0.2747≦d≦0.4373 0.75 ≦b/a≦1.25 0.75 ≦d/c≦1.25 (ただし、a+b+c+d=1) を満足する主
成分組成物100重量部に対して、MnをMnO2 換算
で0.01〜3.0重量部含有することを特徴とする高
周波用誘電体磁器組成物。
1. At least La, Al, S as a metal element
When composed of a composite oxide containing r and Ti, and a composition formula based on the molar ratio of the metal element is expressed as aLa 2 O 3 .bAl 2 O 3 .cSrO.dTiO 2 , the a, b, c, and d are 0.1061 ≦ a ≦ 0.2162 0.1050 ≦ b ≦ 0.2086 0.3040 ≦ c ≦ 0.4185 0.2747 ≦ d ≦ 0.4373 0.75 ≦ b / a ≦ 1.25 0.75 ≦ d / c ≦ 1.25 (where, a + b + c + d = 1) 100 to 100 parts by weight of the main component composition satisfying the following condition: 0.01 to 3.0 parts by weight of Mn in terms of MnO 2. High frequency dielectric ceramic composition.
【請求項2】カーボン含有量が全量中0.02重量%以
下であることを特徴とする請求項1記載の高周波用誘電
体磁器組成物。
2. The high frequency dielectric ceramic composition according to claim 1, wherein the carbon content is 0.02% by weight or less based on the total amount.
【請求項3】120℃におけるQf値が、25℃におけ
るQf値の75%以上であることを特徴とする請求項1
または2記載の高周波用誘電体磁器組成物。
3. The Qf value at 120 ° C. is at least 75% of the Qf value at 25 ° C.
Or the dielectric ceramic composition for high frequencies according to 2.
【請求項4】一対の入出力端子間に誘電体磁器を配置し
てなり、電磁界結合により作動する誘電体共振器におい
て、前記誘電体磁器が、請求項1乃至3のうちいずれか
に記載の高周波用誘電体磁器組成物からなることを特徴
とする誘電体共振器。
4. A dielectric resonator having a dielectric porcelain disposed between a pair of input / output terminals and operated by electromagnetic field coupling, wherein the dielectric porcelain is any one of claims 1 to 3. A dielectric resonator comprising the dielectric ceramic composition for high frequencies described above.
JP00830799A 1999-01-14 1999-01-14 High frequency dielectric ceramic composition and dielectric resonator Expired - Lifetime JP3493316B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP00830799A JP3493316B2 (en) 1999-01-14 1999-01-14 High frequency dielectric ceramic composition and dielectric resonator
KR10-2000-0001389A KR100415757B1 (en) 1999-01-14 2000-01-12 Dielectric ceramic composition, method of preparing dielectric ceramic material, and dielectric resonator
US09/481,972 US6503861B1 (en) 1999-01-14 2000-01-12 Dielectric ceramic composition, method of preparing dielectric ceramic material, and dielectric resonator
DE60024338T DE60024338T2 (en) 1999-01-14 2000-01-14 Method for producing dielectric ceramic material and dielectric resonator
EP00300256A EP1020416B1 (en) 1999-01-14 2000-01-14 Method of preparing dielectric ceramic material and dielectric resonator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP00830799A JP3493316B2 (en) 1999-01-14 1999-01-14 High frequency dielectric ceramic composition and dielectric resonator

Publications (2)

Publication Number Publication Date
JP2000203934A true JP2000203934A (en) 2000-07-25
JP3493316B2 JP3493316B2 (en) 2004-02-03

Family

ID=11689509

Family Applications (1)

Application Number Title Priority Date Filing Date
JP00830799A Expired - Lifetime JP3493316B2 (en) 1999-01-14 1999-01-14 High frequency dielectric ceramic composition and dielectric resonator

Country Status (1)

Country Link
JP (1) JP3493316B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6940371B2 (en) 2002-08-30 2005-09-06 Murata Manufacturing Co., Ltd. High frequency dielectric ceramic composition, dielectric resonator, dielectric filter, dielectric duplexer, and communication device
US6995106B2 (en) 2001-07-16 2006-02-07 Ngk Spark Plug Co., Ltd. Dielectric ceramic material
CN112174665A (en) * 2020-09-25 2021-01-05 西华大学 Filter ceramic with accurately controllable dielectric constant for 5G base station and preparation method thereof

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6995106B2 (en) 2001-07-16 2006-02-07 Ngk Spark Plug Co., Ltd. Dielectric ceramic material
US6940371B2 (en) 2002-08-30 2005-09-06 Murata Manufacturing Co., Ltd. High frequency dielectric ceramic composition, dielectric resonator, dielectric filter, dielectric duplexer, and communication device
CN112174665A (en) * 2020-09-25 2021-01-05 西华大学 Filter ceramic with accurately controllable dielectric constant for 5G base station and preparation method thereof
CN112174665B (en) * 2020-09-25 2022-07-26 西华大学 Filter ceramic with accurately controllable dielectric constant for 5G base station and preparation method thereof

Also Published As

Publication number Publication date
JP3493316B2 (en) 2004-02-03

Similar Documents

Publication Publication Date Title
JP2625074B2 (en) Dielectric ceramic composition and dielectric resonator
JP3562454B2 (en) High frequency porcelain, dielectric antenna, support base, dielectric resonator, dielectric filter, dielectric duplexer, and communication device
KR100415757B1 (en) Dielectric ceramic composition, method of preparing dielectric ceramic material, and dielectric resonator
WO1998043924A1 (en) Dielectric ceramic composition and dielectric resonator made by using the same
JP3744660B2 (en) Dielectric ceramic composition and dielectric resonator using the same
JP2000095561A (en) Dielectric porcelain composition and dielectric resonator using the same
JPH0877829A (en) Dielectric ceramic composition and dielectric resonator
JP4131996B2 (en) Dielectric ceramic composition and dielectric resonator using the same
JP3493316B2 (en) High frequency dielectric ceramic composition and dielectric resonator
JP4303369B2 (en) Dielectric ceramic composition and dielectric resonator using the same
JP2003238242A (en) Dielectric porcelain and dielectric resonator using the same
JP4548876B2 (en) High frequency dielectric ceramic composition and dielectric resonator using the same
JPH0952762A (en) Aluminous ceramic composition
JPH0952761A (en) Aluminous ceramic composition and its production
JP4535589B2 (en) Dielectric porcelain and dielectric resonator using the same
EP1096598A2 (en) High-frequency dielectric ceramic composition, dielectric resonator, dielectric filter, dielectric duplexer, and communication apparatus
JP2001163665A (en) Dielectric porcelain composition for high frequency, dielectric resonator, dielectric filter, dielectric duplexer and communication equipment
JP4614485B2 (en) Dielectric resonator
JP3363296B2 (en) High frequency dielectric ceramic composition
JP5197559B2 (en) High frequency dielectric ceramic composition and dielectric resonator using the same
JPH0952760A (en) Dielectric ceramic composition
JP3330024B2 (en) High frequency dielectric ceramic composition
KR100527960B1 (en) Dielectric ceramic composition and dielectric resonator using the same
JPH09221355A (en) Aluminous sintered compact for high frequency
JP2004143033A (en) Dielectric ceramic composition for high-frequency, dielectric resonator, dielectric filter, dielectric duplexer and communication apparatus

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071114

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081114

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091114

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101114

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101114

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111114

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111114

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121114

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121114

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131114

Year of fee payment: 10

EXPY Cancellation because of completion of term