JP2003290977A - SOLID WIRE FOR Ar-CO2 MIXED GAS SHIELDED ARC WELDING - Google Patents

SOLID WIRE FOR Ar-CO2 MIXED GAS SHIELDED ARC WELDING

Info

Publication number
JP2003290977A
JP2003290977A JP2002090530A JP2002090530A JP2003290977A JP 2003290977 A JP2003290977 A JP 2003290977A JP 2002090530 A JP2002090530 A JP 2002090530A JP 2002090530 A JP2002090530 A JP 2002090530A JP 2003290977 A JP2003290977 A JP 2003290977A
Authority
JP
Japan
Prior art keywords
welding
toughness
amount
wire
shielded arc
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002090530A
Other languages
Japanese (ja)
Other versions
JP3847647B2 (en
Inventor
Isamu Kimoto
勇 木本
Ryuichi Shimura
竜一 志村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Welding and Engineering Co Ltd
Original Assignee
Nippon Steel and Sumikin Welding Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel and Sumikin Welding Co Ltd filed Critical Nippon Steel and Sumikin Welding Co Ltd
Priority to JP2002090530A priority Critical patent/JP3847647B2/en
Publication of JP2003290977A publication Critical patent/JP2003290977A/en
Application granted granted Critical
Publication of JP3847647B2 publication Critical patent/JP3847647B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Arc Welding In General (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a solid wire for Ar-CO<SB>2</SB>mixed gas shielded arc welding which is good in welding workability and is excellent in the strength and stable toughness of weld metal even if high-efficiency welding is performed under welding conditions of a high electric current, high heat input and high interpass temperature. <P>SOLUTION: The solid wire for Ar-CO<SB>2</SB>mixed gas shielded arc welding which performs welding by using gaseous Ar containing 5 to 40% CO<SB>2</SB>contains, by weight %, 0.01 to 0.1% C, 0.3 to 0.65% Si, 1.35 to 1.95% Mn, and 1.85 to 2.45% Si+Mn, 0.02 to 0.15% Ti, 0.1 to 0.3% Mo, ≥0.006% O, ≤0.005% N, and if necessary, 0.005 to 0.05% one or two kinds of Al or Zr, and the balance iron and inevitable impurities. <P>COPYRIGHT: (C)2004,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、主として490N
/mm2級高張力鋼に使用するガスシールドアーク溶接
用ソリッドワイヤに関し、特に高電流、高入熱、高パス
間温度の条件で多層盛溶接しても溶接金属の強度及び安
定した靭性が確保でき、かつ、スパッタ発生量が極めて
少ないなど良好な溶接作業性の確保できるAr−CO2
混合ガスシールドアーク溶接用ソリッドワイヤに係わる
ものである。
TECHNICAL FIELD The present invention mainly relates to 490N.
/ Mm 2 class solid wire for gas shield arc welding used for high-strength steel, ensuring strength and stable toughness of weld metal even in multi-pass welding under conditions of high current, high heat input, and high pass temperature Ar-CO 2 capable of ensuring good welding workability and capable of producing extremely small amount of spatter
The present invention relates to a solid wire for mixed gas shielded arc welding.

【0002】[0002]

【従来の技術】近年、鉄骨・建築分野では溶接施工方法
としてガスシールドアーク溶接が多用されている。その
溶接方法も高能率化を目的として、適用される溶接条件
は高電流で高入熱溶接の条件が採用されつつある。しか
も、各溶接パスは連続的に短時間で次の溶接パスを行う
ため高パス間温度の状態で溶接することになる。そし
て、このような高入熱で高パス間温度の条件で溶接する
状態は、さらに高入熱側で高パス間温度側に移行しつつ
あるのが現状である。そして、要求される溶接金属の強
度特性及び靭性特性は高度化する傾向にある。このよう
な高電流で高入熱、高パス間温度の条件で溶接された溶
接金属は、強度の低下と靭性が劣化する傾向となり、健
全な溶接継手を確保できない場合があった。そのため、
このような状況下においても優れた溶接金属が得られる
溶接材料が強く望まれている。一般的な溶接方法におい
ては従来から靭性向上手段として、Ti−B系の溶接材
料が検討され、いくつかの提案がされている。
2. Description of the Related Art In recent years, gas shielded arc welding has been widely used as a welding construction method in the field of steel frames and construction. For the purpose of improving the efficiency of the welding method, the welding conditions applied are those of high current and high heat input welding. Moreover, since each welding pass continuously performs the next welding pass in a short time, welding is performed at a high interpass temperature. The current state of welding under the condition of such high heat input and high interpass temperature is shifting to the high interpass temperature side on the higher heat input side. Then, the required strength characteristics and toughness characteristics of the weld metal tend to be advanced. The weld metal welded under the conditions of such high current, high heat input, and high temperature between passes tends to deteriorate in strength and toughness, and it may not be possible to secure a sound welded joint. for that reason,
There is a strong demand for a welding material capable of obtaining an excellent weld metal even under such circumstances. In a general welding method, a Ti-B-based welding material has been studied as a means for improving toughness, and some proposals have been made.

【0003】たとえば、特開平10−230387号公
報に、軟鋼または490N/mm2級高張力鋼を高入熱
及び高パス間温度の条件で溶接する炭酸ガス溶接用ワイ
ヤとして、Ti−B系成分で、パラメータPBT(B/
Ti)、PBS(B×S)を規制したワイヤが提案され
ている。このワイヤは、高入熱、高パス間温度の溶接条
件で靭性が得られるというものである。しかし、その靭
性はバラツキが生じて十分ではない。さらに、炭酸ガス
シールドアーク溶接であるのでスパッタ発生量及びスラ
グ生成量が多く、溶接トーチの清掃やビード表面のスラ
グ取りなど溶接作業性及び溶接能率が悪い。
For example, Japanese Unexamined Patent Publication (Kokai) No. 10-230387 discloses a Ti-B-based component as a carbon dioxide welding wire for welding mild steel or 490 N / mm 2 class high-strength steel under conditions of high heat input and high pass temperature. And the parameter PBT (B /
Wires that regulate Ti) and PBS (B × S) have been proposed. This wire can obtain toughness under welding conditions of high heat input and high interpass temperature. However, its toughness varies and is not sufficient. Further, since carbon dioxide shield arc welding is used, a large amount of spatter and slag are produced, and the welding workability and welding efficiency such as cleaning the welding torch and removing slag from the bead surface are poor.

【0004】また、特開昭54−40250号公報に
は、パラメータ(Pa=Ti×B×104)を1〜25
に規制した高能率ガスシールドアーク溶接用ワイヤの提
案がある。この技術はAr−CO2混合ガスシールドア
ーク溶接で、溶接入熱量が最大40kJ/cm程度にお
ける両面1層溶接での低温靭性向上を目的としたもので
ある。
Further, in JP-A-54-40250, the parameter (Pa = Ti × B × 10 4 ) is set to 1 to 25.
There is a proposal for a high-efficiency gas shielded arc welding wire regulated by. This technique is Ar-CO 2 mixed gas shielded arc welding, in which welding heat input for the purpose of low-temperature toughness enhancement of double-sided one-layer welding in order up to 40 kJ / cm.

【0005】特開昭63−157795号公報には、6
0キロ級鋼以上のAr−CO2等の混合ガス溶接におけ
るPWHT後の低温靭性改善を目的とし、Ti−B系に
最大6%までのNiを添加することにより低温靭性を向
上させる技術の記載がある。しかし、これらのガスシー
ルドアーク溶接用ワイヤを用いて高電流で高入熱、さら
に高パス間温度の条件で溶接した場合十分な靭性が得ら
れない。
In Japanese Patent Laid-Open No. 63-157795, there are 6
The purpose of low-temperature toughness improvement after PWHT in the mixed gas welding, such 0 kg class steels or more Ar-CO 2, wherein the technique for improving the low temperature toughness by the addition of Ni up to 6% Ti-B system There is. However, when these gas shielded arc welding wires are used for welding under conditions of high current, high heat input, and high interpass temperature, sufficient toughness cannot be obtained.

【0006】前述のように、溶接金属を高靭性化するた
めの手法として、溶接材料ではTi−B系の溶接ワイヤ
が種々提案されているものの、本発明の意図する高電流
で高入熱、高パス間温度の溶接条件での高靭性化は図ら
れておらず、また溶接作業性及び溶接能率も満足するに
至っていないのが実状である。
As described above, various Ti-B-based welding wires have been proposed as a welding material as a method for increasing the toughness of the weld metal. Under the actual conditions, the toughness has not been increased under the welding conditions of high interpass temperature, nor has the welding workability and welding efficiency been satisfied.

【0007】[0007]

【発明が解決しようとする課題】本発明は、特に高電
流、高入熱、高パス間温度の条件で多層盛溶接しても溶
接金属の強度及び安定した靭性が確保でき、かつ、スパ
ッタ発生量及びスラグ生成量が極めて少ないなど良好な
溶接作業性及び溶接能率を確保できるAr−CO2混合
ガスシールドアーク溶接用ソリッドワイヤを提供するこ
とを目的とする。
DISCLOSURE OF THE INVENTION The present invention can secure the strength and stable toughness of the weld metal even when multi-pass welding is performed particularly under the conditions of high current, high heat input, and high temperature between passes, and spatter is generated. An object of the present invention is to provide a solid wire for Ar—CO 2 mixed gas shielded arc welding which can secure good welding workability and welding efficiency such as extremely small amount and slag generation amount.

【0008】[0008]

【課題を解決するための手段】本発明の要旨は、CO2
を5〜40%含むArガスを用いて溶接するAr−CO
2混合ガスシールドアーク溶接用ソリッドワイヤにおい
て、質量%で、C:0.01〜0.1%、Si:0.3
〜0.65%、Mn:1.35〜1.95%、かつ、S
i+Mn:1.85〜2.45%、Ti:0.02〜
0.15%、Mo:0.1〜0.3%、O:≧0.00
6%、N:≦0.005%を含有し、残部が鉄及び不可
避不純物であることを特徴とするAr−CO2混合ガス
シールドアーク溶接用ソリッドワイヤにある。
The gist of the present invention is CO 2
-CO welding with Ar gas containing 5-40%
2 In mixed gas shielded arc welding solid wire, in mass%, C: 0.01 to 0.1%, Si: 0.3
~ 0.65%, Mn: 1.35 to 1.95%, and S
i + Mn: 1.85 to 2.45%, Ti: 0.02 to
0.15%, Mo: 0.1-0.3%, O: ≧ 0.00
6%, N: contains ≦ 0.005%, in Ar-CO 2 mixed gas shielded arc welding solid wire and the balance being iron and unavoidable impurities.

【0009】さらに、AlまたはZrの1種または2種
を0.005〜0.05%含有することも特徴とする。
Further, it is characterized by containing 0.005 to 0.05% of one or two of Al or Zr.

【0010】[0010]

【発明の実施の形態】以下、本発明について詳細に説明
する。
BEST MODE FOR CARRYING OUT THE INVENTION The present invention will be described in detail below.

【0011】高電流、高入熱、高パス間温度の溶接条件
における最も重要な課題として、溶接金属の靭性が低下
することであるが、この靭性を確保するための手段とし
て使用ガスをAr主体として溶接金属の低酸素化とSi
とMnの和を特定するとともに、Tiの添加が有効であ
る。また、特に安定した強度確保と靭性の面からMoの
適量添加が有効であり、Moは焼入性増大元素として作
用し、溶接金属を微細化して溶接金属の靭性向上に重要
な元素であることが分かった。さらに、靭性の安定には
溶接金属のN量を低くすることが有効であるが、Ar主
体のシールドガスを用いて高電流、高入熱、高パス間温
度の溶接条件で溶接した場合、溶融プールは、低入熱、
低パス間温度の溶接条件に比べて遙かに加熱され溶融プ
ールが大きい。したがって、溶融プールへのシールド性
が悪くなって大気からNが侵入し溶接金属は窒化して靭
性は低下するが微量のAl及びZrを添加することによ
ってNによる靭性の低下を抑制する効果があることを突
き止めた。
The most important issue under the welding conditions of high current, high heat input, and high interpass temperature is to reduce the toughness of the weld metal. As a means for ensuring this toughness, the gas used is mainly Ar. As low oxygen content of weld metal and Si
And addition of Mn are specified, and addition of Ti is effective. Further, it is particularly effective to add an appropriate amount of Mo from the viewpoint of securing stable strength and toughness, and Mo acts as an element for increasing hardenability, and is an important element for refining the weld metal to improve the toughness of the weld metal. I understood. Furthermore, it is effective to lower the N content of the weld metal to stabilize toughness, but when welding is performed using Ar-based shield gas under welding conditions of high current, high heat input, and high interpass temperature, melting The pool has low heat input,
Compared to welding conditions of low interpass temperature, it is much heated and the molten pool is large. Therefore, although the shielding property to the molten pool is deteriorated and N penetrates from the atmosphere to nitride the weld metal to lower the toughness, addition of a trace amount of Al and Zr has an effect of suppressing the toughness reduction by N. I found out that.

【0012】また、スパッタ発生量の低減は、ワイヤ成
分中のTi及びシールドガスをAr主体とすること、ス
ラグ発生量の抑制は、前記シールドガスをAr主体とす
ることとSiとMnの和及びTi量を特定することが有
効である。
The amount of spatter generated is reduced by mainly using Ti and shield gas in the wire component as Ar, and the amount of slag generated is suppressed by mainly using the shield gas as Ar and the sum of Si and Mn. It is effective to specify the Ti amount.

【0013】本発明は、前記の知見によりなされたもの
であるが、これらの効果は、シールドガス組成、ワイヤ
各成分それぞれの共存による単独及び相乗効果によりな
し得たものであるが以下に、それぞれのワイヤ各成分元
素の添加理由及び限定理由について詳述する。
The present invention has been made on the basis of the above-mentioned findings, and these effects can be achieved by a single and synergistic effect due to the coexistence of the shielding gas composition and each component of the wire. The reason for adding each element element of the wire and the reason for limitation will be described in detail.

【0014】(C:0.01〜0.1質量%)Cは固溶
強化により溶接金属の強度確保に必要な元素である反
面、硬さの増加やひずみ時効による靭性低下を起こしや
すいため、ワイヤとしてはこれらを勘案して上限を制限
している。高電流、高入熱、高パス間温度の溶接条件で
は、0.1質量%(以下、%という。)を超える添加は
強度を過剰にし、靭性を損なうために0.1%以下に制
限した。一方、0.01%未満であると強度の確保が困
難となる。
(C: 0.01 to 0.1% by mass) C is an element necessary for securing the strength of the weld metal by solid solution strengthening, but on the other hand, it tends to cause an increase in hardness and a decrease in toughness due to strain aging. The upper limit of the wire is limited in consideration of these. Under welding conditions of high current, high heat input, and high temperature between passes, addition of more than 0.1 mass% (hereinafter referred to as%) excessively increases the strength and limits the toughness to 0.1% or less. . On the other hand, if it is less than 0.01%, it becomes difficult to secure the strength.

【0015】(Si:0.3〜0.65質量%)Siは
主要脱酸剤であり、溶接金属の酸素量を低下させ靭性向
上に必要な元素である。特に高溶接電流域ではSiの消
耗が大きいため、通常より高めの添加を必要とする。S
iが0.3%未満では脱酸不足となり急激に靭性が低下
する。一方、0.65%を超えると溶接金属素地が硬化
して靭性への悪影響が顕著となる。
(Si: 0.3 to 0.65% by mass) Si is a main deoxidizer, and is an element necessary for improving the toughness by lowering the oxygen content of the weld metal. In particular, since the consumption of Si is large in the high welding current region, a higher addition than usual is required. S
When i is less than 0.3%, deoxidation becomes insufficient and the toughness is rapidly lowered. On the other hand, if it exceeds 0.65%, the weld metal base is hardened and the adverse effect on the toughness becomes remarkable.

【0016】(Mn:1.35〜1.95質量%)Mn
はSiとともに主要脱酸剤であるとともに、溶接金属の
強度確保及びオーステナイトを安定化させて靭性向上を
図る目的で添加する。Siと同様に高電流条件での酸化
消耗を考慮した添加が必要で、Si量との兼ね合いもあ
るが、1.35%未満では靭性が確保できず、1.95
%を超える添加量では強度が高くなり靭性が低下する。
(Mn: 1.35 to 1.95 mass%) Mn
Is a main deoxidizer together with Si, and is added for the purpose of securing the strength of the weld metal and stabilizing austenite to improve the toughness. Similar to Si, it is necessary to add it in consideration of oxidation consumption under high current conditions, and there is a tradeoff with the amount of Si, but if it is less than 1.35%, toughness cannot be secured and 1.95.
If the addition amount exceeds%, the strength becomes high and the toughness decreases.

【0017】さらに、上記SiとMnは、Si+Mnで
1.85〜2.45%とする。Si+Mnが1.85%
未満であると靭性が低くなり、Si+Mnが2.45%
を超えるとスラグ生成量が多くなり、連続して溶接する
とスラグ巻き込み欠陥が生じるので、数パス毎にビード
表面に付着したスラグを除去する必要があり作業能率が
悪くなる。
Further, the above Si and Mn are Si + Mn and are set to 1.85 to 2.45%. Si + Mn is 1.85%
If it is less than 2, the toughness is reduced and Si + Mn is 2.45%.
If it exceeds, the amount of slag is increased, and if welding is continuously performed, a slag inclusion defect occurs. Therefore, it is necessary to remove the slag adhering to the bead surface after every several passes, resulting in poor work efficiency.

【0018】(Ti:0.02〜0.15質量%)Ti
は、溶接金属の組織を微細化して、靭性向上には不可欠
な元素である。靭性確保に必要なTi量は、溶接金属の
酸素量によって異なり、低酸素となるAr−CO2ガス
シールドアーク溶接では0.02〜0.15%程度が適
正である。
(Ti: 0.02 to 0.15% by mass) Ti
Is an element essential for improving the toughness by refining the structure of the weld metal. The amount of Ti required to secure the toughness varies depending on the amount of oxygen in the weld metal, and in the case of Ar-CO 2 gas shielded arc welding where oxygen is low, about 0.02 to 0.15% is appropriate.

【0019】Tiが0.02%未満であると靭性が低く
なり、スパッタ発生量もやや多くなる。また、0.2%
を超えると過剰にSol.Tiが固溶して溶接金属の硬
化が著しくなり、靭性を著しく低下させるとともにスラ
グ生成量が多くなり作業能率が悪くなる。
If the Ti content is less than 0.02%, the toughness is lowered and the spatter generation amount is slightly increased. Also, 0.2%
Excessive Sol. When Ti is solid-dissolved, the weld metal is significantly hardened, the toughness is remarkably reduced, and the amount of slag is increased, resulting in poor work efficiency.

【0020】(Mo:0.1〜0.3質量%)Moは変
態温度を低下して組織を微細化して靭性向上に有効で、
特に高電流、高入熱、高パス間温度の条件での靭性向上
に有効に作用する。その効果は0.1%以上の添加で表
れ、0.3%を超えると強度増加による靭性への効果が
小さくなる。
(Mo: 0.1 to 0.3% by mass) Mo is effective in lowering the transformation temperature and refining the structure to improve toughness.
Particularly, it effectively works to improve the toughness under the conditions of high current, high heat input, and high temperature between passes. The effect is exhibited by the addition of 0.1% or more, and if it exceeds 0.3%, the effect on the toughness due to the increase in strength becomes small.

【0021】(O:≧0.006質量%)酸素は、他の
元素と異なる目的で添加する。高電流、高入熱、高パス
間温度の溶接条件では溶融プールは大きくかつ高温にな
るため、Ar主体のガスシールドアーク溶接においても
溶滴移行状態が通常の溶接に比べて劣化することが判明
した。すなわち、溶滴が大粒化してスパッタ発生量が増
加し、アークが不安定になるなど溶接作業性が劣化す
る。この溶接作業性の向上について検討した結果、ワイ
ヤの酸素を多くすると溶滴を小さくしてスパッタ発生量
を少なくすることが判った。この酸素の効果は0.00
6%以上の添加で顕著になる。ワイヤの酸素は、溶解時
に添加してもあるいはワイヤ表面素地に粒界酸化層を付
与しても良い。酸素量の上限についても特に限定しない
が、0.05%以下がワイヤ送給性や製造コストの点で
好ましい。
(O: ≧ 0.006% by mass) Oxygen is added for the purpose different from other elements. Under welding conditions of high current, high heat input, and high temperature between passes, the molten pool is large and high in temperature, so it was found that the droplet transfer state deteriorates compared to normal welding even in Ar-based gas shielded arc welding. did. That is, the droplets are increased in size, the amount of spatter is increased, the arc becomes unstable, and the welding workability is deteriorated. As a result of studying the improvement of the welding workability, it was found that increasing the oxygen content of the wire reduces the droplet size and reduces the spatter generation amount. The effect of this oxygen is 0.00
It becomes remarkable with the addition of 6% or more. The oxygen of the wire may be added at the time of melting or may give a grain boundary oxide layer to the wire surface base material. The upper limit of the amount of oxygen is also not particularly limited, but 0.05% or less is preferable in terms of wire feedability and manufacturing cost.

【0022】(N:≦0.005質量%)溶接金属の衝
撃靭性を安定して向上させるには、N量の低下が必須条
件となるが、その限界量は0.005%以下である。
(N: ≤ 0.005% by mass) In order to stably improve the impact toughness of the weld metal, it is essential to reduce the amount of N, but the limit amount is 0.005% or less.

【0023】(AlまたはZrの1種または2種で0.
005〜0.05%質量)高電流、高入熱、高パス間温
度の溶接条件におけるガスシールドアーク溶接において
は、溶融プールが大きくなり、場合によっては十分なシ
ールド性が得られず溶接金属に大気中の窒素が侵入する
場合がある。このようにシールド性が損なわれ窒素が侵
入した場合には溶接金属の靭性は著しく劣化する。しか
し、Al、Zrを添加することによって、微量の窒素侵
入による靭性のバラツキ及び低下を抑制することができ
る。これはAl、ZrがNとの調和力が強く固溶Nを固
定して歪み時効の影響を軽減するものと考えられる。そ
の効果は、AlまたはZrの1種または2種の合計で
0.005%以上の添加から現れるが、0.05%を超
える添加はむしろ靭性を低下させる。
(One or two of Al or Zr is 0.
(005-0.05% mass) In gas shielded arc welding under welding conditions of high current, high heat input, and high temperature between passes, the molten pool becomes large, and in some cases sufficient shielding cannot be obtained, resulting in weld metal. Nitrogen in the atmosphere may enter. Thus, when the shielding property is impaired and nitrogen penetrates, the toughness of the weld metal deteriorates significantly. However, by adding Al and Zr, it is possible to suppress variation and deterioration of toughness due to a slight amount of nitrogen intrusion. It is considered that this is because Al and Zr have a strong harmony with N and fix the solid solution N to reduce the influence of strain aging. The effect appears from the addition of 0.005% or more in total of one kind or two kinds of Al or Zr, but the addition exceeding 0.05% rather lowers the toughness.

【0024】なお、前述した成分以外の強度及び靭性の
調整としてV及びNbを0.005%以下の範囲で添加
することができる。また、不可避不純物であるPは0.
015%以下、Sは0.01%以下であることが好まし
い。
It should be noted that V and Nb can be added in the range of 0.005% or less in order to adjust the strength and toughness other than the above-mentioned components. In addition, the unavoidable impurity P is 0.
It is preferable that the content is 015% or less and the content of S is 0.01% or less.

【0025】本発明におけるガスシールドアーク溶接用
ワイヤは、Arを主体としCO2を5〜40%混合した
Ar−CO2混合ガスを用いて溶接する。混合ガス中の
CO2ガスが5%未満であると、溶接金属にブロホール
が生じる。40%を超えると、溶滴が大粒化してスパッ
タ発生量が増加し、アークが不安定になる。また、スラ
グ生成量が多くなり作業能率が悪くなる。
The gas shielded arc welding wire according to the present invention, welding using Ar-CO 2 mixed gas of CO 2 mainly of Ar mixed 5-40%. If the CO 2 gas content in the mixed gas is less than 5%, brohol occurs in the weld metal. If it exceeds 40%, the droplets become large and the amount of spatter generated increases, and the arc becomes unstable. In addition, the amount of slag produced increases and work efficiency deteriorates.

【0026】以下、本発明の効果を実施例によりさらに
詳述する。
The effects of the present invention will be described in more detail below with reference to examples.

【0027】[0027]

【実施例】まず、原料鋼を真空溶解し、鍛造、圧延、伸
線そしてめっきした後、1.4mm径まで伸線して20
kg巻のスプール巻ワイヤとした。表1に試作したワイ
ヤの化学成分を示す。
EXAMPLE First, a raw material steel is melted in a vacuum, forged, rolled, drawn and plated, and then drawn to a diameter of 1.4 mm to 20 mm.
It was a spool winding wire of kg winding. Table 1 shows the chemical composition of the prototype wire.

【0028】[0028]

【表1】 [Table 1]

【0029】表1のワイヤを用い、表2に示す高電流、
高入熱、高パス間温度の溶接条件でCO2混合量を変え
て溶着金属試験(開先形状、試験片採取位置はJIS
Z3312に準拠)を行った。
Using the wires in Table 1, the high currents shown in Table 2,
Welding metal test by changing the amount of CO 2 mixed under welding conditions of high heat input and high temperature between passes (groove shape, test piece sampling position is JIS
According to Z3312) was performed.

【0030】[0030]

【表2】 [Table 2]

【0031】溶接金属の評価は、引張強さが490N/
mm2以上を合格とし、靭性は0℃で各5本衝撃試験を
行い、衝撃吸収エネルギーで最小の値が100J以上を
合格とした。
The weld metal was evaluated to have a tensile strength of 490 N /
mm 2 or more was determined to be acceptable, and toughness was subjected to an impact test of 5 pieces each at 0 ° C., and a minimum value of impact absorption energy was 100 J or greater.

【0032】スパッタ発生量は、溶着金属試験とは別に
銅製の捕集箱を用いて、ビードオンプレート溶接により
表2の条件で3回溶接(1回の溶接時間1.5min)
して捕集したスパッタ量を1分間の発生量に換算した。
スパッタ発生量は2g/min以下でアークが安定して
作業性が良好である。
The amount of spatter generated was welded three times under the conditions shown in Table 2 by bead-on-plate welding using a copper collection box separately from the deposited metal test (one welding time of 1.5 min).
Then, the amount of spatter collected was converted into the amount of sputter generated per minute.
When the amount of spatter is 2 g / min or less, the arc is stable and workability is good.

【0033】また、スラグ生成量は目視にて行い最終層
までスラグ除去せずに溶接できたものを少ないと表し
た。それらの結果を表3にまとめて示す。
Further, the amount of slag formed was visually observed, and it was shown that a small amount of slag could be welded to the final layer without removing the slag. The results are summarized in Table 3.

【0034】[0034]

【表3】 [Table 3]

【0035】表3中、試験No.1〜11が本発明例、
試験No.12〜26は比較例である。
In Table 3, the test No. 1 to 11 are examples of the present invention,
Test No. 12 to 26 are comparative examples.

【0036】本発明例である試験No.1〜11は、シ
ールドガスのCO2混合量及びワイヤ記号W1〜11の
成分が適正であるので、溶接金属の強度、衝撃吸収エネ
ルギーとも良好で、溶接時のスラグ生成量及びスパッタ
発生量も少なくアークが安定し、極めて満足な結果であ
った。
Test No. which is an example of the present invention. In Nos. 1 to 11, since the CO 2 mixing amount of the shield gas and the components of the wire symbols W1 to 11 are appropriate, both the strength of the weld metal and the impact absorption energy are good, and the slag generation amount and spatter generation amount during welding are small. The arc was stable and the result was extremely satisfactory.

【0037】比較例中、試験No.12はワイヤ記号W
12のCが高く、試験No.16はワイヤ記号W16の
Mnが高く、試験No.21はワイヤ記号W21のMo
が高いのでいずれも溶接金属の引張強さが高く衝撃吸収
エネルギーが低くなった。
Test No. in the comparative example. 12 is a wire symbol W
C of 12 is high and the test No. No. 16 has a high Mn of wire symbol W16, and the test No. 21 is Mo with wire symbol W21
In all cases, the tensile strength of the weld metal was high and the impact absorption energy was low.

【0038】試験No.13はワイヤ記号W13のCが
低いので、溶接金属の引張強さが低く、さらに、Alと
Zrの合計量が高いので衝撃吸収エネルギーが低くなっ
た。
Test No. No. 13 had a low C in the wire symbol W13, so the tensile strength of the weld metal was low, and the total amount of Al and Zr was high, so the impact absorption energy was low.

【0039】試験No.14はワイヤ記号W14のSi
が高いので、試験No.15はワイヤ記号W15のSi
が低いので、試験No.17はワイヤ記号W17のMn
が低いので、試験No.19はワイヤ記号W19のSi
+Mnが低いので、試験No.22はワイヤ記号W22
のMoが低いので、衝撃吸収エネルギーが低くなった。
Test No. 14 is Si of wire symbol W14
The test No. 15 is the wire symbol W15 Si
Is low, the test No. 17 is Mn of wire symbol W17
Is low, the test No. 19 is Si of wire symbol W19
Since + Mn is low, the test No. 22 is a wire symbol W22
Since the Mo content is low, the impact absorption energy is low.

【0040】試験No.18はワイヤ記号W18のSi
+Mnが高いの、でスラグ生成量が多く、また、Tiが
低いのでスパッタ発生量がやや多く溶接金属の衝撃吸収
エネルギーも低くなった。
Test No. 18 is the wire symbol W18 Si
Since + Mn is high, a large amount of slag is generated, and since Ti is low, a large amount of spatter is generated, and the impact absorption energy of the weld metal is also low.

【0041】試験No.20はワイヤ記号W20のTi
が高いので、衝撃吸収エネルギーが低く、スラグ生成量
もやや多くなった。
Test No. 20 is Ti with wire symbol W20
, The impact absorption energy was low and the amount of slag produced was also slightly high.

【0042】試験No.23はワイヤ記号W23のAl
とZrの合計量が低いので、衝撃吸収エネルギーのばら
つきが大きく、また、酸素が低いので、スパッタ発生量
が多くなった。
Test No. 23 is Al with wire symbol W23
Since the total amount of Zr and Zr is low, the variation in shock absorption energy is large, and since oxygen is low, the amount of spatter generated is large.

【0043】試験No.24はワイヤ記号W24のNが
高いので、衝撃吸収エネルギーのばらつきが大きくなっ
た。
Test No. In No. 24, since the wire symbol W24 has a high N, the variation in the impact absorption energy is large.

【0044】試験No.25はシールドガス中のCO2
量が少ないので、溶接金属にブロホールが発生した。し
たがって、機械試験は中止した。
Test No. 25 is CO 2 in the shield gas
Due to the small amount, brohol was generated in the weld metal. Therefore, the mechanical test was discontinued.

【0045】試験No.26はシールドガス中のCO2
量が多いので、スパッタ発生量及びスラグ生成量が多く
なった。
Test No. 26 is CO 2 in the shield gas
Since the amount is large, the spatter generation amount and the slag generation amount are large.

【0046】[0046]

【発明の効果】以上詳述したように、本発明のAr−C
2混合ガスシールドアーク溶接用ソリッドワイヤによ
れば、高電流、高入熱、高パス間温度の溶接条件におい
て、引張強度及び安定した靭性に優れた溶接金属を確保
でき、かつ、スパッタ発生量及びスラグ生成量が極めて
少ないなど良好な溶接作業性及び溶接能率を確保できる
Ar−CO2混合ガスシールドアーク溶接用ソリッドワ
イヤを提供することができる。
As described above in detail, the Ar-C of the present invention
According to the solid wire for O 2 mixed gas shielded arc welding, under the welding conditions of high current, high heat input and high pass temperature, it is possible to secure the weld metal with excellent tensile strength and stable toughness, and the spatter generation amount. Further, it is possible to provide a solid wire for Ar—CO 2 mixed gas shielded arc welding which can secure good welding workability and welding efficiency such as an extremely small amount of slag generation.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 CO2を5〜40%含むArガスを用い
て溶接するAr−CO2混合ガスシールドアーク溶接用
ソリッドワイヤにおいて、質量%で、C:0.01〜
0.1%、Si:0.3〜0.65%、Mn:1.35
〜1.95%、かつ、Si+Mn:1.85〜2.45
%、Ti:0.02〜0.15%、Mo:0.1〜0.
3%、O:≧0.006%、N:≦0.005%を含有
し、残部が鉄及び不可避不純物であることを特徴とする
Ar−CO2混合ガスシールドアーク溶接用ソリッドワ
イヤ。
1. A solid wire for Ar-CO 2 mixed gas shielded arc welding for welding using Ar gas CO 2 and containing 5-40%, by mass% C: 0.01 to
0.1%, Si: 0.3 to 0.65%, Mn: 1.35
˜1.95%, and Si + Mn: 1.85-2.45
%, Ti: 0.02 to 0.15%, Mo: 0.1 to 0.
3%, O: ≧ 0.006% , N: contains ≦ 0.005%, Ar-CO 2 mixed gas shielded arc welding solid wire and the balance being iron and unavoidable impurities.
【請求項2】 質量%で、AlまたはZrの1種または
2種を0.005〜0.05%含有することを特徴とす
る請求項1記載のAr−CO2混合ガスシールドアーク
溶接用ソリッドワイヤ。
2. The solid for Ar—CO 2 mixed gas shielded arc welding according to claim 1, characterized in that it contains 0.005 to 0.05% by mass of one or two of Al or Zr. Wire.
JP2002090530A 2002-03-28 2002-03-28 Solid wire for Ar-CO2 mixed gas shielded arc welding Expired - Lifetime JP3847647B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002090530A JP3847647B2 (en) 2002-03-28 2002-03-28 Solid wire for Ar-CO2 mixed gas shielded arc welding

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002090530A JP3847647B2 (en) 2002-03-28 2002-03-28 Solid wire for Ar-CO2 mixed gas shielded arc welding

Publications (2)

Publication Number Publication Date
JP2003290977A true JP2003290977A (en) 2003-10-14
JP3847647B2 JP3847647B2 (en) 2006-11-22

Family

ID=29235829

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002090530A Expired - Lifetime JP3847647B2 (en) 2002-03-28 2002-03-28 Solid wire for Ar-CO2 mixed gas shielded arc welding

Country Status (1)

Country Link
JP (1) JP3847647B2 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57156893A (en) * 1981-03-23 1982-09-28 Daido Steel Co Ltd Welding material
JPH04339591A (en) * 1990-12-12 1992-11-26 Kobe Steel Ltd Filler metal for welding sintered material
JPH07251292A (en) * 1994-03-14 1995-10-03 Kobe Steel Ltd Solid wire for mag and pulsed mag welding of high tensile steel
JPH09168889A (en) * 1995-12-21 1997-06-30 Kobe Steel Ltd Gas shielded arc welding wire
JPH09168890A (en) * 1995-12-20 1997-06-30 Nippon Steel Weld Prod & Eng Co Ltd Gas shielded arc welding steel wire

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57156893A (en) * 1981-03-23 1982-09-28 Daido Steel Co Ltd Welding material
JPH04339591A (en) * 1990-12-12 1992-11-26 Kobe Steel Ltd Filler metal for welding sintered material
JPH07251292A (en) * 1994-03-14 1995-10-03 Kobe Steel Ltd Solid wire for mag and pulsed mag welding of high tensile steel
JPH09168890A (en) * 1995-12-20 1997-06-30 Nippon Steel Weld Prod & Eng Co Ltd Gas shielded arc welding steel wire
JPH09168889A (en) * 1995-12-21 1997-06-30 Kobe Steel Ltd Gas shielded arc welding wire

Also Published As

Publication number Publication date
JP3847647B2 (en) 2006-11-22

Similar Documents

Publication Publication Date Title
KR100920549B1 (en) Flux-cored wire for gas shielded arc welding
KR101970076B1 (en) Flux-cored wire for gas-shielded arc welding
JP5097499B2 (en) Flux-cored wire for gas shielded arc welding for low alloy heat resistant steel
JP5450260B2 (en) Weld metal with excellent hot crack resistance
CN112621016B (en) Welding material, weld metal, and electroslag welding method
JP4896691B2 (en) Solid wire for gas shielded arc welding
JP5449110B2 (en) Solid wire for Ar-CO2 mixed gas shielded arc welding
JP4625415B2 (en) Solid wire for gas shielded arc welding
JP2010064087A (en) Flux cored wire for gas-shielded arc welding
JP2018075613A (en) Non-consumable nozzle type electro-slag welding method and method for manufacturing electro-slag weld joint
KR100502571B1 (en) Flux cored wire for co2 gas shielded arc welding
JP4486528B2 (en) Electrogas arc welding method with excellent brittle fracture resistance of welds
JP2015182094A (en) Gas shielded arc welding method
JP3886737B2 (en) Solid wire for carbon dioxide shielded arc welding
JP4309172B2 (en) Low hydrogen coated arc welding rod for low alloy heat resistant steel
JP4529482B2 (en) Fillet welding method
JP3847647B2 (en) Solid wire for Ar-CO2 mixed gas shielded arc welding
JP2004188428A (en) Steel wire for carbon dioxide gas-shielded arc welding, and welding method using the same
JP2000317678A (en) Solid wire for high toughness carbon dioxide gas shield arc welding and welding method
JP3862213B2 (en) Welding wire for gas shielded arc welding
JP3718464B2 (en) Flux-cored wire for gas shielded arc welding
JPH11239892A (en) Solid wire for carbon dioxide shielded arc welding and its welding method
JP2004249353A (en) Steel wire for carbon dioxide gas shielded arc welding, and welding method using the same
JPH1110391A (en) Flux cored wire for multielectrode vertical electrogas arc welding for extra thick plate
JP4673048B2 (en) Gas shielded arc welding wire

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050608

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060530

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060726

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060822

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060823

R150 Certificate of patent or registration of utility model

Ref document number: 3847647

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090901

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100901

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110901

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120901

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130901

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term