JP2003290162A - Pulse-wave measurement apparatus and method for eliminating noise component - Google Patents

Pulse-wave measurement apparatus and method for eliminating noise component

Info

Publication number
JP2003290162A
JP2003290162A JP2002101630A JP2002101630A JP2003290162A JP 2003290162 A JP2003290162 A JP 2003290162A JP 2002101630 A JP2002101630 A JP 2002101630A JP 2002101630 A JP2002101630 A JP 2002101630A JP 2003290162 A JP2003290162 A JP 2003290162A
Authority
JP
Japan
Prior art keywords
pulse wave
frequency
finger
filter
light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002101630A
Other languages
Japanese (ja)
Other versions
JP2003290162A5 (en
JP3927997B2 (en
Inventor
Kazuo Okino
加州男 沖野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
MEDICA Inc U
U-MEDICA Inc
Original Assignee
MEDICA Inc U
U-MEDICA Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by MEDICA Inc U, U-MEDICA Inc filed Critical MEDICA Inc U
Priority to JP2002101630A priority Critical patent/JP3927997B2/en
Publication of JP2003290162A publication Critical patent/JP2003290162A/en
Publication of JP2003290162A5 publication Critical patent/JP2003290162A5/ja
Application granted granted Critical
Publication of JP3927997B2 publication Critical patent/JP3927997B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a pulse-wave measurement apparatus which eliminates noise component derived from the frequency of a commercial power source, and to provide a method for eliminating the noise component. <P>SOLUTION: The pulse-wave measurement apparatus comprises a pulse-wave sensor, filters to filter pulse-wave signals, and a means to measure information on the pulse-wave based on the filtered pulse-wave signals. A first order or a second order analog low pass filter, a preceding digital low pass filter, and a subsequent high-frequency cut-off digital differential filter constitute the filters. The preceding filter is constituted to have a response of approximately zero at either 50 Hz or 60 Hz of the frequency of the commercial power source, and the subsequent filter is constituted to have a response of approximately zero at the other frequency of the commercial power source. The noise component is eliminated by using these filters. <P>COPYRIGHT: (C)2004,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、脈波計測装置及び
ノイズ成分除去方法に関し、特に、指先容積脈波計測装
置、並びに脈波センサを用いて脈波情報を計測する際
に、商用電源周波数、その高調波に由来するノイズ成分
及びその他のノイズ成分を除去する方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a pulse wave measuring device and a noise component removing method, and more particularly to a commercial power supply frequency when measuring pulse wave information using a fingertip volume pulse wave measuring device and a pulse wave sensor. , A method of removing a noise component derived from its harmonics and other noise components.

【0002】[0002]

【従来の技術】従来の光電式脈波計においては、被験者
の指先がフォトダイオードからなる電極、特にアノード
に接近して置かれることから、また、フォトダイオード
の光電流を検出するための電流アンプの入力インピーダ
ンスが非常に高低抗であることから、電流アンプの出力
には被験者の指先からの誘導ノイズが大変乗りやすい。
しかも、室内の測定においては商用電源ラインからの誘
導ノイズが大変大きいため(図1に示すノイズの乗った
波形例を参照)、有用な脈波計測装置を提供するために
は、商用電源周波数50Hzと60Hzとの両方に由来
する誘導ノイズを除去する必要がある。
2. Description of the Related Art In a conventional photoelectric sphygmograph, a fingertip of a subject is placed close to an electrode composed of a photodiode, particularly an anode, and a current amplifier for detecting a photocurrent of the photodiode is used. Since the input impedance of is very high and low, the induced noise from the fingertip of the subject is very likely to get on the output of the current amplifier.
Moreover, since the induced noise from the commercial power supply line is very large in the indoor measurement (see the waveform example with noise shown in Fig. 1), in order to provide a useful pulse wave measuring device, the commercial power supply frequency 50 Hz It is necessary to remove the induced noise that originates from both and 60 Hz.

【0003】脈波において有効な周波数領域の20Hz
程度を遮断周波数とすれば、50Hzでの減衰率を−6
0dB(1/1,000:10ビットの分解能で無視でき
る減衰率)以下とすることができるアナログローパスフ
ィルター(Low Pass Filter)は10次以上となるので、
高価なものとなる。この際、遮断周波数特性を急峻なも
のにすると、階段状波形入力で発生するリンギング状の
波形変形が無視できなくなる。
20 Hz in the effective frequency range for pulse waves
If the cutoff frequency is approximately, the attenuation rate at 50 Hz is -6
Since the analog low pass filter that can be set to 0 dB (1 / 1,000: a negligible attenuation rate with 10-bit resolution) or less is 10th order or more,
It will be expensive. At this time, if the cutoff frequency characteristic is made steep, the ringing-like waveform deformation generated by the stepwise waveform input cannot be ignored.

【0004】また、加速度脈波(a、b、c、d、e波)
を利用して脈波情報を得ようとする場合、この加速度脈
波は元の指先容積脈波を2回微分して求めるので、微分
処理に伴う問題点に十分注意する必要がある。一般的
に、微分フィルターでは、高周波成分の振幅が周波数に
比例して大きく出るため、高周波成分の信号を強調して
見ることができるという利点はある。しかし、この際に
高周波のノイズも大きく強調されて見えるため、不要な
ノイズを有効な信号から明確に区別して適切に除去する
手段を設けることが必要となる。従って、この加速度脈
波を求めるための、精度の良いアナログフィルター回路
は複雑で高価なものとなる。
Acceleration pulse wave (a, b, c, d, e wave)
When the pulse wave information is to be obtained by using, the acceleration pulse wave is obtained by differentiating the original fingertip volume pulse wave twice, so it is necessary to pay sufficient attention to the problems associated with the differentiating process. Generally, in the differential filter, the amplitude of the high frequency component is large in proportion to the frequency, so that there is an advantage that the signal of the high frequency component can be emphasized and viewed. However, at this time, since high-frequency noise also appears to be greatly emphasized, it is necessary to provide a means for clearly distinguishing unnecessary noise from an effective signal and appropriately removing it. Therefore, an accurate analog filter circuit for obtaining this acceleration pulse wave becomes complicated and expensive.

【0005】このため、従来から、誘導ノイズ除去にデ
ジタルフィルターを用いることが提案されている。この
場合、従来の脈波計で用いられているサンプリング周波
数100〜200Samples/sec(Hz)を用いると、サン
プリング周波数付近の商用電源周波数高調波(120H
z、150Hz、180Hz等)を除去することができ
ないという問題がある。また、デジタルフィルターの次
数(係数の数)が大きく、遮断周波数特性の急峻なフィル
ターを設計する必要があるが、上記したように、遮断周
波数特性を急峻にすると波形のリンギングが発生するこ
とになる。
Therefore, it has been conventionally proposed to use a digital filter for removing induced noise. In this case, if the sampling frequency of 100 to 200 Samples / sec (Hz) used in the conventional pulse wave meter is used, the commercial power frequency harmonic (120H
(z, 150 Hz, 180 Hz, etc.) cannot be removed. Also, the order of the digital filter (the number of coefficients) is large, and it is necessary to design a filter with a sharp cutoff frequency characteristic, but as mentioned above, if the cutoff frequency characteristic is made sharp, waveform ringing will occur. .

【0006】そこで、以上の問題を解決するために、従
来提案されている光電式脈波計測装置においては、遮断
周波数10Hz程度のアナログフィルターが用いられて
いるのが実情である。この脈波計測装置では、通常、遮
断周波数10Hz程度の高域カットフィルターと、加速
度脈波を得るための微分処理を行うアナログ回路による
アナログフィルターとで構成される。微分フィルター
は、そのままでは、周波数特性が周波数に比例するた
め、高周波数由来のノイズに弱い。また、この場合、急
峻な立ちあがりのエッジや、心室弁閉止後に現れること
がある10Hz以上の揺らぎ等は計測できない。
Therefore, in order to solve the above-mentioned problems, in the photoelectric pulse wave measuring apparatus proposed hitherto, an analog filter having a cutoff frequency of about 10 Hz is actually used. This pulse wave measuring device is usually composed of a high frequency cut filter with a cutoff frequency of about 10 Hz and an analog filter by an analog circuit that performs a differential process to obtain an acceleration pulse wave. As it is, the differential filter is vulnerable to noise derived from high frequencies because the frequency characteristic is proportional to the frequency. Further, in this case, a sharp rising edge, a fluctuation of 10 Hz or more that may appear after closing the ventricle valve, and the like cannot be measured.

【0007】従って、加速度脈波を得るために二次微分
処理を行う際、高次の高精度高域カットフィルターを構
成する必要があり、従来の脈波計測装置では高価で規模
の大きな回路構成となってしまう。このため、上記した
ように、アナログフィルターの代わりにデジタルフィル
ターで処理する技術が開発され、例えば、一般に広く使
用されている光電式指尖容積脈波計では、次のような処
理をすることにより、その解決を図ろうとしている。
Therefore, it is necessary to construct a high-order, high-accuracy, high-frequency cut filter when performing the second-order differentiation process to obtain the acceleration pulse wave, and the conventional pulse wave measuring apparatus is expensive and has a large-scale circuit configuration. Will be. Therefore, as described above, a technique of processing with a digital filter instead of an analog filter has been developed. For example, in a generally widely used photoelectric fingertip plethysmometer, the following processing is performed. , I'm trying to solve it.

【0008】例えば、脈波アンプを、高域遮断周波数2
8Hzの二次ローパスフィルターを通してから、10.
6Hzの一次ローパスフィルターを通すように構成して
いる。A/D変換器では、サンプリング周波数250Sa
mples/secとし、デジタルフィルターとしては、微分フ
ィルターとして、差分フィルターとローパスフィルター
(17次のFinite Impulse Response Filter:以下、
「FIR」フィルターと称す。)とで構成したものを使
用している。
For example, a pulse wave amplifier is used as a high cutoff frequency 2
After passing an 8 Hz secondary low-pass filter, 10.
It is configured to pass a 6 Hz primary low-pass filter. A / D converter, sampling frequency 250Sa
mples / sec, digital filter as differential filter, differential filter and low-pass filter
(17th order Finite Impulse Response Filter:
It is called "FIR" filter. ) And is used.

【0009】[0009]

【発明が解決しようとする課題】上記従来技術において
提案された脈波アンプの場合、サンプリング周波数25
0Samples/secのFIRフィルターでローパスフィルタ
ーを構成すると、商用電源周波数50Hzの場合は、誘
導ノイズの減衰率60dB以上を達成することが可能で
ある。しかし、周波数特性にリンギングが発生するた
め、西日本地域における商用電源周波数60Hzでの誘
導ノイズの減衰率は50dB程度にしかならないという
問題がある。
In the case of the pulse wave amplifier proposed in the above prior art, the sampling frequency is 25
When a low-pass filter is configured with a 0 Samples / sec FIR filter, it is possible to achieve an induction noise attenuation rate of 60 dB or more when the commercial power supply frequency is 50 Hz. However, since ringing occurs in the frequency characteristics, there is a problem in that the attenuation rate of inductive noise at a commercial power supply frequency of 60 Hz in Western Japan is only about 50 dB.

【0010】二次ないし三次のローパスフィルターで
は、電源ラインからの誘導ノイズの振幅が、電源環境に
よっては容積脈波の振幅に達する。従って、商用電源周
波数60Hz由来のノイズ成分を加速度脈波の振幅に対
して100分の1以下とするためには、約1万倍の80
dB以上の減衰率を達成する必要がある。微分フィルタ
ーを差分フィルターで構成した場合には、サンプリング
周波数の四分の一の周波数(サンプリング周波数250S
amples/secの場合、62.5Hz)までが、周波数とと
もに感度が増大する微分特性を示し、サンプリング周波
数の二分の一の周波数(サンプリング周波数250Sampl
es/secの場合、125Hz)で感度がゼロとなる特性を
示す。電源周波数60Hzは、加速度脈波の主要な周波
数である5〜7Hzに対して、約10倍の周波数帯であ
る。従って、微分フィルターの周波数特性から、加速度
脈波においては、60Hz帯域のノイズは、加速度脈波
に対して約100倍に増幅されてしまうことになる。
In the second-order or third-order low-pass filter, the amplitude of inductive noise from the power supply line reaches the amplitude of the volume pulse wave depending on the power supply environment. Therefore, in order to reduce the noise component derived from the commercial power frequency of 60 Hz to 1/100 or less of the amplitude of the acceleration pulse wave, it is about 10,000 times 80 times.
It is necessary to achieve an attenuation rate of dB or higher. If the differential filter is composed of a differential filter, a frequency that is a quarter of the sampling frequency (sampling frequency 250S
In the case of amples / sec, up to 62.5 Hz shows a differential characteristic in which the sensitivity increases with frequency, and the frequency is half the sampling frequency (sampling frequency 250Sampl
In the case of es / sec, it shows a characteristic that the sensitivity becomes zero at 125 Hz. The power supply frequency of 60 Hz is a frequency band about 10 times higher than 5 to 7 Hz which is the main frequency of the acceleration pulse wave. Therefore, from the frequency characteristics of the differential filter, in the acceleration pulse wave, the noise in the 60 Hz band is amplified about 100 times that of the acceleration pulse wave.

【0011】また、デジタルフィルターを用いる場合、
上記従来技術におけるように、微分フィルターとして、
差分フィルターとローパスフィルターとで構成したもの
を用い、振幅の小さい波形で増幅度を上げると、商用電
源周波数のノイズを完全には除去できず、二次微分波形
に商用電源周波数のノイズ成分が見られるのが実情であ
る(図1参照)。さらに、デジタルフィルターの特性とし
て、サンプリング周波数付近のノイズは0Hz付近に折
り返されて出現する。従って、例えば、商用電源周波数
60Hzの4次の高調波240Hzのノイズは10Hz
のノイズとして出現する。本発明の課題は、上記従来技
術の問題点を解決することにあり、商用電源周波数とそ
の高調波由来のノイズ成分、及びその他のノイズ成分を
除去可能な脈波計測装置、及びこれらのノイズ成分を有
効に除去する方法を提供することにある。
When using a digital filter,
As in the above prior art, as a differential filter,
If you use a filter composed of a differential filter and a low-pass filter and increase the amplification factor in a waveform with a small amplitude, the noise of the commercial power frequency cannot be completely removed, and the noise component of the commercial power frequency can be seen in the second derivative waveform. It is the actual situation (see Fig. 1). Further, as a characteristic of the digital filter, noise near the sampling frequency appears by folding back around 0 Hz. Therefore, for example, the noise of the fourth harmonic 240 Hz of the commercial power frequency 60 Hz is 10 Hz.
Appears as noise. An object of the present invention is to solve the problems of the above-mentioned conventional techniques, and a pulse wave measuring device capable of removing a noise component derived from a commercial power supply frequency and its harmonics, and other noise components, and these noise components. The purpose is to provide a method of effectively removing.

【0012】[0012]

【課題を解決するための手段】本発明者は、脈波により
被験者の循環器系の状態変化や、その変化をもたらす体
調の変化を推定することができることより、脈波を再現
性よく測定し、かつ、測定の際の誘導ノイズを除くべく
鋭意研究開発を行ってきた。その結果、特定の構成を有
する脈波センサとデジタルフィルターとを用いることに
より、誘導ノイズが出現することなく、再現性よく正確
に脈波を測定できることに気がつき、本発明を完成させ
るに至った。
Means for Solving the Problems The present inventor can estimate the change in the condition of the circulatory system of a subject and the change in the physical condition that causes the change by means of the pulse wave, and thus the pulse wave can be measured with good reproducibility. In addition, we have conducted extensive research and development to eliminate induced noise during measurement. As a result, they realized that by using a pulse wave sensor having a specific configuration and a digital filter, a pulse wave can be accurately measured with good reproducibility without the appearance of induced noise, and the present invention was completed.

【0013】本発明の脈波計測装置は、脈波を検出して
脈波信号を出力する脈波センサと、該脈波信号を濾波し
て出力するフィルターと、該フィルターで濾波された脈
波信号に基づいて脈波情報を計測する手段とからなる脈
波計測装置であって、該フィルターが、遮断周波数20
〜30Hzの1次又は2次のローパスフィルターである
アナログフィルターと、遮断周波数15〜40Hzの初
段のデジタルローパスフィルターと、遮断周波数15〜
40Hzの後段の高域カットデシタル微分フィルターと
で構成されており、初段のデジタルローパスフィルター
において、商用電源周波数50Hz又は60Hzの一方
での応答が零点付近になるように構成すると共に、後段
の高域カットデジタル微分フィルターにおいて、該商用
電源周波数の他方での応答が零点付近となるように構成
することを特徴とする。このように構成することによ
り、商用電源周波数とその高調波由来のノイズ成分、及
びその他のノイズ成分が有効に除去され得る。
The pulse wave measuring device of the present invention comprises a pulse wave sensor for detecting a pulse wave and outputting a pulse wave signal, a filter for filtering and outputting the pulse wave signal, and a pulse wave filtered by the filter. A pulse wave measuring device comprising means for measuring pulse wave information based on a signal, wherein the filter has a cutoff frequency of 20
-30 Hz primary or secondary low-pass analog filter, cut-off frequency 15-40 Hz first stage digital low-pass filter, cut-off frequency 15-
It is composed of a high-frequency cut digital differential filter in the latter stage of 40 Hz, and the digital low-pass filter in the first stage is configured so that the response at one of the commercial power frequency 50 Hz or 60 Hz is near the zero point, and the high frequency in the latter stage. The cut digital differential filter is characterized in that the response at the other of the commercial power frequency is near the zero point. With this configuration, noise components derived from the commercial power supply frequency and its harmonics, and other noise components can be effectively removed.

【0014】上記脈波計測装置の構成において1次、2
次のアナログローパスフィルターの遮断周波数を20〜
30Hzとすれば、所望の減衰率を達成でき、また、急
峻な入力波形に対する応答にリンギング状の波形変形は
発生しない。また、初段のデジタルローパスフィルター
及び後段の広域カットデジタル微分フィルターにおける
遮断周波数が、15Hz未満であると従来の場合と同等
程度の性能しか得られず、また、遮断周波数が40Hz
を超えると急峻な変化のある入力波形に対する応答にリ
ンギング(振動波形)が生じる。
In the configuration of the above pulse wave measuring device,
The cutoff frequency of the next analog low pass filter is 20 ~
If the frequency is 30 Hz, a desired attenuation factor can be achieved, and ringing-like waveform deformation does not occur in the response to a steep input waveform. Further, if the cutoff frequency of the first stage digital low-pass filter and the wideband cut digital differential filter of the latter stage is less than 15 Hz, performance equivalent to that of the conventional case can be obtained, and the cutoff frequency is 40 Hz.
When it exceeds, ringing (oscillation waveform) occurs in the response to the input waveform with a sharp change.

【0015】上記初段のデジタルローパスフィルターに
おいて、商用電源周波数50Hz又は60Hzの一方で
の応答が零点付近になるように構成する場合、減衰率の
極大値が80dB(1/1000)以上となるように構成
すると共に、上記後段の高域カットデジタル微分フィル
ターにおいて、該商用電源周波数の他方での応答が零点
付近になるように構成する場合、減衰率の極大値が40
dB(1/100)以上となるように構成することが好ま
しい。初段のデジタルローパスフィルターにおいて、減
衰率の極大値が80dB未満となるように構成すると、
商用電源周波数由来のノイズ成分を加速度脈波の振幅に
対して100分の1以下とすることができず、誘導ノイ
ズを有効に除去できない。また、後段の高域カットデジ
タル微分フィルターにおいて、減衰率が40dB未満と
なるように構成すると、同様に誘導ノイズを有効に除去
できない。
In the above-mentioned digital low-pass filter at the first stage, when the response at one of the commercial power supply frequencies of 50 Hz and 60 Hz is configured to be near the zero point, the maximum value of the attenuation rate becomes 80 dB (1/1000) or more. In addition to the above configuration, in the latter high-frequency cut digital differential filter, when the response at the other side of the commercial power supply frequency is configured to be near the zero point, the maximum value of the attenuation rate is 40.
It is preferable to configure it to be not less than dB (1/100). In the first stage digital low-pass filter, if the maximum attenuation value is less than 80 dB,
The noise component derived from the commercial power frequency cannot be reduced to 1/100 or less of the amplitude of the acceleration pulse wave, and the induced noise cannot be effectively removed. Further, in the latter high-frequency cut digital differential filter, if the attenuation rate is less than 40 dB, similarly, the induced noise cannot be effectively removed.

【0016】上記脈波センサは、発光部と受光部とによ
り人体の指の脈波を測定する反射型の脈波センサであっ
て、該発光部を、該受光部より指の動脈血流の下流側
に、その上面が該受光部の上面よりも突出し、かつ所定
の距離だけ指の腹部を載置する床面よりも高くなるよう
に配置し、そして指の先端を該発光部よりも指動脈血流
のさらに下流側に装着するための空間が該床面の先端部
分に設けられていることを特徴とする。この脈波センサ
を組み込んだ脈波計測装置は、商用電源周波数とその高
調波由来のノイズ成分、及びその他のノイズ成分の除去
された有用な脈波情報を得ることができる。
The pulse wave sensor is a reflection type pulse wave sensor which measures a pulse wave of a finger of a human body by means of a light emitting section and a light receiving section. On the downstream side, the upper surface of the finger is arranged so as to project from the upper surface of the light receiving section and be higher than the floor surface on which the belly of the finger is placed by a predetermined distance. It is characterized in that a space for mounting on the further downstream side of the arterial blood flow is provided at the tip portion of the floor surface. A pulse wave measuring device incorporating this pulse wave sensor can obtain useful pulse wave information from which noise components derived from the commercial power supply frequency and its harmonics, and other noise components have been removed.

【0017】上記したように、発光部を、その上面が受
光部の上面よりも高くなるように配置し、指の先端が照
射光の経路よりも指動脈血流のさらに下流側に装着され
得る構造をとることにより、指の発光部に対する密着性
が良好になると共に、指動脈血流の下流側が圧迫されて
も、上流側が圧迫されるのに比べて脈波への影響は少な
く、その結果、再現性よく脈波情報を得ることができ
る。また、発光部が床面から突出しているため、指との
接触面積は発光部の上面の面積と等しくなる。これに対
し、発光部が床面から突出していない場合は、指と床面
との接触面積が増えるため、床面から突出している場合
と同一の単位面積あたりの接触圧を得るには、指にかか
る全圧力は突出している場合よりも大きな圧力となる。
この結果、波形の変化も大きなものとなる。
As described above, the light emitting unit is arranged so that its upper surface is higher than the upper surface of the light receiving unit, and the tip of the finger can be attached further downstream of the finger arterial blood flow than the path of the irradiation light. By adopting a structure, the adhesion to the light emitting part of the finger becomes good, and even if the downstream side of the finger blood flow is compressed, the effect on the pulse wave is less than that of the upstream side. The pulse wave information can be obtained with good reproducibility. Further, since the light emitting portion projects from the floor surface, the contact area with the finger is equal to the area of the upper surface of the light emitting portion. On the other hand, when the light emitting part does not project from the floor surface, the contact area between the finger and the floor surface increases. Therefore, to obtain the same contact pressure per unit area as when projecting from the floor surface, The total pressure applied to is greater than that when it is protruding.
As a result, the change in waveform becomes large.

【0018】また、受光部を発光部よりも指の動脈血流
の下流側に配置すると、以下述べるような押圧材を設け
た場合、押圧部と押圧部よりも指動脈血流の下流側では
うっ血が発生するので、この部分の近くに受光部を設け
ると抹消動脈血流の循環の悪い波形が得られ、適切な評
価ができない。
Further, when the light receiving portion is arranged on the downstream side of the arterial blood flow of the finger from the light emitting portion, when a pressing material as described below is provided, it is located on the downstream side of the finger artery blood flow from the pressing portion and the pressing portion. Since congestion occurs, if a light receiving section is provided near this portion, a waveform with poor circulation of peripheral arterial blood flow can be obtained, and proper evaluation cannot be performed.

【0019】上記脈波センサにおいて、該発光部は、そ
の上面が指の腹部を載置する床面より通常0.2〜2.
0mm程度、好ましくは0.3〜1.5mm程度、さら
に好ましくは0.4〜1.0mm程度高くなるように配
置されることが好ましい。発光部をこのような範囲内に
配置すると、指腹部の皮膚面が発光部上面から下に被さ
るので、測定データに対する外乱光や漏洩光や反射光の
影響を小さくすることができると共に、被験者が指を装
着する際に、その突出部に触れることによりセンサー位
置を認識して、指を所定の位置に載置し易いという利点
がある。しかし、0.2mm未満であると、センサー位
置を確認し難いので、指先を所定位置に載置し難いと共
に、測定データに対する反射光の影響が大きくなる。ま
た、2.0mmを超えると、指皮膚面が床面から浮くた
め、不安定な装着状態になると共に、指を載置した時の
指に対する圧力により波形の変形が生じて再現性が悪く
なり、測定される脈波データにバラツキが生じて、正確
な脈波情報を得ることが難しくなる。
In the above pulse wave sensor, the light emitting portion has an upper surface which is normally 0.2 to 2. than the floor surface on which the abdomen of the finger is placed.
It is preferable that the height is about 0 mm, preferably about 0.3 to 1.5 mm, and more preferably about 0.4 to 1.0 mm. When the light emitting section is arranged in such a range, the skin surface of the finger pad covers the light emitting section from the upper surface, so that it is possible to reduce the influence of ambient light, leaked light, or reflected light on the measurement data, and the subject When the finger is attached, there is an advantage that the sensor position can be recognized by touching the protruding portion and the finger can be easily placed at a predetermined position. However, if it is less than 0.2 mm, it is difficult to confirm the sensor position, and it is difficult to place the fingertip at a predetermined position, and the influence of reflected light on the measurement data becomes large. Also, if it exceeds 2.0 mm, the skin surface of the finger floats from the floor surface, resulting in an unstable wearing state and the waveform deformation due to the pressure applied to the finger when the finger is placed, resulting in poor reproducibility. However, the measured pulse wave data varies, and it becomes difficult to obtain accurate pulse wave information.

【0020】上記受光部は、その上面が指の腹部を載置
する床面と同じレベルになるように配置されているか、
又は所定の距離だけ該床面より低くなるように配置され
ていることが好ましい。発光部に対する指の密着性がよ
り良好になる。なお、受光部が指を押圧するような構造
とすると、その部分でうっ血が発生し、動脈血流の循環
が悪くなり、波形変化が生じ、適切な評価ができない。
上記指の先端を装着する空間の床面と対向する面に押圧
材を設け、該押圧材で発光部よりも指動脈血流のさらに
下流側の指先先端部を押さえるようにする。被験者は、
脈波測定中に意識的・無意識的に指先に力を入れる場合
がある。この場合に、力を抜くように指導すると、被験
者の指の形状によっては、センサーへの密着性が悪くな
ることがある。力を入れる場合も、力を抜く場合も、指
の小さな動きによるノイズが発生する。本発明のように
押圧材を設けることにより、ノイズが減少し、測定デー
タの再現性が増し、正確な脈波情報を得ることができ
る。
Is the light receiving portion arranged such that the upper surface thereof is at the same level as the floor surface on which the finger pad is placed,
Alternatively, it is preferably arranged so as to be lower than the floor surface by a predetermined distance. Adhesion of the finger to the light emitting portion becomes better. Note that if the light receiving portion is configured to press the finger, congestion will occur at that portion, the circulation of arterial blood flow will deteriorate, waveform changes will occur, and appropriate evaluation will not be possible.
A pressing member is provided on the surface of the space where the tip of the finger is mounted, which faces the floor surface, and the pressing member presses the tip of the fingertip further downstream of the finger artery blood flow than the light emitting portion. The subject is
The fingertips may be consciously or unconsciously put on the fingertip during the pulse wave measurement. In this case, if the subject is instructed to relax, the adhesion to the sensor may deteriorate depending on the shape of the subject's finger. Noise is generated by small movements of the finger both when applying force and when applying force. By providing the pressing member as in the present invention, noise is reduced, reproducibility of measurement data is increased, and accurate pulse wave information can be obtained.

【0021】上記したように、指の押圧部を発光部上面
の小面積に限るように構成してあるので、受光部は押圧
部の上流側の指動脈血流部分の脈波を正確に測定するこ
とができる。指が発光部上面以外をも押圧する場合に
は、押圧部位が指動脈血流の下流側にあったとしても、
受光部の測定部位が押圧の影響を受けるため、測定の再
現性が低下する。上記発光部の側面は、該発光部から指
内に照射される光が外部に漏れるのを阻止しかつ指の腹
部表面からの反射光を阻止するために、筒状の遮光壁で
囲まれていることが好ましい。
As described above, since the pressing portion of the finger is configured to be limited to a small area on the upper surface of the light emitting portion, the light receiving portion accurately measures the pulse wave of the finger arterial blood flow portion upstream of the pressing portion. can do. When the finger presses the surface other than the top surface of the light emitting unit, even if the pressing site is on the downstream side of the finger artery blood flow,
Since the measurement site of the light receiving unit is affected by the pressure, the reproducibility of measurement is reduced. The side surface of the light emitting portion is surrounded by a cylindrical light shielding wall in order to prevent light emitted from the light emitting portion into the finger from leaking to the outside and to prevent reflected light from the surface of the abdomen of the finger. Is preferred.

【0022】上記受光部は、その上面が指の腹部を載置
する床面と同じレベルに配置されているか、又は所定の
距離だけ該床面より低くなるように配置されており、該
指の先端を装着する空間の床面と対向する面にクッショ
ン部材を設け、該クッション部材で指先を押さえるよう
に構成し、該発光部の側面は、該発光部から指内に照射
される光が外部に漏れるのを阻止しかつ指の腹部表面か
らの反射光を阻止するために、筒状の遮光壁で囲まれて
いる。上記発光部の側面は、該発光部から指内に照射さ
れる光が外部に漏れるのを阻止しかつ指の腹部表面から
の反射光を阻止するために、筒状の遮光壁で囲まれてい
ることが好ましい。
The light receiving portion is arranged such that the upper surface thereof is at the same level as the floor surface on which the belly portion of the finger is placed, or is arranged so as to be lower than the floor surface by a predetermined distance. A cushion member is provided on a surface of the space in which the tip is mounted, the surface facing the floor surface, and the cushion member is configured to press the fingertip. The side surface of the light emitting unit is configured such that the light emitted from the light emitting unit into the finger is external. It is surrounded by a cylindrical light-shielding wall in order to prevent light from leaking into the body and to prevent reflected light from the surface of the abdomen of the finger. The side surface of the light emitting portion is surrounded by a cylindrical light shielding wall in order to prevent light emitted from the light emitting portion into the finger from leaking to the outside and to prevent reflected light from the surface of the abdomen of the finger. Is preferred.

【0023】上記発光部は、内面が照射光に対する反射
特性を有する筒型の遮光壁内部に配置され、該遮光壁の
上端が、指の腹部を載置する床面から通常0.2〜2.
0mm程度、好ましくは0.3〜1.5mm程度、さら
に好ましくは0.4〜1.0mm程度突出するように構
成され、指の腹部がこの上端に載置されて遮光壁上端全
面を覆うようにすることが好ましい。
The light emitting portion is arranged inside a cylindrical light-shielding wall having an inner surface having a reflection characteristic with respect to irradiation light, and the upper end of the light-shielding wall is usually 0.2 to 2 from the floor surface on which the finger pad is placed. .
About 0 mm, preferably about 0.3 to 1.5 mm, more preferably about 0.4 to 1.0 mm is projected, and the finger pad is placed on this upper end to cover the entire upper end of the light shielding wall. Is preferred.

【0024】遮光壁の上端をこのような範囲内になるよ
うに突出させると、指腹部の皮膚面が発光部上面から下
に被さるので、測定データに対する外乱光や漏洩光や反
射光の影響を小さくすることができると共に、被験者が
指を装着する際に、遮光壁の突出位置に触れることによ
りセンサ位置を認識して、指を所定の位置に載置し易い
という利点がある。しかし、0.2mm未満であると、
遮光壁位置を確認し難いので、指先を所定位置に載置し
難いと共に、発光部からの照射光や指腹部表面からの反
射光が漏れ易くなり、測定データに対する反射光の影響
が大きくなる。また、2.0mmを超えると、指皮膚面
が床面から浮くため、不安定な装着状態になると共に、
指を載置した時の指に対する圧力により波形の変形が生
じて再現性が悪くなり、測定される脈波データにバラツ
キが生じて、正確な脈波情報を得ることが難しくなる。
When the upper end of the light-shielding wall is projected so as to fall within such a range, the skin surface of the finger pad covers the lower surface of the light-emitting portion from above, so that the influence of ambient light, leaked light, or reflected light on the measurement data is affected. There is an advantage that it can be made small, and when the subject wears his / her finger, the sensor position can be recognized by touching the protruding position of the light shielding wall, and the finger can be easily placed at a predetermined position. However, if it is less than 0.2 mm,
Since it is difficult to confirm the position of the light-shielding wall, it is difficult to place the fingertip at a predetermined position, and the irradiation light from the light emitting unit and the reflected light from the surface of the finger pad easily leak, and the influence of the reflected light on the measurement data increases. Also, when it exceeds 2.0 mm, the finger skin surface floats from the floor surface, resulting in an unstable wearing state,
The pressure applied to the finger when the finger is placed causes the waveform to be deformed, resulting in poor reproducibility, resulting in variations in the measured pulse wave data, making it difficult to obtain accurate pulse wave information.

【0025】また、本発明のノイズ成分除去方法は、脈
波センサで脈波を検出して脈波信号を出力し、フィルタ
ーで該脈波信号を濾波して出力し、該濾波された脈波信
号に基づいて脈波情報を計測する際に、該脈波センサか
ら出力された脈波信号を、遮断周波数20〜30Hzの
1次又は2次のローパスフィルターであるアナログフィ
ルターを通して濾波し、この濾波された脈波信号を、遮
断周波数15〜40Hzの初段のデジタルローパスフィ
ルターであって、商用電源周波数50Hz又は60Hz
の一方での応答が零点付近になるように構成されたフィ
ルターを通して容積脈波の濾波を行い、次いで遮断周波
数15〜40Hzの後段の高域カットデシタル微分フィ
ルターであって、該商用電源周波数の他方での応答が零
点付近となるように構成されたフィルターを通してさら
に加速度脈波の濾波を行い、商用電源周波数50Hz及
び60Hzにおいて速度脈波及び加速度脈波に乗る電源
周波数、その高調波に由来するノイズ成分を除去するこ
とを特徴とする。
In the noise component removing method of the present invention, the pulse wave is detected by the pulse wave sensor, the pulse wave signal is output, the pulse wave signal is filtered by the filter and output, and the filtered pulse wave is output. When measuring pulse wave information based on the signal, the pulse wave signal output from the pulse wave sensor is filtered through an analog filter that is a primary or secondary low pass filter with a cutoff frequency of 20 to 30 Hz, and the filtered This pulse wave signal is a first-stage digital low-pass filter with a cutoff frequency of 15 to 40 Hz and a commercial power supply frequency of 50 Hz or 60 Hz.
The volume pulse wave is filtered through a filter configured so that the response on one side is near the zero point, and then the cutoff frequency is 15 to 40 Hz, which is a high-frequency cut digital differential filter at the latter stage of the commercial power frequency. The acceleration pulse wave is further filtered through a filter configured so that the response at zero becomes near the zero point, and the power source frequency riding on the velocity pulse wave and the acceleration pulse wave at commercial power source frequencies of 50 Hz and 60 Hz, and noise derived from the harmonics thereof. It is characterized by removing components.

【0026】該初段のデジタルローパスフィルターとし
て、商用電源周波数50Hz又は60Hzの一方での応
答が零点付近になるように構成する場合、減衰率の極大
値が80dB以上となるように構成されたフィルターを
用いて濾波を行い、また、該後段の高域カットデジタル
微分フィルターとして、該商用電源周波数の一方での応
答が零点付近になるように構成する場合、減衰率の極大
値が40dB以上となるように構成されたフィルターを
用いて濾波を行うことが好ましい。
As the first-stage digital low-pass filter, when the response at one of the commercial power supply frequencies of 50 Hz and 60 Hz is configured to be near the zero point, a filter configured such that the maximum value of the attenuation rate is 80 dB or more is used. When the filter is used to perform filtering, and when the high-frequency cut digital differential filter in the latter stage is configured so that the response on one side of the commercial power supply frequency is near the zero point, the maximum value of the attenuation rate becomes 40 dB or more. It is preferable to perform the filtering using the filter configured as described above.

【0027】上記ノイズ成分除去方法において、AD変
換のサンプリング周波数は、特に臨界的なものではな
く、高い程よい。例えば、制御用マイクロコンピュータ
に安価なものを用いて、連続繰返しAD変換の最大周波
数が例えば35kHz程度の変換速度が遅いものを用い
た場合でも、制御処理等のプログラムを考慮すれば、有
効な脈波情報を得るためのサンプリング周波数として5
00Samples/sec(Hz)程度以上を得ることができる。
サンプリング周波数を500Samples/sec未満とする
と、有効な脈波情報を得るためには、4次以上のアンチ
エイリアシングフィルターを設けなければならず、装置
構成が複雑になる。また、AD変換の際のサンプリング
周波数が高い程、ADコンバーターが高価になると共
に、フィルターの演算量が増えデジタル処理に時間がか
かる。そのため、サンプリング周波数の上限は、適正な
装置価格や処理時間等を考慮して適宜設定すればよい。
In the above noise component removing method, the sampling frequency for AD conversion is not particularly critical, and the higher the better. For example, even if an inexpensive microcomputer is used as the control microcomputer and the conversion frequency of the continuous repetitive AD conversion is slow, for example, about 35 kHz, an effective pulse can be obtained if a program such as control processing is taken into consideration. 5 as the sampling frequency to obtain wave information
It is possible to obtain about 00 Samples / sec (Hz) or more.
If the sampling frequency is less than 500 Samples / sec, in order to obtain effective pulse wave information, it is necessary to provide an anti-aliasing filter of order 4 or higher, which complicates the device configuration. Further, the higher the sampling frequency for AD conversion, the more expensive the AD converter is, and the more the amount of filter calculation is required, the longer the digital processing takes. Therefore, the upper limit of the sampling frequency may be set appropriately in consideration of a proper device price, processing time, and the like.

【0028】以上のようなサンプリング周波数を採用
し、ローパスフィルターの零点(減衰率の極大点)を商用
電源周波数の50Hz又は60Hzとし、微分フィルタ
ーとして高周波数で減衰を効かせてローパスフィルター
の零点の周波数とは異なる商用電源周波数を零点となる
ように構成したものを用いることにより、上記のような
プロセスを経て、商用電源周波数とその高調波由来のノ
イズ、及びその他のノイズ成分を有効に除去することが
可能となる。本発明のノイズ成分除去方法で用いる脈波
センサ、フィルターは、上記した通りである。
By adopting the sampling frequency as described above, the zero point (maximum point of attenuation rate) of the low-pass filter is set to 50 Hz or 60 Hz of the commercial power source frequency, and the zero point of the low-pass filter is attenuated by applying the attenuation at a high frequency as a differential filter. By using a commercial power supply frequency different from the frequency that is configured to have a zero point, the noise derived from the commercial power supply frequency and its harmonics, and other noise components are effectively removed through the above process. It becomes possible. The pulse wave sensor and the filter used in the noise component removal method of the present invention are as described above.

【0029】[0029]

【発明の実施の形態】以下、図面を参照して本発明の実
施の形態を従来例と比較して説明する。アナログフィル
ターの設計と回路例によれば、1次ローパスフィルター
(LPF)と2次LPFとは、オペアンプ1個に数本の抵
抗とコンデンサーを設けるだけでよいので、安価に構成
することができる。図2にVCVS(電圧制御電圧源)型
の2次LPFの一例を示す。LPFの遮断周波数を30
Hzとすると、−50dB(約1/300)減衰する周波
数は1次LPFでは約10kHz、2次LPFでは約5
00Hzとなる。従って、アナログLPFを1次LPF
とすると、必要なA/D変換のサンプリング周波数は2
0kHz程度となり、また、2次LPFとすると必要な
A/D変換のサンプリング周波数は1,000Samples/s
ec(1kHz)程度となる。
BEST MODE FOR CARRYING OUT THE INVENTION Embodiments of the present invention will be described below in comparison with conventional examples with reference to the drawings. According to the analog filter design and circuit example, the first-order low-pass filter
The (LPF) and the secondary LPF can be constructed at low cost because it is sufficient to provide only a few resistors and capacitors for one operational amplifier. FIG. 2 shows an example of a VCVS (voltage control voltage source) type secondary LPF. Cut off frequency of LPF is 30
If the frequency is Hz, the frequency of -50 dB (about 1/300) is about 10 kHz for the primary LPF and about 5 for the secondary LPF.
It becomes 00 Hz. Therefore, the analog LPF is changed to the primary LPF.
Then, the required A / D conversion sampling frequency is 2
It becomes about 0 kHz, and the sampling frequency for A / D conversion required for a second-order LPF is 1,000 Samples / s.
It becomes about ec (1 kHz).

【0030】日本国内における商用電源周波数が50H
z及び60Hzであることから、有用な脈波計測装置を
提供するには、デジタルフィルターで50Hzと60H
zとがともに大きく減衰する構成を考える必要がある。
一つのLPFで、50Hz及び60Hzでの応答が共に
零点近くになるように構成することは可能であるが、デ
ジタルフィルター構成の性質上、急峻な遮断特性とな
り、リンギングの発生を無視することができない。ま
た、デジタルフィルターの場合は丁度零点となるように
構成することは困難であるので、実用上は、例えば減衰
率が80dB以上となるように構成する。
Commercial power frequency in Japan is 50H
Since it is z and 60 Hz, it is possible to provide a useful pulse wave measuring device with a digital filter of 50 Hz and 60 H.
It is necessary to consider a configuration in which z and both are greatly attenuated.
One LPF can be configured so that both the responses at 50 Hz and 60 Hz are close to the zero point, but due to the nature of the digital filter configuration, it has a sharp cutoff characteristic, and the occurrence of ringing cannot be ignored. . Further, in the case of a digital filter, it is difficult to configure it so that it is exactly at the zero point. Therefore, in practice, the attenuation factor is configured to be 80 dB or more, for example.

【0031】そこで、図3(a)に示すように、初段のデ
ジタルLPFにおいて、50Hz又は60Hzの一方
(例えば、60Hz)での応答が零点付近になるよう構成
すると共に、図3(b)に示すように、高域カットデジタ
ル微分フィルターにおいて、他方の周波数(例えば、5
0Hz)での応答が零点付近となるように構成する。こ
のとき、デジタルLPFにおいて零点に設定しなかった
方の商用電源周波数(例えば、50Hz)における減衰率
は40dB以上となるように構成することが望ましい。
この構成により、50Hz、60Hzの両地域におい
て、共に速度、加速度脈波から商用電源周波数等由来の
ノイズを除去することができる。また、デジタルLPF
において零点に設定しなかった方の商用電源周波数地域
(例えば、50Hz)においては、脈波信号に乗る商用電
源周波数のノイズは実用上無視できるレベルになる。
Therefore, as shown in FIG. 3A, in the first stage digital LPF, one of 50 Hz and 60 Hz is used.
The response at (for example, 60 Hz) is configured to be near the zero point, and as shown in FIG. 3B, in the high-frequency cut digital differential filter, the other frequency (for example, 5 Hz) is set.
It is configured so that the response at 0 Hz) is near the zero point. At this time, it is desirable that the attenuation rate at the commercial power source frequency (for example, 50 Hz) which is not set to the zero point in the digital LPF is 40 dB or more.
With this configuration, in both regions of 50 Hz and 60 Hz, noise derived from commercial power supply frequency and the like can be removed from velocity and acceleration pulse waves. In addition, digital LPF
Commercial power supply frequency region where the zero point was not set in
At (for example, 50 Hz), the noise of the commercial power supply frequency on the pulse wave signal has a practically negligible level.

【0032】上記のように商用電源周波数(60Hz、
50Hz)での応答を零点付近とするフィルター係数の
算出法は、以下の通りである。FIR(Finite Impulse
Response)デジタルフィルターのフィルター係数をC
(k)とすると、出力(y)と入力(x)との関係は次式(1)
で示される。
As described above, the commercial power frequency (60 Hz,
The calculation method of the filter coefficient that makes the response at 50 Hz near the zero point is as follows. FIR (Finite Impulse
Response) The filter coefficient of the digital filter is C
(k), the relationship between the output (y) and the input (x) is
Indicated by.

【数1】 [Equation 1]

【0033】また、周波数特性を表す伝達関数H(f)
は、次式(2)で示される。
The transfer function H (f) representing the frequency characteristic
Is expressed by the following equation (2).

【数2】 (ただし、式(2)中、サンプリング周波数fを1とす
る。)
[Equation 2] (However, in Expression (2), the sampling frequency f s is 1.)

【0034】時間的に対称なFIRフィルターは、C
(k) = C(−k)である。
A time-symmetrical FIR filter has a C
(k) = C (−k).

【数3】 [Equation 3]

【0035】fを遮断周波数とする理想フィルターの
フィルター係数をh(k)とすると、このフィルター係数
は次式(4)で示される。
Letting h (k) be the filter coefficient of an ideal filter whose cut-off frequency is f c , this filter coefficient is expressed by the following equation (4).

【数4】 理想フィルターではリンギングによる波形歪みが発生す
るので、FIRデジタルフィルターのフィルター係数
は、窓関数w(k)を用いて次式(5)で示される。
[Equation 4] Since the ideal filter causes waveform distortion due to ringing, the filter coefficient of the FIR digital filter is expressed by the following equation (5) using the window function w (k).

【0036】[0036]

【数5】 この窓関数w(k)は、例えば、ハニング窓w(k)であ
れば、次式(6)で示される。
[Equation 5] The window function w (k), for example, if the Hanning window w h (k), represented by the following formula (6).

【数6】 [Equation 6]

【0037】上式(5)のフィルター係数を式(3)に代入
すると、周波数特性H(f)が求まる。例えば、商用電源
周波数60Hzでの応答を零とするには、次式(7):
By substituting the filter coefficient of the above equation (5) into the equation (3), the frequency characteristic H (f) is obtained. For example, to make the response at a commercial power frequency of 60 Hz zero, the following equation (7):

【数7】 とし、この式から、f、f、Nを求める。一般に
は、正確な解は求まらず、目的にあった適当な近似解を
採用する。
[Equation 7] Then, f s , f c , and N are obtained from this equation. In general, an exact solution cannot be obtained, and an appropriate approximate solution that suits the purpose is adopted.

【0038】上記した構成において、例えば20Hzを
デジタルLPFの遮断周波数とした場合に、アナログL
PF、デジタルLPFとも、リンギング発生の極めて少
ないなだらかな周波数特性となるように構成してあるの
で、高域カットデジタル微分フィルターの遮断周波数を
より高周波側に設定すれば、20Hzよりも高周波の加
速度脈波信号成分も評価可能になる。また、サンプリン
グ周波数を500Samples/sec程度以上、好ましくは5
00〜20,000Samples/sec程度、さらに好ましくは
1,000〜5,000Samples/sec程度とし、初段のデ
ジタルLPFの零点(減衰率の極大点)を商用電源周波数
の50Hz又は60Hzとし、デジタル微分フィルター
として、高周波数で減衰を効かせてデジタルLPFの零
点の周波数とは異なる商用電源周波数を零点となるよう
に構成したものを用いることにより、上記のようなプロ
セスを経て、商用電源周波数とその高調波由来のノイ
ズ、及びその他のノイズ成分を有効に除去し、有効な脈
波情報を得ることができる。
In the above configuration, when the cutoff frequency of the digital LPF is set to 20 Hz, the analog L
Since both the PF and the digital LPF are configured to have a gentle frequency characteristic in which ringing is extremely small, if the cutoff frequency of the high-frequency cut digital differential filter is set to the higher frequency side, the acceleration pulse higher than 20 Hz The wave signal component can also be evaluated. Further, the sampling frequency is about 500 Samples / sec or more, preferably 5
About 0 to 20,000 Samples / sec, more preferably about 1,000 to 5,000 Samples / sec, the zero point (maximum point of attenuation rate) of the first stage digital LPF is set to 50 Hz or 60 Hz of the commercial power supply frequency, and a digital differential filter As a result, a commercial power supply frequency different from the zero point frequency of the digital LPF is configured to be a zero point by using attenuation at a high frequency, and the commercial power supply frequency and its harmonics are passed through the above process. It is possible to effectively remove noise derived from waves and other noise components, and obtain effective pulse wave information.

【0039】本発明の脈波計測装置で用いる反射型脈波
センサについて、以下、図面を参照して説明する。図4
は、反射型脈波センサの構造の一例を示す断面図であ
り、(a)は脈波センサの要部である指装着部の模式的構
造を示す断面図であり、(b)は発光部及び受光部の近傍
の拡大断面図であり、指を装着した状態で示す。
The reflection type pulse wave sensor used in the pulse wave measuring apparatus of the present invention will be described below with reference to the drawings. Figure 4
[FIG. 3] is a cross-sectional view showing an example of a structure of a reflection-type pulse wave sensor, (a) is a cross-sectional view showing a schematic structure of a finger mounting part which is a main part of the pulse wave sensor, and (b) is a light emitting part FIG. 3 is an enlarged cross-sectional view of the vicinity of the light receiving portion and the light receiving portion, which is shown with a finger attached.

【0040】この反射型脈波センサは、指先端部を装着
することができる形状を有するものであって、蓋部を構
成する開閉自在の合成樹脂製の上方部分と、指腹部を載
置することができるように構成された合成樹脂製の床部
分とを有してなる。上方部分はその内面が指の外形に沿
った形状をしていてもよく、また、床部分はその床面が
平坦であっても又は外乱光を遮断するために指の付け根
側がやや高く又は低くなるように傾斜した形状になって
いてもよい。以下述べるように、上方部分の先端部には
押圧材が設けられ、床面に載置した指の動脈血流の発光
部よりもさらに下流側の指先先端部分を押さえて固定で
きるようになっており、また、床部分には発光部及び受
光部が所定の位置に配置されている。この押圧材は、指
の先端部分を押さえて固定できるものであればよく、例
えば、クッション材や、バネ材のような板材等でよい。
また、このセンサには、反射光の電流/電圧変換回路、
増幅器が設けられており、このセンサをパーソナルコン
ピュータ等に接続すれば、センサからの出力に基いて正
確な脈波情報を得ることができる本発明の脈波計測装置
となる。
This reflection type pulse wave sensor has such a shape that a tip of a finger can be attached, and an openable and closable synthetic resin upper portion which constitutes a lid and a finger pad are placed. And a floor portion made of synthetic resin configured so as to be able to. The upper part may have a shape whose inner surface conforms to the outer shape of the finger, and the floor part may have a slightly higher or lower base side of the finger to block ambient light even if the floor surface is flat. It may have an inclined shape so that As described below, a pressing member is provided at the tip of the upper part, and it is possible to press and fix the tip of the fingertip further downstream than the light emitting part of the arterial blood flow of the finger placed on the floor. Further, the light emitting portion and the light receiving portion are arranged at predetermined positions on the floor portion. The pressing member may be any member as long as it can press and fix the tip portion of the finger, and may be, for example, a cushion member or a plate member such as a spring member.
In addition, this sensor includes a current / voltage conversion circuit for reflected light,
If an amplifier is provided and this sensor is connected to a personal computer or the like, the pulse wave measuring device of the present invention can obtain accurate pulse wave information based on the output from the sensor.

【0041】この脈波センサの場合、指装着部に指を差
し込み、指の先端部分の腹部に赤外線等の光を当てる
と、毛細血管中のヘモグロビン(赤血球)が光の一部を吸
収し、光の反射量が変化する(血液量が多い部分は光の
反射量が少なくなる)。この微妙な光の反射量の変化を
検出し、検出された反射光を電流から電圧へ変換し、増
幅器に送信し、増幅された信号電圧をパーソナルコンピ
ュータを利用してAD変換して出力し、脈波情報として
活用する。
In the case of this pulse wave sensor, when a finger is inserted into the finger mounting portion and light such as infrared rays is applied to the abdomen of the tip of the finger, hemoglobin (red blood cells) in the capillaries absorbs part of the light, The amount of light reflected changes (the amount of light reflected decreases in areas with a large amount of blood). Detecting this slight change in the amount of reflected light, converting the detected reflected light from a current to a voltage, transmitting it to an amplifier, and AD-converting the amplified signal voltage using a personal computer, and outputting it. Use as pulse wave information.

【0042】脈波センサの要部を構成する指装着部に
は、図4(a)及び(b)に示すように、発光ダイオード
(LED)等の半導体発光素子からなる発光部1が、フォ
トダイオード(PD)等の半導体受光素子からなる受光部
2よりも人体の指3の動脈血流の下流側に配置される。
指内の発光部1からの照射光1aの経路を見ると、発光
部分の光束は、指内を進むにつれて拡散して拡がる。こ
のため、発光部1からの入射光変化による受光部2の光
量変化は大きく、受光部2の位置変化による受光する拡
散光の光量変化は小さい。従って、発光部1を指に密着
するようにすることが必要となる。しかし、密着性を良
くすることは、指に余分の圧力を加えることにつなが
る。そこで、この脈波センサでは、発光部1を受光部2
より指動脈血流の下流側に配置し、指に余分の圧力が加
わらないようにする。
As shown in FIGS. 4 (a) and 4 (b), the finger mounting portion forming the main part of the pulse wave sensor has a light emitting diode.
The light emitting unit 1 formed of a semiconductor light emitting device such as (LED) is arranged on the downstream side of the arterial blood flow of the finger 3 of the human body than the light receiving unit 2 formed of a semiconductor light receiving device such as a photodiode (PD).
Looking at the path of the irradiation light 1a from the light emitting unit 1 in the finger, the luminous flux of the light emitting portion diffuses and spreads as it advances in the finger. Therefore, the change in the light amount of the light receiving unit 2 due to the change in the incident light from the light emitting unit 1 is large, and the change in the light amount of the diffused light received due to the change in the position of the light receiving unit 2 is small. Therefore, it is necessary to bring the light emitting unit 1 into close contact with the finger. However, improving the adhesion results in applying extra pressure to the finger. Therefore, in this pulse wave sensor, the light emitting unit 1 is connected to the light receiving unit 2
It should be placed more downstream of the digital arterial blood flow so that excess pressure is not applied to the finger.

【0043】また、発光部1は、その上面が受光部2の
上面より所定の距離だけ高くなるように配置される。す
なわち、発光部1の高さHが受光部2の高さHより
所定の距離だけ高くなるように構成する。指装着部の先
端部分には、赤外LED等からなる発光部1から照射さ
れる光1aの経路よりも指動脈血流のさらに下流側に空
間4が設けられ、指3の先端部がこの空間内に載置され
得るように構成される。
The light emitting section 1 is arranged so that its upper surface is higher than the upper surface of the light receiving section 2 by a predetermined distance. That is, the height H 1 of the light emitting unit 1 is higher than the height H 2 of the light receiving unit 2 by a predetermined distance. At the tip portion of the finger mounting portion, a space 4 is provided further downstream of the blood flow of the finger artery than the path of the light 1a emitted from the light emitting portion 1 including an infrared LED, and the tip portion of the finger 3 It is configured so that it can be placed in a space.

【0044】指装着部の指腹部を載置する面は、指載置
床面5として構成される。床面5には発光部1及び受光
部2が所定の位置に設けられ、床面の先端部分は傾斜し
て立ち上がり、指の先端が適切に納まるように構成され
る。この指装着部において、発光部1の配置された位置
より動脈血流の下流側であって、床面と対向する面に押
圧材6が設けられる。この押圧材により、装着された指
の先端部分(爪部)を軽く押さえ、装着された指が動かな
いようにする。このように構成することにより、被験者
の意識的・無意識的な指の小さな動きが少なくなって、
ノイズ発生が減少し、その結果、測定波形の変化も少な
くなる。なお、押圧材により動脈血流の下流側を圧迫し
ても、脈波への影響は小さい。
The surface on which the finger pad of the finger mounting portion is placed is configured as the finger placement floor surface 5. A light emitting unit 1 and a light receiving unit 2 are provided at predetermined positions on the floor surface 5, and the tip portion of the floor surface is inclined and rises so that the tip of the finger can be properly accommodated. In the finger mounting portion, the pressing member 6 is provided on the surface facing the floor surface, which is downstream of the arterial blood flow from the position where the light emitting unit 1 is arranged. The pressing member lightly presses the tip end portion (nail portion) of the attached finger to prevent the attached finger from moving. With this configuration, the subject's conscious and unconscious small movements of the finger are reduced,
Noise generation is reduced, and as a result, changes in the measured waveform are reduced. Even if the pressure material presses the downstream side of the arterial blood flow, the effect on the pulse wave is small.

【0045】発光部1からの照射光1aが指の皮膚表面
で反射して受光部2に入り込むと、この反射光がノイズ
となり、受光部2に入る受光量が変動する。このため
に、正確な脈波を測定することができなくなる。また、
照射光1aが脈波センサの外部に漏れると、照射光の効
率が下がり、かつ、受光部が受け取る反射光2aの光量
が減少して正確な脈波を測定することが困難になる。そ
のため、本発明では、余分な反射光や漏洩光を阻止する
ために、発光部1の側面を筒状の遮光壁7で囲んであ
る。
When the irradiation light 1a from the light emitting section 1 is reflected on the skin surface of the finger and enters the light receiving section 2, the reflected light becomes noise and the amount of light received into the light receiving section 2 varies. For this reason, it becomes impossible to measure an accurate pulse wave. Also,
If the irradiation light 1a leaks to the outside of the pulse wave sensor, the efficiency of the irradiation light is reduced, and the light amount of the reflected light 2a received by the light receiving unit is decreased, which makes it difficult to accurately measure the pulse wave. Therefore, in the present invention, the side surface of the light emitting portion 1 is surrounded by the cylindrical light shielding wall 7 in order to prevent excess reflected light and leakage light.

【0046】この遮光壁7は、反射光や漏洩光をなくす
ような形状であれば、その形状は問わないが、例えば、
発光部1の外周形状に沿った円筒状等の形状が好まし
い。装着された指は、この遮光壁の上面に7aの点で密
着し、固定される。遮光壁7は、その受光部2側が黒色
であってもよく、また、その内面が鏡面であってもよ
い。遮光壁の材料としては、赤外線を遮る性質を有する
材料であれば特に制限はなく、例えば、赤外線を実質的
に透過させないポリプロピレン系樹脂やABS系樹脂等
の熱可塑性樹脂等、又はこれらに黒色塗装等の表面処理
を施したものをあげることができる。
The light shielding wall 7 may have any shape as long as it eliminates reflected light and leaked light.
A shape such as a cylindrical shape along the outer peripheral shape of the light emitting unit 1 is preferable. The attached finger is in close contact with and fixed to the upper surface of the light shielding wall at the point 7a. The light-shielding wall 7 may be black on the light-receiving portion 2 side, and may have a mirror surface on the inner surface. The material of the light-shielding wall is not particularly limited as long as it has a property of blocking infrared rays. For example, a thermoplastic resin such as polypropylene resin or ABS resin that does not substantially transmit infrared rays, or a black coating on these. The surface-treated product may be used.

【0047】上記脈波センサでは、発光部1の上面に赤
外線透過性の絶縁体キャップ8を設け、発光部1と指3
とが直接接触しないようにしてもよい。これは、発光部
の通電部に影響を及ぼさないようにするためと、発光部
表面の汚れを清拭しないで済むようにするためである。
絶縁体キャップ8の外形は、例えば、発光体1の上方部
分の形状に沿った円筒形状等の形状であればよい。絶縁
体キャップ8の上面を凹レンズで構成すれば、射出光の
指向性をさらに広げることができる。この絶縁体キャッ
プの材料としては、赤外線に対して透光性が高い赤外線
透過性材料であれば特に制限はなく、例えば、アクリル
樹脂、ポリエチレン樹脂、ポリカーボネート樹脂、ポリ
スチレン樹脂等をあげることができる。また、受光部2
と指3とが直接接触して指に圧力がかからないように、
受光部2と指3との間に隙間を設けるような構造とする
ことが好ましい。
In the above pulse wave sensor, an infrared ray permeable insulator cap 8 is provided on the upper surface of the light emitting portion 1, and the light emitting portion 1 and the finger 3 are provided.
It may be arranged so that it does not come into direct contact with. This is to prevent the current-carrying part of the light emitting part from being affected and to prevent the surface of the light emitting part from being cleaned.
The outer shape of the insulator cap 8 may be, for example, a cylindrical shape that follows the shape of the upper portion of the light emitting body 1. If the upper surface of the insulator cap 8 is composed of a concave lens, the directivity of emitted light can be further widened. The material of the insulator cap is not particularly limited as long as it is an infrared transmissive material having high infrared transmissivity, and examples thereof include acrylic resin, polyethylene resin, polycarbonate resin, polystyrene resin and the like. In addition, the light receiving unit 2
So that the finger and the finger 3 do not come into direct contact and pressure is applied to the finger,
It is preferable to have a structure in which a gap is provided between the light receiving portion 2 and the finger 3.

【0048】発光部1の発光素子と受光部2の受光素子
との指向性の影響について図5に示す。図5(a)に示す
ように、発光部1の発光素子と受光部2の受光素子との
配置が従来の指向性が強い配置の場合、発光部1の発光
ダイオードの光軸がずれると、有効な検出領域もずれ
る。しかし、図5(b)に示すように、指向性の弱い発光
部1の発光素子と受光部2の受光素子とを接近して配置
すれば、発光ダイオードの光軸のずれに対する有効検出
領域のずれは相対的に小さい。そのため、得られる脈波
情報は正確となる。上記脈波センサーにおいて、発光部
1からの照射光の射出角(半値角)αを通常50度以上、
好ましくは50〜85度、より好ましくは50〜80度
とすることにより、有効検出領域のずれは相対的に少な
くなる。50度未満であると、有効検出領域のずれが大
きくなり、正確な脈波データを得ることが困難になる。
The influence of directivity between the light emitting element of the light emitting section 1 and the light receiving element of the light receiving section 2 is shown in FIG. As shown in FIG. 5 (a), when the light emitting element of the light emitting section 1 and the light receiving element of the light receiving section 2 are arranged in the conventional direction with strong directivity, when the optical axis of the light emitting diode of the light emitting section 1 is displaced, The effective detection area also shifts. However, as shown in FIG. 5B, if the light emitting element of the light emitting section 1 having a weak directivity and the light receiving element of the light receiving section 2 are arranged close to each other, an effective detection area for the deviation of the optical axis of the light emitting diode can be obtained. The gap is relatively small. Therefore, the obtained pulse wave information is accurate. In the pulse wave sensor, the emission angle (half-value angle) α of the irradiation light from the light emitting unit 1 is usually 50 degrees or more,
By setting it to preferably 50 to 85 degrees, and more preferably 50 to 80 degrees, the deviation of the effective detection area becomes relatively small. If it is less than 50 degrees, the deviation of the effective detection area becomes large, and it becomes difficult to obtain accurate pulse wave data.

【0049】上記脈波センサーにおいて、発光部1と受
光部2との距離が長くなる程、加速度脈波の波形である
a波の振幅は小さくなって、ノイズ成分が発生し易くな
り、測定波形の変形が大きくなる傾向がある。また、そ
の距離が長い程、圧力の影響がある指部位の脈波を測定
することになり、測定波形が変形し易い。そのため、発
光部と受光部との距離を、所定の距離、例えば、通常8
mm以内、好ましくは6mm以内に設定すれば、加速度
脈波のa波の振幅及びb波とa波との比(b/a)は適切
な範囲内に納まる。この場合、光軸のずれも少なく、有
効検出領域のずれも少なく、また、波形は変形し難い。
なお、この距離が上記範囲を外れた動脈上流側の指部位
では、動脈血管が膨らんで、b/aが小さい(絶対値が大
きい)状態になり、また、下流側の指部位では、鬱血状
態となって、b/aが大きい(絶対値が小さい)状態にな
る。また、発光部と受光部との距離の下限は、特に制限
はなく、発光部と受光部との物理的な大きさや脈波セン
サーの大きさ等に依って設定できる最低距離であればよ
い。例えば、2〜3mm程度に設定してもよい。
In the above pulse wave sensor, the longer the distance between the light emitting section 1 and the light receiving section 2, the smaller the amplitude of the a wave, which is the waveform of the acceleration pulse wave, and the more easily the noise component is generated. Deformation tends to be large. Further, as the distance is longer, the pulse wave of the finger part affected by the pressure is measured, and the measured waveform is easily deformed. Therefore, the distance between the light emitting unit and the light receiving unit is set to a predetermined distance, for example, 8
If it is set within mm, preferably within 6 mm, the amplitude of the a-wave of the acceleration pulse wave and the ratio (b / a) of the b-wave to the a-wave fall within an appropriate range. In this case, the deviation of the optical axis is small, the deviation of the effective detection area is small, and the waveform is not easily deformed.
In the finger region on the upstream side of the artery where this distance is outside the above range, the arterial blood vessel swells, resulting in a small b / a (large absolute value), and at the finger region on the downstream side, the congested state. Then, b / a is large (absolute value is small). The lower limit of the distance between the light emitting unit and the light receiving unit is not particularly limited, and may be any minimum distance that can be set depending on the physical size of the light emitting unit and the light receiving unit, the size of the pulse wave sensor, and the like. For example, it may be set to about 2 to 3 mm.

【0050】また、絶縁体キャップが脱落しないように
して、脈波センサ本体の取り扱い性を向上させるため、
図6に示すように、絶縁体キャップ14の下方部分につ
ば部14aを設けた構造としてもよい。図6において、
11は発光部、11aは発光部からの照射光、12は受
光部、13は遮光壁を示す。発光部11、受光部12、
遮光壁13等の配置位置関係については、図4に示す場
合と同様である。また、遮光壁13及び絶縁体キャップ
14の材料としても、図4に示す遮光壁7及び絶縁体キ
ャップ8の材料と同様である。さらに、絶縁体キャップ
14の上面を凹レンズで構成すれば、射出光の指向性を
さらに広げることができる。
Further, in order to improve the handleability of the pulse wave sensor main body by preventing the insulator cap from falling off,
As shown in FIG. 6, a collar portion 14 a may be provided in the lower portion of the insulator cap 14. In FIG.
Reference numeral 11 denotes a light emitting portion, 11a denotes light emitted from the light emitting portion, 12 denotes a light receiving portion, and 13 denotes a light shielding wall. Light emitting unit 11, light receiving unit 12,
The arrangement positional relationship of the light shielding wall 13 and the like is the same as that shown in FIG. The materials of the light shielding wall 13 and the insulator cap 14 are the same as the materials of the light shielding wall 7 and the insulator cap 8 shown in FIG. Furthermore, if the upper surface of the insulator cap 14 is formed of a concave lens, the directivity of emitted light can be further expanded.

【0051】上記したように、受光部は、指に圧力がか
からないように、その上面が指装着部の床面と同一高さ
又はそれより下になるように配置される。これにより、
受光部に入射する光の割合が最も多い受光部上部位置に
あたる指部分が圧迫されないようになる。例えば、受光
部を脈波センサの指載置床面より1mm程度低くなるよ
うに配置すればよい。上記した脈波センサをパーソナル
コンピュータ等に接続して、このセンサからの出力脈波
信号に基づいてノイズ成分のない脈波情報を計測し、提
示することができる。
As described above, the light receiving portion is arranged such that the upper surface thereof is at the same height as or lower than the floor surface of the finger mounting portion so that pressure is not applied to the finger. This allows
The finger portion corresponding to the upper position of the light receiving portion where the ratio of the light incident on the light receiving portion is the largest is not pressed. For example, the light receiving unit may be arranged so as to be lower than the finger placement floor surface of the pulse wave sensor by about 1 mm. The pulse wave sensor described above can be connected to a personal computer or the like, and pulse wave information having no noise component can be measured and presented based on the output pulse wave signal from the sensor.

【0052】[0052]

【発明の効果】以上説明したように、本発明によれば、
遮断周波数20〜30Hzの1次又は2次のアナログロ
ーパスフィルターと、遮断周波数15〜40Hzの初段
のデジタルローパスフィルターと、遮断周波数15〜4
0Hzの後段の高域カットデシタル微分フィルターとで
構成されているフィルターを有し、初段のデジタルロー
パスフィルターにおいて、商用電源周波数50Hz又は
60Hzの一方での応答が零点付近になるように構成す
ると共に、後段の高域カットデジタル微分フィルターに
おいて、商用電源周波数の他方での応答が零点付近とな
るように構成してあるので、商用電源周波数とその高調
波由来のノイズ、及びその他のノイズ成分を除去するこ
とが可能な脈波計測装置を提供することができる。
As described above, according to the present invention,
A primary or secondary analog low-pass filter with a cutoff frequency of 20 to 30 Hz, a first-stage digital lowpass filter with a cutoff frequency of 15 to 40 Hz, and a cutoff frequency of 15 to 4
It has a filter composed of a high-frequency cut digital differential filter at the 0 Hz rear stage, and is configured so that the response at one of the commercial power frequency 50 Hz or 60 Hz is near the zero point in the first stage digital low-pass filter. The high-frequency cut digital differential filter in the latter stage is configured so that the response at the other side of the commercial power supply frequency is near the zero point, so noise derived from the commercial power supply frequency and its harmonics, and other noise components are removed. It is possible to provide a pulse wave measuring device capable of performing the above.

【0053】また、本発明の装置において脈波を検出し
て脈波信号を出力する脈波センサは、発光部を、受光部
より指の動脈血流の下流側に、その上面が受光部の上面
よりも所定の距離突出し、かつ所定の距離だけ指の腹部
を載置する床面よりも高くなるように配置し、そして指
の先端が発光部からの照射光の経路よりも指動脈血流の
さらに下流側に装着され得るように、床面の先端部分に
空間を設けているので、指の発光部に対する密着性が良
好になると共に、指動脈血流の下流側が圧迫されても、
上流側が圧迫されるのに比べて脈波への影響は少なく、
再現性よく正確な脈波信号を得ることができる。その結
果として、本発明の脈波計測装置により、誘導ノイズが
出現することなく、再現性のよい正確な脈波情報を提供
することができる。また、本発明のノイズ成分除去方法
は、上記脈波計測装置を用いて実施されるので、商用電
源周波数とその高調波由来のノイズ、及びその他のノイ
ズ成分を有効に除去することができると共に、再現性よ
く正確な脈波を測定することができる。
Further, in the pulse wave sensor for detecting the pulse wave and outputting the pulse wave signal in the device of the present invention, the light emitting portion is located on the downstream side of the arterial blood flow of the finger from the light receiving portion, and the upper surface thereof is the light receiving portion. It is arranged so that it protrudes a predetermined distance above the upper surface and is higher than the floor surface on which the abdomen of the finger is placed by a predetermined distance, and the tip of the finger is higher than the path of the irradiation light from the light emitting part in the finger arterial blood flow. Since a space is provided at the tip portion of the floor surface so that it can be mounted on the further downstream side, the adhesion to the light emitting part of the finger becomes good, and even if the downstream side of the finger artery blood flow is compressed,
Compared to the pressure on the upstream side, it has less effect on the pulse wave,
An accurate pulse wave signal can be obtained with good reproducibility. As a result, the pulse wave measuring device of the present invention can provide accurate pulse wave information with good reproducibility without the appearance of induced noise. Further, since the noise component removal method of the present invention is carried out using the pulse wave measuring device, it is possible to effectively remove the noise derived from the commercial power supply frequency and its harmonics, and other noise components, An accurate pulse wave can be measured with good reproducibility.

【図面の簡単な説明】[Brief description of drawings]

【図1】 従来の光電式指尖容積脈波計による出力波形
図であり、ノイズの乗った脈波波形の一例を示す波形
図。
FIG. 1 is a waveform diagram showing an example of an output waveform by a conventional photoelectric finger plethysmometer, showing an example of a pulse waveform with noise.

【図2】 VCVS(電圧制御電圧源)型の2次ローパス
フィルターの回路例。
FIG. 2 is a circuit example of a VCVS (voltage controlled voltage source) type second-order low-pass filter.

【図3】 本発明で用いるフィルターの設計例を説明す
るための波形例であり、(a)は初段のデジタルローパス
フィルターの設計例を示す波形図、(b)は後段の高域カ
ットデジタル微分フィルターの設計例を示す波形図。
3A and 3B are waveform examples for explaining a design example of a filter used in the present invention, FIG. 3A is a waveform diagram showing a design example of a digital low-pass filter in the first stage, and FIG. The waveform diagram which shows the example of a filter design.

【図4】 本発明の脈波計測装置で用いる脈波センサの
構造の一例を示す断面図であり、(a)は脈波センサの要
部である指装着部の模式的構造を示す断面図、(b)は発
光部及び受光部の近傍の拡大断面図。
FIG. 4 is a cross-sectional view showing an example of a structure of a pulse wave sensor used in the pulse wave measuring device of the present invention, and FIG. 4 (a) is a cross-sectional view showing a schematic structure of a finger mounting part which is a main part of the pulse wave sensor. , (B) is an enlarged sectional view in the vicinity of the light emitting portion and the light receiving portion.

【図5】 脈波センサにおける光の指向性を示す模式図
であり、(a)は従来技術における発光素子と受光素子と
の指向性の影響について示す図、(b)は本発明の装置で
に用いる脈波センサーおける発光素子と受光素子との指
向性の影響について示す図。
5A and 5B are schematic diagrams showing the directivity of light in a pulse wave sensor, FIG. 5A is a diagram showing the influence of directivity between a light emitting element and a light receiving element in the prior art, and FIG. 5B is a device of the present invention. FIG. 6 is a diagram showing an influence of directivity between a light emitting element and a light receiving element in the pulse wave sensor used for the.

【図6】 本発明の装置で用いる脈波センサーの構造の
別の例を示す断面図。
FIG. 6 is a cross-sectional view showing another example of the structure of the pulse wave sensor used in the device of the present invention.

【符号の説明】[Explanation of symbols]

1 発光部 2 受光部 1a 照射光 2a 反射光 H発光部の高さ H受光部
の高さ 3 指 4 空間 5 指載置床面 6 押圧材 7 遮光壁 7a 指と遮光壁
との密着点 8 絶縁体キャップ 14 絶縁体キャ
ップ 14a つば部 α 照射光の
射出角(半値角)
1 Light emitting part 2 Light receiving part 1a Irradiated light 2a Reflected light H 1 Height of light emitting part H 2 Height of light receiving part 3 Finger 4 Space 5 Finger resting floor 6 Pressing material 7 Light shielding wall 7a Contact point between finger and light shielding wall 8 Insulator cap 14 Insulator cap 14a Collar α Exit angle of irradiation light (half-value angle)

Claims (9)

【特許請求の範囲】[Claims] 【請求項1】 脈波を検出して脈波信号を出力する脈波
センサと、該脈波信号を濾波して出力するフィルター
と、該フィルターで濾波された脈波信号に基づいて脈波
情報を計測する手段とからなる脈波計測装置であって、
該フィルターが、遮断周波数20〜30Hzの1次又は
2次のローパスフィルターであるアナログフィルター
と、遮断周波数15〜40Hzの初段のデジタルローパ
スフィルターと、遮断周波数15〜40Hzの後段の高
域カットデシタル微分フィルターとで構成されており、
該初段のデジタルローパスフィルターにおいて、商用電
源周波数50Hz又は60Hzの一方での応答が零点付
近になるように構成すると共に、該後段の高域カットデ
ジタル微分フィルターにおいて、該商用電源周波数の他
方での応答が零点付近となるように構成することを特徴
とする脈波計測装置。
1. A pulse wave sensor that detects a pulse wave and outputs a pulse wave signal, a filter that filters and outputs the pulse wave signal, and pulse wave information based on the pulse wave signal that is filtered by the filter. A pulse wave measuring device comprising means for measuring
The filter is an analog filter that is a first-order or second-order low-pass filter with a cut-off frequency of 20 to 30 Hz, a first-stage digital low-pass filter with a cut-off frequency of 15 to 40 Hz, and a high-frequency cut digital differential after the cut-off frequency of 15 to 40 Hz. It consists of a filter and
The first-stage digital low-pass filter is configured so that the response at one of the commercial power supply frequencies of 50 Hz and 60 Hz is near the zero point, and the response at the other high-frequency cut digital differential filter of the latter stage is at the other of the commercial power supply frequency. A pulse wave measuring apparatus, characterized in that is near zero.
【請求項2】 前記初段のデジタルローパスフィルター
において、商用電源周波数50Hz又は60Hzの一方
での応答が零点付近になるように構成する場合、減衰率
の極大値が80dB以上となるように構成すると共に、
前記後段の高域カットデジタル微分フィルターにおい
て、該商用電源周波数の他方での応答が零点付近になる
ように構成する場合、減衰率の極大値が40dB以上と
なるように構成することを特徴とする請求項1記載の脈
波計測装置。
2. In the first-stage digital low-pass filter, when the response at one of the commercial power supply frequencies of 50 Hz and 60 Hz is configured to be near the zero point, the maximum value of the attenuation rate is set to 80 dB or more. ,
In the latter-stage high-frequency cut digital differential filter, when the response at the other side of the commercial power supply frequency is configured to be near the zero point, the maximum attenuation value is configured to be 40 dB or more. The pulse wave measuring device according to claim 1.
【請求項3】 前記脈波センサが、発光部と受光部とに
より人体の指の脈波を測定する反射型の脈波センサであ
って、該発光部を、該受光部より指の動脈血流の下流側
に、その上面が該受光部の上面よりも突出し、かつ所定
の距離だけ指の腹部を載置する床面よりも高くなるよう
に配置し、そして指の先端を該発光部よりも指動脈血流
のさらに下流側に装着するための空間が該床面の先端部
分に設けられていることを特徴とする請求項1又は2記
載の脈波計測装置。
3. The pulse wave sensor is a reflection type pulse wave sensor for measuring a pulse wave of a finger of a human body by a light emitting section and a light receiving section, and the light emitting section is connected to the arterial blood of the finger from the light receiving section. On the downstream side of the flow, the upper surface of the finger protrudes from the upper surface of the light receiving unit and is arranged to be higher than the floor surface on which the abdomen of the finger is placed by a predetermined distance. The pulse wave measuring device according to claim 1 or 2, wherein a space to be mounted further downstream of the finger arterial blood flow is provided at a tip portion of the floor surface.
【請求項4】 前記発光部は、その上面が指の腹部を載
置する床面より0.2〜2.0mm高くなるように配置
されており、前記受光部は、その上面が指の腹部を載置
する床面と同じレベルになるように配置されているか、
又は所定の距離だけ該床面より低くなるように配置され
ており、該指の先端を装着する空間の床面と対向する面
に押圧材を設け、該押圧材で発光部よりも指動脈血流の
さらに下流側の指先先端部を押さえるように構成し、該
発光部の側面が筒状の遮光壁で囲まれ、該発光部から指
内に照射される光が外部に漏れるのを阻止しかつ指の腹
部表面からの反射光を阻止するように構成されているこ
とを特徴とする請求項3記載の脈波計測装置。
4. The light emitting unit is arranged such that an upper surface thereof is higher by 0.2 to 2.0 mm than a floor surface on which the finger pad of the finger is placed, and the light receiving unit has an upper surface of the finger pad of the finger. Is placed so that it is at the same level as the floor on which
Alternatively, it is arranged so as to be lower than the floor surface by a predetermined distance, and a pressing material is provided on a surface facing the floor surface of the space where the tip of the finger is mounted, and the finger material blood The tip of the fingertip on the further downstream side of the flow is configured to be pressed, and the side surface of the light emitting portion is surrounded by the cylindrical light shielding wall, and the light emitted from the light emitting portion into the finger is prevented from leaking to the outside. The pulse wave measuring device according to claim 3, wherein the pulse wave measuring device is configured to block light reflected from the surface of the abdomen of the finger.
【請求項5】 前記発光部は、内面が照射光に対する反
射特性を有する筒型の遮光壁内部に配置され、該遮光壁
の上端を、指の腹部を載置する床面から0.2〜2.0
mm突出するように構成し、指の腹部がこの上端に載置
されて遮光壁上端全面を覆うようにすることを特徴とす
る請求項3又は4記載の脈波計測装置。
5. The light-emitting unit is arranged inside a cylindrical light-shielding wall having an inner surface having a reflection characteristic with respect to irradiation light, and an upper end of the light-shielding wall is 0.2 to 0.2 mm above a floor surface on which a finger pad is placed. 2.0
The pulse wave measuring device according to claim 3 or 4, wherein the pulse wave measuring device is configured so as to protrude by mm, and the belly part of the finger is placed on the upper end to cover the entire upper end of the light shielding wall.
【請求項6】 脈波センサで脈波を検出して脈波信号を
出力し、フィルターで該脈波信号を濾波して出力し、該
濾波された脈波信号に基づいて脈波情報を計測する際
に、該脈波センサから出力された脈波信号を、遮断周波
数20〜30Hzの1次又は2次のローパスフィルター
であるアナログフィルターを通して濾波し、この濾波さ
れた脈波信号を、遮断周波数15〜40Hzの初段のデ
ジタルローパスフィルターであって、商用電源周波数5
0Hz又は60Hzの一方での応答が零点付近になるよ
うに構成されたフィルターを通して容積脈波の濾波を行
い、次いで遮断周波数15〜40Hzの後段の高域カッ
トデシタル微分フィルターであって、該商用電源周波数
の他方での応答が零点付近となるように構成されたフィ
ルターを通してさらに加速度脈波の濾波を行い、該商用
電源周波数50Hz及び60Hzにおいて速度脈波及び
加速度脈波に乗る電源周波数、その高調波に由来するノ
イズ成分を除去することを特徴とするノイズ成分除去方
法。
6. A pulse wave sensor detects a pulse wave to output a pulse wave signal, a filter filters and outputs the pulse wave signal, and pulse wave information is measured based on the filtered pulse wave signal. In doing so, the pulse wave signal output from the pulse wave sensor is filtered through an analog filter that is a primary or secondary low-pass filter with a cutoff frequency of 20 to 30 Hz, and the filtered pulse wave signal is cut off with a cutoff frequency. It is a digital low-pass filter in the first stage of 15 to 40 Hz, and has a commercial power frequency of 5
The volume pulse wave is filtered through a filter configured so that the response at one of 0 Hz and 60 Hz is near the zero point, and then the cutoff frequency is 15 to 40 Hz, which is a high-frequency cut digital differential filter in the subsequent stage, the commercial power source. The acceleration pulse wave is further filtered through a filter configured so that the response on the other side of the frequency is near the zero point, and the power supply frequency riding on the velocity pulse wave and the acceleration pulse wave at the commercial power supply frequencies of 50 Hz and 60 Hz, and harmonics thereof. A method for removing a noise component, which comprises removing a noise component originating from.
【請求項7】 前記初段のデジタルローパスフィルター
として、商用電源周波数50Hz又は60Hzの一方で
の応答が零点付近になるように構成する場合、減衰率の
極大値が80dB以上となるように構成されたフィルタ
ーを用いて濾波を行うと共に、前記後段の高域カットデ
ジタル微分フィルターとして、該商用電源周波数の他方
での応答が零点付近になるように構成する場合、減衰率
の極大値が40dB以上となるように構成されたフィル
ターを用いて濾波を行うことを特徴とする請求項6記載
のノイズ成分除去方法。
7. The first-stage digital low-pass filter is configured such that when the response at one of the commercial power supply frequencies of 50 Hz and 60 Hz is near zero, the maximum value of the attenuation rate is 80 dB or more. When filtering is performed using a filter and the latter high-frequency cut digital differential filter is configured so that the response at the other side of the commercial power supply frequency is near the zero point, the maximum value of the attenuation rate is 40 dB or more. 7. The noise component removing method according to claim 6, wherein filtering is performed using a filter configured as described above.
【請求項8】 AD変換のサンプリング周波数を500
Samples/sec以上で行うことを特徴とする請求項6又は
7記載のノイズ成分除去方法。
8. A sampling frequency for AD conversion is set to 500.
The method for removing noise components according to claim 6 or 7, wherein the method is performed at Samples / sec or more.
【請求項9】 前記脈波センサとして、請求項3〜5の
いずれかに記載の脈波センサを用いて脈波を検出するこ
とを特徴とする請求項6〜8のいずれかに記載のノイズ
成分除去方法。
9. The noise according to claim 6, wherein the pulse wave sensor uses the pulse wave sensor according to any one of claims 3 to 5 to detect a pulse wave. Component removal method.
JP2002101630A 2002-04-03 2002-04-03 Pulse wave measuring device Expired - Fee Related JP3927997B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002101630A JP3927997B2 (en) 2002-04-03 2002-04-03 Pulse wave measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002101630A JP3927997B2 (en) 2002-04-03 2002-04-03 Pulse wave measuring device

Publications (3)

Publication Number Publication Date
JP2003290162A true JP2003290162A (en) 2003-10-14
JP2003290162A5 JP2003290162A5 (en) 2005-09-15
JP3927997B2 JP3927997B2 (en) 2007-06-13

Family

ID=29241898

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002101630A Expired - Fee Related JP3927997B2 (en) 2002-04-03 2002-04-03 Pulse wave measuring device

Country Status (1)

Country Link
JP (1) JP3927997B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004358022A (en) * 2003-06-06 2004-12-24 U-Medica Inc Pulse wave analysis method, and autonomic nerve function evaluating method and autonomic nerve function evaluating device based on this analysis method
JP2005287820A (en) * 2004-03-31 2005-10-20 U-Medica Inc Biophenomenon measuring and recording device and method for removing noise component
JP2006006897A (en) * 2004-05-21 2006-01-12 Sony Corp Method and apparatus for measurement of blood pressure
WO2016031221A1 (en) * 2014-08-27 2016-03-03 セイコーエプソン株式会社 Biological information detection device

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004358022A (en) * 2003-06-06 2004-12-24 U-Medica Inc Pulse wave analysis method, and autonomic nerve function evaluating method and autonomic nerve function evaluating device based on this analysis method
JP4625886B2 (en) * 2003-06-06 2011-02-02 株式会社ユメディカ Pulse wave analysis method and autonomic nervous function evaluation device
JP2005287820A (en) * 2004-03-31 2005-10-20 U-Medica Inc Biophenomenon measuring and recording device and method for removing noise component
JP2006006897A (en) * 2004-05-21 2006-01-12 Sony Corp Method and apparatus for measurement of blood pressure
WO2016031221A1 (en) * 2014-08-27 2016-03-03 セイコーエプソン株式会社 Biological information detection device
JP2016047105A (en) * 2014-08-27 2016-04-07 セイコーエプソン株式会社 Biological information detector

Also Published As

Publication number Publication date
JP3927997B2 (en) 2007-06-13

Similar Documents

Publication Publication Date Title
EP0706776B1 (en) Organism information measuring apparatus and pulse-wave measuring apparatus
JP5672709B2 (en) Biological information detector, biological information measuring device, and method for designing reflector in biological information detector
US6155983A (en) Pulse wave detecting device and pulse measurer
US20020026109A1 (en) Low-noise optical probes
EP3106086B1 (en) Photoelectric-type pulse signal measurement method and measurement device
KR102362727B1 (en) Apparatus for measuring user&#39;s pulse, and computing apparatus using the apparatus
JP2002360530A (en) Pulse wave sensor and pulse rate detector
EP3020332A1 (en) Light detection unit and biological information detection device
JP2005040261A (en) Pulse wave sensor
JP2007209374A (en) Biological information measuring instrument
JP2004000467A (en) Pulse wave sensor
GB2519075A (en) Apparatus and method for measuring pulse rate
JP4419540B2 (en) Pulse wave detector
JP2003290162A (en) Pulse-wave measurement apparatus and method for eliminating noise component
JP3965435B2 (en) Pulse wave measurement and analysis equipment
JP2001112728A (en) Pulsimeter
CN206565935U (en) A kind of Novel reflection-type photoelectric sensor
JP5327194B2 (en) Biological condition detection device
JP2005287820A (en) Biophenomenon measuring and recording device and method for removing noise component
JP5742884B2 (en) Biological condition detection device
JP4347338B2 (en) Vascular age evaluation method
CN212729774U (en) Human body multi-parameter monitoring terminal based on mobile phone
JP2006102160A (en) Blood pressure measuring device
JPH0450009Y2 (en)
CN109875526B (en) Pulse device based on pressure and reflection type comprehensive measurement

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050404

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050404

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060623

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060704

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060727

R150 Certificate of patent or registration of utility model

Ref document number: 3927997

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100316

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110316

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110316

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120316

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130316

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130316

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140316

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees