JP2006102160A - Blood pressure measuring device - Google Patents

Blood pressure measuring device Download PDF

Info

Publication number
JP2006102160A
JP2006102160A JP2004293185A JP2004293185A JP2006102160A JP 2006102160 A JP2006102160 A JP 2006102160A JP 2004293185 A JP2004293185 A JP 2004293185A JP 2004293185 A JP2004293185 A JP 2004293185A JP 2006102160 A JP2006102160 A JP 2006102160A
Authority
JP
Japan
Prior art keywords
light
receiving element
emitting element
blood pressure
cuff
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2004293185A
Other languages
Japanese (ja)
Inventor
Shinji Mino
真司 美野
Junichi Shimada
純一 嶋田
Naoyoshi Tatara
尚愛 多々良
Hiroshi Koizumi
弘 小泉
Shoichi Hayashida
尚一 林田
Taisuke Oguchi
泰介 小口
Kimihisa Aihara
公久 相原
Shoichi Sudo
昭一 須藤
Hidetoshi Miura
秀利 三浦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NTT Advanced Technology Corp
Nippon Telegraph and Telephone Corp
Original Assignee
NTT Advanced Technology Corp
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NTT Advanced Technology Corp, Nippon Telegraph and Telephone Corp filed Critical NTT Advanced Technology Corp
Priority to JP2004293185A priority Critical patent/JP2006102160A/en
Publication of JP2006102160A publication Critical patent/JP2006102160A/en
Withdrawn legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a blood pressure measuring device capable of measuring a blood pressure highly precisely while stabilizing a pulse wave even though distances between a site to be measured of a subject, and a light emitting element and a light receiving element are changed due to the movement of the subject or the disturbance such as pulsation in a blood pressure measurement using the measurement of the pulse wave by light. <P>SOLUTION: This blood pressure measuring device has the light receiving element receiving the light reflected by the face of the light emitting element side of the expandable member of a cuff of the light irradiated toward the expandable member from the cuff of the light emitting element, the output signal of the receiving element is processed as a noise component along with a pulse wave signal having measured the subject, thereby the noise component due to the movement of the subject and the disturbance such as the pulsation can be reduced, the blood pressure measuring device capable of always measuring the blood pressure highly precisely while stabilizing the pulse wave of the subject even though the device can not be completely secured the subject can be provided. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本願発明は、被検体の一部を押圧するカフを使用する血圧測定装置に関する。   The present invention relates to a blood pressure measurement device using a cuff that presses a part of a subject.

従来の、血圧測定装置は、長方形で平面状のカフを被測定部分に巻きつけるように装着し、カフに空気を供給して被検体内の血流が停止する圧力で圧迫した後に、カフが被検体を圧迫する圧力を減少させる過程における被検体内の脈動脈波の変化を計測し、カフによる被検体の押圧力と脈動波形の変化から血圧を測定している。ここで、カフにより脈動波形を計測する方法としては、従来、カフに伝達される血流の脈動をカフ内の圧力の変化により計測する方法が一般的であった。   A conventional blood pressure measurement device is mounted so that a rectangular and flat cuff is wrapped around a portion to be measured, and after the air is supplied to the cuff and compressed with a pressure that stops blood flow in the subject, the cuff is Changes in the pulmonary arterial wave in the subject in the process of decreasing the pressure to press the subject are measured, and blood pressure is measured from the pressure of the subject by the cuff and changes in the pulsation waveform. Here, as a method of measuring the pulsation waveform with the cuff, conventionally, a method of measuring the pulsation of the blood flow transmitted to the cuff by a change in pressure in the cuff has been common.

最近、より小型な装置で簡便に脈波を検出し、高精度に血圧を測定する方法として、装置を耳介などの被検体の末梢部に装着し、装置内に備えた発光素子により被検体へ照射した照射光が被検体の血管あるいは血管内の血球により散乱された散乱光を、装置内に備えた受光素子により受光し、受光した散乱光から脈波を検出する方法が開発されている。(例えば、特許文献1参照。)これは、脈拍、脈波、心電、体温、動脈血酸素飽和度、及び血圧などを生体内へ放射した赤外光、可視光の散乱光の受光量から計算できるとしている。   Recently, as a method for easily detecting pulse waves with a smaller device and measuring blood pressure with high accuracy, the device is attached to the peripheral part of the subject such as the auricle and the subject is equipped with a light emitting element provided in the device. A method has been developed in which scattered light obtained by irradiating the irradiated light scattered by the blood vessel of the subject or blood cells in the blood vessel is received by a light receiving element provided in the apparatus, and a pulse wave is detected from the received scattered light. . (For example, refer to Patent Document 1.) This is calculated from the amount of received light of scattered light of infrared light and visible light radiated into the living body such as pulse, pulse wave, electrocardiogram, body temperature, arterial oxygen saturation, and blood pressure. I can do it.

また、耳介に装着する装置としては、無線通信手段を有し、動脈血酸素飽和濃度センサ、体温センサ、心電センサ、脈波センサを備えている緊急情報装置がある(例えば、特許文献2参照。)。この装置は、センサ部分を外耳道へ挿入し、データ通信部を耳への固定手段としている。   Moreover, as an apparatus to be worn on the auricle, there is an emergency information apparatus that includes wireless communication means and includes an arterial blood oxygen saturation sensor, a body temperature sensor, an electrocardiogram sensor, and a pulse wave sensor (for example, see Patent Document 2) .) In this device, the sensor portion is inserted into the ear canal, and the data communication unit is used as a means for fixing to the ear.

一方、血圧の測定に関しては、血管の脈動波形を測定する血圧測定装置は、他の方式であるカフ振動法や容積補償法などによる血圧測定装置(例えば、非特許文献1参照。)と並んで有力な血圧の測定方法として認められている。   On the other hand, regarding blood pressure measurement, a blood pressure measurement device that measures a pulsation waveform of a blood vessel is aligned with a blood pressure measurement device that uses other methods such as a cuff vibration method or a volume compensation method (for example, see Non-Patent Document 1). Recognized as a powerful blood pressure measurement method.

なお、本願では、耳介の名称は非特許文献2に、耳介の軟骨の名称は非特許文献3による。
特開平9−122083 特開平11−128174 山越 憲一、戸川 達男著、「生体センサと計測装置」、日本エム・イー学会編/ME教科書シリーズ A−1、39頁〜52頁 Sobotta 図説人体解剖学第1巻(監訳者:岡本道雄)、p.126、(株)医学書院、1996年10月1日発行 Sobotta 図説人体解剖学第1巻(監訳者:岡本道雄)、p.127、(株)医学書院、1996年10月1日発行
In the present application, the name of the pinna is based on Non-Patent Document 2, and the name of the pinna cartilage is based on Non-Patent Document 3.
JP-A-9-128203 JP-A-11-128174 Kenichi Yamakoshi, Tatsuo Togawa, “Biological Sensors and Measuring Devices”, MM Society of Japan / ME Textbook Series A-1, pages 39-52 Sobotta Illustrated Human Anatomy Volume 1 (Translation by Michio Okamoto), p. 126, Medical School, issued October 1, 1996 Sobotta Illustrated Human Anatomy Volume 1 (Translation by Michio Okamoto), p. 127, Medical School, issued October 1, 1996

上記のような光による脈波の測定を利用した血圧測定においては、微弱な信号を高精度に検出する必要がある。しかし、従来の装置は耳介などの被検体の末梢部に装着しても完全に固定することが難しく、被検体の動き、脈動等の外乱は、受光素子の出力する信号のノイズ成分となり、血圧測定の測定値に誤差を生じさせ、脈波を高精度に安定して血圧測定ができないという課題があった。   In blood pressure measurement using measurement of pulse waves by light as described above, it is necessary to detect a weak signal with high accuracy. However, it is difficult to completely fix the conventional device even if it is attached to the peripheral part of the subject such as the auricle, and disturbances such as movement and pulsation of the subject become noise components of the signal output from the light receiving element, There has been a problem that an error is caused in the measurement value of the blood pressure measurement, and the blood pressure cannot be measured stably with high accuracy in the pulse wave.

そこで、本願発明は、従来例における上記の課題を解決し、被検体の動きや脈動等の外乱により、被検体の被測定部分と発光素子及び受光素子との距離間隔が変化したとしても、脈波を高精度に安定して血圧測定をすることができる血圧測定装置を提供することを課題とする。   Therefore, the present invention solves the above-described problems in the conventional example, and even if the distance between the measured portion of the subject and the light emitting element and the light receiving element is changed due to disturbance such as movement or pulsation of the subject, the pulse It is an object of the present invention to provide a blood pressure measurement device that can stably measure blood pressure with high accuracy.

上記課題を解決するために、本願第一の発明は、発光素子がカフ内から外部、特に、被検体に向け光を照射し、被検体で散乱された光を受光素子で受光するとともに、前記発光素子の照射した光がカフの伸縮部材の発光素子側の面で反射された光を他の受光素子で受光することとした。   In order to solve the above problems, the first invention of the present application is that the light emitting element irradiates light from the inside of the cuff to the outside, in particular, the subject, and the light scattered by the subject is received by the light receiving element. The light irradiated from the light emitting element is reflected by the light receiving element side surface of the cuff elastic member and received by another light receiving element.

具体的には、本願第一の発明は、一部が光の透過性のある伸縮部材で覆われたカフと、前記伸縮部材の光の透過性のある部分を通して前記カフの外部に光を照射する第一の発光素子と、前記伸縮部材の光の透過性のある部分を通して、前記第一の発光素子の照射した光が外部で散乱された光を前記カフ内で受光する第一の受光素子と、前記第一の発光素子の照射した光が前記伸縮部材の前記第一の発光素子側の面で反射された光を前記カフ内で受光する第二の受光素子と、を備える血圧測定装置である。   Specifically, the first invention of the present application irradiates light to the outside of the cuff through a cuff partly covered with a light transmissive elastic member and a light transmissive part of the elastic member. A first light-receiving element that receives light scattered outside from the cuff through the first light-emitting element that performs light transmission of the telescopic member. And a second light receiving element that receives, in the cuff, light reflected from the surface of the telescopic member on the first light emitting element side, irradiated with the light from the first light emitting element. It is.

前記第一の受光素子の出力する信号と前記第二の受光素子の出力する信号には、被検体の動きや脈動等の外乱による同一のノイズ成分が含まれている。前記第二の受光素子は、前記第一の発光素子の照射した光が前記伸縮部材の前記第一の発光素子側の面で反射された光を受光しており、被検体の動きや脈動等の外乱によるノイズ成分を測定することになる。従って、被検体の脈波信号である前記第一の受光素子の出力する信号とノイズ成分である前記第二の受光素子の出力する信号とを信号処理すればノイズ成分を低減することができる。   The signal output from the first light receiving element and the signal output from the second light receiving element contain the same noise component due to disturbance such as movement of the subject and pulsation. The second light receiving element receives light reflected by the surface of the telescopic member on the first light emitting element side, and the movement of the subject, pulsation, etc. The noise component due to the external disturbance is measured. Therefore, if the signal output from the first light receiving element, which is a pulse wave signal of the subject, and the signal output from the second light receiving element, which is a noise component, are signal-processed, the noise component can be reduced.

本願第一の発明には、前記第一の受光素子の出力する信号と前記第二の受光素子の出力する信号との差分を演算する差分演算手段をさらに備えてもよい。被検体の脈波信号である前記第一の受光素子の出力する信号とノイズ成分である前記第二の受光素子の出力する信号を差分演算することにより前記第一の受光素子の出力する信号からノイズ成分を低減することができる。   The first invention of the present application may further include a difference calculating means for calculating a difference between a signal output from the first light receiving element and a signal output from the second light receiving element. From the signal output from the first light receiving element by calculating the difference between the signal output from the first light receiving element which is a pulse wave signal of the subject and the signal output from the second light receiving element which is a noise component Noise components can be reduced.

本願第一の発明において、前記第二の受光素子は前記外部で散乱された光の受光を防止する遮光手段を有することが好ましい。前記遮光手段は、前記第二の受光素子が前記外部で散乱された光を受光することを防止し、前記第二の受光素子の出力する信号から前記伸縮部材の前記第一の発光素子側の面で反射された光以外の光による信号を低減することができる。これにより、被検体の動きや脈動等の外乱によるノイズ成分を精度よく抽出することができる。   In the first invention of the present application, it is preferable that the second light receiving element has a light shielding means for preventing the light scattered outside. The light shielding means prevents the second light receiving element from receiving the light scattered outside, and from the signal output from the second light receiving element, the first light emitting element side of the telescopic member A signal due to light other than the light reflected by the surface can be reduced. Thereby, it is possible to accurately extract a noise component due to disturbance such as movement of the subject and pulsation.

従って、本願第一の発明の血圧測定装置は、前記第一の受光素子の出力する被検体の脈波信号から被検体の動きや脈動等の外乱によるノイズ成分を低減することができ、被検体の末梢部に完全に固定できなくとも被検体の脈波を高精度に安定して常時測定をすることができる。   Therefore, the blood pressure measurement device according to the first invention of the present application can reduce noise components due to disturbances such as movement and pulsation of the subject from the pulse wave signal of the subject output from the first light receiving element. Even if the peripheral part of the subject cannot be completely fixed, the pulse wave of the subject can be constantly measured with high accuracy and stability.

上記課題を解決するために、本願第二の発明は、発光素子がカフ内から外部、特に、被検体に向け光を照射し、被検体で散乱された光を受光素子で受光するとともに、他の発光素子のカフ内から伸縮部材に向け照射した光がカフの伸縮部材の発光素子側の面で反射された光を他の受光素子で受光することとした。   In order to solve the above problems, the second invention of the present application is that the light emitting element irradiates light from the inside of the cuff to the outside, in particular, the subject, and the light scattered by the subject is received by the light receiving element. The light irradiated from the inside of the cuff of the light emitting element toward the expansion / contraction member is received by the other light receiving elements as the light reflected by the light emitting element side surface of the expansion / contraction member of the cuff.

具体的には、本願第二の発明は、一部が光の透過性のある伸縮部材で覆われたカフと、前記伸縮部材の光の透過性のある部分を通して前記カフの外部に光を照射する第一の発光素子と、前記伸縮部材の光の透過性のある部分を通して、前記第一の発光素子の照射した光が外部で散乱された光を前記カフ内で受光する第一の受光素子と、前記カフ内で前記伸縮部材に向けて光を照射する第二の発光素子と、前記第二の発光素子の照射した光が前記伸縮部材の前記第二の発光素子側の面で反射された光を前記カフ内で受光する第三の受光素子と、を備える血圧測定装置である。   Specifically, the second invention of the present application irradiates light to the outside of the cuff through a cuff partly covered with a light transmissive elastic member and a light transmissive part of the elastic member. A first light-receiving element that receives light scattered outside from the cuff through the first light-emitting element that performs light transmission of the telescopic member. And a second light emitting element that irradiates light toward the elastic member in the cuff, and light irradiated by the second light emitting element is reflected by the surface of the elastic member on the second light emitting element side. And a third light receiving element that receives the light in the cuff.

前記第一の受光素子の出力する信号と前記第三の受光素子の出力する信号には、被検体の動きや脈動等の外乱による同一のノイズ成分が含まれている。前記第三の受光素子は、前記第二の発光素子の照射した光が前記伸縮部材の前記第一の発光素子側の面で反射された光を受光しており、被検体の動きや脈動等の外乱によるノイズ成分を測定することになる。従って、被検体の脈波信号である前記第一の受光素子の出力する信号とノイズ成分である前記第三の受光素子の出力する信号とを信号処理すればノイズ成分を低減することができる。   The signal output from the first light receiving element and the signal output from the third light receiving element contain the same noise component due to disturbances such as movement and pulsation of the subject. The third light receiving element receives light reflected by the surface of the telescopic member on the first light emitting element side, and the movement of the subject, pulsation, etc. The noise component due to the external disturbance is measured. Accordingly, if the signal output from the first light receiving element, which is a pulse wave signal of the subject, and the signal output from the third light receiving element, which is a noise component, are signal-processed, the noise component can be reduced.

本願第二の発明には、前記第一の受光素子の出力する信号と前記第三の受光素子の出力する信号との差分を演算する差分演算手段をさらに備えてもよい。被検体の脈波信号である前記第一の受光素子の出力する信号とノイズ成分である前記第三の受光素子の出力する信号を差分演算することにより前記第一の受光素子の出力する信号からノイズ成分を低減することができる。   The second invention of the present application may further comprise a difference calculating means for calculating a difference between a signal output from the first light receiving element and a signal output from the third light receiving element. From the signal output from the first light receiving element by calculating the difference between the signal output from the first light receiving element which is a pulse wave signal of the subject and the signal output from the third light receiving element which is a noise component Noise components can be reduced.

本願第二の発明において、前記第三の受光素子は前記外部で散乱された光の受光を防止する遮光手段を有することが好ましい。前記遮光手段は、前記第三の受光素子が前記外部で散乱された光を受光することを防止し、前記第三の受光素子の出力する信号から前記伸縮部材の前記第二の発光素子側の面で反射された光以外の光による信号を低減することができる。これにより、被検体の動きや脈動等の外乱によるノイズ成分を精度よく抽出することができる。   In the second invention of the present application, it is preferable that the third light receiving element has a light shielding means for preventing the light scattered outside. The light shielding means prevents the third light receiving element from receiving light scattered outside, and from the signal output from the third light receiving element, the second light emitting element side of the telescopic member A signal due to light other than the light reflected by the surface can be reduced. Thereby, it is possible to accurately extract a noise component due to disturbance such as movement of the subject and pulsation.

本願第二の発明において、前記第一の発光素子の照射する光は、前記第二の発光素子の照射する光と異なる波長の光としても良い。前記第一の発光素子の照射する光と前記第二の発光素子の照射する光とで異なる2波長を使用し、前記第三の受光素子を前記第二の発光素子が照射する光の波長のみを受光するよう設定しておくことで、前記第三の受光素子に前記外部で散乱された光が入射した場合でも、前記第三の受光素子は前記第二の発光素子が照射する光の波長と異なる波長の前記散乱された光を検出しない。従って、前記第三の受光素子の出力する信号から前記伸縮部材の前記第二の発光素子側の一部で反射された光以外の光による信号を低減することができる。これにより、被検体の動きや脈動等の外乱によるノイズ成分を精度よく抽出することができる。さらに、前記第一の受光素子を前記第一の発光素子が照射する光の波長のみを受光するよう設定しておくことで、前記第一の受光素子に前記反射された光が入射した場合でも、前記第一の受光素子は異なる波長の前記反射された光を検出しない。これにより、前記第一の受光素子の出力する信号から前記外部で散乱された光以外の光による信号を低減することができる。   In the second invention of the present application, the light emitted from the first light emitting element may be light having a wavelength different from that of the light emitted from the second light emitting element. Two different wavelengths are used for the light emitted from the first light emitting element and the light emitted from the second light emitting element, and only the wavelength of the light emitted from the second light emitting element to the third light receiving element is used. By setting the light receiving device to receive light, the third light receiving device emits light with a wavelength of light emitted from the second light emitting device even when light scattered outside is incident on the third light receiving device. And does not detect the scattered light of a different wavelength. Therefore, it is possible to reduce a signal due to light other than light reflected by a part of the telescopic member on the second light emitting element side from the signal output from the third light receiving element. Thereby, it is possible to accurately extract a noise component due to disturbance such as movement of the subject and pulsation. Further, by setting the first light receiving element to receive only the wavelength of light emitted by the first light emitting element, even when the reflected light is incident on the first light receiving element. The first light receiving element does not detect the reflected light of different wavelengths. Thereby, the signal by light other than the light scattered outside from the signal which said 1st light receiving element outputs can be reduced.

従って、本願第二の発明の血圧測定装置は、前記第一の受光素子の出力する被検体の脈波信号から被検体の動きや脈動等の外乱によるノイズ成分を低減することができ、被検体の末梢部に完全に固定できなくとも被検体の脈波を高精度に安定して常時測定をすることができる。   Therefore, the blood pressure measurement apparatus according to the second invention of the present application can reduce noise components due to disturbances such as movement and pulsation of the subject from the pulse wave signal of the subject output from the first light receiving element. Even if the peripheral part of the subject cannot be completely fixed, the pulse wave of the subject can be constantly measured with high accuracy and stability.

上記課題を解決するために、本願第三の発明は、発光素子がカフ内から外部、特に、被検体に向け光を照射し、被検体を透過した光をカフの外部の受光素子で受光するとともに、前記発光素子の照射した光がカフの伸縮部材の発光素子側の面で反射された光をカフの内部の受光素子で受光させることとした。   In order to solve the above-mentioned problems, the third invention of the present application is that the light emitting element emits light from the inside of the cuff to the outside, particularly, the subject, and the light transmitted through the subject is received by the light receiving element outside the cuff. At the same time, the light irradiated by the light emitting element is reflected by the light receiving element inside the cuff to receive the light reflected by the light emitting element side surface of the expansion member of the cuff.

具体的には、本願第三の発明は、一部が光の透過性のある伸縮部材で覆われたカフと、前記伸縮部材の光の透過性のある部分を通して前記カフの外部に光を照射する第一の発光素子と、前記伸縮部材の光の透過性のある部分を通して、前記第一の発光素子の照射した光を前記カフの外部で受光する第四の受光素子と、前記第一の発光素子の照射した光が前記伸縮部材の前記第一の発光素子側の面で反射された光を前記カフ内で受光する第二の受光素子と、を備える血圧測定装置である。   Specifically, the third invention of the present application irradiates light to the outside of the cuff partly through a cuff partly covered with a light transmissive elastic member and the light transmissive part of the elastic member. A first light emitting element, a fourth light receiving element that receives light emitted from the first light emitting element outside the cuff through the light transmissive portion of the expansion member, and the first light receiving element. A blood pressure measurement apparatus comprising: a second light receiving element that receives, in the cuff, light reflected from a surface of the expandable member on the first light emitting element side.

前記第四の受光素子の出力する信号と前記第二の受光素子の出力する信号には、被検体の動きや脈動等の外乱による同一のノイズ成分が含まれている。前記第二の受光素子は、前記第一の発光素子の照射した光が前記伸縮部材の前記第一の発光素子側の面で反射された光を受光しており、被検体の動きや脈動等の外乱によるノイズ成分を測定することになる。従って、被検体の脈波信号である前記第四の受光素子の出力する信号とノイズ成分である前記第二の受光素子の出力する信号とを信号処理すればノイズ成分を低減することができる。   The signal output from the fourth light receiving element and the signal output from the second light receiving element contain the same noise component due to disturbance such as movement of the subject and pulsation. The second light receiving element receives light reflected by the surface of the telescopic member on the first light emitting element side, and the movement of the subject, pulsation, etc. The noise component due to the external disturbance is measured. Accordingly, if the signal output from the fourth light receiving element, which is a pulse wave signal of the subject, and the signal output from the second light receiving element, which is a noise component, are signal-processed, the noise component can be reduced.

本願第三の発明には、前記第四の受光素子の出力する信号と前記第二の受光素子の出力する信号との差分を演算する差分演算手段をさらに備えてもよい。被検体の脈波信号である前記第四の受光素子の出力する信号とノイズ成分である前記第二の受光素子の出力する信号を差分演算することにより前記第四の受光素子の出力する信号からノイズ成分を低減することができる。   The third invention of the present application may further comprise a difference calculating means for calculating a difference between a signal output from the fourth light receiving element and a signal output from the second light receiving element. From the signal output from the fourth light receiving element by calculating a difference between the signal output from the fourth light receiving element which is a pulse wave signal of the subject and the signal output from the second light receiving element which is a noise component. Noise components can be reduced.

従って、本願第三の発明の血圧測定装置は、前記第四の受光素子の出力する被検体の脈波信号から被検体の動きや脈動等の外乱によるノイズ成分を低減することができ、被検体の末梢部に完全に固定できなくとも被検体の脈波を高精度に安定して常時測定をすることができる。   Therefore, the blood pressure measurement device according to the third invention of the present application can reduce noise components due to disturbance such as movement and pulsation of the subject from the pulse wave signal of the subject output from the fourth light receiving element. Even if the peripheral part of the subject cannot be completely fixed, the pulse wave of the subject can be constantly measured with high accuracy and stability.

上記課題を解決するために、本願第四の発明は、カフの外部の発光素子が被検体に向け光を照射し、被検体を透過した光をカフ内部の受光素子で受光するとともに、カフの内部の発光素子から伸縮部材に向け照射した光がカフの伸縮部材の発光素子側の面で反射された光を他の受光素子で受光させることとした。   In order to solve the above-described problem, the fourth invention of the present application is that a light emitting element outside the cuff irradiates the subject with light and the light transmitted through the subject is received by the light receiving element inside the cuff. The light irradiated from the internal light emitting element toward the expansion / contraction member is reflected by the light receiving element side surface of the cuff expansion / contraction member and received by another light receiving element.

具体的には、本願第四の発明は、一部が光の透過性のある伸縮部材で覆われたカフと、前記カフの外部から光を照射する第三の発光素子と、前記伸縮部材の光の透過性のある部分を通して、前記第三の発光素子の照射した光を前記カフ内で受光する第五の受光素子と、前記カフ内で前記伸縮部材に向けて光を照射する第二の発光素子と、前記第二の発光素子の照射した光が前記伸縮部材の前記第二の発光素子側の面で反射された光を前記カフ内で受光する第三の受光素子と、を備える血圧測定装置である。   Specifically, the fourth invention of the present application includes a cuff partially covered with a light-transmitting elastic member, a third light emitting element that emits light from the outside of the cuff, and the elastic member. A fifth light receiving element that receives light emitted from the third light emitting element in the cuff through a light-transmitting portion, and a second light that irradiates light toward the expandable member in the cuff. A blood pressure comprising: a light-emitting element; and a third light-receiving element that receives, in the cuff, light reflected by the second light-emitting element side surface of the elastic member. It is a measuring device.

前記第五の受光素子の出力する信号と前記第三の受光素子の出力する信号には、被検体の動きや脈動等の外乱による同一のノイズ成分が含まれている。前記第三の受光素子は、前記第二の発光素子の照射した光が前記伸縮部材の第二の発光素子側の面で反射された光を受光しており、被検体の動きや脈動等の外乱によるノイズ成分を測定することになる。従って、被検体の脈波信号である前記第五の受光素子の出力する信号とノイズ成分である前記第三の受光素子の出力する信号とを信号処理すればノイズ成分を低減することができる。   The signal output from the fifth light receiving element and the signal output from the third light receiving element contain the same noise component due to disturbances such as movement and pulsation of the subject. The third light receiving element receives the light reflected by the second light emitting element on the second light emitting element side surface of the telescopic member, and the movement of the subject, pulsation, etc. The noise component due to disturbance will be measured. Accordingly, if the signal output from the fifth light receiving element, which is a pulse wave signal of the subject, and the signal output from the third light receiving element, which is a noise component, are signal-processed, the noise component can be reduced.

本願第四の発明には、前記第五の受光素子の出力する信号と前記第三の受光素子の出力する信号との差分を演算する差分演算手段をさらに備えてもよい。被検体の脈波信号である前記第五の受光素子の出力する信号とノイズ成分である前記第三の受光素子の出力する信号を差分演算することにより前記第五の受光素子の出力する信号からノイズ成分を低減することができる。   The fourth invention of the present application may further comprise a difference calculating means for calculating a difference between a signal output from the fifth light receiving element and a signal output from the third light receiving element. From the signal output from the fifth light receiving element by calculating a difference between the signal output from the fifth light receiving element which is a pulse wave signal of the subject and the signal output from the third light receiving element which is a noise component. Noise components can be reduced.

本願第四の発明において、前記第三の受光素子は前記第三の発光素子の照射した光の受光を防止する遮光手段を有することが好ましい。前記遮光手段は、前記第三の受光素子が前記外部で散乱された光を受光することを防止し、前記第三の受光素子の出力する信号から前記伸縮部材の前記第二の発光素子側の面で反射された光以外の光による信号を低減することができる。これにより、被検体の動きや脈動等の外乱によるノイズ成分を精度よく抽出することができる。   In the fourth invention of the present application, it is preferable that the third light receiving element has a light blocking means for preventing light received by the third light emitting element. The light shielding means prevents the third light receiving element from receiving light scattered outside, and from the signal output from the third light receiving element, the second light emitting element side of the telescopic member A signal due to light other than the light reflected by the surface can be reduced. Thereby, it is possible to accurately extract a noise component due to disturbance such as movement of the subject and pulsation.

本願第四の発明において、前記第三の発光素子の照射する光は、前記第二の発光素子の照射する光と異なる波長の光としても良い。前記第三の発光素子の照射する光と前記第二の発光素子の照射する光とで異なる2波長を使用し、前記第三の受光素子を前記第二の発光素子が照射する光の波長のみを受光するよう設定しておくことで、前記第三の受光素子に前記被検体を透過した光が入射した場合でも、前記第三の受光素子は前記第二の発光素子が照射する光の波長と異なる波長である前記被検体を透過した光を検出しない。従って、前記第三の受光素子の出力する信号から前記伸縮部材の前記第二の発光素子側の面で反射された光以外の光による信号を低減することができる。これにより、被検体の動きや脈動等の外乱によるノイズ成分を精度よく抽出することができる。さらに、前記第五の受光素子を前記第三の発光素子が照射する光の波長のみを受光するよう設定しておくことで、前記第五の受光素子に前記反射された光が入射した場合でも、前記第五の受光素子は異なる波長の前記反射された光を検出しない。これにより、前記第五の受光素子の出力する信号から前記被検体を透過した光以外の光による信号を低減することができる。   In the fourth invention of the present application, the light emitted from the third light emitting element may be light having a wavelength different from that of the light emitted from the second light emitting element. Two different wavelengths are used for the light emitted from the third light emitting element and the light emitted from the second light emitting element, and only the wavelength of the light emitted from the second light emitting element to the third light receiving element is used. By setting to receive light, even when light transmitted through the subject is incident on the third light receiving element, the third light receiving element has a wavelength of light emitted by the second light emitting element. The light transmitted through the subject having a wavelength different from the above is not detected. Therefore, it is possible to reduce a signal due to light other than light reflected from the surface of the elastic member on the second light emitting element side from the signal output from the third light receiving element. Thereby, it is possible to accurately extract a noise component due to disturbance such as movement of the subject and pulsation. Further, by setting the fifth light receiving element so as to receive only the wavelength of light emitted by the third light emitting element, even when the reflected light is incident on the fifth light receiving element. The fifth light receiving element does not detect the reflected light of different wavelengths. Thereby, it is possible to reduce a signal due to light other than the light transmitted through the subject from the signal output from the fifth light receiving element.

従って、本願第四の発明の血圧測定装置は、前記第五の受光素子の出力する被検体の脈波信号から被検体の動きや脈動等の外乱によるノイズ成分を低減することができ、被検体の末梢部に完全に固定できなくとも被検体の脈波を高精度に安定して常時測定をすることができる。   Therefore, the blood pressure measurement device according to the fourth invention of the present application can reduce a noise component due to disturbance such as movement and pulsation of the subject from the pulse wave signal of the subject output from the fifth light receiving element. Even if the peripheral part of the subject cannot be completely fixed, the pulse wave of the subject can be constantly measured with high accuracy and stability.

本願発明によれば、発光素子のカフ内から伸縮部材に向け照射した光がカフの伸縮部材の発光素子側の面で反射された光を受光する受光素子を備え、前記受光素子の出力する信号をノイズ成分として被検体を測定した脈波信号と併せて信号処理することで、被検体の動きや脈動等の外乱によるノイズ成分を低減することができ、被検体の末梢部に完全に固定できなくとも被検体の脈波を高精度に安定して常時測定をすることができる血圧測定装置を提供できる。   According to the invention of the present application, the light output from the cuff of the light emitting element toward the expansion / contraction member is provided with a light receiving element that receives light reflected by the light emitting element side surface of the expansion / contraction member of the cuff, and a signal output from the light receiving element Signal processing together with the pulse wave signal measured from the subject as a noise component, noise components due to disturbances such as movement and pulsation of the subject can be reduced and can be completely fixed to the peripheral part of the subject. It is possible to provide a blood pressure measurement device that can stably measure the pulse wave of the subject with high accuracy and stability at all times.

添付の図面を参照して本願発明の実施の形態を説明する。以下に説明する実施の形態は本願発明の構成の例であり、本願発明は、以下の実施の形態に制限されるものではない。
(実施の形態1)
Embodiments of the present invention will be described with reference to the accompanying drawings. The embodiment described below is an example of the configuration of the present invention, and the present invention is not limited to the following embodiment.
(Embodiment 1)

図1は、本願第一の発明の実施形態に係る血圧測定装置の一形態を示す概略図である。血圧測定装置901は、伸縮部材10、筐体12a、発光素子111、受光素子121、受光素子122とを備える。伸縮部材10と筐体12aはカフ11を構成する。   FIG. 1 is a schematic view showing an embodiment of a blood pressure measurement device according to the first embodiment of the present invention. The blood pressure measurement device 901 includes the telescopic member 10, a housing 12 a, a light emitting element 111, a light receiving element 121, and a light receiving element 122. The elastic member 10 and the housing 12 a constitute a cuff 11.

本実施形態の血圧測定装置901の筐体12aには発光素子111、受光素子121及び受光素子122が設置される。筐体12aの材質は特に限定しないが、血圧測定装置として被検体の末梢部に装着され、空気による圧力が印加されるため、軽量であり圧力で変形しないプラスチック又はアルミ、ステンレス等の金属が望ましい。   The light emitting element 111, the light receiving element 121, and the light receiving element 122 are installed in the housing 12a of the blood pressure measurement device 901 of the present embodiment. The material of the housing 12a is not particularly limited. However, since it is attached to the peripheral part of the subject as a blood pressure measuring device and pressure by air is applied, it is lightweight, and is preferably a plastic such as plastic, aluminum, or stainless steel that does not deform with pressure. .

発光素子111は、カフ11の外部に被検体の血管の脈動を測定するための照射光Aを照射する。   The light emitting element 111 irradiates the outside of the cuff 11 with irradiation light A for measuring the blood vessel pulsation of the subject.

散乱光Bは被検体内の血管の脈波により照射光Aが吸収及び散乱することで生ずる。具体的には、照射光Aは被検体の血管の脈動に伴う被測定部分の血液の増減、すなわち血液中のヘモグロビン量の増減によって吸収及び散乱を生じ散乱光Bとなる。照射光Aとして300nm以上1500nm以下の波長の光を使用することができる。このような波長で発光する発光素子111としてGaP系(赤)LED又はGaAs系LEDを使用することができる。さらに、照射光Aとして血液中のヘモグロビンに吸収されやすい400nm以上650nm以下の波長の光を使用することがより好ましい。このような波長で発光する発光素子111としてGaP系(緑)LED又はGaAsP系LEDを使用することができる。   The scattered light B is generated by the absorption and scattering of the irradiation light A by the pulse wave of the blood vessel in the subject. More specifically, the irradiation light A is absorbed and scattered by the increase / decrease of blood in the portion to be measured accompanying the pulsation of the blood vessel of the subject, that is, the amount of hemoglobin in the blood, and becomes the scattered light B. As the irradiation light A, light having a wavelength of 300 nm to 1500 nm can be used. A GaP (red) LED or a GaAs LED can be used as the light emitting element 111 that emits light with such a wavelength. Furthermore, it is more preferable to use light having a wavelength of 400 nm or more and 650 nm or less that is easily absorbed by hemoglobin in blood as the irradiation light A. A GaP (green) LED or a GaAsP LED can be used as the light emitting element 111 that emits light at such a wavelength.

受光素子121は受光した散乱光Bを信号Sとして出力する光電変換器である。受光素子121は散乱光Bをカフ11内で受光する。受光素子121の種類は、照射光Aを照射する発光素子111の種類で定まる。発光素子111にGaP系(赤)LED又はGaAs系LEDを使用した場合、受光素子121にはSiフォトトランジスタを使用することが好ましい。また、発光素子111にGaP系(緑)LED又はGaAsP系LEDを使用した場合、受光素子121にはブルーセンシティブフォトダイオードを使用することが好ましい。散乱光Bから光電変換された信号Sは、被検体の血管の脈動の測定情報を有する脈動波形である。   The light receiving element 121 is a photoelectric converter that outputs the received scattered light B as a signal S. The light receiving element 121 receives the scattered light B in the cuff 11. The type of the light receiving element 121 is determined by the type of the light emitting element 111 that emits the irradiation light A. When a GaP (red) LED or a GaAs LED is used for the light emitting element 111, it is preferable to use a Si phototransistor for the light receiving element 121. Further, when a GaP (green) LED or a GaAsP LED is used for the light emitting element 111, it is preferable to use a blue sensitive photodiode for the light receiving element 121. The signal S photoelectrically converted from the scattered light B is a pulsation waveform having measurement information on the pulsation of the blood vessel of the subject.

伸縮部材10は遮光部10aと透光部10bから構成される。伸縮部材10は発光素子111、受光素子121及び受光素子122を覆い、筐体12aの外枠に空気の漏れがないように密着される。伸縮部材10は、筐体12aに接続される空気パイプ14から送り込まれる空気により膨らみ、被検体の被測定部分を圧迫する。また、透光部10bは、発光素子111から外部に照射光Aを照射でき、かつ外部から散乱光Bを受光素子121で受光できるように配置される。伸縮部材10の素材は特に限定しないが、遮光部10aは伸縮性があり丈夫で遮光性のある布又はゴムであることが望ましく、透光部10bは光の透過性のあるゴム又はビニールであることが望ましい。   The elastic member 10 includes a light shielding part 10a and a light transmitting part 10b. The elastic member 10 covers the light emitting element 111, the light receiving element 121, and the light receiving element 122, and is in close contact with the outer frame of the housing 12a so as not to leak air. The telescopic member 10 swells with air sent from the air pipe 14 connected to the housing 12a, and compresses the portion to be measured of the subject. The light transmitting portion 10b is arranged so that the light emitting element 111 can irradiate the irradiation light A to the outside, and the light receiving element 121 can receive the scattered light B from the outside. The material of the elastic member 10 is not particularly limited, but the light shielding portion 10a is preferably a stretchable, durable and light shielding cloth or rubber, and the light transmitting portion 10b is a light permeable rubber or vinyl. It is desirable.

血圧測定装置901において反射光Cは照射光Aの一部が伸縮部材10の発光素子111の側の面で反射した光である。カフ11は被検体の動きや脈波等の外乱により振動するため、その振動に応じ反射光Cの強度も変動する。   In the blood pressure measurement device 901, the reflected light C is light that is a part of the irradiation light A reflected by the surface of the stretchable member 10 on the light emitting element 111 side. Since the cuff 11 vibrates due to disturbances such as the movement of the subject and pulse waves, the intensity of the reflected light C varies according to the vibration.

受光素子122は反射光Cを受光し信号Nを出力する光電変換器である。受光素子122は反射光Cをカフ11内で受光でき、かつ遮光部10aに覆われ散乱光Bが直接入射しない位置の筐体12aに設置される。受光素子122の種類は、照射光Aを照射する発光素子111の種類で定まる。発光素子111にGaP系(赤)LED又はGaAs系LEDを使用した場合、受光素子122にはSiフォトトランジスタを使用することが好ましい。また、発光素子111にGaP系(緑)LED又はGaAsP系LEDを使用した場合、受光素子122にはブルーセンシティブフォトダイオードを使用することが好ましい。反射光Cから光電変換された信号Nは、被検体の動きや脈波等の外乱による反射光Cの強度変化の波形であり、散乱光Bから受光素子121で光電変換された信号Sのノイズ成分を有している。   The light receiving element 122 is a photoelectric converter that receives the reflected light C and outputs a signal N. The light receiving element 122 is installed in the housing 12a at a position where the reflected light C can be received in the cuff 11 and is covered by the light shielding portion 10a and the scattered light B is not directly incident. The type of the light receiving element 122 is determined by the type of the light emitting element 111 that emits the irradiation light A. When a GaP (red) LED or a GaAs LED is used for the light emitting element 111, it is preferable to use a Si phototransistor for the light receiving element 122. Further, when a GaP (green) LED or a GaAsP LED is used for the light emitting element 111, it is preferable to use a blue sensitive photodiode for the light receiving element 122. The signal N photoelectrically converted from the reflected light C is a waveform of the intensity change of the reflected light C due to disturbance such as the movement of the subject or a pulse wave, and the noise of the signal S photoelectrically converted from the scattered light B by the light receiving element 121. Has ingredients.

血圧測定装置901は差分演算手段201をさらに備えてもよい。差分演算手段201は受光素子121及び受光素子122に接続し、信号S及び信号Nを受信し、信号Sと信号Nの差分を演算する手段である。差分演算手段201には差動入力の演算増幅回路(以下、「差動入力の演算増幅回路」を「オペアンプ」と略記する。)を使用することができる。オペアンプは二つの入力端子を持ち、この両端子に入力した信号間の電位差(電圧間差)を増幅し、出力する回路である。従って、オペアンプに信号Sと信号Nが入力された場合、オペアンプは信号Sと信号Nとの電位差、すなわち、信号Sと信号Nに含まれる共通信号及び共通ノイズ成分を除去した出力信号Oを出力する。また、オペアンプは信号Sと信号Nとの電位差の演算において、入力された信号Sから信号Nとの共通信号及び共通ノイズ成分を効果的に除去できるように最適な信号Sと信号Nの比率に設定できる。   The blood pressure measurement device 901 may further include a difference calculation unit 201. The difference calculation unit 201 is connected to the light receiving element 121 and the light receiving element 122, receives the signal S and the signal N, and calculates the difference between the signal S and the signal N. A differential input operational amplifier circuit (hereinafter, “differential input operational amplifier circuit” is abbreviated as “op-amp”) can be used as the difference calculation means 201. An operational amplifier has two input terminals, and amplifies and outputs a potential difference (voltage difference) between signals input to both terminals. Therefore, when the signal S and the signal N are input to the operational amplifier, the operational amplifier outputs the output signal O from which the potential difference between the signal S and the signal N, that is, the common signal and the common noise component included in the signal S and the signal N are removed. To do. In addition, in the calculation of the potential difference between the signal S and the signal N, the operational amplifier has an optimum ratio of the signal S and the signal N so that the common signal and the common noise component with the signal N can be effectively removed from the input signal S. Can be set.

血圧測定装置901は遮光手段15をさらに備えてもよい。受光素子122が散乱光Bを受光した場合、出力される信号Nに信号Sの成分が含まれることになる。従って、差分演算手段201での信号Sと信号Nの演算により信号Sが相殺され出力信号Oに含まれる信号Sの成分が小さくなる。そこで、遮光手段15により受光素子122が散乱光Bを受光することを防止し、受光素子122から出力する信号Nに信号Sの成分が含まれることを防止する。遮光手段15は照射光Aの一部が反射する伸縮部材10の付近を開口しておくよう筐体12aに設置される。遮光手段15は散乱光Bをカフ11内で散乱させないよう黒色に塗装された金属板、プラスチック板であることが好ましい。   The blood pressure measurement device 901 may further include a light shielding unit 15. When the light receiving element 122 receives the scattered light B, the output signal N includes the component of the signal S. Therefore, the signal S is canceled by the calculation of the signal S and the signal N in the difference calculation means 201, and the component of the signal S included in the output signal O is reduced. Therefore, the light receiving element 122 prevents the light receiving element 122 from receiving the scattered light B by the light shielding means 15 and prevents the signal N output from the light receiving element 122 from including the component of the signal S. The light shielding means 15 is installed in the housing 12a so as to open the vicinity of the elastic member 10 from which a part of the irradiation light A is reflected. The light shielding means 15 is preferably a metal plate or plastic plate painted in black so as not to scatter the scattered light B within the cuff 11.

血圧測定装置901は以下のように動作する。血圧測定装置901は、被検体の測定部分に伸縮部材10が接触するように装着される。空気パイプ14により空気の供給を受け、伸縮部材10が膨らみ、被検体の被測定部分を圧迫し、被検体内部の血流を停止する状態にする。その後、発光素子111は伸縮部材10の透光部10bを通じ照射光Aを外部の被検体に向け照射するとともに、空気パイプ14はカフ11の内部の空気を徐々に排気して、被検体の被測定部分を圧迫する圧力を減少させる。被検体の被測定部分を圧迫する圧力の減少に伴い、被検体内部の血流が流れ始め、照射光Aは被検体内部の血管の脈波により散乱され散乱光Bとなり、再び透光部10bを透過し、受光素子121に受光される。受光素子121は散乱光Bの強度に応じた信号Sを出力する。一方、照射光Aは全てカフ11の外部へ透過せず、照射光Aの一部は伸縮部材10の発光素子111の側の面で反射光Cとなり、受光素子122に受光される。ここに、遮光手段15により散乱光Bは遮光されるため、受光素子122は散乱光Bを受光しない。受光素子122は反射光Cの強度に応じた信号Nを出力する。出力された信号S及び信号Nは差分演算手段201において差分演算され、動きや脈動等の外乱によるノイズ成分が除去された脈動波形の出力信号Oが出力される。出力信号Oを所定の方法により解析することで被検体の脈波を測定することができる。カフ11内に供給した空気が排気され、伸縮部材10が被検体の被測定部分を圧迫しなくなった時点で血圧測定装置901は血圧測定を終了する。   The blood pressure measurement device 901 operates as follows. The blood pressure measurement device 901 is mounted so that the elastic member 10 is in contact with the measurement portion of the subject. When the supply of air is received by the air pipe 14, the expandable member 10 swells, compresses the portion to be measured of the subject, and stops the blood flow inside the subject. Thereafter, the light emitting element 111 irradiates the external subject with the irradiation light A through the translucent part 10b of the extendable member 10, and the air pipe 14 gradually exhausts the air inside the cuff 11 so as to subject the subject to the subject. Reduce the pressure that presses the measurement part. As the pressure for compressing the measured portion of the subject decreases, the blood flow inside the subject begins to flow, and the irradiation light A is scattered by the pulse wave of the blood vessel inside the subject to become scattered light B, and again the translucent portion 10b. And is received by the light receiving element 121. The light receiving element 121 outputs a signal S corresponding to the intensity of the scattered light B. On the other hand, all of the irradiation light A does not transmit to the outside of the cuff 11, and a part of the irradiation light A becomes reflected light C on the surface of the stretchable member 10 on the light emitting element 111 side and is received by the light receiving element 122. Here, since the scattered light B is shielded by the light shielding means 15, the light receiving element 122 does not receive the scattered light B. The light receiving element 122 outputs a signal N corresponding to the intensity of the reflected light C. The output signal S and the signal N are difference-calculated by the difference calculation means 201, and an output signal O having a pulsation waveform from which noise components due to disturbances such as motion and pulsation are removed is output. The pulse wave of the subject can be measured by analyzing the output signal O by a predetermined method. When the air supplied into the cuff 11 is exhausted, the blood pressure measurement device 901 ends the blood pressure measurement when the expansion / contraction member 10 no longer compresses the portion to be measured of the subject.

従って、血圧測定装置901は、被検体の末梢部に完全に固定できなくとも被検体の血管の脈波を高精度に安定して常時測定をすることができる。
(実施の形態2)
Therefore, the blood pressure measurement device 901 can always measure the pulse wave of the blood vessel of the subject with high accuracy and stability even if it cannot be completely fixed to the peripheral part of the subject.
(Embodiment 2)

図2は、本願第二の発明の実施形態に係る血圧測定装置の一形態を示す概略図である。
本実施の形態に係る血圧測定装置902において、図1で用いた符号と同じ符号は同じ構成及び同じ機能である。血圧測定装置901との違いは発光素子112及び受光素子123である。
FIG. 2 is a schematic view showing an embodiment of a blood pressure measurement device according to the second embodiment of the present invention.
In the blood pressure measurement device 902 according to the present embodiment, the same reference numerals as those used in FIG. 1 have the same configuration and the same function. The difference from the blood pressure measurement device 901 is a light emitting element 112 and a light receiving element 123.

図2に示す本実施の形態の血圧測定装置902において、発光素子112は遮光部10aに向けて照射光Dを照射できるよう筐体12aに設置される。発光素子112の種類は特に限定されないが、小型で省電力のLEDを使用することができる。   In the blood pressure measurement device 902 of the present embodiment shown in FIG. 2, the light emitting element 112 is installed in the housing 12a so that the irradiation light D can be irradiated toward the light shielding portion 10a. Although the kind of the light emitting element 112 is not particularly limited, a small and power-saving LED can be used.

血圧測定装置902において反射光Cは照射光Dが伸縮部材10の発光素子112の側の面で反射した光である。カフ11は被検体の動きや脈波等の外乱により振動するため、その振動に応じ反射光Cの強度も変動する。   In the blood pressure measurement device 902, the reflected light C is light that is reflected from the surface of the stretchable member 10 on the light emitting element 112 side. Since the cuff 11 vibrates due to disturbances such as the movement of the subject and pulse waves, the intensity of the reflected light C varies according to the vibration.

受光素子123は、反射光Cを受光し信号Nを出力する光電変換器である。受光素子123は反射光Cをカフ11内で受光できるようの筐体12aに設置される。受光素子123の種類は、照射光Dを照射する発光素子112の種類で定まり、発光素子112にGaP系LED、GaAs系LEDを使用した場合、フォトダイオード及びフォトトランジスタを使用することが好ましい。   The light receiving element 123 is a photoelectric converter that receives the reflected light C and outputs a signal N. The light receiving element 123 is installed in the housing 12 a so that the reflected light C can be received in the cuff 11. The type of the light receiving element 123 is determined by the type of the light emitting element 112 that emits the irradiation light D, and when a GaP LED or GaAs LED is used for the light emitting element 112, it is preferable to use a photodiode and a phototransistor.

血圧測定装置902においても差分演算手段201をさらに備えてもよい。   The blood pressure measurement device 902 may further include a difference calculation unit 201.

血圧測定装置902においても遮光手段15をさらに備えてもよい。   The blood pressure measurement device 902 may further include a light shielding unit 15.

血圧測定装置902において、発光素子111の照射する照射光Aの波長と発光素子112の照射する照射光Dの波長を異なる波長としても良い。発光素子111の照射する照射光Aと発光素子112の照射する照射光Dとで異なる2波長を使用し、受光素子123を反射光C、すなわち照射光Dの波長のみを受光するよう設定しておく。これにより受光素子123に散乱光Bが入射した場合でも、受光素子123は反射光Cの波長と異なる波長の散乱光Bを検出しない。従って、受光素子123の出力する信号Nから反射光C以外の光による信号を低減できる。これにより、信号Nは被検体の動きや脈動等の外乱によるノイズ成分を精度よく抽出することができる。さらに、受光素子121を散乱光B、すなわち照射光Aの波長のみを受光するよう設定しておく。これにより受光素子121に反射光Cが入射した場合でも、受光素子121は散乱光Bの波長と異なる波長の反射光Cを検出しない。これにより、信号Sは散乱光B以外の光による信号を低減することができる。異なる2波長の光として各種の波長の光を使用することができる。例えば、発光素子111に波長550nm付近のGaP系LED(緑)、受光素子121に波長550nmの光を受光できるブルーセンシティブフォトダイオード、発光素子112に波長950nm付近のGaAs系LEDならびに受光素子123に波長950nmの光を受光できる可視光カットフィルタを組み合わせたSiフォトトランジスタを使用することができる。照射光Aに550nm付近の光、照射光Dに950nm付近の光を使用するため、散乱光Bと反射光Cのクロストークを防止することができる。また、同一波長帯の受光素子を使用する場合であっても、波長カットフィルタを組み合わせることで散乱光Bと反射光Cのクロストークを防止することができる。例えば、発光素子111に波長550nm付近のGaP系LED(緑)並びに発光素子112に波長700nm付近のGaP系LED(赤)を使用した場合、受光素子121に600nm以上の波長をカットするフィルタを備えたCdS光導電セル並びに受光素子123に600nm以下の波長をカットするフィルタを備えたCdS光導電セルを使用することで散乱光Bと反射光Cのクロストークを防止することができる。   In the blood pressure measurement device 902, the wavelength of the irradiation light A irradiated by the light emitting element 111 may be different from the wavelength of the irradiation light D irradiated by the light emitting element 112. Two different wavelengths are used for the irradiation light A irradiated by the light emitting element 111 and the irradiation light D irradiated by the light emitting element 112, and the light receiving element 123 is set to receive only the reflected light C, that is, the wavelength of the irradiation light D. deep. Thereby, even when the scattered light B enters the light receiving element 123, the light receiving element 123 does not detect the scattered light B having a wavelength different from the wavelength of the reflected light C. Therefore, a signal due to light other than the reflected light C can be reduced from the signal N output from the light receiving element 123. As a result, the signal N can accurately extract noise components due to disturbances such as movement and pulsation of the subject. Further, the light receiving element 121 is set to receive only the scattered light B, that is, the wavelength of the irradiation light A. Accordingly, even when the reflected light C is incident on the light receiving element 121, the light receiving element 121 does not detect the reflected light C having a wavelength different from the wavelength of the scattered light B. Thereby, the signal S can reduce a signal caused by light other than the scattered light B. Light of various wavelengths can be used as light of two different wavelengths. For example, the light emitting element 111 has a GaP LED (green) with a wavelength of about 550 nm, the light receiving element 121 has a blue sensitive photodiode capable of receiving light with a wavelength of 550 nm, the light emitting element 112 has a wavelength of about 950 nm and the light receiving element 123 has a wavelength. A Si phototransistor combined with a visible light cut filter capable of receiving light at 950 nm can be used. Since light near 550 nm is used as the irradiation light A and light near 950 nm is used as the irradiation light D, crosstalk between the scattered light B and the reflected light C can be prevented. Even when light receiving elements in the same wavelength band are used, crosstalk between scattered light B and reflected light C can be prevented by combining a wavelength cut filter. For example, when a GaP LED (green) having a wavelength of about 550 nm is used for the light emitting element 111 and a GaP LED (red) having a wavelength of about 700 nm is used for the light emitting element 112, the light receiving element 121 includes a filter that cuts a wavelength of 600 nm or more. Further, by using a CdS photoconductive cell including a CdS photoconductive cell and a CdS photoconductive cell provided with a filter that cuts a wavelength of 600 nm or less in the light receiving element 123, crosstalk between the scattered light B and the reflected light C can be prevented.

本実施の形態の血圧測定装置902の動作を説明する。本実施の形態に係る血圧測定装置902において、図1で用いた符号と同じ符号は同じ動作をする。   The operation of the blood pressure measurement device 902 of this embodiment will be described. In the blood pressure measurement device 902 according to the present embodiment, the same reference numerals as those used in FIG. 1 perform the same operations.

本実施の形態の血圧測定装置902の反射光Cは、血圧測定装置901の動作の過程中、発光素子111から照射された照射光Aの一部が伸縮部材10の発光素子111の側の面で反射した光とせず、発光素子112から照射された照射光Dを伸縮部材10の発光素子112の側の面で反射した光とする。   The reflected light C of the blood pressure measurement device 902 of the present embodiment is such that a part of the irradiation light A emitted from the light emitting element 111 during the operation of the blood pressure measurement device 901 is a surface on the light emitting element 111 side of the expansion member 10. The irradiation light D emitted from the light emitting element 112 is not the light reflected by the light emitting element 112 but the light reflected by the surface of the elastic member 10 on the light emitting element 112 side.

本実施の形態の血圧測定装置902の受光素子123は反射光Cの受光に使用する。   The light receiving element 123 of the blood pressure measurement device 902 of the present embodiment is used for receiving the reflected light C.

ここに、発光素子111にGaP系LED(緑)、受光素子121にブルーセンシティブフォトダイオード、発光素子112にGaAs系LEDならびに受光素子123に可視光カットフィルタを組み合わせたSiフォトトランジスタを使用した場合、発光素子111は波長550nmの照射光Aを透光部10bから外部の被検体に向け照射する。一方、発光素子112は波長950nmの照射光Dを伸縮部材10に向けて照射する。照射光Aは被検体内部の血管の脈波により散乱され波長550nmの散乱光Bとなり、再び透光部10bを透過し受光素子121に受光される。照射光Dは伸縮部材10の発光素子111の側の面で波長950nmの反射光Cとなり受光素子123に受光される。受光素子121は波長550nm付近の光のみを検出するため、波長950nmの反射光Cを検出せず、信号Sは散乱光B以外の光による信号を低減できる。受光素子123は波長950nm付近の光のみを検出するため、波長550nmの散乱光Bを検出せず、信号Nは反射光C以外の光による信号を低減できる。出力された信号S及び信号Nは差分演算手段201において差分演算され、被検体の動きや脈動等の外乱によるノイズ成分が除去された脈動波形の出力信号Oが出力される。出力信号Oを所定の方法により解析することで被検体の脈波を測定することができる。   Here, when a GaP-based LED (green) is used as the light-emitting element 111, a blue-sensitive photodiode is used as the light-receiving element 121, a GaAs-based LED is used as the light-emitting element 112, and a visible light cut filter is combined with the light-receiving element 123, The light emitting element 111 irradiates irradiation light A having a wavelength of 550 nm toward an external subject from the translucent portion 10b. On the other hand, the light emitting element 112 irradiates the extending member 10 with irradiation light D having a wavelength of 950 nm. The irradiation light A is scattered by the pulse wave of the blood vessel inside the subject to become scattered light B having a wavelength of 550 nm, and again passes through the light transmitting part 10b and is received by the light receiving element 121. The irradiation light D becomes reflected light C having a wavelength of 950 nm on the surface of the elastic member 10 on the light emitting element 111 side and is received by the light receiving element 123. Since the light receiving element 121 detects only light having a wavelength in the vicinity of 550 nm, the reflected light C having a wavelength of 950 nm is not detected, and the signal S can be reduced by a signal other than the scattered light B. Since the light receiving element 123 detects only light having a wavelength in the vicinity of 950 nm, the scattered light B having a wavelength of 550 nm is not detected, and the signal N can be reduced by a signal other than the reflected light C. The output signal S and the signal N are difference-calculated by the difference calculation means 201, and an output signal O having a pulsation waveform from which noise components due to disturbance such as movement of the subject and pulsation are removed is output. The pulse wave of the subject can be measured by analyzing the output signal O by a predetermined method.

従って、血圧測定装置902は、被検体の末梢部に完全に固定できなくとも被検体の血管の脈波を高精度に安定して常時測定をすることができる。
(実施の形態3)
Therefore, the blood pressure measurement device 902 can always measure the pulse wave of the blood vessel of the subject with high accuracy and stability even if it cannot be completely fixed to the peripheral part of the subject.
(Embodiment 3)

図3は、本願第三の発明の実施形態に係る血圧測定装置の一形態を示す概略図である。
本実施の形態に係る血圧測定装置903において、図1で用いた符号と同じ符号は同じ構成及び同じ機能である。血圧測定装置901との違いは筐体12b、受光素子124である。
FIG. 3 is a schematic diagram showing an embodiment of a blood pressure measurement device according to an embodiment of the third invention of the present application.
In the blood pressure measurement device 903 according to the present embodiment, the same reference numerals as those used in FIG. 1 have the same configuration and the same function. The difference from the blood pressure measurement device 901 is the housing 12b and the light receiving element 124.

図3に示す本実施の形態の血圧測定装置903において、筐体12bは伸縮部材10に対向して設置され、図示しないアームにより筐体12aと筐体12bは接続される。   In the blood pressure measurement device 903 according to the present embodiment shown in FIG. 3, the housing 12b is installed to face the telescopic member 10, and the housing 12a and the housing 12b are connected by an arm (not shown).

透過光Eは被検体内の血管の脈波により照射光Aが吸収及び透過することで生ずる。具体的には、照射光Aは被検体の血管の脈動に伴う被測定部分の血液の増減、すなわち血液中のヘモグロビン量の増減によって吸収及び透過を生じ透過光Eとなる。照射光Aとして300nm以上1500nm以下の波長の光を使用することができる。このような波長で発光する発光素子111としてGaP系(赤)LED又はGaAs系LEDを使用することができる。さらに、照射光Aとして血液中のヘモグロビンに吸収されやすい400nm以上650nm以下の波長の光を使用することがより好ましい。このような波長で発光する発光素子111としてGaP系(緑)LED又はGaAsP系LEDを使用することができる。   The transmitted light E is generated when the irradiation light A is absorbed and transmitted by the pulse wave of the blood vessel in the subject. More specifically, the irradiation light A is absorbed and transmitted by the increase / decrease of blood in the measurement portion accompanying the pulsation of the blood vessel of the subject, that is, the increase / decrease of the amount of hemoglobin in the blood to become the transmitted light E. As the irradiation light A, light having a wavelength of 300 nm to 1500 nm can be used. A GaP (red) LED or a GaAs LED can be used as the light emitting element 111 that emits light with such a wavelength. Furthermore, it is more preferable to use light having a wavelength of 400 nm or more and 650 nm or less that is easily absorbed by hemoglobin in blood as the irradiation light A. A GaP (green) LED or a GaAsP LED can be used as the light emitting element 111 that emits light at such a wavelength.

受光素子124は受光した透過光Eを信号Sとして出力する光電変換器である。受光素子124は透過光Eを受光できるよう筐体12bに設置される。受光素子124の種類は、照射光Aを照射する発光素子111の種類で定まる。発光素子111にGaP系(赤)LED又はGaAs系LEDを使用した場合、受光素子124にはSiフォトトランジスタを使用することが好ましい。また、発光素子111にGaP系(緑)LED又はGaAsP系LEDを使用した場合、受光素子124にはブルーセンシティブフォトダイオードを使用することが好ましい。   The light receiving element 124 is a photoelectric converter that outputs the received transmitted light E as a signal S. The light receiving element 124 is installed in the housing 12b so that the transmitted light E can be received. The type of the light receiving element 124 is determined by the type of the light emitting element 111 that emits the irradiation light A. When a GaP (red) LED or a GaAs LED is used for the light emitting element 111, it is preferable to use a Si phototransistor for the light receiving element 124. Further, when a GaP (green) LED or a GaAsP LED is used for the light emitting element 111, it is preferable to use a blue sensitive photodiode for the light receiving element 124.

血圧測定装置903においても差分演算手段201をさらに備えてもよい。   The blood pressure measurement device 903 may further include a difference calculation unit 201.

本実施の形態の血圧測定装置903の動作を説明する。本実施の形態に係る血圧測定装置903において、図1で用いた符号と同じ符号は同じ動作をする。   The operation of the blood pressure measurement device 903 of this embodiment will be described. In the blood pressure measurement device 903 according to the present embodiment, the same reference numerals as those used in FIG. 1 perform the same operations.

本実施の形態の血圧測定装置903は被検体の測定部分に伸縮部材10が接触し、かつ伸縮部材10と筐体12bで被検体の測定部を挟むように被検体に装着される。   The blood pressure measurement device 903 of the present embodiment is attached to the subject such that the elastic member 10 is in contact with the measurement part of the subject and the measurement part of the subject is sandwiched between the elastic member 10 and the housing 12b.

発光素子111から透光部10bに向けて照射した照射光Aは、被検体を透過し、透過光Eとして受光素子124に受光され、受光素子124は信号Sを出力する。   Irradiation light A emitted from the light emitting element 111 toward the light transmitting portion 10b passes through the subject and is received by the light receiving element 124 as transmitted light E, and the light receiving element 124 outputs a signal S.

出力された信号S及び信号Nは差分演算手段201において差分演算され、被検体の動きや脈動等の外乱によるノイズ成分が除去された脈動波形の出力信号Oが出力される。出力信号Oを所定の方法により解析することで被検体の脈波を測定することができる。   The output signal S and the signal N are difference-calculated by the difference calculation means 201, and an output signal O having a pulsation waveform from which noise components due to disturbance such as movement of the subject and pulsation are removed is output. The pulse wave of the subject can be measured by analyzing the output signal O by a predetermined method.

従って、血圧測定装置903は、被検体の末梢部に完全に固定できなくとも被検体の血管の脈波を高精度に安定して常時測定をすることができる。
(実施の形態4)
Therefore, the blood pressure measurement device 903 can constantly measure the pulse wave of the blood vessel of the subject with high accuracy even if it cannot be completely fixed to the peripheral portion of the subject.
(Embodiment 4)

図4は、本願第四の発明の実施形態に係る血圧測定装置の一形態を示す概略図である。
本実施の形態に係る血圧測定装置904において、図1、図2及び図3で用いた符号と同じ符号は同じ構成及び同じ機能である。血圧測定装置901、血圧測定装置902及び血圧測定装置903との違いは発光素子113、受光素子125である。
FIG. 4 is a schematic diagram showing an embodiment of a blood pressure measurement device according to the fourth embodiment of the present invention.
In the blood pressure measurement device 904 according to the present embodiment, the same reference numerals as those used in FIGS. 1, 2, and 3 have the same configuration and the same function. The difference between the blood pressure measurement device 901, the blood pressure measurement device 902 and the blood pressure measurement device 903 is a light emitting element 113 and a light receiving element 125.

図4に示す本実施の形態の血圧測定装置904において、発光素子113は筐体12bに設置され、被検体に向けて照射光Fを照射する。   In the blood pressure measurement device 904 of the present embodiment shown in FIG. 4, the light emitting element 113 is installed in the housing 12b and irradiates the subject with the irradiation light F.

透過光Gは被検体内の血液の脈波により照射光Fが吸収及び透過することで生ずる。具体的には、照射光Fは被検体の血管の脈動に伴う被測定部分の血液の増減、すなわち血液中のヘモグロビン量の増減によって吸収及び透過を生じ透過光Gとなる。照射光Fとして300nm以上1500nm以下の波長の光を使用することができる。このような波長で発光する発光素子113としてGaP系(赤)LED又はGaAs系LEDを使用することができる。さらに、照射光Fとして血液中のヘモグロビンに吸収されやすい400nm以上650nm以下の波長の光を使用することがより好ましい。このような波長で発光する発光素子113としてGaP系(緑)LED又はGaAsP系LEDを使用することができる。   The transmitted light G is generated when the irradiation light F is absorbed and transmitted by the pulse wave of blood in the subject. Specifically, the irradiation light F is absorbed and transmitted by the increase / decrease of blood in the measurement portion accompanying the pulsation of the blood vessel of the subject, that is, the increase / decrease of the amount of hemoglobin in the blood, and becomes the transmitted light G. As the irradiation light F, light having a wavelength of 300 nm to 1500 nm can be used. A GaP (red) LED or a GaAs LED can be used as the light emitting element 113 that emits light with such a wavelength. Furthermore, it is more preferable to use light having a wavelength of 400 nm or more and 650 nm or less that is easily absorbed by hemoglobin in blood as the irradiation light F. A GaP (green) LED or a GaAsP LED can be used as the light emitting element 113 that emits light with such a wavelength.

受光素子125は、透過光Gを受光し信号Sを出力する光電変換器である。受光素子125は透光部10bと通じて透過光Gを受光できるよう筐体12aに設置される。受光素子125の種類は、照射光Fを照射する発光素子113の種類で定まる。発光素子113にGaP系(赤)LED又はGaAs系LEDを使用した場合、受光素子125にはSiフォトトランジスタを使用することが好ましい。また、発光素子113にGaP系(緑)LED又はGaAsP系LEDを使用した場合、受光素子125にはブルーセンシティブフォトダイオードを使用することが好ましい。   The light receiving element 125 is a photoelectric converter that receives the transmitted light G and outputs a signal S. The light receiving element 125 is installed in the housing 12a so as to receive the transmitted light G through the light transmitting portion 10b. The type of the light receiving element 125 is determined by the type of the light emitting element 113 that irradiates the irradiation light F. When a GaP (red) LED or a GaAs LED is used for the light emitting element 113, it is preferable to use a Si phototransistor for the light receiving element 125. Further, when a GaP (green) LED or a GaAsP LED is used for the light emitting element 113, it is preferable to use a blue sensitive photodiode for the light receiving element 125.

血圧測定装置904においても差分演算手段201をさらに備えてもよい。   The blood pressure measurement device 904 may further include a difference calculation unit 201.

血圧測定装置904においても遮光手段15をさらに備えてもよい。   The blood pressure measurement device 904 may further include a light shielding unit 15.

血圧測定装置904においても発光素子113の照射する照射光Fと発光素子112の照射する照射光Dとで異なる2波長を使用してもよい。異なる2波長の光として各種の波長の光を使用することができる。   Also in the blood pressure measurement device 904, two different wavelengths may be used for the irradiation light F irradiated by the light emitting element 113 and the irradiation light D irradiated by the light emitting element 112. Light of various wavelengths can be used as light of two different wavelengths.

本実施の形態の血圧測定装置904の動作を説明する。本実施の形態に係る血圧測定装置904において、図1、図2及び図3で用いた符号と同じ符号は同じ動作をする。   The operation of the blood pressure measurement device 904 of this embodiment will be described. In the blood pressure measurement device 904 according to the present embodiment, the same reference numerals as those used in FIGS. 1, 2, and 3 perform the same operation.

本実施の形態の血圧測定装置904の被検体への装着は、血圧測定装置903の被検体への装着方法と同様である。発光素子113は被検体に向けて照射光Fを照射する。照射光Fは被検体内部の血管の脈波により吸収及び透過され透過光Gとして、透光部10bを通じ、受光素子125に受光される。受光素子125は透過光Gの強度に応じた信号Sを出力する。   The blood pressure measurement device 904 of the present embodiment is attached to the subject in the same manner as the blood pressure measurement device 903 is attached to the subject. The light emitting element 113 emits the irradiation light F toward the subject. The irradiation light F is absorbed and transmitted by the pulse wave of the blood vessel inside the subject and is received by the light receiving element 125 as the transmitted light G through the light transmitting part 10b. The light receiving element 125 outputs a signal S corresponding to the intensity of the transmitted light G.

ここに、発光素子113にGaP系LED(緑)、受光素子125にブルーセンシティブフォトダイオード、発光素子112にGaAs系LEDならびに受光素子123に可視光カットフィルタを組み合わせたSiフォトトランジスタを使用した場合、発光素子113は波長550nmの照射光Fを被検体に向け照射する。一方、発光素子112は波長950nmの照射光Dを伸縮部材10に向けて照射する。照射光Fは被検体内部の血管の脈波により波長550nmの透過光Gとなり、透光部10bを透過し受光素子125に受光される。照射光Dは伸縮部材10の発光素子112の側で波長950nmの反射光Cとなり受光素子123に受光される。受光素子125は波長550nm付近の光のみを検出するため、波長950nmの反射光Cを検出せず、信号Sは透過光G以外の光による信号を低減できる。受光素子123は波長950nm付近の光のみを検出するため、波長550nmの透過光Gを検出せず、信号Nは反射光C以外の光による信号を低減できる。出力された信号S及び信号Nは差分演算手段201において差分演算され、被検体の動きや脈動等の外乱によるノイズ成分が除去された脈動波形の出力信号Oが出力される。出力信号Oを所定の方法により解析することで被検体の脈波を測定することができる。   Here, when a GaP-based LED (green) is used as the light-emitting element 113, a blue-sensitive photodiode is used as the light-receiving element 125, a GaAs-based LED is used as the light-emitting element 112, and a visible light cut filter is combined with the light-receiving element 123, The light emitting element 113 irradiates the subject with irradiation light F having a wavelength of 550 nm. On the other hand, the light emitting element 112 irradiates the extending member 10 with irradiation light D having a wavelength of 950 nm. The irradiation light F becomes transmitted light G having a wavelength of 550 nm due to the pulse wave of the blood vessel inside the subject, passes through the light transmitting part 10b, and is received by the light receiving element 125. The irradiation light D becomes reflected light C having a wavelength of 950 nm on the light emitting element 112 side of the elastic member 10 and is received by the light receiving element 123. Since the light receiving element 125 detects only light having a wavelength in the vicinity of 550 nm, the reflected light C having a wavelength of 950 nm is not detected, and the signal S can be reduced by a signal other than the transmitted light G. Since the light receiving element 123 detects only light having a wavelength in the vicinity of 950 nm, the transmitted light G having a wavelength of 550 nm is not detected, and the signal N can be reduced by a signal other than the reflected light C. The output signal S and the signal N are difference-calculated by the difference calculation means 201, and an output signal O having a pulsation waveform from which noise components due to disturbance such as movement of the subject and pulsation are removed is output. The pulse wave of the subject can be measured by analyzing the output signal O by a predetermined method.

従って、血圧測定装置904は、被検体の末梢部に完全に固定できなくとも被検体の血管の脈波を高精度に安定して常時測定をすることができる。   Therefore, the blood pressure measurement device 904 can constantly measure the pulse wave of the blood vessel of the subject with high accuracy even if it cannot be completely fixed to the peripheral portion of the subject.

本願発明の血圧測定装置は、健康保持や健康診断のための生体情報を検出する健康器具に適用することができる。   The blood pressure measurement device of the present invention can be applied to a health appliance that detects biological information for health maintenance and medical examination.

本願発明に係る実施形態の血圧測定装置901の構成を示す図である。It is a figure which shows the structure of the blood-pressure measuring apparatus 901 of embodiment which concerns on this invention. 本願発明に係る実施形態の血圧測定装置902の構成を示す図である。It is a figure which shows the structure of the blood-pressure measurement apparatus 902 of embodiment which concerns on this invention. 本願発明に係る実施形態の血圧測定装置903の構成を示す図である。It is a figure which shows the structure of the blood-pressure measurement apparatus 903 of embodiment which concerns on this invention. 本願発明に係る実施形態の血圧測定装置904の構成を示す図である。It is a figure which shows the structure of the blood-pressure measuring apparatus 904 of embodiment which concerns on this invention.

符号の説明Explanation of symbols

901、902、903、904 血圧測定装置
10 伸縮部材
10a 遮光部
10b 透光部
11 カフ
12a、12b 筐体
14 空気パイプ
15 遮光手段
111、112、113 発光素子
121、122、123、124、125 受光素子
201 差分演算手段
A、D、F 照射光
B 散乱光
C 反射光
E G 透過光
S、N 信号
O 出力信号
901, 902, 903, 904 Blood pressure measuring device 10 Telescopic member 10a Light-shielding part 10b Light-transmitting part 11 Cuff 12a, 12b Housing 14 Air pipe 15 Light-shielding means 111, 112, 113 Light-emitting elements 121, 122, 123, 124, 125 Element 201 Difference calculation means A, D, F Irradiation light B Scattered light C Reflected light E G Transmitted light S, N Signal O Output signal

Claims (15)

一部が光の透過性のある伸縮部材で覆われたカフと、
前記伸縮部材の光の透過性のある部分を通して前記カフの外部に光を照射する第一の発光素子と、
前記伸縮部材の光の透過性のある部分を通して、前記第一の発光素子の照射した光が外部で散乱された光を前記カフ内で受光する第一の受光素子と、
前記第一の発光素子の照射した光が前記伸縮部材の前記第一の発光素子側の面で反射された光を前記カフ内で受光する第二の受光素子と、
を備える血圧測定装置。
A cuff partially covered with a light-transmitting elastic member,
A first light emitting element for irradiating light to the outside of the cuff through the light transmissive portion of the elastic member;
A first light receiving element that receives, in the cuff, light scattered outside from the light emitted by the first light emitting element through the light transmissive portion of the elastic member;
A second light-receiving element that receives light reflected by the surface of the elastic member on the first light-emitting element side in the cuff;
A blood pressure measurement device comprising:
前記第一の受光素子の出力する信号と前記第二の受光素子の出力する信号との差分を演算する差分演算手段をさらに備えることを特徴とする請求項1に記載の血圧測定装置。   The blood pressure measurement device according to claim 1, further comprising difference calculation means for calculating a difference between a signal output from the first light receiving element and a signal output from the second light receiving element. 前記第二の受光素子は前記外部で散乱された光の受光を防止する遮光手段を有することを特徴とする請求項1又は2に記載の血圧測定装置。   3. The blood pressure measurement device according to claim 1, wherein the second light receiving element includes a light blocking unit that prevents light scattered outside from being received. 4. 一部が光の透過性のある伸縮部材で覆われたカフと、
前記伸縮部材の光の透過性のある部分を通して前記カフの外部に光を照射する第一の発光素子と、
前記伸縮部材の光の透過性のある部分を通して、前記第一の発光素子の照射した光が外部で散乱された光を前記カフ内で受光する第一の受光素子と、
前記カフ内で前記伸縮部材に向けて光を照射する第二の発光素子と、
前記第二の発光素子の照射した光が前記伸縮部材の前記第二の発光素子側の面で反射された光を前記カフ内で受光する第三の受光素子と、
を備える血圧測定装置。
A cuff partially covered with a light-transmitting elastic member,
A first light emitting element for irradiating light to the outside of the cuff through the light transmissive portion of the elastic member;
A first light receiving element that receives, in the cuff, light scattered outside from the light emitted by the first light emitting element through the light transmissive portion of the elastic member;
A second light emitting element that emits light toward the elastic member in the cuff;
A third light receiving element that receives light reflected by the second light emitting element side surface of the telescopic member in the cuff;
A blood pressure measurement device comprising:
前記第一の受光素子の出力する信号と前記第三の受光素子の出力する信号との差分を演算する差分演算手段をさらに備えることを特徴とする請求項4に記載の血圧測定装置。   The blood pressure measurement device according to claim 4, further comprising a difference calculating means for calculating a difference between a signal output from the first light receiving element and a signal output from the third light receiving element. 前記第三の受光素子は前記外部で散乱された光の受光を防止する遮光手段を有することを特徴とする請求項4又は5に記載の血圧測定装置。   The blood pressure measuring device according to claim 4 or 5, wherein the third light receiving element has a light shielding means for preventing the light scattered outside. 前記第一の発光素子の照射する光の波長と前記第二の発光素子の照射する光の波長が異なることを特徴とする請求項4、5又は6に記載の血圧測定装置。   7. The blood pressure measurement device according to claim 4, wherein a wavelength of light emitted from the first light emitting element is different from a wavelength of light emitted from the second light emitting element. 一部が光の透過性のある伸縮部材で覆われたカフと、
前記伸縮部材の光の透過性のある部分を通して前記カフの外部に光を照射する第一の発光素子と、
前記伸縮部材の光の透過性のある部分を通して、前記第一の発光素子の照射した光を前記カフの外部で受光する第四の受光素子と、
前記第一の発光素子の照射した光が前記伸縮部材の前記第一の発光素子側の面で反射された光を前記カフ内で受光する第二の受光素子と、
を備える血圧測定装置。
A cuff partially covered with a light-transmitting elastic member,
A first light emitting element for irradiating light to the outside of the cuff through the light transmissive portion of the elastic member;
A fourth light receiving element that receives light emitted from the first light emitting element outside the cuff through the light transmissive portion of the elastic member;
A second light receiving element that receives light reflected by the surface of the telescopic member on the first light emitting element side in the cuff;
A blood pressure measurement device comprising:
前記第四の受光素子の出力する信号と前記第二の受光素子の出力する信号との差分を演算する差分演算手段をさらに備えることを特徴とする請求項8に記載の血圧測定装置。   9. The blood pressure measurement device according to claim 8, further comprising difference calculation means for calculating a difference between a signal output from the fourth light receiving element and a signal output from the second light receiving element. 一部が光の透過性のある伸縮部材で覆われたカフと、
前記カフの外部から光を照射する第三の発光素子と、
前記伸縮部材の光の透過性のある部分を通して、前記第三の発光素子の照射した光を前記カフ内で受光する第五の受光素子と、
前記カフ内で前記伸縮部材に向けて光を照射する第二の発光素子と、
前記第二の発光素子の照射した光が前記伸縮部材の前記第二の発光素子側の面で反射された光を前記カフ内で受光する第三の受光素子と、
を備える血圧測定装置。
A cuff partially covered with a light-transmitting elastic member,
A third light emitting element that emits light from outside the cuff;
A fifth light receiving element for receiving the light irradiated by the third light emitting element in the cuff through the light transmissive portion of the elastic member;
A second light emitting element that emits light toward the elastic member in the cuff;
A third light receiving element that receives light reflected by the second light emitting element side surface of the telescopic member in the cuff;
A blood pressure measurement device comprising:
前記第五の受光素子の出力する信号と前記第三の受光素子の出力する信号との差分を演算する差分演算手段をさらに備えることを特徴とする請求項10に記載の血圧測定装置。   The blood pressure measurement device according to claim 10, further comprising difference calculating means for calculating a difference between a signal output from the fifth light receiving element and a signal output from the third light receiving element. 前記第三の受光素子は前記第三の発光素子の照射した光の受光を防止する遮光手段を有することを特徴とする請求項10又は11に記載の血圧測定装置。   The blood pressure measurement apparatus according to claim 10 or 11, wherein the third light receiving element includes a light shielding unit that prevents light received by the third light emitting element from being received. 前記第三の発光素子の照射する光の波長と前記第二の発光素子の照射する光の波長が異なることを特徴とする請求項10、11又は12に記載の血圧測定装置。   The blood pressure measurement device according to claim 10, 11 or 12, wherein a wavelength of light emitted from the third light emitting element is different from a wavelength of light emitted from the second light emitting element. 耳介の一部に装着され、照射した光が前記カフの外部にある耳介内で散乱されることを特徴とする請求項1から7に記載するいずれかの血圧測定装置。   The blood pressure measurement device according to any one of claims 1 to 7, wherein the blood pressure measurement device according to any one of claims 1 to 7 is attached to a part of the auricle and the irradiated light is scattered in the auricle outside the cuff. 耳介の一部に装着され、照射した光が前記カフの外部にある耳介内を透過することを特徴とする請求項8から13に記載するいずれかの血圧測定装置。


The blood pressure measurement device according to any one of claims 8 to 13, wherein the blood pressure measurement device is mounted on a part of the auricle and the irradiated light is transmitted through the auricle outside the cuff.


JP2004293185A 2004-10-06 2004-10-06 Blood pressure measuring device Withdrawn JP2006102160A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004293185A JP2006102160A (en) 2004-10-06 2004-10-06 Blood pressure measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004293185A JP2006102160A (en) 2004-10-06 2004-10-06 Blood pressure measuring device

Publications (1)

Publication Number Publication Date
JP2006102160A true JP2006102160A (en) 2006-04-20

Family

ID=36372533

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004293185A Withdrawn JP2006102160A (en) 2004-10-06 2004-10-06 Blood pressure measuring device

Country Status (1)

Country Link
JP (1) JP2006102160A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008264302A (en) * 2007-04-23 2008-11-06 Denso Corp Biological state detector
WO2009113346A1 (en) * 2008-03-12 2009-09-17 オムロンヘルスケア株式会社 Blood pressure information measurement device allowing precise measurement using optical method
JP2010178983A (en) * 2009-02-06 2010-08-19 Seiko Epson Corp Measuring apparatus and measuring method
JP2012019926A (en) * 2010-07-14 2012-02-02 Rohm Co Ltd Plethysmogram sensor
KR20160086710A (en) * 2015-01-12 2016-07-20 삼성전자주식회사 Method and apparatus for simultaneously detecting body surface pressure and blood volume
JP2017000424A (en) * 2015-06-10 2017-01-05 Tdk株式会社 Biological signal measurement device
JP2022009738A (en) * 2016-05-25 2022-01-14 オスラム オプト セミコンダクターズ ゲゼルシャフト ミット ベシュレンクテル ハフツング Sensor device

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008264302A (en) * 2007-04-23 2008-11-06 Denso Corp Biological state detector
WO2009113346A1 (en) * 2008-03-12 2009-09-17 オムロンヘルスケア株式会社 Blood pressure information measurement device allowing precise measurement using optical method
JP2010178983A (en) * 2009-02-06 2010-08-19 Seiko Epson Corp Measuring apparatus and measuring method
JP2012019926A (en) * 2010-07-14 2012-02-02 Rohm Co Ltd Plethysmogram sensor
KR20160086710A (en) * 2015-01-12 2016-07-20 삼성전자주식회사 Method and apparatus for simultaneously detecting body surface pressure and blood volume
KR102455430B1 (en) * 2015-01-12 2022-10-17 삼성전자주식회사 Method and apparatus for simultaneously detecting body surface pressure and blood volume
JP2017000424A (en) * 2015-06-10 2017-01-05 Tdk株式会社 Biological signal measurement device
JP2022009738A (en) * 2016-05-25 2022-01-14 オスラム オプト セミコンダクターズ ゲゼルシャフト ミット ベシュレンクテル ハフツング Sensor device
JP7253598B2 (en) 2016-05-25 2023-04-06 エイエムエス-オスラム インターナショナル ゲーエムベーハー sensor device

Similar Documents

Publication Publication Date Title
US8376952B2 (en) Method and apparatus for sensing blood oxygen
JP3856477B2 (en) Patient monitoring ring sensor
US5127406A (en) Apparatus for measuring concentration of substances in blood
US7209775B2 (en) Ear type apparatus for measuring a bio signal and measuring method therefor
KR101033472B1 (en) Method and shape of sensor module for photo-plethysmogram measurement without motion artifact
CA2995809C (en) Device for non-invasive measurement of blood sugar levels
US9952095B1 (en) Methods and systems for modulation and demodulation of optical signals
EP3106086B1 (en) Photoelectric-type pulse signal measurement method and measurement device
JP2015503933A (en) Pulse meter / oximeter that can be worn on the body
JP2004121668A (en) System for detecting and measuring abnormal respiration, and method for detecting abnormal respiration
JP2002360530A (en) Pulse wave sensor and pulse rate detector
WO2015115182A1 (en) Non-invasive monitor for measuring regional saturation of oxygen
US20200323450A1 (en) Sensing physiological parameters through an article
JP2009039568A (en) Biological information measuring apparatus
JP2006102159A (en) Biological information measuring apparatus
JP4772408B2 (en) Optical biological information measurement system and coupling layer used for optical information measurement
CN103385711B (en) MEMS -based human body physiological parameter detection device
JP2006102160A (en) Blood pressure measuring device
JP4393568B2 (en) Pulse wave measuring instrument
KR20060122567A (en) Tele-monitoring system for living body
JP2005160641A (en) Pulse wave detector
CN107427240A (en) Optical analysis system and method
JP2006102191A (en) Blood pressure measuring device
JP2006102171A (en) Pulse wave measuring instrument
JP2006026212A (en) Living body information detector

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060420

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20070517

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20070518