JP2005160641A - Pulse wave detector - Google Patents

Pulse wave detector Download PDF

Info

Publication number
JP2005160641A
JP2005160641A JP2003401928A JP2003401928A JP2005160641A JP 2005160641 A JP2005160641 A JP 2005160641A JP 2003401928 A JP2003401928 A JP 2003401928A JP 2003401928 A JP2003401928 A JP 2003401928A JP 2005160641 A JP2005160641 A JP 2005160641A
Authority
JP
Japan
Prior art keywords
light
pulse wave
wave detection
detection device
skin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003401928A
Other languages
Japanese (ja)
Other versions
JP4419540B2 (en
Inventor
Katsumasa Nishii
克昌 西井
Sadasuke Kimura
禎祐 木村
Kazuya Inokawa
和也 井野川
Tetsuya Nakajima
哲也 仲島
Kazuyasu Sakai
一泰 酒井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP2003401928A priority Critical patent/JP4419540B2/en
Priority to US10/957,663 priority patent/US7507207B2/en
Publication of JP2005160641A publication Critical patent/JP2005160641A/en
Application granted granted Critical
Publication of JP4419540B2 publication Critical patent/JP4419540B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Measuring Pulse, Heart Rate, Blood Pressure Or Blood Flow (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a pulse wave detector highly precisely detecting a pulse wave by removing the effect of a sunlight. <P>SOLUTION: A pulse wave sensor 3 is used by being fixed to an arm or the like of a human body and, as shown in Fig. (a), provided with an infrared LED 21 and a green LED 23 as light emitting elements and a photodiode 25 as a light receiving element. A light shielding plate 31 is disposed to cover the end face of a light transmission plate. The light shielding plate 31 employs a material having such a flexible characteristic as being in contact with the skin without any clearance, when a pulse wave sensor 3 is fixed to the arm or the like of the human body. The surface in the side of the light shielding plate 31 being in contact with the skin, is painted with a light-absorbing color. Projecting parts 33 are disposed on the light shielding plate 31 (refer to Fig. (b)) surrounding the light transmission plate 29. It is sufficient that if only the projecting part 33 has a height of producing a depression on the skin, when fixing the pulse wave sensor on the arm or the like. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、発光素子と受光素子を用いて生体の脈波を検出する脈波検出装置に関する。   The present invention relates to a pulse wave detection device that detects a pulse wave of a living body using a light emitting element and a light receiving element.

近年、生活習慣病などの予防を目的として、歩数計や消費カロリー計など定期的な運動を支援する携帯型の装置が利用されている。この運動量をより正確に判断するには脈拍数を計測することが有効であり、このために、血液成分による吸光特性を利用した光学式脈波センサが利用されることが多い。この光学式脈波センサは、発光素子と受光素子を備え、発光素子から人体に向けて光を照射し、反射してきた光を受光素子で受光するように構成されており、この受光量の変化により脈波を検出する。そして、この光学式脈波センサとしては、例えば、発光素子と受光素子とから構成された脈波センサが、センサ固定用バンドによって人間の人差し指の根元から第2指関節までの間に固定されるものが知られている(例えば、特許文献1参照。)。
再表97/037588号公報
In recent years, portable devices that support regular exercise such as a pedometer and calorie consumption meter have been used for the purpose of preventing lifestyle-related diseases. In order to judge this momentum more accurately, it is effective to measure the pulse rate. For this reason, an optical pulse wave sensor using a light absorption characteristic by a blood component is often used. This optical pulse wave sensor includes a light emitting element and a light receiving element, and is configured to irradiate light from the light emitting element toward the human body and receive the reflected light by the light receiving element. To detect the pulse wave. As this optical pulse wave sensor, for example, a pulse wave sensor constituted by a light emitting element and a light receiving element is fixed between the base of the human index finger and the second finger joint by a sensor fixing band. The thing is known (for example, refer patent document 1).
No. 97/037588

しかし、光学式脈波センサを屋外で利用する場合には、太陽光ノイズが大きな問題となる。つまり、屋外では太陽光が脈波センサに入射することで、本来検出すべき脈波成分が太陽光ノイズに埋もれてしまい脈波を精度良く検出できなくなるという問題があった。   However, when the optical pulse wave sensor is used outdoors, sunlight noise becomes a big problem. That is, when sunlight is incident on the pulse wave sensor outdoors, there is a problem that the pulse wave component that should be detected is buried in the sunlight noise and the pulse wave cannot be detected with high accuracy.

本発明は、こうした問題に鑑みなされたものであり、太陽光の影響を除去して精度良く脈波を検出する脈波検出装置を提供することを目的とする。   This invention is made | formed in view of such a problem, and it aims at providing the pulse wave detection apparatus which removes the influence of sunlight and detects a pulse wave accurately.

係る目的を達成するためになされた請求項1に記載の脈波検出装置は、生体の皮膚に接触させて固定されており、発光手段は生体に対して光を照射するとともに、受光手段は、発光手段から照射された光の反射光を、透光板を介して受光することにより生体の脈波を検出する。そして、当該脈波検出装置は、透光板の端面を覆い光を遮光する遮光板を備えており、この遮光板は、当該脈波検出装置の外部から照射された光が生体の皮膚を介して受光手段に受光されるのを阻止する。   The pulse wave detection device according to claim 1, which is made to achieve the object, is fixed in contact with the skin of a living body, the light emitting means irradiates light to the living body, and the light receiving means includes: A pulse wave of the living body is detected by receiving the reflected light of the light emitted from the light emitting means through the light transmitting plate. The pulse wave detection device includes a light shielding plate that covers the end face of the translucent plate and shields light. The light shielding plate receives light irradiated from the outside of the pulse wave detection device via the skin of the living body. To prevent the light receiving means from receiving the light.

このため、外部から照射された光の影響を除去して精度良く脈波を検出することができる。
ところで、当該脈波検出装置の外部から照射された光(以降、外部光とも称す)が生体の皮膚を介して受光手段に受光される経路としては、図6(a)に示すように、皮膚表面と皮膚内部の伝播が挙げられる。このうち、皮膚表面の伝播は、遮光板と生体の皮膚との間に形成された隙間から外部光が入射し、遮光板と生体の皮膚との間で反射を繰り返しながら受光手段に到達するものである。
For this reason, the influence of the light irradiated from the outside can be removed and a pulse wave can be detected accurately.
By the way, as shown in FIG. 6 (a), the light received from the outside of the pulse wave detecting device (hereinafter also referred to as external light) is received by the light receiving means through the skin of the living body. Examples include propagation on the surface and inside the skin. Among these, the propagation on the skin surface is such that external light enters through a gap formed between the light shielding plate and the living body skin, and reaches the light receiving means while repeatedly reflecting between the light shielding plate and the living body skin. It is.

この皮膚表面の伝播を抑制するためには、請求項1に記載の脈波検出装置において、請求項2〜請求項5何れかに記載のようにするとよい。
即ち、請求項1に記載の脈波検出装置において、請求項2に記載のように、前記遮光板の材質は、光を吸収する特性を有するようにするとよい。
In order to suppress the propagation of the skin surface, the pulse wave detection device according to claim 1 may be configured as described in any one of claims 2 to 5.
That is, in the pulse wave detection device according to claim 1, as described in claim 2, it is preferable that the material of the light shielding plate has a property of absorbing light.

このように構成された脈波検出装置によれば、遮光板と生体の皮膚との間に形成された隙間から入射した外部光が遮光板に当たると、外部光は遮光板に吸収されるため、外部光が受光手段に受光されることを抑制できる。   According to the pulse wave detection device configured in this way, when external light incident from the gap formed between the light shielding plate and the skin of the living body hits the light shielding plate, the external light is absorbed by the light shielding plate, It is possible to suppress external light from being received by the light receiving means.

また、請求項1または請求項2に記載の脈波検出装置において、請求項3に記載のように、前記遮光板の前記外側表面は光を吸収する色で塗装されているようにするとよい。
このように構成された脈波検出装置によれば、遮光板と生体の皮膚との間に形成された隙間から入射した外部光が遮光板に当たると、外部光は塗装された部分に吸収されるため、外部光が受光手段に受光されることを抑制できる。
Further, in the pulse wave detection device according to claim 1 or 2, as described in claim 3, the outer surface of the light shielding plate is preferably painted with a color that absorbs light.
According to the pulse wave detection device configured as described above, when external light incident from a gap formed between the light shielding plate and the skin of the living body hits the light shielding plate, the external light is absorbed by the painted portion. Therefore, external light can be suppressed from being received by the light receiving means.

また、請求項1〜請求項3何れかに記載の脈波検出装置において、請求項4に記載のように、前記遮光板の材質は、当該脈波検出装置を前記生体の皮膚に固定した際に、前記遮光板の前記外側表面が前記生体の皮膚と隙間なく接触する程度に柔軟な特性を有するようにするとよい。   Further, in the pulse wave detection device according to any one of claims 1 to 3, as described in claim 4, the material of the light shielding plate is obtained when the pulse wave detection device is fixed to the skin of the living body. In addition, it is preferable that the outer surface of the light-shielding plate has a characteristic that is flexible enough to contact the skin of the living body without any gap.

このように構成された脈波検出装置によれば、外部光が入射する原因となる隙間が形成されないため、外部光が受光手段に受光されることを抑制できる。
また、請求項1〜請求項4何れかに記載の脈波検出装置において、請求項5に記載のように、前記遮光板の前記外側表面上には、該外側表面が鏡面でないと見做すことができる程度の凹凸が形成されているようにするとよい。
According to the pulse wave detection device configured as described above, a gap that causes external light to enter is not formed, and therefore it is possible to suppress external light from being received by the light receiving means.
Further, in the pulse wave detection device according to any one of claims 1 to 4, it is assumed that the outer surface is not a mirror surface on the outer surface of the light shielding plate as described in claim 5. It is advisable to form irregularities to the extent that they can be formed.

このように構成された脈波検出装置によれば、遮光板と生体の皮膚との間に形成された隙間から入射した外部光が遮光板に当たると、外部光は四方に散乱するために、外部光が受光手段に受光されることを抑制できる。   According to the pulse wave detection device configured in this way, when external light incident from a gap formed between the light shielding plate and the skin of the living body hits the light shielding plate, the external light is scattered in all directions. It can suppress that light is received by the light receiving means.

一方、皮膚内部の伝播は、図6(a)に示すように、外部光が皮膚の内部を通過して受光手段に到達するものである。
この皮膚内部の伝播を抑制するためには、請求項1〜請求項5何れかに記載の脈波検出装置において、請求項6に記載のように、当該脈波検出装置を前記生体の皮膚に固定した際に該皮膚に窪みを生じさせる遮光凸部を前記遮光板の前記外側表面上に備えるようにするとよい。
On the other hand, propagation within the skin is such that external light passes through the inside of the skin and reaches the light receiving means, as shown in FIG.
In order to suppress propagation within the skin, the pulse wave detection device according to any one of claims 1 to 5, wherein the pulse wave detection device is applied to the skin of the living body as described in claim 6. It is good to provide the light-shielding convex part which produces a hollow in this skin when it fixes on the said outer surface of the said light-shielding plate.

このように構成された脈波検出装置によれば、皮膚に窪みを生じさせる程度に遮光凸部が皮膚を押圧することにより、皮膚内部を伝播する外部光の経路上に遮光凸部が立ちはだかるために、遮光凸部に当たった外部光は四方に散乱し、外部光が受光手段に受光されることを抑制できる。   According to the pulse wave detection device configured in this way, the light-shielding convex portion stands on the path of the external light propagating inside the skin when the light-shielding convex portion presses the skin to such an extent that a dent is formed in the skin. In addition, the external light hitting the light-shielding convex portion is scattered in all directions, and the external light can be prevented from being received by the light receiving means.

また、請求項6に記載の脈波検出装置において、更に、請求項7に記載のように、前記遮光凸部の材質は、当該脈波検出装置を前記生体の皮膚に固定した際に、前記遮光凸部が前記生体の皮膚と隙間なく接触する程度に柔軟な特性を有するようにするとよい。   Further, in the pulse wave detection device according to claim 6, further, as described in claim 7, the material of the light-shielding convex portion is obtained when the pulse wave detection device is fixed to the skin of the living body. It is preferable that the light-shielding convex portion has such a flexible characteristic as to contact with the living body skin without any gap.

このように構成された脈波検出装置によれば、遮光凸部と生体の皮膚との間に、外部光が入射する原因となる隙間が形成されないため、外部光が受光手段に受光されることを更に抑制できる。   According to the pulse wave detection device configured as described above, a gap that causes external light to enter is not formed between the light shielding convex portion and the skin of the living body, so that the external light is received by the light receiving means. Can be further suppressed.

また、請求項6または請求項7に記載の脈波検出装置において、更に、請求項8に記載のように、前記遮光凸部は、前記透光板を取り巻くように配置されるようにするとよい。
このように構成された脈波検出装置によれば、皮膚内部を伝播する外部光が受光手段に到達するまでの経路上に確実に遮光凸部が配置されるので、外部光が受光手段に受光されることを更に抑制できる。
Further, in the pulse wave detection device according to claim 6 or 7, as described in claim 8, the light-shielding convex portion may be arranged so as to surround the light transmitting plate. .
According to the pulse wave detection device configured as described above, the light-shielding convex portion is reliably arranged on the path until the external light propagating inside the skin reaches the light-receiving means, so that the external light is received by the light-receiving means. This can be further suppressed.

また、請求項8に記載の脈波検出装置において、更に、請求項9に記載のように、前記遮光凸部が複数配置されているようにするとよい。
このように構成された脈波検出装置によれば、皮膚内部を伝播する外部光が受光手段に到達するまでの経路上に多くの遮光凸部が配置されることになり、外部光が受光手段に受光されることを更に抑制できる。
Further, in the pulse wave detection device according to an eighth aspect of the present invention, it is preferable that a plurality of the light shielding convex portions are arranged as in the ninth aspect of the present invention.
According to the pulse wave detecting device configured in this way, many light-shielding convex portions are arranged on the path until the external light propagating inside the skin reaches the light receiving means, and the external light is received by the light receiving means. Can be further suppressed from being received.

ところで、遮光凸部間の配置間隔が、外部光の周波数の整数倍に一致している場合には、その外部光の経路上に遮光凸部が配置されていても、皮膚内部を伝播する外部光が遮光凸部に当たることなく通過することがある。   By the way, in the case where the arrangement interval between the light-shielding protrusions matches an integer multiple of the frequency of the external light, even if the light-shielding protrusions are arranged on the path of the external light, the outside that propagates inside the skin The light may pass without hitting the light-shielding convex portion.

このため、請求項9に記載の脈波検出装置において、更に、請求項10に記載のように、前記複数の遮光凸部は、互いの配置間隔がランダムになるように配置されているようにするとよい。   For this reason, in the pulse wave detection device according to claim 9, as described in claim 10, the plurality of light-shielding convex portions are arranged so that the arrangement interval between them is random. Good.

このように構成された脈波検出装置によれば、皮膚内部を伝播する外部光の経路上に、配置間隔が外部光の周波数の整数倍に一致していない遮光凸部が、確実に配置されるので、外部光が受光手段に受光されることを抑制できる。   According to the pulse wave detection device configured as described above, the light-shielding convex portion whose arrangement interval does not match the integral multiple of the frequency of the external light is reliably arranged on the path of the external light propagating through the skin. Therefore, it can suppress that external light is received by the light-receiving means.

また、請求項8〜請求項10何れかに記載の脈波検出装置において、更に、請求項11に記載のように、前記遮光凸部は、始端部と終端部とを有する突条で構成されるようにするとよい。   Further, in the pulse wave detection device according to any one of claims 8 to 10, further, as described in claim 11, the light shielding convex portion is configured by a protrusion having a start end portion and a termination end portion. It is good to do so.

このように構成された脈波検出装置によれば、突条の端部間に形成される空隙を介して、脈波検出装置と生体の皮膚との間の隙間にある空気と、脈波検出装置の外部の空気とが、突条の端部間に形成される空隙を介して循環することができる。   According to the pulse wave detection device configured as described above, the air in the gap between the pulse wave detection device and the skin of the living body and the pulse wave detection via the gap formed between the ends of the protrusions. Air outside the device can circulate through a gap formed between the ends of the ridges.

つまり、当該脈波検出装置と皮膚とが密着している部分で起こりやすくなる蒸れを抑制できる。
また、請求項11に記載の脈波検出装置において、更に、請求項12に記載のように、前記複数の遮光凸部の内で前記透光板から最も離れた位置に配置された遮光凸部を構成する突条の端部間に形成された空隙と、前記透光板とを結ぶ直線上に、少なくとも1つの遮光凸部が配置されているようにするとよい。
That is, it is possible to suppress the stuffiness that tends to occur at the portion where the pulse wave detection device and the skin are in close contact.
Further, in the pulse wave detection device according to claim 11, further, as described in claim 12, among the plurality of light shielding convex portions, the light shielding convex portion disposed at a position farthest from the light transmitting plate. It is preferable that at least one light-shielding convex portion is arranged on a straight line connecting the gap formed between the end portions of the ridges constituting the light-transmitting plate and the translucent plate.

このように構成された脈波検出装置によれば、透光板から最も離れた位置に配置された遮光凸部を構成する突条において、その端部間に形成された空隙から入射した外部光の経路上に遮光凸部が配置されるので、外部光が受光手段に受光されることを抑制できる。   According to the pulse wave detecting device configured as described above, the external light incident from the gap formed between the end portions of the protrusions constituting the light-shielding convex portions arranged at the positions farthest from the light transmitting plate. Since the light-shielding convex portion is arranged on the path, it is possible to suppress external light from being received by the light receiving means.

ところで、請求項1〜請求項12に記載の脈波検出装置は、外部光が受光手段に受光されることを抑制することによって、精度良く脈波を検出するものであるが、請求項14に記載のように、当該脈波検出装置の外部から照射されて前記受光手段に受光される外部光を検出して、前記外部光の受光量に応じた外部受光信号を出力する外部光検出手段と、前記外部受光信号と、前記発光手段が光を照射した時の前記受光信号とに基づいて、前記生体の脈波を検出する脈波検出手段とを備えるようにしてもよい。   By the way, the pulse wave detection device according to claims 1 to 12 detects the pulse wave with high accuracy by suppressing external light from being received by the light receiving means. As described, external light detection means for detecting external light irradiated from the outside of the pulse wave detection device and received by the light receiving means, and outputting an external light reception signal corresponding to the amount of received external light; And a pulse wave detecting means for detecting a pulse wave of the living body based on the external light receiving signal and the light receiving signal when the light emitting means emits light.

このように構成された脈波検出装置によれば、外部光検出手段は、受光手段に受光される外部光を検出して外部光の受光量に応じた外部受光信号を出力し、脈波検出手段は、外部受光信号と、発光手段が光を照射した時の受光信号とに基づいて、生体の脈波を検出する。   According to the pulse wave detection device configured as described above, the external light detection means detects the external light received by the light receiving means and outputs an external light reception signal corresponding to the amount of received external light to detect the pulse wave. The means detects the pulse wave of the living body based on the external light reception signal and the light reception signal when the light emitting means emits light.

即ち、発光手段が光を照射した時の受光信号の内で、外部光に起因する部分を考慮して生体の脈波を検出できるため、外部から照射された光の影響を除去して、精度良く脈波を検出することができる。   That is, since the pulse wave of the living body can be detected in consideration of the part caused by the external light in the light reception signal when the light emitting means irradiates the light, the influence of the light irradiated from the outside is removed and the accuracy is improved. The pulse wave can be detected well.

尚、請求項13に記載のように、請求項14に記載の外部光検出手段及び脈波検出手段は、請求項1〜請求項12に記載の脈波検出装置が備えるようにしてもよい。
また、請求項13または請求項14に記載の脈波検出装置において、請求項15に記載のように、前記脈波検出手段は、前記受光信号から前記外部受光信号を差分した差分信号に基づいて前記脈波を検出するようにしてもよい。
In addition, as described in claim 13, the external light detection means and the pulse wave detection means described in claim 14 may be included in the pulse wave detection device described in claims 1-12.
Moreover, in the pulse wave detection device according to claim 13 or 14, as described in claim 15, the pulse wave detection means is based on a difference signal obtained by subtracting the external light reception signal from the light reception signal. The pulse wave may be detected.

このように構成された脈波検出装置によれば、受光信号から外部受光信号を差分するという簡便な演算により、外部光の影響が除去された信号を得ることができる。
また、請求項13〜請求項15何れかに記載の脈波検出装置において、発光手段が光を照射していない時に受光手段が受光する光は、通常、外部光であるので、請求項15に記載のように、前記外部光検出手段は、前記発光手段が発光を停止している時に前記外部光を検出するようにするとよい。
According to the pulse wave detection device configured as described above, a signal from which the influence of external light is removed can be obtained by a simple calculation of subtracting the external light reception signal from the light reception signal.
Further, in the pulse wave detection device according to any one of claims 13 to 15, the light received by the light receiving means when the light emitting means is not irradiating light is usually external light. As described, the external light detecting means may detect the external light when the light emitting means stops emitting light.

このように構成された脈波検出装置によれば、発光手段から照射される光の影響を受けることなく外部光を検出することができる。
また、請求項16に記載の脈波検出装置において、請求項17に記載のように、前記発光手段は間欠的に発光し、前記外部光検出手段は、前記発光手段が発光を停止する毎に、前記外部光を検出するようにするとよい。
According to the pulse wave detection device configured in this way, it is possible to detect external light without being affected by the light emitted from the light emitting means.
Further, in the pulse wave detection device according to claim 16, as described in claim 17, the light-emitting means emits light intermittently, and the external light detection means is turned on each time the light-emitting means stops emitting light. The external light may be detected.

このように構成された脈波検出装置によれば、発光手段が前回発光してから今回発光するまでに、受光手段に入射した外部光を検出するので、発光手段が今回発光した時に受光手段に入射した外部光の影響を精度良く除去することができる。   According to the pulse wave detection device configured as described above, the external light incident on the light receiving unit is detected from the previous light emission to the current light emission until the light emission unit emits the current light. The influence of incident external light can be accurately removed.

以下に本発明の実施形態について図面をもとに説明する。
まず、本発明の脈波検出装置を適用した脈波検出装置1を、図1に基づいて説明する。
本実施形態の脈波検出装置1は、人体の脈拍数を検出する装置であり、図1に示すように、発光素子として赤外LED21と緑色LED23を備えるとともに、受光素子としてフォトダイオード(PD)25を備えた脈波センサ3と、赤外LED21と緑色LED23とに対して、それぞれ異なるタイミングで光を照射させるための駆動信号を出力することにより脈波センサ3を駆動する駆動回路5と、脈波センサ3からの信号を処理するとともに駆動回路5を制御するデータ処理装置7とから構成されている。尚、駆動回路5とデータ処理装置7とは、脈波検出装置本体9の筐体内に収容されている。
Embodiments of the present invention will be described below with reference to the drawings.
First, a pulse wave detection device 1 to which the pulse wave detection device of the present invention is applied will be described with reference to FIG.
The pulse wave detection device 1 of the present embodiment is a device that detects the pulse rate of a human body. As shown in FIG. 1, the pulse wave detection device 1 includes an infrared LED 21 and a green LED 23 as light emitting elements, and a photodiode (PD) as a light receiving element. A drive circuit 5 for driving the pulse wave sensor 3 by outputting a drive signal for irradiating light at different timings to the pulse wave sensor 3 provided with 25, the infrared LED 21 and the green LED 23, and It comprises a data processing device 7 that processes a signal from the pulse wave sensor 3 and controls the drive circuit 5. The drive circuit 5 and the data processing device 7 are accommodated in the casing of the pulse wave detection device main body 9.

まず、脈波センサ3の構成を図2に基づいて説明する。図2(a)は脈波センサ3の構成を示す断面図、図2(b)は脈波センサ3の皮膚と接触する側から見た平面図である。尚、図2(a)は図2(b)のA−A断面部を示している。   First, the configuration of the pulse wave sensor 3 will be described with reference to FIG. 2A is a cross-sectional view showing the configuration of the pulse wave sensor 3, and FIG. 2B is a plan view of the pulse wave sensor 3 viewed from the side in contact with the skin. Note that FIG. 2A shows a cross-section taken along the line AA in FIG.

脈波センサ3は、人体の腕等に固定して利用するものであり、図2(a)に示すように、約940nmの波長の赤外光を照射する赤外LED21と、約520nmの緑色光を照射する緑色LED23と、光を受光して受光量に応じた信号(受光信号)を出力するPD25とを備える光学式反射型センサである。   The pulse wave sensor 3 is used by being fixed to a human arm or the like. As shown in FIG. 2A, an infrared LED 21 that emits infrared light having a wavelength of about 940 nm and a green color of about 520 nm are used. It is an optical reflective sensor that includes a green LED 23 that emits light and a PD 25 that receives light and outputs a signal (light reception signal) corresponding to the amount of light received.

この赤外LED21,緑色LED23,PD25は、それぞれ脈波センサ3の筐体20の底部27に、PD25を挟んで左右に赤外LED21と緑色LED23とが位置するように並列して配置され、透明な透光板29を介して、赤外光又は緑色光を人体に対して照射できるようにされている。さらに、光を遮光する遮光板31が透光板29の端面を覆うように配置されている。尚、遮光板31は、脈波センサ3を人体の腕等に固定した際に、遮光板31が皮膚と隙間なく接触する程度に柔軟な特性を有する材質のものが用いられ、例えばシリコン材が好適である。また、遮光板31の皮膚と接触する側の表面は光を吸収する色(例えば黒色)で塗装されている。なお、図では遮光板31と筐体20が別体のものを示すが、筐体20を加工することで遮光板31と同じ機能を有する構成としてもよい。   The infrared LED 21, the green LED 23, and the PD 25 are arranged in parallel on the bottom 27 of the casing 20 of the pulse wave sensor 3 so that the infrared LED 21 and the green LED 23 are positioned on the left and right sides of the PD 25. A human body can be irradiated with infrared light or green light through a transparent plate 29. Further, a light shielding plate 31 that shields light is disposed so as to cover the end face of the light transmitting plate 29. The light shielding plate 31 is made of a material having such a flexible property that the light shielding plate 31 comes into contact with the skin without any gap when the pulse wave sensor 3 is fixed to a human arm or the like. Is preferred. The surface of the light shielding plate 31 that comes into contact with the skin is painted in a color that absorbs light (for example, black). In addition, although the light shielding plate 31 and the housing | casing 20 show a different thing in the figure, it is good also as a structure which has the same function as the light shielding plate 31 by processing the housing | casing 20. FIG.

また、遮光板31上には、凸部33が透光板29を3重に取り巻くように配置されている。ここでは3重としたが、1重,2重または4重以上でもよい。また、凸部33の高さは、脈波センサ3を人体の腕等に固定した際に、皮膚に窪みを生じさせる程度の高さであればよく、例えば0.3mm程度にするとよい。この凸部33は、後に詳述するように、外部からの光がPD25に受光されるのを阻止するためのものである。さらに、凸部33は始端部と終端部を有する複数の突条で構成されており、突条の端部間には、蒸れ防止のための空隙35が形成されている。また、3重に配置された凸部33の互いの配置間隔(例えば、図2(b)の間隔S1,S2参照)は、均等ではなくランダムになっている。尚、凸部33は、脈波センサ3を人体の腕等に固定した際に、凸部33が皮膚と隙間なく接触する程度に柔軟な特性を有する材質のものが用いられ、例えばシリコン材が好適である。なお、図では凸部33および遮光板31と筐体20が別体のものを示すが、筐体20を加工することで凸部33および遮光板31と同じ機能を有する構成としてもよい。   On the light shielding plate 31, the convex portion 33 is disposed so as to surround the light transmitting plate 29 in a triple manner. Although triple is used here, it may be single, double, or four or more. Moreover, the height of the convex part 33 should just be a height of the grade which produces a dent in skin, when the pulse wave sensor 3 is fixed to a human body arm etc., for example, it is good to set it as about 0.3 mm. As will be described later in detail, the convex portion 33 is for preventing external light from being received by the PD 25. Furthermore, the convex part 33 is comprised by the some protrusion which has a start end part and a termination | terminus part, and the space | gap 35 for the prevention of a dampness is formed between the edge parts of a protrusion. Further, the arrangement intervals of the convex portions 33 arranged in triplicate (for example, the intervals S1 and S2 in FIG. 2B) are not equal but random. The convex portion 33 is made of a material having such a flexible characteristic that the convex portion 33 comes into contact with the skin without a gap when the pulse wave sensor 3 is fixed to a human arm or the like. Is preferred. In addition, although the convex part 33 and the light shielding plate 31 and the housing | casing 20 show a different thing in the figure, it is good also as a structure which has the same function as the convex part 33 and the light shielding plate 31 by processing the housing | casing 20. FIG.

さらに、透光板29から最も離れた位置に配置された凸部33において形成された空隙(例えば空隙35a)と、透光板29とを結ぶ線分(例えば線分B−B)上に、少なくとも1つの凸部33が配置されるように構成されている。   Furthermore, on the line segment (for example, line segment BB) connecting the gap (for example, the gap 35a) formed in the convex portion 33 arranged at the position farthest from the translucent plate 29 and the translucent plate 29, At least one convex portion 33 is arranged.

このように構成された脈波センサ3において、まず、図1に示すように、透光板29と遮光板31を例えば人体の腕の皮膚上に接触させて脈波センサ3を固定する。その後、赤外LED21および緑色LED23が、それぞれ赤外光および緑色光を人体に向かって交互に照射し、この光の反射光をPD25が受光する。そして、PD25は、その受光量の変化を受光信号(例えば電圧信号)としてデータ処理装置7に出力する。   In the pulse wave sensor 3 configured as described above, first, as shown in FIG. 1, the pulse wave sensor 3 is fixed by bringing a translucent plate 29 and a light shielding plate 31 into contact with, for example, the skin of a human arm. Thereafter, the infrared LED 21 and the green LED 23 alternately irradiate infrared light and green light toward the human body, respectively, and the PD 25 receives the reflected light of this light. Then, the PD 25 outputs the change in the amount of received light as a light reception signal (for example, a voltage signal) to the data processing device 7.

尚、赤外LED21および緑色LED23から人体に照射された光は、その一部が人体の内部を通る小・細動脈(毛細動脈)にあたって、毛細動脈を流れる血液中のヘモグロビンに吸収され、残りの光が毛細動脈で反射して散乱する。この時、血液の脈動により毛細動脈にあるヘモグロビンの量が波動的に変化するので、ヘモグロビンに吸収される光も波動的に変化する。即ち、血液の脈動に応じて、毛細動脈で反射してPD25で検出される受光量が変化する。   In addition, the light irradiated to the human body from the infrared LED 21 and the green LED 23 is absorbed by hemoglobin in the blood flowing through the capillary arteries when a part of the light passes through the inside of the human body. Light is reflected and scattered by capillaries. At this time, since the amount of hemoglobin in the capillary artery changes in a wave manner due to blood pulsation, the light absorbed in the hemoglobin also changes in a wave manner. That is, according to blood pulsation, the amount of received light that is reflected by the capillary artery and detected by the PD 25 changes.

従って、PD25が出力した(赤外LED21又は緑色LED23から照射された光の反射光に対応した)受光信号から、脈波に関する情報が得られる。
以下に、脈波を検出するために赤外LED21と緑色LED23を用いる理由について説明する。
Therefore, information on the pulse wave is obtained from the light reception signal output by the PD 25 (corresponding to the reflected light of the light emitted from the infrared LED 21 or the green LED 23).
The reason why the infrared LED 21 and the green LED 23 are used to detect the pulse wave will be described below.

図5に示すように、PD25が出力した受光信号には、毛細動脈に当たって反射した脈波を示す信号(脈波成分)と、皮膚表面又は毛細動脈以外で反射した反射波の成分(反射波成分)との両成分が含まれている。この受光信号を周波数解析すると、主に、心拍に同期する脈拍成分と、体動に同期する体動成分と、(体動成分を除いた反射波成分である)概ね直流成分とに分離される。   As shown in FIG. 5, the received light signal output from the PD 25 includes a signal (pulse wave component) indicating a pulse wave reflected by the capillary artery and a reflected wave component (reflected wave component) reflected from the skin surface or other than the capillary artery. ) And both components are included. When this received light signal is subjected to frequency analysis, it is mainly separated into a pulse component synchronized with the heartbeat, a body motion component synchronized with the body motion, and a substantially direct current component (which is a reflected wave component excluding the body motion component). .

このうち、直流成分は、血管の拡張収縮による血流変化のともなう光量変化(以下、ノイズAと称す)、脈波センサ3のずれに伴う皮膚表面散乱光量変化(以下、ノイズBと称す)、脈波センサ3の外部から入射する光(太陽光など)の光量変化などに起因するものであり、検出回路11において後述する方法によってカットされる。   Among these, the direct current component is a light amount change (hereinafter referred to as noise A) accompanying a blood flow change due to expansion and contraction of a blood vessel, a skin surface scattered light amount change (hereinafter referred to as noise B) due to a shift of the pulse wave sensor 3, This is caused by a change in the amount of light (sunlight or the like) incident from the outside of the pulse wave sensor 3 and is cut by the detection circuit 11 by a method described later.

そして、脈拍成分と体動成分については、赤外光と緑色光とで吸光特性が異なっており、緑色LED23を発光させた時にPD25が出力する受光信号では、脈拍成分と体動成分とがいずれも抽出可能な信号レベルで得られるのに対して、赤外LED21を発光させた時にPD25が出力する受光信号では、体動成分と比較して脈拍成分が非常に小さく、体動成分のみが抽出可能な信号レベルで得られる。   As for the pulse component and the body motion component, the light absorption characteristics of infrared light and green light are different. In the light reception signal output from the PD 25 when the green LED 23 is caused to emit light, the pulse component and the body motion component are either Is obtained at a signal level that can be extracted, but in the light receiving signal output by the PD 25 when the infrared LED 21 is caused to emit light, the pulse component is very small compared to the body motion component, and only the body motion component is extracted. Obtained with possible signal levels.

つまり、緑色LED23を発光させた時にPD25が出力する受光信号(脈拍成分と体動成分を含む)と、赤外LED21を発光させた時にPD25が出力する受光信号(体動成分のみを含む)とを比較することにより、脈拍成分のみを抽出できるようにされている。   That is, a light reception signal (including a pulse component and a body motion component) output by the PD 25 when the green LED 23 emits light, and a light reception signal (including only the body motion component) output by the PD 25 when the infrared LED 21 emits light. By comparing these, only the pulse component can be extracted.

ところで、太陽光などの脈波センサ3の外部からの光(以下、外部光とも称す)は、皮膚表面や皮膚内部を伝播してPD25に入射する。
このうち、皮膚表面を伝播する外部光は、光を吸収する色で塗装された遮光板31の表面にて、図6(b)に示すように、その一部が吸収される。
Incidentally, light from the outside of the pulse wave sensor 3 such as sunlight (hereinafter also referred to as external light) propagates on the skin surface or inside the skin and enters the PD 25.
Among these, a part of the external light propagating on the skin surface is absorbed by the surface of the light shielding plate 31 coated with a light absorbing color, as shown in FIG. 6B.

また、遮光板31は(皮膚に密着して)、外部光入射の原因となる隙間が形成されることを防止する。
さらに、皮膚内部を伝播する外部光については、遮光板31の表面上に形成された凸部33が皮膚を押圧することにより、図6(c)に示すように、皮膚内部を伝播する外部光の経路上に凸部33が立ちはだかるために、凸部33に当たった外部光は散乱する。
Further, the light shielding plate 31 (in close contact with the skin) prevents the formation of a gap that causes external light incidence.
Further, with respect to the external light propagating through the skin, the convex portion 33 formed on the surface of the light shielding plate 31 presses the skin, so that the external light propagating through the skin as shown in FIG. Since the convex portion 33 stands on the path, external light hitting the convex portion 33 is scattered.

これらにより、外部光がPD25に到達することを抑制する。
次に、データ処理装置7は、脈波センサ3から得られた受光信号を増幅する検出回路11と、検出回路11からの信号を処理して脈波の検出等の各種の演算処理を行うマイクロコンピュータ(以下、マイコンと称す)13とを備えている。
These suppress external light from reaching the PD 25.
Next, the data processing device 7 amplifies the received light signal obtained from the pulse wave sensor 3, and a micro that performs various arithmetic processing such as pulse wave detection by processing the signal from the detection circuit 11. A computer (hereinafter referred to as a microcomputer) 13 is provided.

そして、検出回路11は、図3に示すように、脈波センサ3から得られた受光信号を増幅する増幅部41と、上記直流成分に相当する直流成分信号を増幅部41に出力する補正部43とから構成されている。   As shown in FIG. 3, the detection circuit 11 includes an amplifying unit 41 that amplifies the received light signal obtained from the pulse wave sensor 3, and a correcting unit that outputs a DC component signal corresponding to the DC component to the amplifying unit 41. 43.

このうち、増幅部41は、オペアンプOP1を中心に構成されている。オペアンプOP1の非反転入力端子(+)は、抵抗R2を介して脈波センサ3からの受光信号が入力されるとともに、抵抗R1を介して接地されている。また、オペアンプOP1の反転入力端子(−)は、抵抗R4を介して補正部43からの直流成分信号が入力されるとともに、抵抗R3を介してオペアンプOP1の出力端子に接続されている。また、オペアンプOP1の出力端子は、後述する10ビットA/D変換器13dのA/DポートPAD1に接続されている。さらに、脈波センサ3からの受光信号は、後述するA/D変換器13dのA/DポートPAD2にも入力される。尚、抵抗R1の抵抗値は抵抗R3と等しく、抵抗R2の抵抗値は抵抗R4と等しくなるように設定されている。また、オペアンプOP1の増幅度が、例えば{(R1の抵抗値)/(R2の抵抗値)}=1000となるように抵抗R1〜R4の抵抗値が設定されている。   Among these, the amplification unit 41 is configured around the operational amplifier OP1. The non-inverting input terminal (+) of the operational amplifier OP1 receives a light reception signal from the pulse wave sensor 3 through the resistor R2, and is grounded through the resistor R1. Further, the inverting input terminal (−) of the operational amplifier OP1 is connected to the output terminal of the operational amplifier OP1 through the resistor R3, while the DC component signal from the correction unit 43 is input through the resistor R4. The output terminal of the operational amplifier OP1 is connected to an A / D port PAD1 of a 10-bit A / D converter 13d described later. Further, the light reception signal from the pulse wave sensor 3 is also input to an A / D port PAD2 of the A / D converter 13d described later. The resistance value of the resistor R1 is set to be equal to the resistor R3, and the resistance value of the resistor R2 is set to be equal to the resistor R4. The resistance values of the resistors R1 to R4 are set so that the amplification degree of the operational amplifier OP1 is, for example, {(resistance value of R1) / (resistance value of R2)} = 1000.

このように構成された増幅部41では、受光信号の電圧値から直流成分信号の電圧値分をカットした信号を増幅して出力する。
即ち、赤外LED21及び緑色LED23から照射された光の内、ヘモグロビンに吸収される光は僅かであり、これにより受光信号に現れる脈拍成分の変化を、マイコン13が備えるA/D変換器13dにおいて検出可能とするために増幅が必要となる。本実施形態では1000倍程度の増幅が必要である。
The amplifier 41 configured as described above amplifies and outputs a signal obtained by cutting the voltage value of the DC component signal from the voltage value of the received light signal.
That is, among the light emitted from the infrared LED 21 and the green LED 23, only a small amount of light is absorbed by the hemoglobin, and the change of the pulse component appearing in the received light signal is thereby changed in the A / D converter 13d provided in the microcomputer 13. Amplification is required to enable detection. In this embodiment, amplification of about 1000 times is necessary.

また、直流成分の変化は、脈拍成分の変化よりも数倍から数百倍大きいため、受光信号から直流成分を差分することなしに増幅すると、増幅した信号はA/D変換器13dの入力可能電圧の上限を超えてしまう。このため、受光信号から直流成分を差分した後に増幅を行っている。   Further, since the change in the DC component is several to several hundred times larger than the change in the pulse component, if the DC component is amplified without subtracting the DC component from the received light signal, the amplified signal can be input to the A / D converter 13d. The upper limit of voltage is exceeded. For this reason, amplification is performed after the direct current component is subtracted from the received light signal.

次に、補正部43はオペアンプOP2と分圧抵抗R9,R10とを中心に構成されている。後述する10ビットD/A変換器13eのD/AポートPDA2は、分圧抵抗R9,R10を介して接地されている。また、オペアンプOP2の非反転入力端子(+)は、抵抗R6を介して、後述するD/A変換器13eのD/AポートPDA1からの信号が入力されるとともに、抵抗R5を介して接地されている。また、オペアンプOP2の反転入力端子(−)は、抵抗R8を介して、分圧抵抗R9とR10との接続点に接続されるとともに、抵抗R7を介してオペアンプOP2の出力端子に接続されている。尚、抵抗R5の抵抗値は抵抗R7と等しく、抵抗R6の抵抗値は抵抗R8と等しくなるように設定されている。また、オペアンプOP2の増幅度が、例えば{(R5の抵抗値)/(R6の抵抗値)}=1となるように抵抗R5〜R8の抵抗値が設定されている。さらに、分圧抵抗R9,R10の抵抗値は、例えば、「(抵抗R9の抵抗値)/(抵抗R10の抵抗値)=1024」となるように設定されている。   Next, the correction unit 43 is configured around the operational amplifier OP2 and the voltage dividing resistors R9 and R10. A D / A port PDA2 of a 10-bit D / A converter 13e described later is grounded via voltage dividing resistors R9 and R10. Further, the non-inverting input terminal (+) of the operational amplifier OP2 receives a signal from a D / A port PDA1 of a D / A converter 13e described later through a resistor R6 and is grounded through a resistor R5. ing. Further, the inverting input terminal (−) of the operational amplifier OP2 is connected to the connection point between the voltage dividing resistors R9 and R10 via the resistor R8, and is connected to the output terminal of the operational amplifier OP2 via the resistor R7. . The resistance value of the resistor R5 is set to be equal to the resistor R7, and the resistance value of the resistor R6 is set to be equal to the resistor R8. The resistance values of the resistors R5 to R8 are set so that the amplification degree of the operational amplifier OP2 is, for example, {(resistance value of R5) / (resistance value of R6)} = 1. Further, the resistance values of the voltage dividing resistors R9 and R10 are set to be, for example, “(resistance value of resistor R9) / (resistance value of resistor R10) = 1024”.

このように構成された補正部43では、D/AポートPDA2から出力されたアナログ信号の電圧値(V2)を(1/1024)倍した信号がオペアンプOP2の反転入力端子(−)に入力されるとともに、D/AポートPDA1から出力されたアナログ信号に等しい電圧値(V1)をもつ信号がオペアンプOP2の非反転入力端子(+)に入力されることにより、オペアンプOP2の出力端子から(V1−V2/1024)の電圧値をもつアナログ信号が出力される。   In the correction unit 43 configured as described above, a signal obtained by multiplying the voltage value (V2) of the analog signal output from the D / A port PDA2 by (1/1024) is input to the inverting input terminal (−) of the operational amplifier OP2. In addition, a signal having a voltage value (V1) equal to the analog signal output from the D / A port PDA1 is input to the non-inverting input terminal (+) of the operational amplifier OP2. An analog signal having a voltage value of −V2 / 1024) is output.

即ち、オペアンプOP2の出力端子から出力されるアナログ信号の電圧値の分解能は、D/AポートPDA2から出力されるアナログ信号の電圧値の分解能の1024倍となる。   That is, the resolution of the voltage value of the analog signal output from the output terminal of the operational amplifier OP2 is 1024 times the resolution of the voltage value of the analog signal output from the D / A port PDA2.

つまり、10ビットのD/Aポートを2つ使用することにより、20ビット分の分解能をもつアナログ信号を出力させている。そして、上記の(V1−V2/1024)の値が、上記直流成分信号の電圧値に一致するように、D/AポートPDA1から電圧値V1のアナログ信号、D/AポートPDA2から電圧値V2のアナログ信号が出力される。   That is, by using two 10-bit D / A ports, an analog signal having a resolution of 20 bits is output. Then, an analog signal of voltage value V1 from D / A port PDA1 and a voltage value V2 from D / A port PDA2 so that the value of (V1-V2 / 1024) matches the voltage value of the DC component signal. The analog signal is output.

このため、D/AポートPDA2において、出力するアナログ信号の電圧値を最小分解能の1ビット分変化させた場合に、A/DポートPAD1の入力電圧幅を超える信号がA/DポートPAD1に入力されるということを防ぐことができる。即ち、例えば、10ビットのA/DポートPAD1の入力電圧幅が3V、10ビットのD/AポートPDA1の出力電圧幅が3Vで、D/AポートPDA1のみを用いて、上記直流成分信号に対応するアナログ信号を出力する場合を想定すると、D/AポートPDA1から出力されるアナログ信号の最小電圧変化は3mVであり、オペアンプOP1の増幅率が上記と同様に1000倍とすると、直流成分信号の3mVの電圧変化によるオペアンプOP1の出力変化は3Vとなる。つまり、D/AポートPDA1から出力される直流成分信号の数ビット分の電圧変化によって、オペアンプOP1の出力電圧がA/DポートPAD1の入力電圧幅を超えることになる。   Therefore, in the D / A port PDA2, when the voltage value of the analog signal to be output is changed by 1 bit of the minimum resolution, a signal exceeding the input voltage width of the A / D port PAD1 is input to the A / D port PAD1. Can be prevented. That is, for example, the input voltage width of the 10-bit A / D port PAD1 is 3V, the output voltage width of the 10-bit D / A port PDA1 is 3V, and only the D / A port PDA1 is used for the DC component signal. Assuming that the corresponding analog signal is output, if the minimum voltage change of the analog signal output from the D / A port PDA1 is 3 mV and the amplification factor of the operational amplifier OP1 is 1000 times as described above, the DC component signal The output change of the operational amplifier OP1 due to the 3 mV voltage change is 3V. That is, the output voltage of the operational amplifier OP1 exceeds the input voltage width of the A / D port PAD1 due to the voltage change of several bits of the DC component signal output from the D / A port PDA1.

これに対して、本実施形態においては、20ビット分の分解能をもつアナログ信号を直流成分信号として出力させているので、出力電圧幅が3Vとすると最小電圧変化は約3μVであり、最小電圧変化によるオペアンプOP1の出力変化は約3mVとなる。つまり、D/AポートPDA1,PDA2から出力される直流成分信号の数ビット分の電圧変化では、オペアンプOP1の出力電圧がA/DポートPAD1の入力電圧幅を超えることはない。   In contrast, in this embodiment, an analog signal having a resolution of 20 bits is output as a DC component signal. Therefore, when the output voltage width is 3 V, the minimum voltage change is about 3 μV, and the minimum voltage change The output change of the operational amplifier OP1 due to is about 3 mV. That is, the output voltage of the operational amplifier OP1 does not exceed the input voltage width of the A / D port PAD1 when the voltage changes for several bits of the DC component signals output from the D / A ports PDA1 and PDA2.

このように構成された検出回路11では、D/A変換器13eからのアナログ信号に応じて、直流成分信号の電圧値を調整しながら、直流成分信号の電圧値をオフセットとした受光信号を増幅して、A/D変換器13dへ出力する。   The detection circuit 11 configured as described above amplifies the received light signal with the voltage value of the DC component signal as an offset while adjusting the voltage value of the DC component signal according to the analog signal from the D / A converter 13e. And output to the A / D converter 13d.

次に、マイコン13は、図1に示すように、所定の処理プログラムに基づいて処理を実行するCPU13aと、種々の制御プログラムが格納されたROM13bと、種々のデータを格納する各種メモリが設けられたRAM13cと、アナログ信号の電圧値を10ビットのデジタル値に変換するA/D変換器13dと、CPU13aが生成した10ビットのデジタルデータを、アナログ信号に変換するD/A変換器13eと、各種デジタル信号が入力される複数の入力ポートと、各種デジタル信号が出力される複数の出力ポートとを有する入出力ポート13fとを備えている。   Next, as shown in FIG. 1, the microcomputer 13 is provided with a CPU 13a that executes processing based on a predetermined processing program, a ROM 13b that stores various control programs, and various memories that store various data. RAM 13c, an A / D converter 13d that converts the voltage value of the analog signal into a 10-bit digital value, a D / A converter 13e that converts the 10-bit digital data generated by the CPU 13a into an analog signal, An input / output port 13f having a plurality of input ports for inputting various digital signals and a plurality of output ports for outputting various digital signals is provided.

尚、図1に示すように、A/D変換器13dは、アナログ信号が入力されるA/DポートPAD1,PAD2を備え、D/A変換器13eは、アナログ信号を出力するD/AポートPDA1,PDA2を備えている。また、入出力ポート13fは、図1に示すように、出力ポートPO1を備えており、出力ポートPO1には駆動回路7が接続されている。   As shown in FIG. 1, the A / D converter 13d includes A / D ports PAD1 and PAD2 to which analog signals are input, and the D / A converter 13e is a D / A port that outputs analog signals. PDA1 and PDA2 are provided. Further, as shown in FIG. 1, the input / output port 13f includes an output port PO1, and a drive circuit 7 is connected to the output port PO1.

このように構成されたマイコン13において、CPU13aは、上記直流成分信号の内、上記ノイズA及び上記ノイズBに対応する成分の信号を出力する処理と、外部光に対応する成分の信号を出力する処理とを、それぞれ個別に行う。   In the microcomputer 13 configured as described above, the CPU 13a outputs the signal of the component corresponding to the noise A and the noise B in the DC component signal and the signal of the component corresponding to the external light. Each process is performed individually.

まず、上記ノイズA及び上記ノイズBに対応する成分の信号を出力する処理を説明する。
上記ノイズA及び上記ノイズBに起因する受光信号の電圧変動の周波数は脈拍成分に比べて十分低く、これらのノイズに起因する電圧変動は短時間では小さい。このため、CPU13aは、所定時間範囲(例えば10秒間)毎に、その所定時間内における受光信号の電圧変動を解析することにより、上記ノイズA及び上記ノイズBに起因する電圧変動分を、現時点のD/AポートPDA1,PDA2の出力値に対して調整する。これにより、上記ノイズA及び上記ノイズBに対応した分の直流成分信号が、補正部43から出力される。つまり、上記所定時間ごとに直流成分信号の電圧値を調整する。
First, a process for outputting a signal of a component corresponding to the noise A and the noise B will be described.
The frequency of the voltage fluctuation of the received light signal caused by the noise A and the noise B is sufficiently lower than the pulse component, and the voltage fluctuation caused by these noises is small in a short time. For this reason, the CPU 13a analyzes the voltage fluctuation of the received light signal within the predetermined time every predetermined time range (for example, 10 seconds), thereby calculating the voltage fluctuation due to the noise A and the noise B at the present time. It adjusts with respect to the output value of D / A port PDA1, PDA2. As a result, a DC component signal corresponding to the noise A and the noise B is output from the correction unit 43. That is, the voltage value of the DC component signal is adjusted every predetermined time.

次に、外部光に対応する成分の信号(以下、外部受光信号と称す)を出力するための外部光調整処理を図4に基づいて説明する。図4は、外部光調整処理を表すフローチャートである。この外部光調整処理は、CPU13aが起動(電源ON)している間に、例えば赤外LED21及び緑色LED23が照射する毎に繰り返し実行される処理である。   Next, external light adjustment processing for outputting a component signal corresponding to external light (hereinafter referred to as an external light reception signal) will be described with reference to FIG. FIG. 4 is a flowchart showing the external light adjustment process. This external light adjustment process is a process that is repeatedly executed, for example, every time the infrared LED 21 and the green LED 23 are irradiated while the CPU 13a is activated (power ON).

この外部光調整処理においては、CPU13aは、まずS10にて、A/DポートPAD2に入力した信号の電圧値のデータを取得する。その後、S20にて、S10で取得した電圧値データが、前回にA/DポートPAD2から取得した電圧値データと同じ値であるか否かを判断する。ここで、同じ値であると判断すると(S20:YES)、S50に移行する。一方、同じ値でないと判断すると(S20:NO)、S30に移行する。   In this external light adjustment process, the CPU 13a first acquires the voltage value data of the signal input to the A / D port PAD2 in S10. Thereafter, in S20, it is determined whether or not the voltage value data acquired in S10 is the same value as the voltage value data acquired from the A / D port PAD2 last time. If it is determined that the values are the same (S20: YES), the process proceeds to S50. On the other hand, if it is determined that they are not the same value (S20: NO), the process proceeds to S30.

そして、S30に移行すると、S10で取得した電圧値データと前回に取得した電圧値との差分の電圧値に基づいて、D/AポートPDA1,PDA2から出力する電圧の変動分を計算する。さらに、S40にて、S30で計算された電圧変動分を、現時点のD/AポートPDA1,PDA2の出力値に対して調整する。その後、S50に移行する。   Then, when the process proceeds to S30, the fluctuation amount of the voltage output from the D / A ports PDA1 and PDA2 is calculated based on the voltage value of the difference between the voltage value data acquired in S10 and the voltage value acquired last time. In S40, the voltage fluctuation calculated in S30 is adjusted with respect to the current output values of the D / A ports PDA1 and PDA2. Thereafter, the process proceeds to S50.

そして、S50に移行すると、緑色LED23を発光させるとともにA/DポートPAD1に入力した信号の電圧値のデータを取得する。
さらに、S60にて、赤外LED21を発光させるとともにA/DポートPAD1に入力した信号の電圧値のデータを取得し、当該外部光調整処理を終了する。
In S50, the green LED 23 is caused to emit light, and the voltage value data of the signal input to the A / D port PAD1 is acquired.
Further, in S60, the infrared LED 21 is caused to emit light and the voltage value data of the signal input to the A / D port PAD1 is acquired, and the external light adjustment process is terminated.

即ち、外部光調整処理では、赤外LED21及び緑色LED23が発光していない時のPD25からの受光信号を外部受光信号と見做し、この受光信号の電圧値に応じてD/AポートPDA1,PDA2から出力するアナログ信号の電圧値を調整する。   In other words, in the external light adjustment processing, the light reception signal from the PD 25 when the infrared LED 21 and the green LED 23 are not emitting light is regarded as the external light reception signal, and the D / A port PDA1, in accordance with the voltage value of this light reception signal. The voltage value of the analog signal output from the PDA 2 is adjusted.

このように構成された本実施形態の脈波検出装置1では、緑色LED23が発光する直前に、PD25が受光した光を外部受光信号として検出し(S10)、外部受光信号を出力する(S20〜S40)。その後、緑色LED23→赤外LED21の順に発光させ、緑色LED23または赤外LED21が発光した時にPD25が出力する受光信号と、外部受光信号とを増幅部41において差分し、この差分した信号を取得する(S50〜S60)ことにより脈波を検出する。   In the pulse wave detection device 1 of the present embodiment configured as described above, immediately before the green LED 23 emits light, the light received by the PD 25 is detected as an external light reception signal (S10), and the external light reception signal is output (S20 to S20). S40). Thereafter, light is emitted in the order of the green LED 23 → the infrared LED 21, the light receiving signal output from the PD 25 when the green LED 23 or the infrared LED 21 emits light and the external light receiving signal are differentiated in the amplifying unit 41, and the difference signal is obtained. A pulse wave is detected by (S50-S60).

このため、赤外LED21または緑色LED23が光を照射した時の受光信号の内で外部光に起因する部分を考慮して人体の脈波を検出できるため、外部光の影響を除去して精度良く脈波を検出することができる。   For this reason, since the pulse wave of the human body can be detected in consideration of the portion caused by the external light in the received light signal when the infrared LED 21 or the green LED 23 irradiates light, the influence of the external light is removed and the accuracy is improved. A pulse wave can be detected.

また、受光信号から外部受光信号を差分するという簡便な演算により、外部光の影響が除去された信号を得ることができる。
また、赤外LED21及び緑色LED23が発光を停止している時に外部受光信号を検出するので、赤外LED21または緑色LED23から照射される光の影響を受けることなく外部光を検出することができる。
Further, a signal from which the influence of external light is removed can be obtained by a simple calculation of subtracting the external light reception signal from the light reception signal.
Further, since the external light reception signal is detected when the infrared LED 21 and the green LED 23 stop emitting light, the external light can be detected without being affected by the light emitted from the infrared LED 21 or the green LED 23.

また、緑色LED23が発光する直前に外部受光信号を検出するので、赤外LED21及び緑色LED23が発光した時にPD25に入射した外部光の影響を精度良く除去することができる。このとき、緑色LED23と赤外LED21の発光順序はどちらからでもよい。   Further, since the external light reception signal is detected immediately before the green LED 23 emits light, the influence of external light incident on the PD 25 when the infrared LED 21 and the green LED 23 emit light can be accurately removed. At this time, the light emission order of the green LED 23 and the infrared LED 21 may be from either.

また、本実施形態の脈波検出装置1は、脈波センサ3を人体の皮膚に固定された状態で使用され、遮光板31の皮膚と接触する側の表面は光を吸収する色で塗装されているために、遮光板31と皮膚との間に形成された隙間から入射した外部光が遮光板に当たると、外部光は遮光板31に吸収され、外部光がPD25に受光されることを抑制できる。   The pulse wave detection device 1 of the present embodiment is used in a state where the pulse wave sensor 3 is fixed to the human skin, and the surface of the light shielding plate 31 on the side in contact with the skin is painted with a color that absorbs light. Therefore, when external light incident from a gap formed between the light shielding plate 31 and the skin hits the light shielding plate, the external light is absorbed by the light shielding plate 31 and the external light is prevented from being received by the PD 25. it can.

また、遮光板31の、皮膚と接触する側の表面上には、複数の凸部33が透光板29を取り巻くように配置されているため、皮膚内部を伝播する外部光の経路上に凸部33が立ちはだかり、凸部33に当たった外部光は四方に散乱し、外部光がPD25に受光されることを抑制できる。尚、凸部33の数が多いほど、皮膚内部を伝播する外部光がPD25に到達するまでの経路上に多くの凸部33が配置されることになり、外部光がPD25に受光されることを抑制できる。   In addition, since a plurality of convex portions 33 are arranged on the surface of the light shielding plate 31 on the side in contact with the skin so as to surround the translucent plate 29, the convex portion projects on the path of external light propagating through the skin. The part 33 stands up and the external light striking the convex part 33 is scattered in all directions, and the external light can be suppressed from being received by the PD 25. As the number of convex portions 33 increases, more convex portions 33 are arranged on the path until external light propagating inside the skin reaches PD 25, and external light is received by PD 25. Can be suppressed.

また、複数の凸部33は、互いの配置間隔がランダムになるように配置されているために、皮膚内部を伝播する外部光の経路上に、外部光の周波数の整数倍に一致していない配置間隔をもつ凸部33が確実に配置されるので、外部光がPD25に受光されることを抑制できる。   In addition, since the plurality of convex portions 33 are arranged so that the mutual arrangement interval is random, they do not coincide with an integer multiple of the frequency of the external light on the path of the external light propagating through the skin. Since the convex portions 33 having the arrangement interval are reliably arranged, it is possible to suppress external light from being received by the PD 25.

また、凸部33は、始端部と終端部とを有する突条で構成されているので、突条の端部間に形成される空隙35を介して、脈波センサ3と皮膚との間の隙間にある空気と、脈波センサ3の外部の空気とが循環することができる。つまり、脈波センサ3と皮膚とが密着している部分で起こりやすくなる蒸れを抑制できる。   Moreover, since the convex part 33 is comprised by the protrusion which has a start end part and a termination | terminus part, it is between the pulse wave sensor 3 and skin via the space | gap 35 formed between the edge parts of a protrusion. The air in the gap and the air outside the pulse wave sensor 3 can circulate. That is, it is possible to suppress the stuffiness that tends to occur at the portion where the pulse wave sensor 3 and the skin are in close contact.

また、透光板29から最も離れた位置に配置された凸部33において、その端部間で形成された空隙35aと、透光板29とを結ぶ線分(線分B−B)上に、少なくとも1つの凸部33が配置されるように構成されているため、外部光が空隙35aから入射した場合でも、この外部光がPD25に受光されることを抑制できる。   Moreover, in the convex part 33 arrange | positioned in the position most distant from the translucent board 29, on the line segment (line segment BB) which connects the space | gap 35a formed between the edge parts, and the translucent board 29. Since at least one convex portion 33 is arranged, it is possible to suppress the external light from being received by the PD 25 even when external light is incident from the gap 35a.

また、遮光板31と凸部33の材質には、脈波センサ3を人体の皮膚に固定した際に、遮光板31及び凸部33が皮膚と隙間なく接触する程度に柔軟な特性を有するシリコン材が用いられている。このため、外部光が入射する原因となる隙間が形成されず、外部光がPD25に受光されることを抑制できる。   In addition, the material of the light shielding plate 31 and the convex portion 33 is silicon having such a flexible characteristic that the light shielding plate 31 and the convex portion 33 are in contact with the skin without a gap when the pulse wave sensor 3 is fixed to the human skin. The material is used. For this reason, a gap that causes external light to enter is not formed, and external light can be suppressed from being received by the PD 25.

以上説明した実施形態において、赤外LED21,緑色LED23は本発明における発光手段、PD25は本発明における受光手段、凸部33は本発明における遮光凸部、図4におけるS10〜S40の処理と補正部43は本発明における外部光検出手段、図4におけるS50〜S60の処理と増幅部41は本発明における脈波検出手段である。   In the embodiment described above, the infrared LED 21 and the green LED 23 are the light emitting means in the present invention, the PD 25 is the light receiving means in the present invention, the convex portion 33 is the light shielding convex portion in the present invention, and the processing and correction unit of S10 to S40 in FIG. 43 is an external light detection means in the present invention, and the processing of S50 to S60 in FIG. 4 and the amplification unit 41 are pulse wave detection means in the present invention.

以上、本発明の一実施例について説明したが、本発明は上記実施例に限定されるものではなく、種々の態様を採ることができる。
例えば、上記実施形態においては、遮光板31の皮膚と接触する側の表面が、光を吸収する色で塗装されているものを示した。しかし、遮光板31の材質を、光を吸収する特性を有するもの(例えば、樹脂やゴム)にしてもよい。このようにすれば、遮光板31と皮膚との間に形成された隙間から入射した外部光が遮光板に当たると、外部光は遮光板31に吸収されるため、外部光がPD25に受光されることを抑制できる。
As mentioned above, although one Example of this invention was described, this invention is not limited to the said Example, A various aspect can be taken.
For example, in the above embodiment, the surface of the light shielding plate 31 on the side in contact with the skin is painted with a color that absorbs light. However, the light shielding plate 31 may be made of a material that absorbs light (for example, resin or rubber). In this way, when the external light incident from the gap formed between the light shielding plate 31 and the skin hits the light shielding plate, the external light is absorbed by the light shielding plate 31, so that the external light is received by the PD 25. This can be suppressed.

また、遮光板31の皮膚と接触する側の表面上に、この表面が鏡面でないと見做すことができる程度に粗い凹凸を形成するようにしてもよい。このようにすれば、遮光板31と皮膚との間に形成された隙間から入射した外部光が遮光板31に当たると、外部光は四方に散乱するために、外部光がPD25に受光されることを抑制できる。   Further, on the surface of the light shielding plate 31 on the side in contact with the skin, rough irregularities may be formed to such an extent that this surface can be regarded as not a mirror surface. In this way, when external light incident from the gap formed between the light shielding plate 31 and the skin hits the light shielding plate 31, the external light is scattered in all directions, so that the external light is received by the PD 25. Can be suppressed.

また、上記実施形態においては、外部光として太陽光が入射した場合について示したが、脈波センサ3の外部から入射する光であれば、太陽光以外であっても適用可能である。例えば、蛍光灯から照射された光であってもよい。   Moreover, in the said embodiment, although shown about the case where sunlight injects as external light, if it is the light which injects from the exterior of the pulse wave sensor 3, it is applicable even if it is other than sunlight. For example, it may be light emitted from a fluorescent lamp.

また、上記実施形態においては、遮光板31及び凸部33の材質として、シリコン材を用いた。しかし、脈波センサ3を人体の腕等に固定した際に、皮膚と隙間なく接触する程度に柔軟な特性を有していれば、シリコン材以外の材料でもよい。例えば、ゴム,布,ゲル状の固形物を用いてもよい。   Moreover, in the said embodiment, the silicon material was used as a material of the light-shielding plate 31 and the convex part 33. FIG. However, when the pulse wave sensor 3 is fixed to a human arm or the like, a material other than a silicon material may be used as long as it has such a flexible characteristic as to contact the skin without any gap. For example, rubber, cloth, or gel-like solid material may be used.

また、上記実施形態においては、遮光板31及び凸部33とを筐体20と別体の構成として示したが、同様の効果をもたらすように同一部材で一体形成してもよい。
また、上記実施形態においては、凸部33に空隙35が形成されているものを示した。しかし、凸部33は、環状、つまり空隙35がない形状をしていてもよい。
Moreover, in the said embodiment, although the light-shielding plate 31 and the convex part 33 were shown as a structure different from the housing | casing 20, you may integrally form with the same member so that the same effect may be brought about.
Moreover, in the said embodiment, what the space | gap 35 was formed in the convex part 33 was shown. However, the convex portion 33 may have an annular shape, that is, a shape without the gap 35.

脈波検出装置1の主要な構成を示す説明図。Explanatory drawing which shows the main structures of the pulse wave detection apparatus 1. FIG. 脈波センサ3の構成を示す説明図。An explanatory view showing the composition of pulse wave sensor 3. FIG. 検出回路11の構成を示す回路図。FIG. 3 is a circuit diagram showing a configuration of a detection circuit 11. 外部光調整処理の手順を示すフローチャート。The flowchart which shows the procedure of an external light adjustment process. 脈波センサ3により得られる受光信号を示す説明図。An explanatory view showing a light reception signal obtained by pulse wave sensor 3. FIG. 外部光の皮膚表面伝播と皮膚内部伝播を示す説明図。Explanatory drawing which shows skin surface propagation of external light and skin internal propagation.

符号の説明Explanation of symbols

1…脈波検出装置、3…脈波センサ、5…駆動回路、7…データ処理装置、9…脈波検出装置本体、11…検出回路、13…マイコン、13a…CPU、13b…ROM、13c…RAM、13d…A/D変換器、13e…D/A変換器、13f…入出力ポート、20…筐体、21…赤外LED、23…緑色LED、25…PD、27…底部、29…透光板、31…遮光板、33…凸部、35…空隙、41…増幅部、43…補正部、OP1,OP2…オペアンプ、PAD1,PAD2…A/Dポート、PDA1,PDA2…D/Aポート、PO1…出力ポート、R1〜R10…抵抗。   DESCRIPTION OF SYMBOLS 1 ... Pulse wave detection apparatus, 3 ... Pulse wave sensor, 5 ... Drive circuit, 7 ... Data processing apparatus, 9 ... Pulse wave detection apparatus main body, 11 ... Detection circuit, 13 ... Microcomputer, 13a ... CPU, 13b ... ROM, 13c ... RAM, 13d ... A / D converter, 13e ... D / A converter, 13f ... input / output port, 20 ... housing, 21 ... infrared LED, 23 ... green LED, 25 ... PD, 27 ... bottom, 29 ... translucent plate, 31 ... light-shielding plate, 33 ... convex part, 35 ... gap, 41 ... amplifying part, 43 ... correction part, OP1, OP2 ... op amp, PAD1, PAD2 ... A / D port, PDA1, PDA2 ... D / A port, PO1 ... output port, R1-R10 ... resistor.

Claims (17)

生体に対して光を照射する発光手段と、
前記発光手段から照射された光の反射光を少なくとも受光する受光手段と、
前記発光手段の光の照射側に配置され、光を透過する透光板と、
前記透光板の端面を覆い、光を遮光する遮光板と、
を備え、前記透光板及び前記遮光板における、前記発光手段及び前記受光手段が位置する側とは反対側となる外側表面を、前記生体の皮膚に接触させて当該装置を固定することにより、前記生体の脈波を検出する脈波検出装置であって、
前記遮光板は、当該脈波検出装置の外部から照射された光が前記生体の皮膚を介して前記受光手段に受光されるのを、阻止するように構成される、
ことを特徴とする脈波検出装置。
A light emitting means for irradiating the living body with light;
A light receiving means for receiving at least reflected light of the light emitted from the light emitting means;
A translucent plate disposed on the light irradiation side of the light emitting means and transmitting light;
A light-shielding plate that covers an end surface of the light-transmitting plate and shields light;
The outer surface of the light-transmitting plate and the light-shielding plate opposite to the side where the light-emitting means and the light-receiving means are located is brought into contact with the skin of the living body to fix the device, A pulse wave detection device for detecting a pulse wave of the living body,
The light shielding plate is configured to prevent light irradiated from the outside of the pulse wave detection device from being received by the light receiving means through the skin of the living body.
A pulse wave detection device characterized by that.
前記遮光板の材質は、光を吸収する特性を有することを特徴とする請求項1に記載の脈波検出装置。 The pulse wave detection device according to claim 1, wherein a material of the light shielding plate has a characteristic of absorbing light. 前記遮光板の前記外側表面は光を吸収する色で塗装されていることを特徴とする請求項1または請求項2に記載の脈波検出装置。 The pulse wave detection device according to claim 1 or 2, wherein the outer surface of the light shielding plate is painted in a color that absorbs light. 前記遮光板の材質は、当該脈波検出装置を前記生体の皮膚に固定した際に、前記遮光板の前記外側表面が前記生体の皮膚と隙間なく接触する程度に柔軟な特性を有することを特徴とする請求項1〜請求項3何れかに記載の脈波検出装置。 The material of the light shielding plate has such a characteristic that the outer surface of the light shielding plate comes into contact with the skin of the living body without any gap when the pulse wave detecting device is fixed to the skin of the living body. The pulse wave detection device according to any one of claims 1 to 3. 前記遮光板の前記外側表面上には、該外側表面が鏡面でないと見做すことができる程度の凹凸が形成されていることを特徴とする請求項1〜請求項4何れかに記載の脈波検出装置。 The pulse according to any one of claims 1 to 4, wherein irregularities are formed on the outer surface of the light shielding plate so that the outer surface can be regarded as not a mirror surface. Wave detector. 当該脈波検出装置を前記生体の皮膚に固定した際に該皮膚に窪みを生じさせる遮光凸部を前記遮光板の前記外側表面上に備えることを特徴とする請求項1〜請求項5何れかに記載の脈波検出装置。 The light-shielding convex part which produces a dent on the skin when the pulse wave detection device is fixed to the skin of the living body is provided on the outer surface of the light-shielding plate. The pulse wave detection device according to 1. 前記遮光凸部の材質は、当該脈波検出装置を前記生体の皮膚に固定した際に、前記遮光凸部が前記生体の皮膚と隙間なく接触する程度に柔軟な特性を有することを特徴とする請求項6に記載の脈波検出装置。 The material of the light-shielding convex part has a characteristic that is flexible enough to allow the light-shielding convex part to come into contact with the skin of the living body without any gap when the pulse wave detection device is fixed to the skin of the living body. The pulse wave detection device according to claim 6. 前記遮光凸部は、前記透光板を取り巻くように配置されることを特徴とする請求項6または請求項7に記載の脈波検出装置。 The pulse wave detection device according to claim 6, wherein the light shielding convex portion is disposed so as to surround the light transmitting plate. 前記遮光凸部が複数配置されていることを特徴とする請求項8に記載の脈波検出装置。 The pulse wave detection device according to claim 8, wherein a plurality of the light shielding convex portions are arranged. 前記複数の遮光凸部は、互いの配置間隔がランダムになるように配置されていることを特徴とする請求項9に記載の脈波検出装置。 The pulse wave detection device according to claim 9, wherein the plurality of light-shielding convex portions are arranged such that the arrangement interval between them is random. 前記遮光凸部は、始端部と終端部とを有する突条で構成されることを特徴とする請求項8〜請求項10に記載の脈波検出装置。 The pulse wave detection device according to claim 8, wherein the light-shielding convex portion is configured by a protrusion having a start end portion and a termination end portion. 前記複数の遮光凸部の内で前記透光板から最も離れた位置に配置された遮光凸部を構成する突条の端部間に形成された空隙と、前記透光板とを結ぶ直線上に、少なくとも1つの遮光凸部が配置されていることを特徴とする請求項11に記載の脈波検出装置。 On the straight line connecting the light-transmitting plate and the gap formed between the ends of the protrusions constituting the light-shielding convex portion disposed at the position farthest from the light-transmitting plate among the plurality of light-shielding convex portions. The pulse wave detection device according to claim 11, wherein at least one light-shielding convex portion is disposed. 前記受光手段は、受光した光の受光量に応じた受光信号を出力し、
当該脈波検出装置の外部から照射されて前記受光手段に受光される外部光を検出して、前記外部光の受光量に応じた外部受光信号を出力する外部光検出手段と、
前記外部受光信号と、前記発光手段が光を照射した時の前記受光信号とに基づいて、前記生体の脈波を検出する脈波検出手段と、
を備える、
ことを特徴とする請求項1〜請求項12何れかに記載の脈波検出装置。
The light receiving means outputs a light reception signal corresponding to the amount of received light,
An external light detecting means for detecting external light irradiated from the outside of the pulse wave detecting device and received by the light receiving means, and outputting an external light receiving signal corresponding to the amount of received light of the external light;
Pulse wave detection means for detecting a pulse wave of the living body based on the external light reception signal and the light reception signal when the light emitting means emits light;
Comprising
The pulse wave detection device according to any one of claims 1 to 12, wherein the device is a pulse wave detection device.
生体に対して光を照射する発光手段と、
前記発光手段から照射された光の反射光を少なくとも受光し、受光した光の受光量に応じた受光信号を出力する受光手段と、
当該脈波検出装置の外部から照射されて前記受光手段に受光される外部光を検出して、前記外部光の受光量に応じた外部受光信号を出力する外部光検出手段と、
前記外部受光信号と、前記発光手段が光を照射した時の前記受光信号とに基づいて、前記生体の脈波を検出する脈波検出手段と、
を備えることを特徴とする脈波検出装置。
A light emitting means for irradiating the living body with light;
A light receiving means for receiving at least reflected light of the light emitted from the light emitting means and outputting a light reception signal corresponding to the amount of received light;
An external light detecting means for detecting external light irradiated from the outside of the pulse wave detecting device and received by the light receiving means, and outputting an external light receiving signal corresponding to the amount of received light of the external light;
Pulse wave detection means for detecting a pulse wave of the living body based on the external light reception signal and the light reception signal when the light emitting means emits light;
A pulse wave detection device comprising:
前記脈波検出手段は、前記受光信号から前記外部受光信号を差分した差分信号に基づいて前記脈波を検出する、
ことを特徴とする請求項13または請求項14に記載の脈波検出装置。
The pulse wave detection means detects the pulse wave based on a difference signal obtained by subtracting the external light reception signal from the light reception signal;
The pulse wave detection device according to claim 13 or claim 14, characterized by the above.
前記外部光検出手段は、前記発光手段が発光を停止している時に前記外部光を検出することを特徴とする請求項13〜請求項15何れかに記載の脈波検出装置。 16. The pulse wave detection device according to claim 13, wherein the external light detection unit detects the external light when the light emitting unit stops light emission. 前記発光手段は間欠的に発光し、
前記外部光検出手段は、前記発光手段が発光を停止する毎に、前記外部光を検出する、
ことを特徴とする請求項16に記載の脈波検出装置。
The light emitting means emits light intermittently,
The external light detecting means detects the external light every time the light emitting means stops emitting light.
The pulse wave detection device according to claim 16.
JP2003401928A 2003-10-07 2003-12-01 Pulse wave detector Expired - Fee Related JP4419540B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2003401928A JP4419540B2 (en) 2003-12-01 2003-12-01 Pulse wave detector
US10/957,663 US7507207B2 (en) 2003-10-07 2004-10-05 Portable biological information monitor apparatus and information management apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003401928A JP4419540B2 (en) 2003-12-01 2003-12-01 Pulse wave detector

Publications (2)

Publication Number Publication Date
JP2005160641A true JP2005160641A (en) 2005-06-23
JP4419540B2 JP4419540B2 (en) 2010-02-24

Family

ID=34725701

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003401928A Expired - Fee Related JP4419540B2 (en) 2003-10-07 2003-12-01 Pulse wave detector

Country Status (1)

Country Link
JP (1) JP4419540B2 (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008132012A (en) * 2006-11-27 2008-06-12 Denso Corp Pulse wave detector
JP2008220723A (en) * 2007-03-14 2008-09-25 Seiko Epson Corp Pulse measuring apparatus and its controlling method
JP2008264302A (en) * 2007-04-23 2008-11-06 Denso Corp Biological state detector
JP2012165851A (en) * 2011-02-14 2012-09-06 Seiko Epson Corp Pulse wave measuring instrument, and program
WO2015117829A1 (en) * 2014-02-04 2015-08-13 Koninklijke Philips N.V. Optical device for measuring a heart rate of a user
JP2016501564A (en) * 2012-10-29 2016-01-21 マイクロソフト テクノロジー ライセンシング,エルエルシー Wearable personal information system
KR101678153B1 (en) * 2016-03-29 2016-11-21 루미컴 주식회사 Wearable device having sensor for measuring body signal and calculating body signal method thereby
JP2017189415A (en) * 2016-04-14 2017-10-19 セイコーエプソン株式会社 Biological information measurement device
JP2018534031A (en) * 2015-09-30 2018-11-22 チ シン Apparatus and method for measuring biological signals
US10485464B2 (en) 2014-10-30 2019-11-26 Seiko Epson Corporation Spectrometric apparatus and storage case
US10582886B2 (en) 2008-07-03 2020-03-10 Masimo Corporation Multi-stream data collection system for noninvasive measurement of blood constituents
US11638532B2 (en) 2008-07-03 2023-05-02 Masimo Corporation User-worn device for noninvasively measuring a physiological parameter of a user

Cited By (37)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008132012A (en) * 2006-11-27 2008-06-12 Denso Corp Pulse wave detector
JP2008220723A (en) * 2007-03-14 2008-09-25 Seiko Epson Corp Pulse measuring apparatus and its controlling method
JP2008264302A (en) * 2007-04-23 2008-11-06 Denso Corp Biological state detector
US10912501B2 (en) 2008-07-03 2021-02-09 Masimo Corporation User-worn device for noninvasively measuring a physiological parameter of a user
US10945648B2 (en) 2008-07-03 2021-03-16 Masimo Corporation User-worn device for noninvasively measuring a physiological parameter of a user
US11751773B2 (en) 2008-07-03 2023-09-12 Masimo Corporation Emitter arrangement for physiological measurements
US11647914B2 (en) 2008-07-03 2023-05-16 Masimo Corporation User-worn device for noninvasively measuring a physiological parameter of a user
US10631765B1 (en) 2008-07-03 2020-04-28 Masimo Corporation Multi-stream data collection system for noninvasive measurement of blood constituents
US11642036B2 (en) 2008-07-03 2023-05-09 Masimo Corporation User-worn device for noninvasively measuring a physiological parameter of a user
US11642037B2 (en) 2008-07-03 2023-05-09 Masimo Corporation User-worn device for noninvasively measuring a physiological parameter of a user
US10702194B1 (en) 2008-07-03 2020-07-07 Masimo Corporation Multi-stream data collection system for noninvasive measurement of blood constituents
US11638532B2 (en) 2008-07-03 2023-05-02 Masimo Corporation User-worn device for noninvasively measuring a physiological parameter of a user
US10702195B1 (en) 2008-07-03 2020-07-07 Masimo Corporation Multi-stream data collection system for noninvasive measurement of blood constituents
US10588553B2 (en) 2008-07-03 2020-03-17 Masimo Corporation Multi-stream data collection system for noninvasive measurement of blood constituents
US10588554B2 (en) 2008-07-03 2020-03-17 Masimo Corporation Multi-stream data collection system for noninvasive measurement of blood constituents
US10610138B2 (en) 2008-07-03 2020-04-07 Masimo Corporation Multi-stream data collection system for noninvasive measurement of blood constituents
US10617338B2 (en) 2008-07-03 2020-04-14 Masimo Corporation Multi-stream data collection system for noninvasive measurement of blood constituents
US10624563B2 (en) 2008-07-03 2020-04-21 Masimo Corporation Multi-stream data collection system for noninvasive measurement of blood constituents
US10624564B1 (en) 2008-07-03 2020-04-21 Masimo Corporation Multi-stream data collection system for noninvasive measurement of blood constituents
US11484229B2 (en) 2008-07-03 2022-11-01 Masimo Corporation User-worn device for noninvasively measuring a physiological parameter of a user
US11484230B2 (en) 2008-07-03 2022-11-01 Masimo Corporation User-worn device for noninvasively measuring a physiological parameter of a user
US10582886B2 (en) 2008-07-03 2020-03-10 Masimo Corporation Multi-stream data collection system for noninvasive measurement of blood constituents
US10709366B1 (en) 2008-07-03 2020-07-14 Masimo Corporation Multi-stream data collection system for noninvasive measurement of blood constituents
US10743803B2 (en) 2008-07-03 2020-08-18 Masimo Corporation Multi-stream data collection system for noninvasive measurement of blood constituents
US10758166B2 (en) 2008-07-03 2020-09-01 Masimo Corporation Multi-stream data collection system for noninvasive measurement of blood constituents
US10912502B2 (en) 2008-07-03 2021-02-09 Masimo Corporation User-worn device for noninvasively measuring a physiological parameter of a user
US10912500B2 (en) 2008-07-03 2021-02-09 Masimo Corporation Multi-stream data collection system for noninvasive measurement of blood constituents
US11426103B2 (en) 2008-07-03 2022-08-30 Masimo Corporation Multi-stream data collection system for noninvasive measurement of blood constituents
JP2012165851A (en) * 2011-02-14 2012-09-06 Seiko Epson Corp Pulse wave measuring instrument, and program
US10154814B2 (en) 2012-10-29 2018-12-18 Microsoft Technology Licensing, Llc Wearable personal information system
JP2016501564A (en) * 2012-10-29 2016-01-21 マイクロソフト テクノロジー ライセンシング,エルエルシー Wearable personal information system
WO2015117829A1 (en) * 2014-02-04 2015-08-13 Koninklijke Philips N.V. Optical device for measuring a heart rate of a user
US9681812B2 (en) 2014-02-04 2017-06-20 Koninklijke Philips N.V. Optical device for measuring a heart rate of a user
US10485464B2 (en) 2014-10-30 2019-11-26 Seiko Epson Corporation Spectrometric apparatus and storage case
JP2018534031A (en) * 2015-09-30 2018-11-22 チ シン Apparatus and method for measuring biological signals
KR101678153B1 (en) * 2016-03-29 2016-11-21 루미컴 주식회사 Wearable device having sensor for measuring body signal and calculating body signal method thereby
JP2017189415A (en) * 2016-04-14 2017-10-19 セイコーエプソン株式会社 Biological information measurement device

Also Published As

Publication number Publication date
JP4419540B2 (en) 2010-02-24

Similar Documents

Publication Publication Date Title
JP3091929B2 (en) Pulse oximeter
JP4173429B2 (en) Oxygen meter sensor
JP3928972B2 (en) Sensor for optical measurement of blood oxygen saturation, measuring method thereof, and measuring apparatus thereof
US9304202B2 (en) Multiuse optical sensor
JP4419540B2 (en) Pulse wave detector
US20180325397A1 (en) Photoplethysmography device
JPH03500614A (en) Equipment and methods used in pulse oximetry
JPS63246138A (en) Optical sensor for oxymeter
JPH04250140A (en) Oxygen densitometer
JPH0257239A (en) Probe for optical sensor
JPH06505903A (en) low noise optical probe
JP2005028157A (en) Biological information measuring device
JP7253598B2 (en) sensor device
JP2005040261A (en) Pulse wave sensor
US20120229800A1 (en) Pulse oximeter test instruments and methods
JP2007111461A (en) Bio-optical measurement apparatus
JP2008180597A (en) Light detection device and optical measurement unit
JP5360540B2 (en) Brain function measurement device
JP2002000575A (en) Heart rate sensor and method of calculating heart rate
WO2014013813A1 (en) Tissue sensor
JP2000107147A (en) Photoelectric pulse wave detector
JP3416257B2 (en) Pulse detection device
WO2001012060A3 (en) Methods for noninvasive analyte sensing
JP2019013410A (en) Detection device and biological information measurement device
JP6064108B1 (en) Biological information measuring instrument

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060324

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20061012

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090421

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090610

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090825

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091016

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20091110

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20091123

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121211

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 4419540

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121211

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131211

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees