JP2000107147A - Photoelectric pulse wave detector - Google Patents

Photoelectric pulse wave detector

Info

Publication number
JP2000107147A
JP2000107147A JP10281049A JP28104998A JP2000107147A JP 2000107147 A JP2000107147 A JP 2000107147A JP 10281049 A JP10281049 A JP 10281049A JP 28104998 A JP28104998 A JP 28104998A JP 2000107147 A JP2000107147 A JP 2000107147A
Authority
JP
Japan
Prior art keywords
light
pulse wave
distribution waveform
characteristic value
photoelectric pulse
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP10281049A
Other languages
Japanese (ja)
Other versions
JP3932698B2 (en
Inventor
Keizo Kawaguchi
敬三 川口
Susumu Oka
享 岡
Hidekatsu Inukai
英克 犬飼
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Colin Co Ltd
Original Assignee
Nippon Colin Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Colin Co Ltd filed Critical Nippon Colin Co Ltd
Priority to JP28104998A priority Critical patent/JP3932698B2/en
Publication of JP2000107147A publication Critical patent/JP2000107147A/en
Application granted granted Critical
Publication of JP3932698B2 publication Critical patent/JP3932698B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To eliminate a decrease in detection accuracy attributed to physical motion of a subject. SOLUTION: A plurality of detectors 38a-38i which receive transmission light incident into a finger 20 from a light emitting element while transmitting it are arrayed in one direction almost facing the light emitting element while pinching the finger 20 with the light emitting element and a distribution waveform characteristic value calculating means 60 calculates a characteristic value of a distribution waveform indicating the distribution of photodetecting levels of the photodetectors 38a-38i in one direction, namely, a right/left area ratio R based on photodetecting signals M-SM1 respectively outputted from the photodetectors 38a-38i. A distribution waveform characteristic value judging means 62 judges physical motion of a subject based on the right/left area ratio R of the distribution waveform calculated by the distribution waveform characteristic value calculation means 60. Therefore, when the physical motion of the subject is judged, the waveform accuracy and reliability of a photoelectric pulse wave SMK sequentially outputted can be enhanced by blocking the output of the photoelectric pule wave SMK distorted under the influence of the physical motion or others.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、生体内の血液容積の周
期的変化に同期して脈動する光電脈波を逐次検出して出
力する光電脈波検出装置に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a photoelectric pulse wave detecting device for sequentially detecting and outputting photoelectric pulse waves pulsating in synchronization with a periodic change in the blood volume in a living body.

【0002】[0002]

【従来の技術】生体の皮膚内に光を入射させるととも
に、その入射光が皮膚下の毛細管内に存在する血球によ
り散乱を受けた散乱光を検出して光電脈波として出力す
る光電脈波検出装置が知られている。このような光電脈
波検出装置は、上記血球の増減に応じて周期的に脈動す
るものであるから、皮膚下の血液容積の周期的変化に対
応して脈動する容積脈波検出装置、或いはプレシスモグ
ラフ(Plethysmograph)としても知られている。
2. Description of the Related Art A photoplethysmogram detection device outputs light as a photoplethysmogram by irradiating light into the skin of a living body and detecting the scattered light which is scattered by blood cells existing in a capillary tube under the skin. Devices are known. Since such a photoelectric pulse wave detecting device periodically pulsates in accordance with the increase and decrease of the blood cells, the volume pulse wave detecting device pulsating in response to the periodic change of the blood volume under the skin, Also known as a pleograph (Plethysmograph).

【0003】ところで、従来の光電脈波検出装置では、
通常、生体の一部である指の一面たとえば上(背)面に
密着させてそれに光を照射させるための発光素子と、そ
の発光素子に対応する状態でその指の一面とは反対側の
面たとえば下(腹)面に密着させてその指内の散乱光を
検出する受光素子とを備えてその指を把持する形式の光
電脈波検出プローブが用いられる。
By the way, in the conventional photoelectric pulse wave detecting device,
Usually, a light emitting element that is brought into close contact with one surface, for example, an upper (back) surface of a finger, which is a part of a living body, to irradiate light thereto, and a surface opposite to the one surface of the finger corresponding to the light emitting element For example, a photoplethysmographic detection probe of a type that includes a light receiving element that is in close contact with the lower (abdominal) surface and detects scattered light in the finger and grips the finger is used.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、上記の
ような光電脈波検出プローブを用いる場合には、生体の
体動たとえば手術中の患者の無意識な体動或いは指の曲
げなどが発生すると、光電脈波検出プローブに把持され
ている指とその上面および下面に当てられた発光素子お
よび受光素子とが相対的に移動して光電脈波の検出条件
が変化する結果、光電脈波が乱れて検出精度が低下する
場合があるという不都合があった。
However, in the case of using the above-described photoelectric pulse wave detection probe, when the body movement of the living body, for example, the unconscious movement of the patient during operation or the bending of the finger occurs, the photoelectric pulse wave is detected. The finger held by the pulse wave detection probe and the light emitting element and light receiving element applied to the upper and lower surfaces of the finger move relatively, and the detection condition of the photoelectric pulse wave changes. There is a disadvantage that accuracy may be reduced.

【0005】本発明は以上の事情を背景として為された
ものであって、その目的とするところは、被測定者の体
動に起因する検出精度の低下のない光電脈波検出装置を
提供することにある。
The present invention has been made in view of the above circumstances, and an object of the present invention is to provide a photoplethysmographic detector which does not cause a decrease in detection accuracy due to body movement of a subject. It is in.

【0006】[0006]

【課題を解決するための手段】本発明者等は、以上の事
情を背景として種々検討を重ねた結果、被測定者の体動
或いは指の曲げなどが発生すると、生体の皮膚と受光素
子との間に隙間が発生し、その隙間を通して受光素子へ
伝播する間に光が大きく減衰して光電脈波が影響を受け
ることが原因であり、一方向に配列された受光素子に検
出される光強度の分布は、血液容積の変化では均等に影
響を受けるが、被測定者の体動或いは指の曲げなどが発
生すると、不均一に影響を受けて分布波形が乱れること
を見い出した。本発明はこのような知見に基づいて為さ
れたものである。
Means for Solving the Problems The inventors of the present invention have made various studies on the background described above, and as a result, when body movement or bending of a finger of the subject occurs, the skin of the living body and the light receiving element are connected. This is because light is greatly attenuated while propagating to the light receiving element through the gap and the photoelectric pulse wave is affected, and the light detected by the light receiving elements arranged in one direction It has been found that the intensity distribution is uniformly affected by changes in blood volume, but is unevenly affected when the subject's body movement or finger bending occurs and the distribution waveform is disturbed. The present invention has been made based on such findings.

【0007】すなわち、本発明の要旨とするところは、
生体内の血液容積の周期的変化に同期して脈動する光電
脈波を逐次検出して出力する光電脈波検出装置であっ
て、(a) 前記生体の一部に光を照射するために配置され
た発光素子と、 (b)その発光素子に略対向し且つその発
光素子との間で前記生体の一部を挟んで一方向に複数個
配列され、その発光素子から生体の一部に入射し且つそ
れを透過した透過光を受光する複数個の受光素子と、
(c) 前記受光素子からそれぞれ出力される受光信号に基
づいて前記一方向におけるその受光素子の受光レベルの
分布を示す分布波形の特性値を算出する分布波形特性値
算出手段と、(d) その分布波形特性値算出手段により算
出された分布波形の特定値に基づいて、前記生体の体動
を判定する体動判定手段とを、含むことにある。
That is, the gist of the present invention is as follows.
A photoelectric pulse wave detection device that sequentially detects and outputs photoelectric pulse waves pulsating in synchronization with a periodic change in blood volume in a living body, and (a) arranged to irradiate a part of the living body with light. And (b) a plurality of light-emitting elements are arranged substantially in one direction with the part of the living body interposed between the light-emitting element and the light-emitting element, and the light-emitting element is incident on a part of the living body from the light-emitting element. And a plurality of light receiving elements for receiving the transmitted light transmitted therethrough,
(c) distribution waveform characteristic value calculating means for calculating a characteristic value of a distribution waveform indicating a distribution of a light receiving level of the light receiving element in the one direction based on a light receiving signal output from each of the light receiving elements; A body movement determining unit that determines body movement of the living body based on a specific value of the distribution waveform calculated by the distribution waveform characteristic value calculating unit.

【0008】[0008]

【発明の効果】このようにすれば、発光素子から生体の
一部に入射し且つそれを透過した透過光を受光する複数
個の受光素子がその発光素子に略対向し且つその発光素
子との間で前記生体の一部を挟んで一方向に複数個配列
されるとともに、分布波形特性値算出手段により、受光
素子からそれぞれ出力される受光信号に基づいて前記一
方向におけるその受光素子の受光レベルの分布を示す分
布波形の特性値が算出され、体動判定手段により、その
分布波形特性値算出手段により算出された分布波形の特
性値に基づいて、前記生体の体動が判定される。したが
って、体動が判定されたときは、その体動の影響を受け
て歪んだ光電脈波の出力を阻止するなどして、逐次出力
される光電脈波の波形精度および信頼性を高めることが
でき、精度の低い光電脈波に基づく波形解析などが防止
される。
According to this structure, a plurality of light receiving elements which enter the part of the living body from the light emitting element and receive the transmitted light transmitted therethrough are substantially opposed to the light emitting element, and are in contact with the light emitting element. A plurality of light receiving levels of the light receiving element are arranged in one direction based on the light receiving signals output from the light receiving element by the distributed waveform characteristic value calculating means, while being arranged in one direction with a part of the living body therebetween. The characteristic value of the distribution waveform indicating the distribution is calculated, and the body movement of the living body is determined by the body movement determining means based on the characteristic value of the distribution waveform calculated by the distribution waveform characteristic value calculating means. Therefore, when body movement is determined, it is possible to improve the waveform accuracy and reliability of the sequentially output photoelectric pulse wave by preventing the output of the photoelectric pulse wave distorted by the influence of the body movement. Thus, waveform analysis based on photoplethysmograms with low accuracy can be prevented.

【0009】[0009]

【発明の他の態様】ここで、好適には、前記体動判定手
段により前記生体の体動が判定された場合には、前記光
電脈波の出力を阻止する出力阻止手段がさらに含まれ
る。このようにすれば、体動が判定されたときは、その
体動の影響を受けて歪んだ光電脈波の出力が上記出力阻
止手段により自動的に阻止されるので、逐次出力される
光電脈波の波形精度および信頼性を高めることができ
る。
Another aspect of the present invention preferably further comprises an output blocking means for blocking the output of the photoelectric pulse wave when the body movement of the living body is determined by the body movement determining means. With this configuration, when the body movement is determined, the output of the photoelectric pulse wave distorted by the influence of the body movement is automatically stopped by the output blocking means, so that the sequentially output photoelectric pulse is prevented. The waveform accuracy and reliability of the wave can be improved.

【0010】また、好適には、前記体動判定手段は、前
記分布波形特性値算出手段により算出された分布波形の
非対称性を示す特性値の変化に基づいて前記生体の体動
を判定するものである。通常、被測定者の体動のないと
きの分布波形は、受光素子が生体表面に好適に密着して
いる状態であるために比較的滑らかな対称性のある形状
を示すことから、その被測定者の体動のないときの分布
波形と比較して実際の分布波形の対称性が変化した場合
に体動判定が行われる利点がある。
Preferably, the body movement determining means determines the body movement of the living body based on a change in a characteristic value indicating the asymmetry of the distribution waveform calculated by the distribution waveform characteristic value calculating means. It is. Usually, the distribution waveform when the subject does not move has a relatively smooth symmetrical shape because the light receiving element is in close contact with the surface of the living body. There is an advantage that the body movement determination is performed when the symmetry of the actual distribution waveform changes as compared with the distribution waveform when there is no body movement of the person.

【0011】また、好適には、前記体動判定手段は、前
記分布波形特性値算出手段により算出された分布波形自
身の非対称性を示す特性値に基づいて前記生体の体動を
判定するものである。上記のように被測定者の体動のな
いときの分布波形は、受光素子が生体表面に好適に密着
している状態であるために比較的滑らかな対称性のある
形状を示すことから、実際の分布波形の対称性が低下し
た場合に体動判定が行われる利点がある。
Preferably, the body movement determining means determines the body movement of the living body based on the characteristic value indicating the asymmetry of the distribution waveform itself calculated by the distribution waveform characteristic value calculating means. is there. As described above, the distribution waveform when there is no body movement of the subject shows a relatively smooth symmetrical shape because the light receiving element is in a state in which the light receiving element is in close contact with the surface of the living body. There is an advantage that the body motion determination is performed when the symmetry of the distribution waveform is reduced.

【0012】また、好適には、前記体動判定手段は、前
記分布波形特性値算出手段により算出された分布波形の
非対称性を示す特性値の変化とその分布波形自身の非対
称性を示す特性値とに基づいて前記生体の体動を判定す
るものである。このようにすれば、体動判定の信頼性が
一層高められる。
Preferably, the body movement determining means includes a characteristic value indicating the asymmetry of the distribution waveform calculated by the distribution waveform characteristic value calculating means and a characteristic value indicating the asymmetry of the distribution waveform itself. The body motion of the living body is determined based on the above. By doing so, the reliability of the body motion determination is further improved.

【0013】[0013]

【発明の好適な実施の形態】以下、本発明の一実施例を
図面に基づいて詳細に説明する。
Preferred embodiments of the present invention will be described below in detail with reference to the accompanying drawings.

【0014】図1は、本発明の一実施例の光電脈波検出
装置10の構成の要部を説明する図である。本実施例の
光電脈波検出装置10は、光電脈波を採取するために生
体の一部に装着される光電脈波検出プローブ12と、光
電脈波検出プローブ12からの信号を処理して信頼性の
ある光電脈波を出力する演算制御装置14と、波形モニ
タ或いは波形解析などを目的として演算制御装置14か
ら出力された光電脈波を表示する表示装置16とを備え
ている。
FIG. 1 is a view for explaining a main part of the configuration of a photoelectric pulse wave detecting apparatus 10 according to one embodiment of the present invention. The photoelectric pulse wave detection device 10 according to the present embodiment includes a photoelectric pulse wave detection probe 12 attached to a part of a living body to collect a photoelectric pulse wave, and processes a signal from the photoelectric pulse wave detection probe 12 to obtain a reliable signal. And a display device 16 for displaying the photoplethysmogram output from the arithmetic and control unit 14 for the purpose of waveform monitoring or waveform analysis.

【0015】上記光電脈波検出プローブ12は、生体の
指20の先端を挟むためにピン22まわりに相対回動可
能に連結された長手状を成す1対の押圧部材24、26
と、それら1対の押圧部材24、26の先端部にそれぞ
れ固設され、押圧部材24、26の長手方向に沿った長
手状の凹溝28、30をそれぞれ備えるように成形され
た中空の1対の弾性シート部材32、34と、一方の弾
性シート部材32の凹溝28内であってその長手方向の
中間位置に設けられた発光素子36と、他方の弾性シー
ト部材34の凹溝30内であってその長手方向に配列さ
れた複数個(本実施例では9個)の受光素子38と、生
体の指20を上記押圧部材24、26の先端部で所定の
押圧力で挟持させるためにその押圧部材24、26の基
端部を互いに離隔する方向に付勢するスプリング40と
を備えている。これにより、指20は、1対の弾性シー
ト部材32、34の長手状の凹溝28、30内に収容さ
れ且つそれらの内壁面によりその背面および腹面が遮光
された状態で光電脈波検出プローブ12により挟持され
る。
The photoelectric pulse wave detecting probe 12 has a pair of longitudinal pressing members 24 and 26 connected to each other so as to be relatively rotatable around a pin 22 so as to pinch the tip of a finger 20 of a living body.
And a hollow 1 which is fixed to the tip of each of the pair of pressing members 24 and 26, respectively, and is formed to have longitudinal concave grooves 28 and 30 along the longitudinal direction of the pressing members 24 and 26, respectively. A pair of elastic sheet members 32, 34, a light emitting element 36 provided in the groove 28 of one elastic sheet member 32 at an intermediate position in the longitudinal direction, and a groove 30 of the other elastic sheet member 34. A plurality of (in the present embodiment, nine) light receiving elements 38 arranged in the longitudinal direction and the finger 20 of the living body are held between the distal ends of the pressing members 24 and 26 with a predetermined pressing force. A spring 40 is provided for urging the base ends of the pressing members 24 and 26 in a direction separating from each other. Thus, the finger 20 is housed in the longitudinal grooves 28, 30 of the pair of elastic sheet members 32, 34, and the back and abdominal surfaces thereof are shielded from light by the inner wall surfaces thereof. 12.

【0016】上記のように光電脈波検出プローブ12に
より指20が挟持された状態では、上記複数個の受光素
子38は、上記発光素子36に対して略対向し且つ指2
0の長手方向に沿った一方向に等間隔で配列された状態
で、その受光面が指20に略密着するように弾性シート
部材34の凹溝30内に配設されている。本実施例で
は、9個の受光素子38a 〜38i のうち、配列方向の
中央に位置する受光素子38e が、押圧部材24、26
の長手方向において発光素子36と一致するように配置
されているので、指20の挟持状態では、その受光素子
38e と発光素子36との間がその他の受光素子との間
に比較して最短距離とされている。
In the state where the finger 20 is held by the photoelectric pulse wave detection probe 12 as described above, the plurality of light receiving elements 38 are substantially opposed to the light emitting element 36 and
The light receiving surface is arranged in the concave groove 30 of the elastic sheet member 34 such that its light receiving surface is in close contact with the finger 20 in a state of being arranged at equal intervals in one direction along the longitudinal direction of 0. In the present embodiment, of the nine light receiving elements 38 a to 38 i , the light receiving element 38 e located at the center in the arrangement direction is the pressing members 24 and 26.
Are arranged so as to coincide with the light-emitting element 36 in the longitudinal direction of the finger 20, so that the distance between the light-receiving element 38e and the light-emitting element 36 is shorter than that between the other light-receiving elements when the finger 20 is sandwiched. Distance.

【0017】また、上記弾性シート部材32の凹溝28
内に配設された発光素子36は、ヘモグロビンのような
血球により好適に散乱を受ける波長範囲たとえば660
〜900nm程度の範囲の波長を出力する発光ダイオード
が用いられるが、さらに好適には、ヘモグロビンの酸素
飽和度の影響を受けない波長たとえば800〜840nm
程度の範囲の波長を出力する発光ダイオードが用いられ
る。また、上記複数個の受光素子38には、ホトダイオ
ード、ホトトランジスタなどが好適に用いられる。
Further, the grooves 28 of the elastic sheet member 32 are provided.
The light emitting element 36 disposed therein has a wavelength range that is preferably scattered by blood cells such as hemoglobin, for example, 660.
A light emitting diode that outputs a wavelength in the range of about 900 nm to about 900 nm is used. More preferably, the wavelength is not affected by the oxygen saturation of hemoglobin, for example, 800 to 840 nm.
Light emitting diodes that output wavelengths in the order of magnitude are used. In addition, a photodiode, a phototransistor, or the like is preferably used for the plurality of light receiving elements 38.

【0018】前記演算制御装置14は、CPU42、R
AM44、ROM46、インターフェース48から成る
所謂マイクロコンピュータであり、CPU42は、RA
M44の一時記憶機能を利用しつつ、予めROM46に
記憶されたプログラムに従って、A/D変換器50によ
りアナログ信号からデジタル信号に変換されて入力され
た、複数個の受光素子38a 〜38i から逐次出力され
た検出信号SMa 〜SMi を処理し、通常は、最もゲイ
ンの高い受光素子38e による検出信号SMeを光電脈
波SMKとして逐次出力するが、体動判定時にはその受
光素子38e により検出された検出信号SMe の出力を
阻止して、歪みのない光電脈波信号SMKを発生し、イ
ンターフェース48から出力する。前記表示装置16
は、その光電脈波信号SMKを受けて、光電脈波の波形
を表示する。
The arithmetic and control unit 14 includes a CPU 42, an R
It is a so-called microcomputer comprising an AM 44, a ROM 46, and an interface 48.
While utilizing a temporary storage function of M44, according to pre-ROM46 program stored, inputted is converted from an analog signal to a digital signal by the A / D converter 50, a plurality of light receiving elements 38 a to 38 DEG i The sequentially output detection signals SM a to SM i are processed, and normally, the detection signal SM e from the light receiving element 38 e having the highest gain is sequentially output as a photoelectric pulse wave SMK. and prevents the output of the detection signal SM e detected by e, and generates a photoelectric pulse wave signal SMK undistorted, and outputs from the interface 48. The display device 16
Receives the photoelectric pulse wave signal SMK and displays the waveform of the photoelectric pulse wave.

【0019】図2は、上記演算制御装置14の制御機能
の要部を説明する機能ブロック線図である。図におい
て、分布波形特性値算出手段60は、複数個の受光素子
38a〜38i から逐次出力された検出信号SMa 〜S
i に基づいて、それら受光素子38a 〜38i の配列
方向である指20の長手方向、すなわち押圧部材26或
いはそれに取付られた弾性シート部材34の凹溝30の
長手方向における各受光素子38の受光レベルの分布を
示す分布波形の非対称性を示す特性値を算出する。図3
は、各受光素子38が生体の皮膚すなわち指20の腹に
略密着させられる体動或いは指20の曲げのない状態に
おける、各検出信号SMa 〜SMi の最大振幅レベル、
平均振幅レベル、或いは実効値レベルの分布波形例を示
し、図4は、体動或いは指20の曲げによって各受光素
子38が指20の腹に対して相対移動させられてそれら
の間に不均一な隙間が発生させられた状態の図3と同様
の分布波形例を示している。各受光素子38のうち、指
20の腹に略密着させられているものは隙間による減衰
を受けない散乱光を検出するので受光レベルが高いが、
指20の腹から離隔させられたものは隙間による減衰を
受けた散乱光を検出するので受光レベルが低くなるの
で、体動発生時には、図4に示すように、分布波形が非
対称となる現象が発生する。上記分布波形特性値算出手
段60は、たとえば、分布波形の中心から左右の面積S
L 、SR の比である面積比R(=SL /S R )を特性値
として算出する。なお、便宜的には、上記分布波形の左
側の面積S L として、受光素子38a 〜38d からの検
出信号SMa 〜SMd の加算値が用いられ、上記分布波
形の右側の面積SR として、受光素子38f 〜38i
らの検出信号SMf 〜SMi の加算値が用いられる。
FIG. 2 shows a control function of the arithmetic and control unit 14.
FIG. 3 is a functional block diagram for explaining a main part of FIG. Figure smell
The distribution waveform characteristic value calculation means 60 includes a plurality of light receiving elements.
38a~ 38iDetection signal SM sequentially output froma~ S
MiBased on the light receiving elements 38a~ 38iArray of
Longitudinal direction of the finger 20, ie, the pressing member 26 or
Or the groove 30 of the elastic sheet member 34 attached thereto.
The distribution of the light receiving level of each light receiving element 38 in the longitudinal direction is
A characteristic value indicating the asymmetry of the indicated distribution waveform is calculated. FIG.
Is that each light receiving element 38 is placed on the skin of a living body,
In a state where there is no body movement or finger 20 bending
Each detection signal SMa~ SMiThe maximum amplitude level of
Example of distribution waveform of average amplitude level or effective value level
FIG. 4 shows that each light receiving element is
The child 38 is moved relative to the belly of the finger 20 and
FIG. 3 in a state where an uneven gap is generated between
3 shows an example of the distribution waveform. Finger of each light receiving element 38
Those that are almost in contact with the belly of 20 are damped by gaps
Although the received light level is high because it detects scattered light that is not affected by
Those separated from the belly of the finger 20 will attenuate due to the gap
Detects the scattered light that is received, so the light reception level is low
Therefore, when a body motion occurs, the distribution waveform is not as shown in FIG.
A symmetry phenomenon occurs. Calculation method of the above distribution waveform characteristic value
The step 60 has, for example, an area S left and right from the center of the distribution waveform.
L, SRArea ratio R (= SL/ S R) Is the characteristic value
Is calculated as For convenience, the left side of the above distribution waveform
Side area S LAs the light receiving element 38a~ 38dInspection from
Outgoing signal SMa~ SMdOf the distributed wave
Area S on the right side of the shapeRAs the light receiving element 38f~ 38iOr
Detection signal SMf~ SMiIs used.

【0020】体動判定手段62は、上記分布波形算出手
段60により生成された分布波形の特性値に基づいて非
測定者の体動を判定する。通常、被測定者の体動のない
ときの分布波形は、受光素子38が指20の腹に好適に
密着している状態であるために図3に示すように比較的
滑らかな対称性のある形状を示すことから、その被測定
者の体動のないときの分布波形の特性値である面積比R
M (=SL /SR )を予め記憶するとともに、実際の面
積比R(=SL /SR )を上記予め記憶された面積比R
M と比較し、実際の分布波形の対称性が変化した場合す
なわち実際の面積比Rが予め記憶された面積比RM から
所定値以上たとえば20%以上ずれた場合に体動判定を
行う。
The body movement determining means 62 determines the body movement of the non-measurement person based on the characteristic value of the distribution waveform generated by the distribution waveform calculating means 60. Usually, the distribution waveform when the subject does not move has a relatively smooth symmetry as shown in FIG. 3 because the light receiving element 38 is in a state of being in close contact with the belly of the finger 20. Since the shape is shown, the area ratio R which is a characteristic value of the distribution waveform when the subject does not move is shown.
M (= S L / S R ) is stored in advance, and the actual area ratio R (= S L / S R ) is stored in the previously stored area ratio R.
Compared to M, carry out the body movement determination when shifted actual case the symmetry of the distribution waveform is varied i.e. actual area ratio R is pre-stored predetermined value or more from the area ratio R M, for example, 20% or more.

【0021】光電脈波選別手段64は、通常は、最もゲ
インの高い受光素子38e による検出信号SMe を光電
脈波SMKとして逐次出力させるが、上記体動判定手段
62により体動が判定された場合は、そのときに受光素
子38e により検出された検出信号SMe の出力を阻止
する。これにより、歪みのない光電脈波信号SMKだけ
を出力させる。
The photoelectric pulse wave selecting means 64, usually, but to sequentially output a detection signal SM e by most high-gain receiving element 38 e as a photoelectric pulse wave SMK, body motion is determined by the body movement judging means 62 If the, it prevents the output of the detection signal SM e detected by the light receiving element 38 e at that time. Thereby, only the photoelectric pulse wave signal SMK without distortion is output.

【0022】図5は、前記演算制御装置14の制御作動
の要部を説明するフローチャートである。図5におい
て、ステップ(以下、ステップを省略する)SA1で
は、1脈波が発生したか否かが、たとえば検出信号SM
e の1周期が経過したか否かに基づいて判断される。こ
のSA1の判断が否定される場合は待機させられるが、
肯定される場合は、SA2において、1周期分の各検出
信号SMa 〜SMi が読み込まれる。
FIG. 5 is a flowchart for explaining a main part of the control operation of the arithmetic and control unit 14. In FIG. 5, in step (hereinafter, step is omitted) SA1, it is determined whether or not one pulse wave is generated, for example, by detection signal SM.
The determination is made based on whether one cycle of e has elapsed. If the determination at SA1 is denied, the system is put on standby.
If the result is affirmative, at SA2, the detection signal SM a to SM i of one period is read.

【0023】次いで、前記分布波形特性値算出手段60
に対応するSA3では、上記各検出信号SMa 〜SMi
により形成される信号レベルの分布波形の対称性を示す
特性値、たとえば分布波形の左右の面積比R(=SL
R )が算出される。続いて、前記体動判定手段62に
対応するSA4では、体動のない状態で予め記憶された
面積比RM (=SL /SR )に対して、新たに算出され
た実際の面積比Rが所定値以上、たとえば20%以上変
化したか否かが判断される。このSA4の判断が否定さ
れる場合には、SA6において受光素子38e により検
出された検出信号SMe が光電脈波SMKとして出力さ
れるが、肯定される場合には、その検出信号SMe の波
形の歪みが考えられるので、SA5においてその光電脈
波SMKの出力が阻止される。本実施例では、上記SA
5およびSA6が前記光電脈波選別手段64に対応して
いる。
Next, the distribution waveform characteristic value calculating means 60
In SA3 corresponding to the above, the detection signals SM a to SM i
, A characteristic value indicating the symmetry of the distribution waveform of the signal level formed by, for example, the ratio of the left and right areas R (= S L /
S R ) is calculated. Then, in SA4 corresponding to the body movement judging means 62, with respect to previously stored area ratio in the absence of body motion R M (= S L / S R), the actual area ratio newly calculated It is determined whether R has changed by a predetermined value or more, for example, by 20% or more. If the determination in SA4 is negative, although the detection signal SM e detected by the light receiving element 38 e in SA6 is output as a photoelectric pulse wave SMK, if it is positive, the detection signal SM e Since the waveform may be distorted, the output of the photoplethysmogram SMK is blocked in SA5. In this embodiment, the above SA
5 and SA6 correspond to the photoelectric pulse wave sorting means 64.

【0024】上述のように、本実施例によれば、発光素
子36から指20内に入射し且つそれを透過した透過光
を受光する複数個の受光素子30a 〜30i がその発光
素子36に略対向し且つその発光素子36との間で指2
0を挟んで一方向に複数個配列されるとともに、分布波
形特性値算出手段60(SA3)により、受光素子30
a 〜30i からそれぞれ出力される受光信号SMa 〜S
i に基づいて上記一方向におけるその受光素子30a
〜30i の受光レベルの分布を示す分布波形の特性値す
なわち左右面積比Rが算出され、体動判定手段62(S
A4)により、上記分布波形特性値算出手段60により
算出された分布波形の左右面積比Rに基づいて、被測定
者の体動が判定される。したがって、体動が判定された
ときは、その体動の影響を受けて歪んだ光電脈波SMK
の出力を阻止するなどして、逐次出力される光電脈波S
MKの波形精度および信頼性を高めることができ、精度
の低い光電脈波に基づく波形解析などが防止される。
[0024] As described above, according to this embodiment, a plurality of light receiving elements 30 a to 30 i for receiving the light transmitted by and it enters the 20 finger from the light emitting element 36 is the light-emitting elements 36 Is substantially opposed to the light emitting element 36 and the finger 2
A plurality of light-receiving elements 30 are arranged in one direction with respect to 0, and the light-receiving elements 30 are distributed by the distribution waveform characteristic value calculating means 60 (SA3).
light receiving signals SM a to S output from a to 30 i respectively
Based on M i , the light receiving element 30 a in the one direction
To 30 i characteristic value, that the left and right area ratio R of distribution waveforms showing the distribution of the received light level is calculated, and the body movement judging means 62 (S
According to A4), the body motion of the subject is determined based on the right-left area ratio R of the distribution waveform calculated by the distribution waveform characteristic value calculation means 60. Therefore, when the body motion is determined, the photoelectric pulse wave SMK distorted due to the influence of the body motion.
The output of the photoelectric pulse wave S
The waveform accuracy and reliability of the MK can be improved, and waveform analysis based on a low-accuracy photoplethysmogram is prevented.

【0025】以上、本発明の一実施例を図面に基づいて
説明したが、本発明はその他の態様においても適用され
る。
While the embodiment of the present invention has been described with reference to the drawings, the present invention can be applied to other embodiments.

【0026】たとえば、前述の実施例の体動判定手段6
2は、体動のない状態で予め記憶された面積比RM (=
L /SR )に対して新たに算出された実際の面積比R
が所定値以上、たとえば20%以上変化したか否かに基
づいて体動を判断するものであったが、逐次求められる
新たな分布波形自身の非対称性に基づいて体動を判断す
るものであってもよい。すなわち、新たな分布波形の面
積比R(=SL /SR)が予め設定された判断基準範囲
たとえば0.8〜1.2の範囲を越えた場合に体動と判
定するものであってもよい。
For example, the body movement judging means 6 of the above embodiment
2 is the area ratio R M (=
S L / S R ) and the newly calculated actual area ratio R
Is determined based on whether or not has changed by a predetermined value or more, for example, 20% or more. However, the body motion is determined based on the asymmetry of a new distribution waveform itself that is sequentially obtained. You may. That is, when the area ratio R (= S L / S R ) of the new distribution waveform exceeds a predetermined judgment reference range, for example, the range of 0.8 to 1.2, it is judged that the body motion has occurred. Is also good.

【0027】また、前述の体動判定手段62は、分布波
形の非対称性の変化とその分布波形自身の非対称性とに
基づいて被測定者の体動を判定するものであってもよ
い。たとえば、体動のない状態で予め記憶された面積比
M (=SL /SR )に対して新たに算出された実際の
面積比Rが所定値以上たとえば20%以上変化し、且つ
新たな分布波形の面積比R(=SL /SR )が予め設定
された判断基準範囲たとえば0.8〜1.2の範囲を越
えた場合に、体動と判定するものであってもよい。
The body movement determining means 62 may determine the body movement of the subject based on the change in the asymmetry of the distribution waveform and the asymmetry of the distribution waveform itself. For example, the newly calculated actual area ratio R changes by a predetermined value or more, for example, by 20% or more with respect to the previously stored area ratio RM (= S L / S R ) in a state where there is no body movement. If the area ratio R (= S L / S R ) of the appropriate distribution waveform exceeds a predetermined determination reference range, for example, the range of 0.8 to 1.2, it may be determined that a body motion has occurred. .

【0028】また、前述の実施例では、分布波形の特性
値として、その分布波形の左右の面積比Rが用いられて
いたが、左右の領域に属する受光素子により検出された
検出信号の振幅比、たとえば受光素子38c により検出
された検出信号SMc の振幅と受光素子38g により検
出された検出信号SMg の振幅との比が簡易的に用いら
れてもよい。
Further, in the above-described embodiment, the right and left area ratio R of the distribution waveform is used as the characteristic value of the distribution waveform. However, the amplitude ratio of the detection signal detected by the light receiving elements belonging to the left and right regions is used. , for example, the ratio of the amplitude of the detection signal SM g amplitude and detected by light receiving element 38 g of the detection signal SM c detected by the light receiving element 38 c may be used in a simplified manner.

【0029】また、前述の実施例では、体動判定手段6
2により体動が判定された場合には光電脈波選別手段6
4によりそのときの光電脈波SMKの出力が阻止されて
いたが、直前の周期において出力された光電脈波SMK
を代替えして出力するようにしても差し支えない。
In the above-described embodiment, the body movement determining means 6
If the body motion is determined by the step 2, the photoelectric pulse wave selecting means 6
4, the output of the photoelectric pulse wave SMK at that time was blocked, but the photoelectric pulse wave SMK output in the immediately preceding cycle
May be output in place of.

【0030】また、前述の実施例では、歪みのない光電
脈波SMKを出力させるものであったが、演算制御装置
14の内部で、波形解析、末梢循環状態の評価、末梢血
圧の推定、脈波タイミング検出などの目的のために処理
されるものであっても差し支えない。
In the above-described embodiment, the photoplethysmogram SMK without distortion is output. However, inside the arithmetic and control unit 14, waveform analysis, evaluation of peripheral circulation state, estimation of peripheral blood pressure, pulse It may be processed for the purpose of wave timing detection or the like.

【0031】また、前述の実施例の光電脈波検出プロー
ブ12は、光電脈波を検出するために生体の指20を挟
持した状態で装着されるものであったが、耳たぶなどの
生体の他の部分に装着されるものであっても差し支えな
い。
The photoplethysmogram detection probe 12 of the above-described embodiment is mounted with the finger 20 of the living body interposed therebetween in order to detect the photoelectric pulse wave. It may be attached to the part.

【0032】また、前述の実施例の光電脈波検出プロー
ブ12は、指20の上面すなわち背面から下面すなわち
腹面へ向かう方向に発光素子36から出力された光が伝
播させられるものであったが、逆方向に伝播させられる
ものであってもよい。また、指20の側面の一方から他
方へ向かって発光素子36から出力された光が伝播させ
られるものであってもよい。この場合には、発光素子3
6および受光素子38が指の両側面に密着させられた状
態で光電脈波検出プローブ12が装着されるので、指2
0の曲げに対して影響が少なくなる利点がある。
In the photoelectric pulse wave detection probe 12 of the above-described embodiment, the light output from the light emitting element 36 is propagated from the upper surface, ie, the back surface, of the finger 20 toward the lower surface, ie, the abdominal surface. It may be transmitted in the opposite direction. Further, the light output from the light emitting element 36 may be transmitted from one side of the finger 20 to the other side. In this case, the light emitting element 3
6 and the light receiving element 38 are attached to the both sides of the finger so that the photoelectric pulse wave detection probe 12 is attached.
There is an advantage that the influence on the zero bending is reduced.

【0033】その他、一々列挙はしないが、本発明はそ
の趣旨を逸脱しない範囲において種々変更が加えられ得
るものである。
Although not enumerated one by one, the present invention can be variously modified without departing from the spirit thereof.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の一実施例の光電脈波検出装置の構成の
要部を説明する図である。
FIG. 1 is a diagram illustrating a main part of a configuration of a photoelectric pulse wave detection device according to an embodiment of the present invention.

【図2】図1の実施例の演算制御装置の制御機能の要部
を説明する機能ブロック線図である。
FIG. 2 is a functional block diagram illustrating a main part of a control function of the arithmetic and control unit according to the embodiment of FIG. 1;

【図3】図1の実施例において各受光素子の検出信号の
レベルの分布を示す図であって、体動の発生していない
状態を示す図である。
FIG. 3 is a diagram showing a level distribution of a detection signal of each light receiving element in the embodiment of FIG. 1, and is a diagram showing a state where no body movement occurs.

【図4】図1の実施例において各受光素子の検出信号の
レベルの分布を示す図であって、体動の発生している状
態を示す図である。
FIG. 4 is a diagram showing a level distribution of a detection signal of each light receiving element in the embodiment of FIG. 1 and showing a state in which a body motion is occurring.

【図5】図1の実施例の演算制御装置の制御作動の要部
を説明するフローチャートである。
FIG. 5 is a flowchart illustrating a main part of a control operation of the arithmetic and control unit according to the embodiment of FIG. 1;

【符合の説明】[Description of sign]

10:光電脈波検出装置 12:光電脈波検出プローブ 36:発光素子 38:複数個の受光素子 60:分布波形特性値算出手段 62:体動判定手段 10: Photoplethysmogram detection device 12: Photoplethysmogram detection probe 36: Light emitting element 38: Plurality of light receiving elements 60: Distribution waveform characteristic value calculation means 62: Body motion determination means

───────────────────────────────────────────────────── フロントページの続き (72)発明者 犬飼 英克 愛知県小牧市林2007番1 日本コーリン株 式会社内 Fターム(参考) 4C017 AA09 AB03 AC27 BC11 CC01 FF15  ────────────────────────────────────────────────── ─── Continued on the front page (72) Inventor Hidekatsu Inukai 2007 No. 1 Hayashi, Komaki-shi, Aichi F-term in Nippon Colin Co., Ltd. 4C017 AA09 AB03 AC27 BC11 CC01 FF15

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 生体内の血液容積の周期的変化に同期し
て脈動する光電脈波を逐次検出して出力する光電脈波検
出装置であって、 前記生体の一部に光を照射するために配置された発光素
子と、 該発光素子に略対向し且つ該発光素子との間で前記生体
の一部を挟んで一方向に複数個配列され、該発光素子か
ら該生体の一部に入射し且つそれを透過した透過光を受
光する複数個の受光素子と、 前記受光素子からそれぞれ出力される受光信号に基づい
て前記一方向における該受光素子の受光レベルの分布を
示す分布波形の特性値を算出する分布波形特性値算出手
段と、 該分布波形特性値算出手段により算出された分布波形の
特性値に基づいて、前記生体の体動を判定する体動判定
手段と、 を、含むことを特徴とする光電脈波検出装置。
1. A photoelectric pulse wave detecting device for sequentially detecting and outputting a photoelectric pulse wave pulsating in synchronization with a periodic change in a blood volume in a living body, for irradiating a part of the living body with light. And a plurality of light-emitting elements arranged in one direction substantially opposing the light-emitting element and sandwiching a part of the living body between the light-emitting element and the light-emitting element. And a plurality of light receiving elements for receiving the transmitted light transmitted therethrough; and characteristic values of a distribution waveform indicating a distribution of light receiving levels of the light receiving elements in the one direction based on light receiving signals output from the light receiving elements. A distribution waveform characteristic value calculating means for calculating the distribution waveform characteristic value calculating means, and a body movement determining means for determining a body movement of the living body based on the characteristic value of the distribution waveform calculated by the distribution waveform characteristic value calculating means. A photoelectric pulse wave detection device characterized by the following.
【請求項2】前記体動判定手段により前記生体の体動が
判定された場合には、前記光電脈波の出力を阻止する出
力阻止手段をさらに含むものである請求項1の光電脈波
検出装置。
2. The photoelectric pulse wave detecting apparatus according to claim 1, further comprising output blocking means for blocking the output of said photoelectric pulse wave when said body movement determining means determines the body movement of said living body.
JP28104998A 1998-10-02 1998-10-02 Photoelectric pulse wave detector Expired - Lifetime JP3932698B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP28104998A JP3932698B2 (en) 1998-10-02 1998-10-02 Photoelectric pulse wave detector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP28104998A JP3932698B2 (en) 1998-10-02 1998-10-02 Photoelectric pulse wave detector

Publications (2)

Publication Number Publication Date
JP2000107147A true JP2000107147A (en) 2000-04-18
JP3932698B2 JP3932698B2 (en) 2007-06-20

Family

ID=17633603

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28104998A Expired - Lifetime JP3932698B2 (en) 1998-10-02 1998-10-02 Photoelectric pulse wave detector

Country Status (1)

Country Link
JP (1) JP3932698B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100423686C (en) * 2005-08-26 2008-10-08 夏普株式会社 Detector
US7470235B2 (en) 2005-03-30 2008-12-30 Kabushiki Kaisha Toshiba Pulse wave detecting device and method therefor
JP2010051790A (en) * 2008-08-28 2010-03-11 Korea Electronics Telecommun Instrument and method for measuring pulse wave
US8897859B2 (en) 2009-04-30 2014-11-25 Murata Manufacturing Co., Ltd. Biosensor device
WO2017085894A1 (en) 2015-11-20 2017-05-26 富士通株式会社 Pulse wave analysis device, pulse wave analysis method, and pulse wave analysis program

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7470235B2 (en) 2005-03-30 2008-12-30 Kabushiki Kaisha Toshiba Pulse wave detecting device and method therefor
CN100423686C (en) * 2005-08-26 2008-10-08 夏普株式会社 Detector
JP2010051790A (en) * 2008-08-28 2010-03-11 Korea Electronics Telecommun Instrument and method for measuring pulse wave
US8897859B2 (en) 2009-04-30 2014-11-25 Murata Manufacturing Co., Ltd. Biosensor device
WO2017085894A1 (en) 2015-11-20 2017-05-26 富士通株式会社 Pulse wave analysis device, pulse wave analysis method, and pulse wave analysis program
US10743783B2 (en) 2015-11-20 2020-08-18 Fujitsu Limited Pulse wave analysis apparatus, pulse wave analysis method, and non-transitory computer-readable storage medium

Also Published As

Publication number Publication date
JP3932698B2 (en) 2007-06-20

Similar Documents

Publication Publication Date Title
KR100830933B1 (en) Detector
JP3928972B2 (en) Sensor for optical measurement of blood oxygen saturation, measuring method thereof, and measuring apparatus thereof
US7470235B2 (en) Pulse wave detecting device and method therefor
KR101007355B1 (en) Apparatus and method for pulse wave measuring
JP2002360530A (en) Pulse wave sensor and pulse rate detector
US7096058B2 (en) Laser blood-flow meter and system for monitoring bio-data
US5830148A (en) System and method for evaluating the autonomic nervous system of a living subject
KR20160107007A (en) Apparatus and method for measuring blood pressure
JPH0257239A (en) Probe for optical sensor
US11357415B2 (en) Light-based non-invasive blood pressure systems and methods
JP2004000467A (en) Pulse wave sensor
JP4419540B2 (en) Pulse wave detector
KR20100091592A (en) Pulse wave measuring apparatus capable of wearing on a wrist
JP2000107147A (en) Photoelectric pulse wave detector
JP2003061921A (en) Physical condition discriminating method and physical condition discriminating device
KR20150098940A (en) Physiological Signal Sensing Device
JP2002000575A (en) Heart rate sensor and method of calculating heart rate
JP2001275998A (en) Method and instrument for blood pressure measurement
JPH09262213A (en) Detecting apparatus of biological information
JP3965435B2 (en) Pulse wave measurement and analysis equipment
JP2002272708A (en) Physical condition judgment method and instrument
US6496723B1 (en) Method of obtaining information that corresponds to electrocardiogram of human body from pulse wave thereof
KR20220079961A (en) Inspection device for medical examination of animals
JP2992104B2 (en) Photoplethysmographic sphygmomanometer
JPH10211175A (en) Electrocardiogram/pulse wave measurement bathtub

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20040119

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040225

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20050922

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20050926

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050929

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20060601

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20060601

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070222

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070227

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070312

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100330

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110330

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110330

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120330

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120330

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130330

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140330

Year of fee payment: 7

EXPY Cancellation because of completion of term