JP2003286002A - Carbon monoxide removing apparatus - Google Patents

Carbon monoxide removing apparatus

Info

Publication number
JP2003286002A
JP2003286002A JP2002088058A JP2002088058A JP2003286002A JP 2003286002 A JP2003286002 A JP 2003286002A JP 2002088058 A JP2002088058 A JP 2002088058A JP 2002088058 A JP2002088058 A JP 2002088058A JP 2003286002 A JP2003286002 A JP 2003286002A
Authority
JP
Japan
Prior art keywords
carbon monoxide
selective oxidation
temperature
concentration
reformed gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002088058A
Other languages
Japanese (ja)
Other versions
JP3722079B2 (en
Inventor
Yasuhiro Taniguchi
育宏 谷口
Hiroaki Hashigaya
浩昭 橋ヶ谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP2002088058A priority Critical patent/JP3722079B2/en
Priority to EP03002918A priority patent/EP1369382A3/en
Priority to US10/367,755 priority patent/US7189373B2/en
Publication of JP2003286002A publication Critical patent/JP2003286002A/en
Application granted granted Critical
Publication of JP3722079B2 publication Critical patent/JP3722079B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/0006Controlling or regulating processes
    • B01J19/0013Controlling the temperature of the process
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J12/00Chemical processes in general for reacting gaseous media with gaseous media; Apparatus specially adapted therefor
    • B01J12/007Chemical processes in general for reacting gaseous media with gaseous media; Apparatus specially adapted therefor in the presence of catalytically active bodies, e.g. porous plates
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/32Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air
    • C01B3/34Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents
    • C01B3/38Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents using catalysts
    • C01B3/382Multi-step processes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N25/00Investigating or analyzing materials by the use of thermal means
    • G01N25/20Investigating or analyzing materials by the use of thermal means by investigating the development of heat, i.e. calorimetry, e.g. by measuring specific heat, by measuring thermal conductivity
    • G01N25/22Investigating or analyzing materials by the use of thermal means by investigating the development of heat, i.e. calorimetry, e.g. by measuring specific heat, by measuring thermal conductivity on combustion or catalytic oxidation, e.g. of components of gas mixtures
    • G01N25/28Investigating or analyzing materials by the use of thermal means by investigating the development of heat, i.e. calorimetry, e.g. by measuring specific heat, by measuring thermal conductivity on combustion or catalytic oxidation, e.g. of components of gas mixtures the rise in temperature of the gases resulting from combustion being measured directly
    • G01N25/30Investigating or analyzing materials by the use of thermal means by investigating the development of heat, i.e. calorimetry, e.g. by measuring specific heat, by measuring thermal conductivity on combustion or catalytic oxidation, e.g. of components of gas mixtures the rise in temperature of the gases resulting from combustion being measured directly using electric temperature-responsive elements
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N25/00Investigating or analyzing materials by the use of thermal means
    • G01N25/20Investigating or analyzing materials by the use of thermal means by investigating the development of heat, i.e. calorimetry, e.g. by measuring specific heat, by measuring thermal conductivity
    • G01N25/22Investigating or analyzing materials by the use of thermal means by investigating the development of heat, i.e. calorimetry, e.g. by measuring specific heat, by measuring thermal conductivity on combustion or catalytic oxidation, e.g. of components of gas mixtures
    • G01N25/28Investigating or analyzing materials by the use of thermal means by investigating the development of heat, i.e. calorimetry, e.g. by measuring specific heat, by measuring thermal conductivity on combustion or catalytic oxidation, e.g. of components of gas mixtures the rise in temperature of the gases resulting from combustion being measured directly
    • G01N25/34Investigating or analyzing materials by the use of thermal means by investigating the development of heat, i.e. calorimetry, e.g. by measuring specific heat, by measuring thermal conductivity on combustion or catalytic oxidation, e.g. of components of gas mixtures the rise in temperature of the gases resulting from combustion being measured directly using mechanical temperature-responsive elements, e.g. bimetallic
    • G01N25/36Investigating or analyzing materials by the use of thermal means by investigating the development of heat, i.e. calorimetry, e.g. by measuring specific heat, by measuring thermal conductivity on combustion or catalytic oxidation, e.g. of components of gas mixtures the rise in temperature of the gases resulting from combustion being measured directly using mechanical temperature-responsive elements, e.g. bimetallic for investigating the composition of gas mixtures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/06Combination of fuel cells with means for production of reactants or for treatment of residues
    • H01M8/0662Treatment of gaseous reactants or gaseous residues, e.g. cleaning
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00049Controlling or regulating processes
    • B01J2219/00051Controlling the temperature
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00049Controlling or regulating processes
    • B01J2219/00191Control algorithm
    • B01J2219/00193Sensing a parameter
    • B01J2219/00195Sensing a parameter of the reaction system
    • B01J2219/002Sensing a parameter of the reaction system inside the reactor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00049Controlling or regulating processes
    • B01J2219/00191Control algorithm
    • B01J2219/00209Control algorithm transforming a sensed parameter
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00049Controlling or regulating processes
    • B01J2219/00191Control algorithm
    • B01J2219/00211Control algorithm comparing a sensed parameter with a pre-set value
    • B01J2219/00213Fixed parameter value
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00049Controlling or regulating processes
    • B01J2219/00191Control algorithm
    • B01J2219/00222Control algorithm taking actions
    • B01J2219/00227Control algorithm taking actions modifying the operating conditions
    • B01J2219/00229Control algorithm taking actions modifying the operating conditions of the reaction system
    • B01J2219/00231Control algorithm taking actions modifying the operating conditions of the reaction system at the reactor inlet
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/04Integrated processes for the production of hydrogen or synthesis gas containing a purification step for the hydrogen or the synthesis gas
    • C01B2203/0435Catalytic purification
    • C01B2203/044Selective oxidation of carbon monoxide
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/04Integrated processes for the production of hydrogen or synthesis gas containing a purification step for the hydrogen or the synthesis gas
    • C01B2203/0465Composition of the impurity
    • C01B2203/047Composition of the impurity the impurity being carbon monoxide
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/06Integration with other chemical processes
    • C01B2203/066Integration with other chemical processes with fuel cells
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/12Feeding the process for making hydrogen or synthesis gas
    • C01B2203/1205Composition of the feed
    • C01B2203/1211Organic compounds or organic mixtures used in the process for making hydrogen or synthesis gas
    • C01B2203/1217Alcohols
    • C01B2203/1223Methanol
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/12Feeding the process for making hydrogen or synthesis gas
    • C01B2203/1205Composition of the feed
    • C01B2203/1211Organic compounds or organic mixtures used in the process for making hydrogen or synthesis gas
    • C01B2203/1235Hydrocarbons
    • C01B2203/1247Higher hydrocarbons
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/14Details of the flowsheet
    • C01B2203/146At least two purification steps in series
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/16Controlling the process
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/16Controlling the process
    • C01B2203/1614Controlling the temperature
    • C01B2203/1619Measuring the temperature
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/16Controlling the process
    • C01B2203/1642Controlling the product
    • C01B2203/1647Controlling the amount of the product
    • C01B2203/1652Measuring the amount of product
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/16Controlling the process
    • C01B2203/1642Controlling the product
    • C01B2203/1647Controlling the amount of the product
    • C01B2203/1652Measuring the amount of product
    • C01B2203/1661Measuring the amount of product the product being carbon monoxide
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/0004Gaseous mixtures, e.g. polluted air
    • G01N33/0009General constructional details of gas analysers, e.g. portable test equipment
    • G01N33/0027General constructional details of gas analysers, e.g. portable test equipment concerning the detector
    • G01N33/0036Specially adapted to detect a particular component
    • G01N33/004Specially adapted to detect a particular component for CO, CO2
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/06Combination of fuel cells with means for production of reactants or for treatment of residues
    • H01M8/0606Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants
    • H01M8/0612Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants from carbon-containing material
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/20Air quality improvement or preservation, e.g. vehicle emission control or emission reduction by using catalytic converters
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T436/00Chemistry: analytical and immunological testing
    • Y10T436/12Condition responsive control
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T436/00Chemistry: analytical and immunological testing
    • Y10T436/23Carbon containing
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T436/00Chemistry: analytical and immunological testing
    • Y10T436/25Chemistry: analytical and immunological testing including sample preparation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T436/00Chemistry: analytical and immunological testing
    • Y10T436/25Chemistry: analytical and immunological testing including sample preparation
    • Y10T436/25125Digestion or removing interfering materials
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T436/00Chemistry: analytical and immunological testing
    • Y10T436/25Chemistry: analytical and immunological testing including sample preparation
    • Y10T436/25375Liberation or purification of sample or separation of material from a sample [e.g., filtering, centrifuging, etc.]

Abstract

<P>PROBLEM TO BE SOLVED: To provide a carbon monoxide removing apparatus in which the degradation of a catalyst is prevented. <P>SOLUTION: The carbon monoxide removing apparatus having a plurality of carbon monoxide selectively oxidizing means mounted in series to reduce the concentration of carbon monoxide in a reformed gas by selectively oxidizing carbon monoxide contained in the reformed gas is provided with temperature detecting means 9, 10 for detecting the catalyst temperature of each of respective carbon monoxide selectively oxidizing means 3B, 3C and an air controlling means 5 for controlling the quantity of air supplied to each of carbon monoxide selectively oxidizing means corresponding to the detected catalyst temperature. <P>COPYRIGHT: (C)2004,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、改質ガス中に含ま
れる一酸化炭素を除去する一酸化炭素除去装置に関す
る。
TECHNICAL FIELD The present invention relates to a carbon monoxide removing apparatus for removing carbon monoxide contained in a reformed gas.

【0002】[0002]

【従来の技術】従来、一酸化炭素選択酸化法を用いて、
改質器から出力される改質ガス中に含まれる一酸化炭素
(CO)の濃度を低減する一酸化炭素選択酸化部を備え
た燃料電池システムが知られている。倒えば、特開平8
−329969号公報で開示されている燃料電池システ
ムには、改質ガス中のCO濃度が上昇すると、一酸化炭
素選択酸化部に供給する空気量を増加させて、CO濃度
を低減させる技術が開示されている。
2. Description of the Related Art Conventionally, by using a carbon monoxide selective oxidation method,
A fuel cell system including a carbon monoxide selective oxidation unit that reduces the concentration of carbon monoxide (CO) contained in a reformed gas output from a reformer is known. If collapsed
The fuel cell system disclosed in Japanese Patent No. 329969 discloses a technique of increasing the amount of air supplied to the carbon monoxide selective oxidation unit to reduce the CO concentration when the CO concentration in the reformed gas rises. Has been done.

【0003】[0003]

【発明が解決しようとする課題】しかしながら、このよ
うな従来の発明にあっては、一酸化炭素選択酸化部の空
気量を増加させることによって選択酸化反応による発熱
量が増加し、一酸化炭素選択酸化部の温度が触媒の反応
温度以上にまで上昇して触媒が劣化する可能性があると
いう問題があった。
However, in such a conventional invention, the amount of heat generated by the selective oxidation reaction is increased by increasing the amount of air in the carbon monoxide selective oxidation section, and the carbon monoxide selective oxidation is performed. There is a problem that the temperature of the oxidation part may rise to the reaction temperature of the catalyst or higher and the catalyst may deteriorate.

【0004】また、特開平8−329969号公報には
ガスの流れ方向に多段に設けられた一酸化炭素選択酸化
触媒層の各段の温度を冷媒によって調整する技術が開示
されているが、冷媒だけで温度を調整するには限界があ
る。
Further, Japanese Patent Laid-Open No. 8-329969 discloses a technique of adjusting the temperature of each stage of a carbon monoxide selective oxidation catalyst layer provided in multiple stages in the gas flow direction with a refrigerant. There is a limit to adjusting the temperature alone.

【0005】本発明は、上述の問題点に鑑みてなされた
ものであり、多段に設けられた一酸化炭素選択酸化部の
各空気量を各温度に応じて調整することによって、一酸
化炭素選択酸化部の過剰な温度上昇を防止しつつ改質ガ
ス中のCO濃度を低減させることができる一酸化炭素除
去装置を提供することを目的とする。
The present invention has been made in view of the above-mentioned problems, and carbon monoxide selection is performed by adjusting the amount of each air in the carbon monoxide selective oxidation section provided in multiple stages according to each temperature. An object of the present invention is to provide a carbon monoxide removing device capable of reducing the CO concentration in the reformed gas while preventing an excessive temperature rise in the oxidation part.

【0006】[0006]

【課題を解決するための手段】第1の発明は、改質ガス
に含まれる一酸化炭素を選択的に酸化することにより、
改質ガス中の一酸化炭素濃度を低減する一酸化炭素選択
酸化手段を複数個、直列に設置する一酸化炭素除去装置
において、それぞれの一酸化炭素選択酸化手段の触媒温
度を検出する温度検出手段と、前記検出された触媒温度
に応じて、各一酸化炭素選択酸化手段に供給する空気量
を調整する空気量調整手段とを備える。
A first aspect of the invention is to selectively oxidize carbon monoxide contained in a reformed gas,
In a carbon monoxide removing apparatus in which a plurality of carbon monoxide selective oxidizing means for reducing the carbon monoxide concentration in the reformed gas are installed in series, a temperature detecting means for detecting the catalyst temperature of each carbon monoxide selective oxidizing means. And an air amount adjusting means for adjusting the amount of air supplied to each carbon monoxide selective oxidizing means in accordance with the detected catalyst temperature.

【0007】第2の発明は、第1の発明において、前記
空気量調整手段は、触媒温度が所定温度よりも低い一酸
化炭素選択酸化手段への空気量を増量し、触媒温度が所
定温度よりも高い一酸化炭素選択酸化手段への空気量を
減量する。
In a second aspect based on the first aspect, the air amount adjusting means increases the air amount to the carbon monoxide selective oxidizing means whose catalyst temperature is lower than a predetermined temperature, and the catalyst temperature is lower than the predetermined temperature. Also reduces the amount of air to the carbon monoxide selective oxidation means.

【0008】第3の発明は、第1の発明において、前記
空気量調整手段は、それぞれの一酸化炭素選択酸化手段
における触媒温度と触媒の活性上限温度との差を算出
し、活性上限温度までの温度差が大きい一酸化炭素選択
酸化手段の空気量を増量し、活性上限温度までの温度差
が小さい一酸化炭素選択酸化手段の空気量を減量する。
In a third aspect based on the first aspect, the air amount adjusting means calculates a difference between the catalyst temperature and the catalyst upper limit temperature in each of the carbon monoxide selective oxidizing means, up to the activity upper limit temperature. The amount of air in the carbon monoxide selective oxidation means having a large temperature difference is increased, and the amount of air in the carbon monoxide selective oxidation means having a small temperature difference up to the activation upper limit temperature is decreased.

【0009】第4の発明は、第1の発明において、前記
空気量調整手段は、それぞれの一酸化炭素選択酸化手段
における触媒温度と触媒の活性上限温度との温度差に応
じてそれぞれの一酸化炭素選択酸化手段での選択酸化処
理する分担の比率を算出し、この比率に基づいてそれぞ
れの一酸化炭素選択酸化手段の空気量を調整する。
According to a fourth aspect of the present invention, in the first aspect of the present invention, the air amount adjusting means is configured so that each of the carbon monoxide selective oxidizing means has a corresponding monoxide in accordance with a temperature difference between the catalyst temperature and the catalyst upper limit temperature. The share of the selective oxidation treatment in the carbon selective oxidation means is calculated, and the air amount of each carbon monoxide selective oxidation means is adjusted based on this ratio.

【0010】第5の発明は、第1から第4のいずれか一
つの発明において、最上流に位置する一酸化炭素選択酸
化手段に流入する改質ガス中の一酸化炭素濃度を検出す
る手段を設け、前記空気量調整手段は、検出された改質
ガスの一酸化炭素濃度が所定濃度範囲にない場合に、改
質ガス中の一酸化炭素濃度が所定濃度範囲に入るよう
に、流入する改質ガス中の一酸化炭素濃度とそれぞれの
一酸化炭素選択酸化手段の触媒温度に応じて各一酸化炭
素選択酸化手段への供給空気量を調整する。
In a fifth aspect of the present invention, in any one of the first to fourth aspects of the present invention, a means for detecting the carbon monoxide concentration in the reformed gas flowing into the carbon monoxide selective oxidation means located at the uppermost stream is provided. If the detected carbon monoxide concentration of the reformed gas is not within the predetermined concentration range, the air amount adjusting means is provided so that the carbon monoxide concentration in the reformed gas is within the predetermined concentration range. The amount of air supplied to each carbon monoxide selective oxidation means is adjusted according to the carbon monoxide concentration in the quality gas and the catalyst temperature of each carbon monoxide selective oxidation means.

【0011】第6の発明は、第1から第4のいずれか一
つの発明において、最下流に位置する一酸化炭素選択酸
化手段から排出される改質ガス中の一酸化炭素濃度を検
出する手段を設け、前記空気量調整手段は、検出された
改質ガス中の一酸化炭素濃度が所定濃度範囲にない場合
に、改質ガス中の一酸化炭素濃度が所定濃度範囲に入る
ように、それぞれの一酸化炭素選択酸化手段の触媒温度
に応じて各一酸化炭素選択酸化手段への供給空気量を調
整する。
A sixth aspect of the present invention is the means for detecting the carbon monoxide concentration in the reformed gas discharged from the carbon monoxide selective oxidizing means located at the most downstream side in any one of the first to fourth aspects. The air amount adjusting means, when the detected carbon monoxide concentration in the reformed gas is not within the predetermined concentration range, so that the carbon monoxide concentration in the reformed gas falls within the predetermined concentration range, respectively. The amount of air supplied to each carbon monoxide selective oxidation means is adjusted according to the catalyst temperature of the carbon monoxide selective oxidation means.

【0012】第7の発明は、第1から第4のいずれか一
つの発明において、最上流に位置する一酸化炭素選択酸
化手段に流入する改質ガスの流量を検出する手段を設
け、前記空気量調整手段は、検出された改質ガスの流量
が変化したときに、一酸化炭素選択酸化手段に流入する
空気量をそれぞれの一酸化炭素選択酸化手段の触媒温度
に応じて調整する。
A seventh aspect of the invention is the fuel cell system according to any one of the first to fourth aspects of the invention, further comprising means for detecting the flow rate of the reformed gas flowing into the carbon monoxide selective oxidation means located at the uppermost stream, The amount adjusting unit adjusts the amount of air flowing into the carbon monoxide selective oxidizing unit according to the catalyst temperature of each carbon monoxide selective oxidizing unit when the detected flow rate of the reformed gas changes.

【0013】[0013]

【発明の効果】請求項1の発明によれば、それぞれ直列
に配置された一酸化炭素選択酸化手段の触媒温度を検出
し、前記検出された触媒温度に応じて、それぞれの一酸
化炭素選択酸化手段に供給する空気量を調整するように
した。
According to the first aspect of the present invention, the catalyst temperature of the carbon monoxide selective oxidation means arranged in series is detected, and the carbon monoxide selective oxidation is detected according to the detected catalyst temperature. The amount of air supplied to the means was adjusted.

【0014】そのため、各一酸化炭素選択酸化手段の触
媒温度に応じて供給する空気量を制御するため、触媒温
度が反応温度以上に上昇することがなく、触媒の劣化を
防止し、触媒温度を制御しながら効率よく一酸化炭素を
除去することができる。
Therefore, since the amount of air to be supplied is controlled according to the catalyst temperature of each carbon monoxide selective oxidation means, the catalyst temperature does not rise above the reaction temperature, the catalyst deterioration is prevented, and the catalyst temperature is controlled. It is possible to remove carbon monoxide efficiently while controlling.

【0015】請求項2の発明によれば、空気量を増量す
る場合にはそれぞれの一酸化炭素選択酸化手段における
触媒温度が所定温度よりも低い一酸化炭素選択酸化手段
の空気量を増やし、空気量を減量する場合にはそれぞれ
の一酸化炭素選択酸化手段における触媒温度が所定温度
よりも高い一酸化炭素選択酸化手段の空気量を減らす構
成とした。
According to the second aspect of the invention, when the amount of air is increased, the amount of air in the carbon monoxide selective oxidation means whose catalyst temperature in each carbon monoxide selective oxidation means is lower than a predetermined temperature is increased, When the amount is reduced, the amount of air in the carbon monoxide selective oxidation means in which the catalyst temperature in each carbon monoxide selective oxidation means is higher than a predetermined temperature is reduced.

【0016】空気量を増加させると一酸化炭素の選択酸
化反応によって一酸化炭素を除去することができる反
面、選択酸化反応の発熱により酸化部の温度が上昇す
る。
When the amount of air is increased, the carbon monoxide can be removed by the selective oxidation reaction of carbon monoxide, but the heat of the selective oxidation reaction raises the temperature of the oxidation part.

【0017】本発明によれば、一酸化炭素選択酸化手段
の触媒の温度が反応する活性温度よりも低温であるとき
に一酸化炭素選択酸化手段への空気量を増加して、触媒
の温度を上昇させ、一方、一酸化炭素選択酸化手段の触
媒の温度が活性温度よりも高温であるときには一酸化炭
素選択酸化手段の空気量を減少して、触媒温度を低下さ
せるため、一酸化炭素選択酸化手段の温度を触媒が反応
する活性温度に維持することができ、温度過上昇による
触媒の劣化を防止しつつ、改質ガスの一酸化炭素濃度を
効率よく低減することができる。
According to the present invention, when the temperature of the catalyst of the carbon monoxide selective oxidation means is lower than the reaction activation temperature, the amount of air to the carbon monoxide selective oxidation means is increased to increase the temperature of the catalyst. On the other hand, when the temperature of the catalyst of the carbon monoxide selective oxidation means is higher than the activation temperature, the amount of air in the carbon monoxide selective oxidation means is decreased to lower the catalyst temperature. The temperature of the means can be maintained at the activation temperature at which the catalyst reacts, and the carbon monoxide concentration of the reformed gas can be efficiently reduced while preventing the catalyst from deteriorating due to excessive temperature rise.

【0018】請求項3の発明によれば、それぞれの一酸
化炭素選択酸化手段における触媒温度と触媒の活性上限
温度との差を算出し、活性上限温度までの温度差が大き
い一酸化炭素選択酸化部の空気量を増やし、活性上限温
度までの温度差が小さい一酸化炭素選択酸化手段の空気
量を減らす構成とした。
According to the third aspect of the present invention, the difference between the catalyst temperature in each of the carbon monoxide selective oxidation means and the catalyst upper limit temperature is calculated, and the carbon monoxide selective oxidation having a large temperature difference up to the activity upper limit temperature. The amount of air in the part is increased and the amount of air in the carbon monoxide selective oxidation means having a small temperature difference up to the activation upper limit temperature is reduced.

【0019】本発明によれば、触媒が反応する活性上限
温度に対してまだ温度上昇に余裕のある一酸化炭素選択
酸化手段の空気量を増加させ、余裕のない一酸化炭素選
択酸化手段の空気量を減少させるため、請求項2の発明
よりもさらに温度過上昇による触媒の劣化を防止できる
という効果が得られる。
According to the present invention, the amount of air in the carbon monoxide selective oxidation means which has a margin of temperature rise with respect to the activity upper limit temperature at which the catalyst reacts is increased, and the air of the carbon monoxide selective oxidation means having no margin increases. Since the amount is reduced, it is possible to obtain the effect that the deterioration of the catalyst due to the excessive temperature rise can be prevented more than the invention of claim 2.

【0020】請求項4の発明によれば、それぞれの一酸
化炭素選択酸化手段における触媒の活性上限温度までの
温度差に応じてそれぞれの一酸化炭素選択酸化手段での
選択酸化処理する分担の比率を決め、この比率に基づい
てそれぞれの一酸化炭素選択酸化部の空気量を調整する
構成とした。
According to the invention of claim 4, the proportion of the allocation of the selective oxidation treatment in each carbon monoxide selective oxidation means according to the temperature difference up to the activity upper limit temperature of the catalyst in each carbon monoxide selective oxidation means. Was determined, and the amount of air in each carbon monoxide selective oxidation part was adjusted based on this ratio.

【0021】したがって、請求項3の発明では特定の一
酸化炭素選択酸化手段の空気量を増加させるのに対し
て、請求項4の発明では各一酸化炭素選択酸化手段の空
気量を各部の温度に応じた比率で増加させるため、請求
項3の温度過上昇による触媒の劣化を防止できるという
効果に加えて、活性上限温度に達してない一酸化炭素選
択酸化手段全てを有効に利用することができ、効果的に
改質ガスの一酸化炭素濃度を低減することができるとい
う効果が得られる。
Therefore, in the invention of claim 3, the air amount of the specific carbon monoxide selective oxidation means is increased, whereas in the invention of claim 4, the air amount of each carbon monoxide selective oxidation means is changed to the temperature of each part. Therefore, in addition to the effect of preventing deterioration of the catalyst due to excessive temperature rise of claim 3, all of the carbon monoxide selective oxidation means that have not reached the activation upper limit temperature can be effectively used. Therefore, it is possible to effectively reduce the carbon monoxide concentration of the reformed gas.

【0022】請求項5の発明によれば、最上流の一酸化
炭素選択酸化手段に流入する改質ガスの一酸化炭素濃度
が所定濃度範囲にない場合に、改質ガス中の一酸化炭素
濃度が所定濃度範囲に入るように流入する改質ガス中の
一酸化炭素濃度とそれぞれの一酸化炭素選択酸化手段の
触媒温度に応じて各一酸化炭素選択酸化手段への供給空
気量を調整する構成とした。
According to the fifth aspect of the present invention, when the carbon monoxide concentration of the reformed gas flowing into the most upstream carbon monoxide selective oxidation means is not within the predetermined concentration range, the carbon monoxide concentration in the reformed gas. That adjusts the amount of air supplied to each carbon monoxide selective oxidation means according to the concentration of carbon monoxide in the reformed gas and the catalyst temperature of each carbon monoxide selective oxidation means such that And

【0023】空気量は流入する改質ガスの一酸化炭素濃
度に基づいて、濃度が所定範囲よりも高いときは空気量
を増加、濃度が低いときは空気量を減少するように調整
されるため、流入改質ガスの濃度変化に対して改質ガス
中の一酸化炭素を所定濃度まで低減させることができ
る。
The amount of air is adjusted based on the concentration of carbon monoxide flowing into the reformed gas so as to increase the amount of air when the concentration is higher than a predetermined range and decrease the amount of air when the concentration is low. The carbon monoxide in the reformed gas can be reduced to a predetermined concentration with respect to the change in the concentration of the inflowing reformed gas.

【0024】請求項6の発明によれば、最下流の一酸化
炭素選択酸化手段から排出される改質ガス中の一酸化炭
素濃度が所定濃度範囲にない場合に、改質ガス中の一酸
化炭素濃度が所定濃度範囲に入るように各一酸化炭素選
択酸化手段への供給空気量をそれぞれの一酸化炭素選択
酸化手段の触媒温度に応じて調整する構成とした。
According to the invention of claim 6, when the carbon monoxide concentration in the reformed gas discharged from the most downstream carbon monoxide selective oxidation means is not within the predetermined concentration range, the monoxide in the reformed gas is The amount of air supplied to each carbon monoxide selective oxidation means is adjusted according to the catalyst temperature of each carbon monoxide selective oxidation means so that the carbon concentration falls within a predetermined concentration range.

【0025】一酸化炭素選択酸化手段に所定の空気量が
供給されても、温度変化や触媒の劣化などによって一酸
化炭素選択酸化手段から排出される改質ガス中の一酸化
炭素濃度がばらつくこともある。請求項6の発明によれ
ば改質ガス中の一酸化炭素濃度を検出して空気量を調整
するので、改質ガス中の一酸化炭素濃度がばらついたと
きにも一酸化炭素濃度を確実に低減させることが可能で
ある。
Even if a predetermined amount of air is supplied to the carbon monoxide selective oxidation means, the carbon monoxide concentration in the reformed gas discharged from the carbon monoxide selective oxidation means varies due to temperature changes and catalyst deterioration. There is also. According to the invention of claim 6, since the carbon monoxide concentration in the reformed gas is detected and the air amount is adjusted, the carbon monoxide concentration can be reliably ensured even when the carbon monoxide concentration in the reformed gas varies. It is possible to reduce.

【0026】請求項7の発明によれば、最上流の一酸化
炭素選択酸化手段に流入する改質ガスの流量が変化した
ときに、一酸化炭素選択酸化手段に流入する空気量をそ
れぞれの一酸化炭素選択酸化手段の触媒温度に応じて調
整する構成とした。
According to the invention of claim 7, when the flow rate of the reformed gas flowing into the most upstream carbon monoxide selective oxidizing means changes, the amount of air flowing into the carbon monoxide selective oxidizing means is changed to one. The configuration was adjusted according to the catalyst temperature of the carbon oxide selective oxidation means.

【0027】流入する改質ガスの流量が変化すると、一
酸化炭素を酸化させるために必要な空気量も変化する。
流量が増加したときは空気量が増加、流量が減少したと
きは空気量が減少するように調整することによって、流
入する改質ガスの流量変化に応じて改質ガス中の一酸化
炭素を所定濃度まで低減させることができる。
When the flow rate of the reformed gas that flows in changes, the amount of air required to oxidize carbon monoxide also changes.
By adjusting the amount of air to increase when the flow rate increases and decrease the amount of air when the flow rate decreases, a predetermined amount of carbon monoxide in the reformed gas is set according to the change in the flow rate of the reformed gas that flows in. It can be reduced to the concentration.

【0028】[0028]

【発明の実施の形態】図1は、本発明の第1の実施形態
を示す構成図である。改質器3は改質部3A、第1選択
酸化部3B、第2選択酸化部3Cからなる。改質部3A
には、燃料タンク1から燃料ガスが供給されるととも
に、水タンク2から水が供給される。燃料ガスとして
は、例えばメタノールが用いられる。この場合、改質部
3Aでは以下の化学反応によって改質ガスが生成され
る。
1 is a block diagram showing a first embodiment of the present invention. The reformer 3 includes a reforming section 3A, a first selective oxidation section 3B, and a second selective oxidation section 3C. Reforming section 3A
The fuel gas is supplied from the fuel tank 1 and the water is supplied from the water tank 2. For example, methanol is used as the fuel gas. In this case, in the reforming section 3A, reformed gas is generated by the following chemical reaction.

【0029】 CH3OH+H2O→CO2+3H2 (1) CH3OH→CO+2H2 (2) すなわち(1)式の水蒸気改質反応、(2)式のメタノ
ール分解反応によって改質ガスが生成される。
CH 3 OH + H 2 O → CO 2 + 3H 2 (1) CH 3 OH → CO + 2H 2 (2) That is, reformed gas is generated by the steam reforming reaction of the formula (1) and the methanol decomposition reaction of the formula (2). To be done.

【0030】改質ガスの組成は主に水素であるが、一酸
化炭素(以下、COと示す)が含まれる。このCOが燃
料電池4に供給されると発電効率の低下を招くため、こ
の一酸化炭素は第1選択酸化部3Bと第2選択酸化部3
Cによって酸化され、除去される。第1選択酸化部3B
と第2選択酸化部3Cにおける選択酸化反応は以下のと
おりである。
The composition of the reformed gas is mainly hydrogen, but contains carbon monoxide (hereinafter referred to as CO). When this CO is supplied to the fuel cell 4, it causes a decrease in power generation efficiency. Therefore, the carbon monoxide is contained in the first selective oxidation part 3B and the second selective oxidation part 3B.
It is oxidized by C and removed. First selective oxidation part 3B
The selective oxidation reaction in the second selective oxidation section 3C is as follows.

【0031】 C〇+(1/2)O2→CO2 (3) (3)式の反応によって、第1選択酸化部3Bでは改質
ガス中のCO濃度を数%から1000ppm程度に、第
2選択酸化部3Cでは1000ppm程度から20pp
m以下に低減できる。
By the reaction of C∘ + (1/2) O 2 → CO 2 (3) (3), the CO concentration in the reformed gas in the first selective oxidation section 3B is changed from several% to about 1000 ppm, 2 In the selective oxidation section 3C, about 1000 ppm to 20 pp
It can be reduced to m or less.

【0032】第1、第2選択酸化部で所定濃度までCO
を低減した改質ガスは、燃料電池4へ供給される。ま
た、空気がポンプ6Bによって燃料電池4のアノードに
供給される。燃料電池4のアノードには改質ガス、すな
わち水素リッチガスが供給され、カソードには空気が供
給される。その結果、アノードとカソードのそれぞれに
おいて以下に示す電極反応が進行する。
CO in the first and second selective oxidation sections up to a predetermined concentration
The reformed gas with reduced gas is supplied to the fuel cell 4. Further, air is supplied to the anode of the fuel cell 4 by the pump 6B. A reforming gas, that is, a hydrogen-rich gas is supplied to the anode of the fuel cell 4, and air is supplied to the cathode. As a result, the following electrode reactions proceed in each of the anode and the cathode.

【0033】 アノード(水素極):H2→2H++2e- (4) カソード(酸素極):2H++2e-+(1/2)O2→H2O (5) 燃料電池4は、上記電極反応によって得られる起電力に
より図示しないモータを駆動することで車両を走行させ
る。
Anode (hydrogen electrode): H 2 → 2H + + 2e (4) Cathode (oxygen electrode): 2H + + 2e + (1/2) O 2 → H 2 O (5) The motor is driven by driving a motor (not shown) by an electromotive force obtained by the electrode reaction.

【0034】空気量調整手段5には、第1選択酸化部3
Bの温度を検出する温度センサ9、第2選択酸化部3C
の温度を検出する温度センサ10、第1選択酸化部3B
に流入するCO濃度を検出するCO濃度センサの検出値
が入力される。空気量調整手段5は、入力された検出値
に応じて第1選択酸化部3Bに供給する空気量と第2選
択酸化部3Cに供給する空気量を演算し、ポンプ6Aと
各選択酸化部を連通する通路途中に設置されたバルブ
7、8を演算された空気量となるように制御する。
The air amount adjusting means 5 includes a first selective oxidation section 3
Temperature sensor 9 for detecting the temperature of B, second selective oxidation part 3C
Temperature sensor 10 for detecting the temperature of the first selective oxidation unit 3B
The detection value of the CO concentration sensor that detects the concentration of CO flowing into is input. The air amount adjusting means 5 calculates the amount of air to be supplied to the first selective oxidizer 3B and the amount of air to be supplied to the second selective oxidizer 3C according to the input detection value, and the pump 6A and each selective oxidizer are operated. The valves 7 and 8 installed in the communicating passages are controlled so that the calculated air amount is obtained.

【0035】改質部3A内の温度変化や圧力変化によっ
て、改質ガス中のCO濃度が所定濃度よりも上昇するこ
とがある。このとき、選択酸化部に供給する空気量を増
加させなければ、CO濃度の高い改質ガスが燃料電池4
に供給され、燃料電池4のCO被毒を招く可能性が生じ
る。しかし、空気量を増加させると選択酸化反応によっ
て選択酸化部が発熱し、触媒が過熱し、劣化することが
ある。そこで本発明では、選択酸化部の触媒温度が触媒
の活性温度範囲の所定の温度よりも低い場合にはその選
択酸化部にのみ供給空気量を増加させ、高い場合には供
給空気量を減少させることによって、温度過上昇による
触媒の劣化を防止しつつ改質ガスのCO濃度を低減させ
る。
The CO concentration in the reformed gas may rise above a predetermined concentration due to temperature changes and pressure changes in the reforming section 3A. At this time, unless the amount of air supplied to the selective oxidizer is increased, the reformed gas having a high CO concentration is used as the fuel cell 4.
And CO poisoning of the fuel cell 4 may occur. However, if the amount of air is increased, the selective oxidation part may generate heat due to the selective oxidation reaction, and the catalyst may be overheated and deteriorated. Therefore, in the present invention, when the catalyst temperature of the selective oxidation part is lower than a predetermined temperature in the activation temperature range of the catalyst, the supply air amount is increased only to the selective oxidation part, and when it is high, the supply air amount is decreased. As a result, the CO concentration of the reformed gas is reduced while preventing the deterioration of the catalyst due to the excessive temperature rise.

【0036】この制御を実施する空気量調整手段5の制
御内容を説明するフローチャートを図2に示す。
FIG. 2 shows a flow chart for explaining the control contents of the air amount adjusting means 5 for carrying out this control.

【0037】まず、ステップS10では温度センサ9に
よって第1選択酸化部3Bの温度(触媒温度)を検出す
る。ステップS20では温度センサ10によって第2選
択酸化部3Cの温度(触媒温度)を検出する。ステップ
S30では第1選択酸化部3Bに流入する改質ガス中の
CO濃度をCO濃度センサ11によって検出する。
First, in step S10, the temperature (catalyst temperature) of the first selective oxidation section 3B is detected by the temperature sensor 9. In step S20, the temperature sensor 10 detects the temperature (catalyst temperature) of the second selective oxidation unit 3C. In step S30, the CO concentration in the reformed gas flowing into the first selective oxidation unit 3B is detected by the CO concentration sensor 11.

【0038】続くステップS40では第1選択酸化部3
Bに流入する改質ガス中のCO濃度が所定濃度よりも高
いか否かを判定し、高い場合にはステップS41で第1
選択酸化部3Bの触媒温度と触媒の所定温度を比較する
(第1選択酸化部3Bと第2選択酸化部3Cの触媒の所
定温度は同じ温度であるとして説明するが、異なってい
てもよい)。ここで所定温度とは、触媒が活性状態にあ
る温度範囲内に設定される温度とする。
In the subsequent step S40, the first selective oxidation unit 3
It is determined whether or not the CO concentration in the reformed gas flowing into B is higher than a predetermined concentration, and if it is higher, the first in step S41.
The catalyst temperature of the selective oxidation unit 3B is compared with a predetermined temperature of the catalyst (the predetermined temperatures of the catalysts of the first selective oxidation unit 3B and the second selective oxidation unit 3C are described as the same temperature, but they may be different). . Here, the predetermined temperature is a temperature set within a temperature range in which the catalyst is in an active state.

【0039】なお、流入する改質ガス中のCO濃度が所
定濃度以下の場合には、制御を終了する。
When the CO concentration in the reformed gas that flows in is equal to or lower than the predetermined concentration, the control ends.

【0040】ステップS41で第1選択酸化部3Bの温
度が所定温度よりも低いと判定された場合には、ステッ
プS60で第1選択酸化部3Bの供給空気量を第1選択
酸化部3Bに流入する改質ガス中のCO濃度に基づいた
図3に示すマップから算出し、調整する。
When it is determined in step S41 that the temperature of the first selective oxidation part 3B is lower than the predetermined temperature, the amount of air supplied to the first selective oxidation part 3B is flown into the first selective oxidation part 3B in step S60. It is calculated and adjusted from the map shown in FIG. 3 based on the CO concentration in the reformed gas.

【0041】ここで、図3を用いて空気量の算出方法を
説明する。図3は選択酸化部に流入する改質ガス中のC
O濃度(%)、CO転化率(%)、空気量(L/mi
n)の関係を示すグラフである。選択酸化部から排出さ
れる改質ガス中のCO濃度(%)を所定濃度まで低減す
るために必要な空気量が、流入改質ガスのCO濃度とC
O転化率から求められる。ここで、排出改質ガスのCO
濃度、流入改質ガスのCO濃度、CO転化率の関係は
(6)式のようになる。
Here, a method of calculating the air amount will be described with reference to FIG. FIG. 3 shows C in the reformed gas flowing into the selective oxidation section.
O concentration (%), CO conversion (%), air volume (L / mi
It is a graph which shows the relationship of n). The amount of air required to reduce the CO concentration (%) in the reformed gas discharged from the selective oxidation unit to a predetermined concentration is the CO concentration of the inflowing reformed gas and C
It is obtained from the O conversion rate. Here, CO of the exhausted reformed gas
The relationship between the concentration, the CO concentration of the inflowing reformed gas, and the CO conversion rate is as shown in equation (6).

【0042】 排出CO濃度=(1−CO転化率)×流入CO濃度 (6) 例えば、流入するCO濃度が2%、CO転化率が95%
の場合の必要空気量は図3中の点aにおける空気量とな
る。図中の点aにおける空気量を第1選択酸化部3Bに
供給することによって、第1選択酸化部3Bから排出さ
れる改質ガスのCO濃度は 排出CO濃度=(1−0.95)×2%=0.1%=1000ppm (7) となる。この図3の関係を、マップの形式で空気量調整
手段5に記憶する。
Exhaust CO concentration = (1-CO conversion rate) × inflow CO concentration (6) For example, the inflowing CO concentration is 2% and the CO conversion rate is 95%.
In this case, the required air amount is the air amount at point a in FIG. By supplying the air amount at the point a in the figure to the first selective oxidation unit 3B, the CO concentration of the reformed gas discharged from the first selective oxidation unit 3B is the exhausted CO concentration = (1−0.95) × 2% = 0.1% = 1000 ppm (7). The relationship of FIG. 3 is stored in the air amount adjusting means 5 in the form of a map.

【0043】図2のフローチャートに戻り、ステップS
41で、第1選択酸化部3Bの温度が所定温度以上の場
合には、温度が触媒の劣化温度以上にならないように供
給空気量を減少し、ステップS42に進む。
Returning to the flowchart of FIG. 2, step S
At 41, if the temperature of the first selective oxidation unit 3B is equal to or higher than the predetermined temperature, the supply air amount is reduced so that the temperature does not exceed the deterioration temperature of the catalyst, and the process proceeds to step S42.

【0044】ステップS42では、第2選択酸化部3C
の温度と所定温度を比較する。第2選択酸化部3Cの温
度が所定温度よりも低いと判定された場合には、ステッ
プS70で第1選択酸化部3Bへの流入改質ガスのCO
濃度に基づいたマップから第2選択酸化部3Cへ流入す
る改質ガス中のCO濃度を推定する。これは図3の関係
を使って、流入CO濃度と空気量からCO転化率を算出
し、流入CO濃度とCO転化率から(6)式により第1
選択酸化部3Bから排出される改質ガス中のCO濃度、
すなわち第2選択酸化部3Cへ流入する改質ガス中のC
O濃度を推定する。一方、所定温度以上の場合には、第
2選択酸化部3Cの温度が触媒の劣化温度以上にならな
いように供給空気量を減少し、制御を終了する。
In step S42, the second selective oxidation unit 3C is used.
And the predetermined temperature are compared. If it is determined that the temperature of the second selective oxidation unit 3C is lower than the predetermined temperature, the CO of the reformed gas flowing into the first selective oxidation unit 3B is determined in step S70.
The CO concentration in the reformed gas flowing into the second selective oxidation unit 3C is estimated from the map based on the concentration. This is because the CO conversion rate is calculated from the inflow CO concentration and the air amount using the relationship of FIG.
CO concentration in the reformed gas discharged from the selective oxidation unit 3B,
That is, C in the reformed gas flowing into the second selective oxidation section 3C
Estimate the O concentration. On the other hand, when the temperature is equal to or higher than the predetermined temperature, the supply air amount is reduced so that the temperature of the second selective oxidation unit 3C does not exceed the catalyst deterioration temperature, and the control is ended.

【0045】次にステップS80では、第2選択酸化部
3Cの空気量を第2選択酸化部3Cの流入CO濃度に基
づいたマップから算出し、調整する。すなわち第2選択
酸化部3Cについての図3のような関係をマップにして
おいて空気量を算出し、調整する。
Next, in step S80, the amount of air in the second selective oxidation section 3C is calculated from the map based on the concentration of CO flowing into the second selective oxidation section 3C and adjusted. That is, the amount of air is calculated and adjusted by setting the map as shown in FIG. 3 for the second selective oxidation unit 3C.

【0046】したがって、第1、第2選択酸化部の触媒
温度に応じて供給する空気量を制御するため、触媒の劣
化を生じる劣化温度に達することがなく触媒の劣化を防
止し、触媒温度を活性温度に制御しながら効率よく一酸
化炭素を除去することができる。
Therefore, since the amount of air to be supplied is controlled according to the catalyst temperatures of the first and second selective oxidizers, the catalyst temperature is prevented from being deteriorated without reaching the deterioration temperature causing the catalyst deterioration, and the catalyst temperature is controlled. Carbon monoxide can be efficiently removed while controlling the activation temperature.

【0047】また、供給空気量は流入する改質ガスのC
O濃度に基づいて、CO濃度が所定濃度よりも高いとき
は空気量を増加、濃度が低いときは空気量を減少するよ
うに調整されるため、流入する改質ガスのCO濃度変化
に対して改質ガス中のCO濃度を所定濃度まで低減させ
ることができる。
The amount of supplied air is C of the reforming gas flowing in.
Based on the O concentration, when the CO concentration is higher than a predetermined concentration, the air amount is adjusted to increase, and when the concentration is low, the air amount is decreased. The CO concentration in the reformed gas can be reduced to a predetermined concentration.

【0048】次に本発明の第2の実施形態を説明する。
第2の実施形態は第1選択酸化部3Bと第2選択酸化部
3Cで上限温度までの温度差が大きい方の空気量を調整
ずるものであり、構成は第1の実施形態の構成図と同じ
である。ここで上限温度とは、触媒が活性状態にある温
度範囲内の温度で、例えば活性温度範囲の最高温度とす
る(以下の実施形態においても同様とする)。
Next, a second embodiment of the present invention will be described.
The second embodiment adjusts the amount of air having a larger temperature difference up to the upper limit temperature between the first selective oxidation section 3B and the second selective oxidation section 3C, and the configuration is the same as the configuration diagram of the first embodiment. Is the same. Here, the upper limit temperature is a temperature within a temperature range in which the catalyst is in an active state, and is, for example, the highest temperature in the active temperature range (the same applies to the following embodiments).

【0049】図4に示す空気量調整手段5が実施するフ
ローチャートを用いて第2の実施形態の動作を説明す
る。
The operation of the second embodiment will be described with reference to the flowchart executed by the air amount adjusting means 5 shown in FIG.

【0050】ステップS10では温度センサ9によって
第1選択酸化部3Bの温度を検出する。ステップS20
では温度センサ10によって第2選択酸化部3Cの温度
を検出する。ステップS30ではCO濃度センサ11に
よって第1選択酸化部3Bに流入する改質ガスのCO濃
度を検出する。続くステップS40では第1選択酸化部
3Bに流入する改質ガス中の濃度が所定濃度よりも高い
か否かを判定する。ここまでは第1実施形態と同様であ
る。
In step S10, the temperature of the first selective oxidation section 3B is detected by the temperature sensor 9. Step S20
Then, the temperature of the second selective oxidation unit 3C is detected by the temperature sensor 10. In step S30, the CO concentration sensor 11 detects the CO concentration of the reformed gas flowing into the first selective oxidation section 3B. In a succeeding step S40, it is determined whether or not the concentration in the reformed gas flowing into the first selective oxidation section 3B is higher than a predetermined concentration. The process up to this point is the same as in the first embodiment.

【0051】ステップS40で第1選択酸化部3Bに流
入する改質ガス中のCO濃度が所定濃度よりも高いか否
かを判定し、高い場合にはステップS51で第1選択酸
化部3Bの上限温度までの温度差を算出し、ステップS
52で第2選択酸化部3Cの上限温度までの温度差を算
出する。
In step S40, it is determined whether or not the CO concentration in the reformed gas flowing into the first selective oxidation part 3B is higher than a predetermined concentration, and if it is higher, the upper limit of the first selective oxidation part 3B is determined in step S51. Calculate the temperature difference up to the temperature, step S
At 52, the temperature difference up to the upper limit temperature of the second selective oxidation section 3C is calculated.

【0052】ステップS53で第1選択酸化部3Bの上
限温度までの温度差と第2選択酸化部3Cの上限温度ま
での温度差を比較する。ステップS53で第1選択酸化
部3Bの温度差の方が大きいと判定された場合には、ス
テップS60で第1選択酸化部3Bの空気量を第1選択
酸化部3Bへ流入する改質ガス中のCO濃度に基づいた
図3に示したようなマップから算出し、調整する。
In step S53, the temperature difference up to the upper limit temperature of the first selective oxidation section 3B is compared with the temperature difference up to the upper limit temperature of the second selective oxidation section 3C. When it is determined in step S53 that the temperature difference of the first selective oxidation part 3B is larger, in step S60 the amount of air in the first selective oxidation part 3B is in the reformed gas flowing into the first selective oxidation part 3B. Is calculated and adjusted from the map as shown in FIG. 3 based on the CO concentration of.

【0053】一方、ステップS53で第2選択酸化部3
Cの温度差の方が大きいと判定された場合には、ステッ
プS70で第1選択酸化部3Bへ流入する改質ガス中の
CO濃度に基づいたマップから第2選択酸化部3Cへ流
入する改質ガス中のCO濃度を推定する。ここで、第2
選択酸化部3Cへ流入する改質ガス中のCO濃度は第1
実施形態と同様の方法で推定される。次にステップS8
0では、第2選択酸化部3Cの空気量を第2選択酸化部
3Cへ流入する改質ガス中のCO濃度に基づいたマップ
から算出し、調整する。
On the other hand, in step S53, the second selective oxidation unit 3
If it is determined that the temperature difference of C is larger, the map based on the CO concentration in the reformed gas flowing into the first selective oxidation section 3B is introduced into the second selective oxidation section 3C in step S70. Estimate the CO concentration in the quality gas. Where the second
The CO concentration in the reformed gas flowing into the selective oxidation section 3C is the first
It is estimated by the same method as the embodiment. Next, step S8
At 0, the amount of air in the second selective oxidation unit 3C is calculated from the map based on the CO concentration in the reformed gas flowing into the second selective oxidation unit 3C and adjusted.

【0054】したがって、第1、第2選択酸化部の触媒
温度が反応する上限温度に対してまだ温度上昇に余裕の
ある側の一酸化炭素選択酸化部の空気量を増加させ、余
裕のない側の一酸化炭素選択酸化部の空気量を減少させ
るため、温度過上昇をより精度よく制御することがで
き、触媒の過熱による劣化を防止できるという効果が得
られる。
Therefore, the amount of air in the carbon monoxide selective oxidation portion on the side where there is still room for temperature rise relative to the upper limit temperature at which the catalyst temperatures of the first and second selective oxidation portions react is increased, and Since the amount of air in the carbon monoxide selective oxidation unit is reduced, the temperature rise can be controlled more accurately, and the deterioration of the catalyst due to overheating can be prevented.

【0055】さらに、供給空気量は流入する改質ガスの
CO濃度に基づいて、CO濃度が所定濃度よりも高いと
きは空気量を増加、濃度が低いときは空気量を減少する
ように調整されるため、流入する改質ガスのCO濃度変
化に対して改質ガス中のCO濃度を所定濃度まで低減さ
せることができる。
Further, the supply air amount is adjusted on the basis of the CO concentration of the inflowing reformed gas so as to increase the air amount when the CO concentration is higher than a predetermined concentration and decrease the air amount when the concentration is low. Therefore, the CO concentration in the reformed gas can be reduced to a predetermined concentration with respect to the change in the CO concentration of the inflowing reformed gas.

【0056】次に本発明の第3の実施形態を説明する。
第3の実施形態は、第1選択酸化部3Bの温度と第2選
択酸化部3Cの温度に応じて、一酸化炭素処理の比率を
定めるものであり、構成は第1の実施形態の構成と同じ
である。
Next, a third embodiment of the present invention will be described.
In the third embodiment, the ratio of carbon monoxide treatment is determined according to the temperature of the first selective oxidation part 3B and the temperature of the second selective oxidation part 3C. The configuration is the same as that of the first embodiment. Is the same.

【0057】図5に示す空気量調整手段5が実施するフ
ローチャートを用いて第3の実施形態の動作を説明す
る。ステップS10では、温度センサ9によって第1選
択酸化部3Bの温度を検出する。ステップS20では温
度センサ10によって第2選択酸化部3Cの温度を検出
する。ステップS30では第1選択酸化部3Bへ流入す
る改質ガス中のCO濃度を検出する。ステップS40で
は第1選択酸化部3Bへ流入する改質ガス中のCO濃度
が所定濃度よりも高いか否かを判定する。ここまでの制
御は第1の実施形態と同様である。
The operation of the third embodiment will be described with reference to the flowchart executed by the air amount adjusting means 5 shown in FIG. In step S10, the temperature of the first selective oxidation unit 3B is detected by the temperature sensor 9. In step S20, the temperature of the second selective oxidation unit 3C is detected by the temperature sensor 10. In step S30, the CO concentration in the reformed gas flowing into the first selective oxidation section 3B is detected. In step S40, it is determined whether the CO concentration in the reformed gas flowing into the first selective oxidation section 3B is higher than a predetermined concentration. The control up to this point is the same as in the first embodiment.

【0058】ステップS40で、第1選択酸化部3Bへ
流入する改質ガス中のCO濃度が所定濃度よりも高いか
否かを判定し、高い場合にはステップS90で第1選択
酸化部3Bの温度と第2選択酸化部3Cの温度に応じて
それぞれの選択酸化部における一酸化炭素処理比率を決
定する。
In step S40, it is determined whether or not the CO concentration in the reformed gas flowing into the first selective oxidation part 3B is higher than a predetermined concentration. The carbon monoxide treatment ratio in each selective oxidation part is determined according to the temperature and the temperature of the second selective oxidation part 3C.

【0059】一酸化炭素処理比率は、図6に示すように
触媒が活性する上限温度からの温度差に応じて決定され
る。第1選択酸化部3Bの温度と上限温度の差をΔ
1、第2選択酸化部3Cの温度と上限温度の差をΔT2
であるとすると、第1選択酸化部3Bと第2選択酸化部
3Cの一酸化炭素処理率を△T1:△T2の割合で増加さ
せる。第1選択酸化部3Bと第2選択酸化部3Cにおけ
るCO転化率の所定値からの上乗せ分をそれぞれ△
1、△n2とし、△n1、△n2を以下の割合で決定す
る。
The carbon monoxide treatment ratio is determined according to the temperature difference from the upper limit temperature at which the catalyst is activated as shown in FIG. The difference between the temperature of the first selective oxidation unit 3B and the upper limit temperature is Δ
T 1 , the difference between the temperature of the second selective oxidation part 3C and the upper limit temperature is ΔT 2
Then, the carbon monoxide treatment rate of the first selective oxidation part 3B and the second selective oxidation part 3C is increased at a ratio of ΔT 1 : ΔT 2 . The addition of the CO conversion rate in the first selective oxidation section 3B and the second selective oxidation section 3C from the predetermined value is Δ, respectively.
Let n 1 and Δn 2, and determine Δn 1 and Δn 2 at the following ratios.

【0060】△n1:△n2=△T1:△T2 (8) (8)式より以下の関係が成り立つ。Δn 1 : Δn 2 = ΔT 1 : ΔT 2 (8) From the equation (8), the following relationship is established.

【0061】△n1×△T2=△n2×△T1 (9) 第1選択酸化部3Bと第2選択酸化部3Cの所定の転化
率をそれぞれ95%、98%とし、第2選択酸化部3C
から排出される改質ガス中の所定のCO濃度を20pp
mとする。第1選択酸化部3Bへ流入する改質ガス中の
CO濃度をCinとすると、Cinを20ppmまで処
理するためにはCinと△n1、△n2の関係が次式のよ
うになればよい。
Δn 1 × ΔT 2 = Δn 2 × ΔT 1 (9) The predetermined conversion rates of the first selective oxidation part 3B and the second selective oxidation part 3C are set to 95% and 98%, respectively. Selective oxidation part 3C
20ppm of specified CO concentration in the reformed gas discharged from
m. Assuming that the CO concentration in the reformed gas flowing into the first selective oxidation section 3B is Cin, in order to process Cin up to 20 ppm, the relationship between Cin and Δn 1 and Δn 2 may be expressed by the following equation. .

【0062】 Cin×(1−0.95−△n1)×(1−0.98−△n2)=0.002 (10) したがって、(9)式、(10)式から△n1、△n2
求まる。
Cin × (1−0.95-Δn 1 ) × (1−0.98−Δn 2 ) = 0.002 (10) Therefore, from the expressions (9) and (10), Δn 1 , Δn 2 is obtained.

【0063】次にステップS100で、第1選択酸化部
3Bの空気量を第1選択酸化部3Bの一酸化炭素処理比
率(転化率0.95+△n1)、第1選択酸化部3Bへ
流入する改質ガス中のCO濃度に基づいた図3に示した
ようなマップから算出し、調整する。
Next, at step S100, the amount of air in the first selective oxidation section 3B is flown into the first selective oxidation section 3B by the carbon monoxide treatment ratio (conversion rate 0.95 + Δn 1 ). It is calculated and adjusted from the map as shown in FIG. 3 based on the CO concentration in the reformed gas.

【0064】次にステップS110で、第2選択酸化部
3Cの空気量を第2選択酸化部3Cの一酸化炭素処理比
率(転化率0.98+△n2、)及び第2選択酸化部3
Cへ流入する改質ガス中のCO濃度に基づいたマップか
ら算出し、調整する。ここで、第2選択酸化部3Cへ流
入する改質ガス中のCO濃度は第1実施形態と同様の方
法で推定される。
Next, in step S110, the amount of air in the second selective oxidation section 3C is set to the carbon monoxide treatment ratio (conversion rate 0.98 + Δn 2 ) and the second selective oxidation section 3C.
It is calculated and adjusted from a map based on the CO concentration in the reformed gas flowing into C. Here, the CO concentration in the reformed gas flowing into the second selective oxidation section 3C is estimated by the same method as in the first embodiment.

【0065】したがって、各選択酸化部の空気量を各部
の温度に応じた比率で増加させるため、温度過上昇によ
る触媒の劣化を防止できるという効果に加えて、上限温
度に達してない選択酸化部全てを有効に利用することが
でき、効果的に改質ガスのCO濃度を低減することがで
きるという効果が得られる。
Therefore, since the amount of air in each selective oxidation unit is increased at a ratio according to the temperature of each unit, in addition to the effect that the catalyst deterioration due to the excessive temperature rise can be prevented, the selective oxidation unit that has not reached the upper limit temperature. All of them can be effectively used, and the CO concentration of the reformed gas can be effectively reduced.

【0066】さらに、供給空気量は流入する改質ガスの
CO濃度に基づいて、CO濃度が所定濃度よりも高いと
きは空気量を増加、濃度が低いときは空気量を減少する
ように調整されるため、流入する改質ガスのCO濃度変
化に対して改質ガス中のCO濃度を所定濃度まで低減さ
せることができる。
Further, the supply air amount is adjusted based on the CO concentration of the inflowing reformed gas so as to increase the air amount when the CO concentration is higher than a predetermined concentration and decrease the air amount when the concentration is low. Therefore, the CO concentration in the reformed gas can be reduced to a predetermined concentration with respect to the change in the CO concentration of the inflowing reformed gas.

【0067】次に本発明の第4の実施形態を説明する。
図7は第4の実施形態を示す構成図である。第1の実施
形態の構成に対して追加されたCO濃度センサ12は、
改質器3から排出される改質ガスのCO濃度を検出す
る。改質ガス中のCO濃度が所定値よりも高いときに、
CO濃度が所定値以下になるまで、第1選択酸化部3B
あるいは第2選択酸化部3Cのどちらか温度が低い方の
空気量を増加し、一酸化炭素の除去能力を高める。
Next, a fourth embodiment of the present invention will be described.
FIG. 7 is a block diagram showing the fourth embodiment. The CO concentration sensor 12 added to the configuration of the first embodiment is
The CO concentration of the reformed gas discharged from the reformer 3 is detected. When the CO concentration in the reformed gas is higher than a predetermined value,
Until the CO concentration falls below a predetermined value, the first selective oxidation unit 3B
Alternatively, the air amount of the lower temperature of the second selective oxidation unit 3C, whichever is lower, is increased to enhance the carbon monoxide removal capability.

【0068】図8に示す空気量調整手段5が実施するフ
ローチャートを用いて第4の実施形態の動作を説明す
る。ステップS10では温度センサ9によって第1選択
酸化部3Bの温度を検出する。ステップS20では温度
センサ10によって第2選択酸化部3Cの温度を検出す
る。ステップS120では第2選択酸化部3Cから排出
される改質ガスのCO濃度、すなわち改質器3から排出
される改質ガスのCO濃度を検出する。
The operation of the fourth embodiment will be described with reference to the flowchart executed by the air amount adjusting means 5 shown in FIG. In step S10, the temperature sensor 9 detects the temperature of the first selective oxidation unit 3B. In step S20, the temperature of the second selective oxidation unit 3C is detected by the temperature sensor 10. In step S120, the CO concentration of the reformed gas discharged from the second selective oxidation unit 3C, that is, the CO concentration of the reformed gas discharged from the reformer 3 is detected.

【0069】ステップS130では第2選択酸化部3C
から排出される改質ガスのCO濃度が所定濃度よりも高
いか否かを判定し、高い場合にはステップS141で第
1選択酸化部3Bの上限温度までの温度差を算出し、ス
テップS142で第2選択酸化部3Cの上限温度までの
温度差を算出する。ステップS143で第1選択酸化部
3Bの上限温度までの温度差と第2選択酸化部3Cの上
限温度までの温度差を比較する。ステップS143で第
1選択酸化部3Bの温度差の方が大きいと判定された場
合には、ステップ150で第1選択酸化部3Bの空気量
を増加する。逆に高いと判定されなかった場合にはステ
ップS160で第2選択酸化部3Cの空気量を増加す
る。
In step S130, the second selective oxidation unit 3C is used.
It is determined whether or not the CO concentration of the reformed gas discharged from the exhaust gas is higher than a predetermined concentration, and if it is higher, the temperature difference up to the upper limit temperature of the first selective oxidation section 3B is calculated in step S141, and in step S142. The temperature difference up to the upper limit temperature of the second selective oxidation part 3C is calculated. In step S143, the temperature difference up to the upper limit temperature of the first selective oxidation unit 3B and the temperature difference up to the upper limit temperature of the second selective oxidation unit 3C are compared. When it is determined in step S143 that the temperature difference of the first selective oxidation part 3B is larger, the amount of air in the first selective oxidation part 3B is increased in step 150. On the contrary, if it is not determined to be high, the amount of air in the second selective oxidation unit 3C is increased in step S160.

【0070】本実施形態は、改質器3から排出される改
質ガス中のCO濃度が所定濃度より高いときに、CO濃
度が所定濃度以下になるよう、空気量を上限温度との差
が大きい選択酸化部の温度に応じて調整する構成とし
た。
In this embodiment, when the CO concentration in the reformed gas discharged from the reformer 3 is higher than the predetermined concentration, the difference between the air amount and the upper limit temperature is set so that the CO concentration becomes equal to or lower than the predetermined concentration. The configuration is adjusted according to the temperature of the large selective oxidation portion.

【0071】したがって、CO選択酸化部に所定の空気
量が供給されても、温度変化や触媒の劣化などによって
排出される一酸化炭素濃度がばらつく場合に、改質器か
ら排出される改質ガス中CO濃度を検出して空気量を調
整するので、改質ガス中のCO濃度がばらついたときに
もCO濃度を確実に低減させることが可能である。
Therefore, even if a predetermined amount of air is supplied to the CO selective oxidizer, the reformed gas discharged from the reformer when the concentration of carbon monoxide discharged varies due to temperature change or catalyst deterioration. Since the medium CO concentration is detected and the air amount is adjusted, it is possible to reliably reduce the CO concentration even when the CO concentration in the reformed gas varies.

【0072】また、本発明によれば、触媒が活性する上
限温度に対してまだ温度上昇に余裕のある一酸化炭素選
択酸化部の空気量を増加させ、余裕のない一酸化炭素選
択酸化部の空気量を減少させるため、温度過上昇による
触媒の劣化を防止できるという効果が得られる。
Further, according to the present invention, the amount of air in the carbon monoxide selective oxidation part which has a margin of temperature increase with respect to the upper limit temperature at which the catalyst is activated is increased, and the carbon monoxide selective oxidation part having a margin of increase is not generated. Since the amount of air is reduced, it is possible to prevent deterioration of the catalyst due to excessive temperature rise.

【0073】次に本発明の第5の実施形態を説明する。
第5の実施形態は第1選択酸化部3Bの温度と第2選択
酸化部3Cの温度に応じて、一酸化炭素処理の比率を求
めるものであり、構成は、図7に示した第4の実施形態
の構成と同じである。
Next, a fifth embodiment of the present invention will be described.
In the fifth embodiment, the ratio of carbon monoxide treatment is determined according to the temperature of the first selective oxidation part 3B and the temperature of the second selective oxidation part 3C. The configuration is the same as that of the fourth selective oxidation part shown in FIG. The configuration is the same as that of the embodiment.

【0074】図9に示すフローチャートを用いて第5の
実施形態の動作を説明する。ステップS10では温度セ
ンサ9によって第1選択酸化部3Bの温度を検出する。
ステップS20では温度センサ10によって第2選択酸
化部3Cの温度を検出する。
The operation of the fifth embodiment will be described with reference to the flowchart shown in FIG. In step S10, the temperature sensor 9 detects the temperature of the first selective oxidation unit 3B.
In step S20, the temperature of the second selective oxidation unit 3C is detected by the temperature sensor 10.

【0075】続くステップS120では、第2選択酸化
部3Cから排出される改質ガスのCO濃度、すなわち改
質器3から排出される改質ガスのCO濃度を検出する。
ステップS130では第2選択酸化部3Cからの改質ガ
スのCO濃度が所定濃度よりも高いか否かを判定し、高
い場合にはステップS170に進み、以下のときには制
御を終了する。
In the subsequent step S120, the CO concentration of the reformed gas discharged from the second selective oxidation section 3C, that is, the CO concentration of the reformed gas discharged from the reformer 3 is detected.
In step S130, it is determined whether or not the CO concentration of the reformed gas from the second selective oxidation section 3C is higher than a predetermined concentration, the process proceeds to step S170 if it is higher, and the control is ended in the following cases.

【0076】ステップS170で第1選択酸化部3Bと
第2選択酸化部3Cの温度に応じて空気量増加比率を決
定する。空気量増加比率は、第3の実施形態で図6を用
いて説明した一酸化炭素処理比率を求める方法と同様で
ある。次にステップS180では、空気量増加比率に応
じて第1選択酸化部3B、第2選択酸化部3Cそれぞれ
の空気量を増加する。
In step S170, the air amount increase ratio is determined according to the temperatures of the first selective oxidation section 3B and the second selective oxidation section 3C. The air amount increase ratio is the same as the method for obtaining the carbon monoxide treatment ratio described in the third embodiment with reference to FIG. Next, in step S180, the air amount of each of the first selective oxidation unit 3B and the second selective oxidation unit 3C is increased according to the air amount increase ratio.

【0077】したがって、CO選択酸化部に所定の空気
量が供給されても、温度変化や触媒の劣化などによって
CO選択酸化部から排出される改質ガス中のCO濃度が
ばらつくこともある。本実施形態によれば改質ガス中の
CO濃度を検出して空気量を調整するので、改質ガス中
のCO濃度がばらついたときにもCO濃度を確実に低減
させることが可能である。
Therefore, even if a predetermined amount of air is supplied to the CO selective oxidization unit, the CO concentration in the reformed gas discharged from the CO selective oxidization unit may fluctuate due to a temperature change or deterioration of the catalyst. According to the present embodiment, the CO concentration in the reformed gas is detected and the air amount is adjusted, so that the CO concentration can be reliably reduced even when the CO concentration in the reformed gas varies.

【0078】第2の実施形態では特定の選択酸化部の空
気量を増加させるのに対して、本実施形態では各選択酸
化部の空気量を各部の温度に応じた比率で増加させるた
め、温度過上昇による触媒の劣化を防止できるという効
果に加えて、上限温度に達してない選択酸化部全てを有
効に利用することができ、効果的に改質ガスのCO濃度
を低減することができるという効果が得られる。
In the second embodiment, the amount of air in a specific selective oxidation unit is increased, whereas in the present embodiment, the amount of air in each selective oxidation unit is increased at a rate according to the temperature of each unit, so that the temperature In addition to the effect of preventing deterioration of the catalyst due to excessive temperature rise, it is possible to effectively use all of the selective oxidation part that has not reached the upper limit temperature, and to effectively reduce the CO concentration of the reformed gas. The effect is obtained.

【0079】次に本発明の第6の実施形態を説明する。
図10は第6の実施形態を示す構成図である。第1の実
施形態のCO濃度センサ11に代えて、流量センサ13
を設置する。流量センサ13は、改質器3に流入する改
質ガス流量を検出する。改質器3に流入するガス流量が
定格流量よりも大きいときに、流入ガス流量と第1選択
酸化部3Bと第2選択酸化部3Cの温度の温度に基づい
て空気量を増加する。
Next explained is the sixth embodiment of the invention.
FIG. 10 is a block diagram showing the sixth embodiment. Instead of the CO concentration sensor 11 of the first embodiment, the flow rate sensor 13
Set up. The flow rate sensor 13 detects the reformed gas flow rate flowing into the reformer 3. When the gas flow rate flowing into the reformer 3 is larger than the rated flow rate, the air amount is increased based on the inflow gas flow rate and the temperatures of the temperatures of the first selective oxidation section 3B and the second selective oxidation section 3C.

【0080】図11に示すフローチャートを用いて第6
の実施形態の動作を説明する。ステップS10では温度
センサ9によって第1選択酸化部3Bの温度を検出す
る。ステップS20では温度センサ10によって第2選
択酸化部3Cの温度を検出する。
The sixth step using the flowchart shown in FIG.
The operation of this embodiment will be described. In step S10, the temperature sensor 9 detects the temperature of the first selective oxidation unit 3B. In step S20, the temperature of the second selective oxidation unit 3C is detected by the temperature sensor 10.

【0081】ステップS121では第1選択酸化部3B
に流入する改質ガス流量(改質器3の流入ガス流量に相
当する)を流量センサ13によって検出する。
In step S121, the first selective oxidation part 3B is used.
The flow rate sensor 13 detects the flow rate of the reformed gas (corresponding to the flow rate of the inflow gas of the reformer 3).

【0082】続く、ステップS131では第1選択酸化
部3Bに流入する改質ガスの流量が定格流量から変化し
たか否かを判定し、変化した場合には第1選択酸化部3
Bへの空気量を第1選択酸化部3Bに流入する改質ガス
流量に基づいたマップから算出する。このマップは、例
えば、図12(a)に示すような改質ガス流量に対して
必要な空気量Qa1の関係になる。図12(a)の関係
をマップにしておく。
Then, in step S131, it is determined whether or not the flow rate of the reformed gas flowing into the first selective oxidation section 3B has changed from the rated flow rate.
The amount of air to B is calculated from the map based on the flow rate of the reformed gas flowing into the first selective oxidation section 3B. This map has, for example, the relationship of the required air amount Qa1 with respect to the reformed gas flow rate as shown in FIG. The relationship shown in FIG. 12A is made into a map.

【0083】次に、第2選択酸化部3C空気量について
も第1選択酸化部3Bと同様に、第1選択酸化部3Bへ
の改質ガス流量に基づいたマップから算出する。図12
(b)に改質ガス流量に対して必要な空気量Qa2の関
係を示す。図12(b)の関係をマップにしておく。
Next, the air amount of the second selective oxidation unit 3C is also calculated from the map based on the reformed gas flow rate to the first selective oxidation unit 3B, similarly to the first selective oxidation unit 3B. 12
(B) shows the relationship of the required air amount Qa2 with respect to the reformed gas flow rate. The relationship of FIG. 12 (b) is made into a map.

【0084】ステップS173で第1選択酸化部3Bと
第2選択酸化部3Cの温度に応じて空気量増減比率を決
定する。空気量増減比率は、図6で説明した一酸化炭素
処理比率を求めるのと同様の方法で求める。
In step S173, the air amount increase / decrease ratio is determined according to the temperatures of the first selective oxidation section 3B and the second selective oxidation section 3C. The air amount increase / decrease ratio is obtained by the same method as that for obtaining the carbon monoxide treatment ratio described in FIG.

【0085】次にステップS174では、マップから算
出した第1選択酸化部3Bの空気量Qa1と第2選択酸
化部3Cの空気量Qa2を空気量増減比率△T1:△T2
に応じて補正する。例えば、以下のように補正する。
Next, at step S174, the air amount Qa1 of the first selective oxidation unit 3B and the air amount Qa2 of the second selective oxidation unit 3C calculated from the map are changed in air amount ΔT 1 : ΔT 2.
Correct according to. For example, the correction is made as follows.

【0086】 Qa1’=第1選択酸化部3Bの定格流量+△Qa1×2ΔT1/(△T1 +△T2) (11) Qa2’=第2選択酸化部3Cの定格流量+△Qa2×2ΔT2/(△T1 +△T2) (12) ここで、Qa1’とQa2’はそれぞれ第1選択酸化部
3Bと第2選択酸化部3Cの補正後の空気量、△Qa1
は第1選択酸化部3Bの定格流量とQa1との差、△Q
a2は第2選択酸化部3Cの定格流量とQa2との差で
ある。
Qa1 ′ = rated flow rate of the first selective oxidation part 3B + ΔQa1 × 2ΔT 1 / (ΔT 1 + ΔT 2 ) (11) Qa2 ′ = rated flow rate of the second selective oxidation part 3C + ΔQa2 × 2ΔT 2 / (ΔT 1 + ΔT 2 ) (12) Here, Qa1 ′ and Qa2 ′ are the corrected air amounts of the first selective oxidation part 3B and the second selective oxidation part 3C, respectively, and ΔQa1.
Is the difference between the rated flow rate of the first selective oxidation unit 3B and Qa1, ΔQ
a2 is the difference between the rated flow rate of the second selective oxidation unit 3C and Qa2.

【0087】したがって、流入する改質ガスの流量が変
化すると、COを酸化させるために必要な空気量も変化
する。流量が増加したときは空気量が増加、流量が減少
したときは空気量が減少するように調整することによっ
て、流入する改質ガスの流量変化に応じて改質ガス中の
COを所定濃度まで低減させることができる。
Therefore, when the flow rate of the reformed gas that flows in changes, the amount of air required to oxidize CO also changes. By adjusting so that the air amount increases when the flow rate increases and the air amount decreases when the flow rate decreases, the CO in the reformed gas reaches a predetermined concentration according to the change in the flow rate of the reformed gas that flows in. Can be reduced.

【0088】また、第2の実施形態では特定の選択酸化
部の空気量を増加させるのに対して、本実施形態では各
選択酸化部の空気量を各部の温度に応じた比率で増加さ
せるため、温度過上昇による触媒の劣化を防止できると
いう効果に加えて、上限温度に達してない選択酸化部全
てを有効に利用することができ、効果的に改質ガスのC
O濃度を低減することができるという効果が得られる。
Further, in the second embodiment, the amount of air in a specific selective oxidation portion is increased, whereas in the present embodiment, the amount of air in each selective oxidation portion is increased at a ratio according to the temperature of each portion. In addition to the effect that the catalyst deterioration due to the excessive temperature rise can be prevented, it is possible to effectively utilize all of the selective oxidization portion that has not reached the upper limit temperature, and to effectively improve the C of the reformed gas.
The effect that the O concentration can be reduced is obtained.

【0089】次に本発明の第7の実施形態を説明する。
図13は第7の実施形態を示す構成図である。第7の実
施形態はCO濃度センサや流量センサを用いない場合で
ある。定格運転で、CO濃度やガス流量が一定のときを
想定している。
Next, a seventh embodiment of the present invention will be described.
FIG. 13 is a block diagram showing the seventh embodiment. The seventh embodiment is a case where no CO concentration sensor or flow rate sensor is used. It is assumed that the CO concentration and the gas flow rate are constant in the rated operation.

【0090】図14に示すフローチャートを用いて第7
の実施形態の動作を説明する。ステップS10では温度
センサによって第1選択酸化部3Bの温度を検出する。
ステップS20では第2選択酸化部3Cの温度を検出す
る。
The seventh step using the flowchart shown in FIG.
The operation of this embodiment will be described. In step S10, the temperature of the first selective oxidation unit 3B is detected by the temperature sensor.
In step S20, the temperature of the second selective oxidation part 3C is detected.

【0091】ステップS173で第1選択酸化部3Bと
第2選択酸化部3Cの温度に応じて空気量増減比率を決
定する。空気量増減比率は、図6で説明した一酸化炭素
処理比率を求めるのと同様の方法で求める。次にステッ
プS175では、第1選択酸化部3Bの定格空気量Qn
a1、第2選択酸化部3Cの定格空気量Qna2を空気
量増減比率△T1:△T2に応じて例えば以下のように補
正する。
In step S173, the air amount increase / decrease ratio is determined according to the temperatures of the first selective oxidation part 3B and the second selective oxidation part 3C. The air amount increase / decrease ratio is obtained by the same method as that for obtaining the carbon monoxide treatment ratio described in FIG. Next, in step S175, the rated air amount Qn of the first selective oxidation unit 3B is set.
a1, the rated air amount Qna2 of the second selective oxidation unit 3C is corrected according to the air amount increase / decrease ratio ΔT 1 : ΔT 2 , for example, as follows.

【0092】 Qna1’=Qna1+C1×△T1/(△T1十△T2) (13) Qna2’=Qna2+C2×△T2/(△T1十△T2) (14) ここで、Qna1'とQna2'はそれぞれ第1選択酸化
部3Bと第2選択酸化部3Cの補正後の空気量である。
C1とC2は、補正係数であり、実験的に求める。
Qna1 ′ = Qna1 + C1 × ΔT 1 / (ΔT 1 tens ΔT 2 ) (13) Qna2 ′ = Qna2 + C2 × ΔT 2 / (ΔT 1 tens ΔT 2 ) (14) Here, Qna1 ′ And Qna2 ′ are the corrected air amounts of the first selective oxidation part 3B and the second selective oxidation part 3C, respectively.
C1 and C2 are correction coefficients, which are experimentally obtained.

【0093】したがって、CO濃度センサや流量センサ
を用いることなく、CO濃度を低減することができるの
で、システムの低価格化を図ることができる。
Therefore, the CO concentration can be reduced without using the CO concentration sensor or the flow rate sensor, so that the cost of the system can be reduced.

【0094】第2の実施形態では、特定の一酸化炭素選
択酸化部の空気量を増加させるのに対して、本実施形態
では、各一酸化炭素選択酸化部の空気量を各部の温度に
応じた比率で増加させるため、温度過上昇による触媒の
劣化を防止できるという効果に加えて、上限温度に達し
てない一酸化炭素選択酸化部全てを有効に利用すること
ができ、効果的に改質ガスの一酸化炭素濃度を低減する
ことができるという効果が得られる。
In the second embodiment, the amount of air in the specific carbon monoxide selective oxidation portion is increased, whereas in the present embodiment, the amount of air in each carbon monoxide selective oxidation portion is changed according to the temperature of each portion. In addition to the effect of preventing catalyst deterioration due to excessive temperature rise, it is possible to effectively use all of the carbon monoxide selective oxidation part that has not reached the upper limit temperature, and effective reforming is possible. The effect that the carbon monoxide concentration of the gas can be reduced is obtained.

【0095】本発明は、上記した実施形態に限定される
ものではなく、本発明の技術的思想の範囲内でさまざま
な変更がなしうることは明白である。
The present invention is not limited to the above-mentioned embodiments, and it is obvious that various modifications can be made within the scope of the technical idea of the present invention.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の第1の実施形態、第2の実施形態、第
3の実施形態の構成図である。
FIG. 1 is a configuration diagram of a first embodiment, a second embodiment, and a third embodiment of the present invention.

【図2】第1実施形態のフローチャート図である。FIG. 2 is a flowchart of the first embodiment.

【図3】一酸化炭素選択酸化部に流入する改質ガス中の
一酸化炭素濃度、一酸化炭素転化率、空気量の関係図で
ある。
FIG. 3 is a relationship diagram of a carbon monoxide concentration, a carbon monoxide conversion rate, and an air amount in a reformed gas flowing into a carbon monoxide selective oxidation section.

【図4】第2実施形態のフローチャート図である。FIG. 4 is a flow chart of the second embodiment.

【図5】第3実施形態のフローチャート図である。FIG. 5 is a flow chart of the third embodiment.

【図6】各一酸化炭素選択酸化部の温度に応じた一酸化
炭素処理比率の求めかたを示す図である。
FIG. 6 is a diagram showing how to determine a carbon monoxide treatment ratio according to the temperature of each carbon monoxide selective oxidation portion.

【図7】第4の実施形態、第5の実施形態の構成図であ
る。
FIG. 7 is a configuration diagram of a fourth embodiment and a fifth embodiment.

【図8】第4実施形態のフローチャート図である。FIG. 8 is a flowchart of the fourth embodiment.

【図9】第5実施形態のフローチャート図である。FIG. 9 is a flowchart of the fifth embodiment.

【図10】第6の実施形態の構成図である。FIG. 10 is a configuration diagram of a sixth embodiment.

【図11】第6実施形態のフローチャート図である。FIG. 11 is a flowchart of the sixth embodiment.

【図12】一酸化炭素選択酸化部に流入する改質ガスの
流量と、一酸化炭素選択酸化部への供給空気量の関係で
ある。
FIG. 12 is a relationship between the flow rate of the reformed gas flowing into the carbon monoxide selective oxidation section and the amount of air supplied to the carbon monoxide selective oxidation section.

【図13】第7の実施形態の構成図である。FIG. 13 is a configuration diagram of a seventh embodiment.

【図14】第7実施形態のフローチャート図である。FIG. 14 is a flowchart of the seventh embodiment.

【符号の説明】[Explanation of symbols]

1 燃料タンク 2 水タンク 3 改質器 3A 改質部 3B 第1選択酸化部 3C 第2選択酸化部 4 燃料電池 5 空気量調整手段 6A、6B ポンプ 7、8 バルブ 9 温度センサ 10 温度センサ 11 CO濃度センサ 12 CO濃度センサ 13 流量センサ 1 fuel tank 2 water tank 3 reformer 3A reforming section 3B First selective oxidation part 3C 2nd selective oxidation part 4 fuel cells 5 Air volume adjustment means 6A, 6B pump 7,8 valves 9 Temperature sensor 10 Temperature sensor 11 CO concentration sensor 12 CO concentration sensor 13 Flow rate sensor

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】改質ガスに含まれる一酸化炭素を選択的に
酸化することにより、改質ガス中の一酸化炭素濃度を低
減する一酸化炭素選択酸化手段を複数個、直列に設置す
る一酸化炭素除去装置において、 それぞれの一酸化炭素選択酸化手段の触媒温度を検出す
る温度検出手段と、 前記検出された触媒温度に応じて、各一酸化炭素選択酸
化手段に供給する空気量を調整する空気量調整手段とを
備えたことを特徴とする一酸化炭素除去装置。
1. A plurality of carbon monoxide selective oxidation means for reducing the carbon monoxide concentration in the reformed gas by selectively oxidizing carbon monoxide contained in the reformed gas. In the carbon oxide removing device, temperature detecting means for detecting the catalyst temperature of each carbon monoxide selective oxidizing means, and the amount of air supplied to each carbon monoxide selective oxidizing means is adjusted according to the detected catalyst temperature. An apparatus for removing carbon monoxide, comprising: an air amount adjusting means.
【請求項2】前記空気量調整手段は、触媒温度が所定温
度よりも低い一酸化炭素選択酸化手段への空気量を増量
し、触媒温度が所定温度よりも高い一酸化炭素選択酸化
手段への空気量を減量することを特徴とする請求項1に
記載の一酸化炭素除去装置。
2. The air amount adjusting means increases the amount of air to a carbon monoxide selective oxidizing means whose catalyst temperature is lower than a predetermined temperature, and supplies it to a carbon monoxide selective oxidizing means whose catalyst temperature is higher than a predetermined temperature. The carbon monoxide removing device according to claim 1, wherein the amount of air is reduced.
【請求項3】前記空気量調整手段は、それぞれの一酸化
炭素選択酸化手段における触媒温度と触媒の活性上限温
度との差を算出し、活性上限温度までの温度差が大きい
一酸化炭素選択酸化手段の空気量を増量し、活性上限温
度までの温度差が小さい一酸化炭素選択酸化手段の空気
量を減量することを特徴とする請求項1に記載の一酸化
炭素除去装置。
3. The carbon monoxide selective oxidation in which the air amount adjusting means calculates the difference between the catalyst temperature in each of the carbon monoxide selective oxidation means and the catalyst upper limit temperature, and has a large temperature difference up to the activity upper limit temperature. 2. The carbon monoxide removing apparatus according to claim 1, wherein the air amount of the means is increased and the air amount of the carbon monoxide selective oxidation means having a small temperature difference up to the activation upper limit temperature is decreased.
【請求項4】前記空気量調整手段は、それぞれの一酸化
炭素選択酸化手段における触媒温度と触媒の活性上限温
度との温度差に応じてそれぞれの一酸化炭素選択酸化手
段での選択酸化処理する分担の比率を算出し、この比率
に基づいてそれぞれの一酸化炭素選択酸化手段の空気量
を調整することを特徴とする請求項1に記載の一酸化炭
素除去装置。
4. The air amount adjusting means performs a selective oxidation process in each carbon monoxide selective oxidation means according to a temperature difference between a catalyst temperature in each carbon monoxide selective oxidation means and a catalyst activation upper limit temperature. The carbon monoxide removing device according to claim 1, wherein a ratio of sharing is calculated, and the amount of air of each carbon monoxide selective oxidizing means is adjusted based on the ratio.
【請求項5】最上流に位置する一酸化炭素選択酸化手段
に流入する改質ガス中の一酸化炭素濃度を検出する手段
を設け、 前記空気量調整手段は、検出された改質ガスの一酸化炭
素濃度が所定濃度範囲にない場合に、改質ガス中の一酸
化炭素濃度が所定濃度範囲に入るように、流入する改質
ガス中の一酸化炭素濃度とそれぞれの一酸化炭素選択酸
化手段の触媒温度に応じて各一酸化炭素選択酸化手段へ
の供給空気量を調整することを特徴とする請求項1から
請求項4のいずれか一つに記載の一酸化炭素除去装置。
5. A means for detecting the carbon monoxide concentration in the reformed gas flowing into the carbon monoxide selective oxidation means located at the uppermost stream is provided, and the air amount adjusting means is one of the detected reformed gases. The carbon monoxide concentration in the inflowing reformed gas and the respective carbon monoxide selective oxidation means so that the carbon monoxide concentration in the reformed gas falls within the predetermined concentration range when the carbon oxide concentration is not within the predetermined concentration range. The carbon monoxide removing device according to any one of claims 1 to 4, wherein the amount of air supplied to each carbon monoxide selective oxidizing means is adjusted according to the catalyst temperature of.
【請求項6】最下流に位置する一酸化炭素選択酸化手段
から排出される改質ガス中の一酸化炭素濃度を検出する
手段を設け、 前記空気量調整手段は、検出された改質ガス中の一酸化
炭素濃度が所定濃度範囲にない場合に、改質ガス中の一
酸化炭素濃度が所定濃度範囲に入るように、それぞれの
一酸化炭素選択酸化手段の触媒温度に応じて各一酸化炭
素選択酸化手段への供給空気量を調整することを特徴と
する請求項1から請求項4のいずれか一つに記載の一酸
化炭素除去装置。
6. A means for detecting the carbon monoxide concentration in the reformed gas discharged from the carbon monoxide selective oxidation means located at the most downstream side is provided, and the air amount adjusting means is included in the detected reformed gas. When the carbon monoxide concentration in the reformed gas does not fall within the predetermined concentration range, the carbon monoxide concentration in the reformed gas falls within the predetermined concentration range according to the catalyst temperature of each carbon monoxide selective oxidation means. 5. The carbon monoxide removing device according to claim 1, wherein the amount of air supplied to the selective oxidizing means is adjusted.
【請求項7】最上流に位置する一酸化炭素選択酸化手段
に流入する改質ガスの流量を検出する手段を設け、 前記空気量調整手段は、検出された改質ガスの流量が変
化したときに、一酸化炭素選択酸化手段に流入する空気
量をそれぞれの一酸化炭素選択酸化手段の触媒温度に応
じて調整することを特徴とする請求項1から請求項4の
いずれか一つに記載の一酸化炭素除去装置。
7. A means for detecting the flow rate of the reformed gas flowing into the carbon monoxide selective oxidation means located at the uppermost stream is provided, and the air amount adjusting means is provided when the detected reformed gas flow rate changes. 5. The method according to claim 1, wherein the amount of air flowing into the carbon monoxide selective oxidation means is adjusted according to the catalyst temperature of each carbon monoxide selective oxidation means. Carbon monoxide remover.
JP2002088058A 2002-03-27 2002-03-27 Carbon monoxide removal equipment Expired - Fee Related JP3722079B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2002088058A JP3722079B2 (en) 2002-03-27 2002-03-27 Carbon monoxide removal equipment
EP03002918A EP1369382A3 (en) 2002-03-27 2003-02-10 Carbon monoxide removal from reformate gas
US10/367,755 US7189373B2 (en) 2002-03-27 2003-02-19 Carbon monoxide removal from reformate gas

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002088058A JP3722079B2 (en) 2002-03-27 2002-03-27 Carbon monoxide removal equipment

Publications (2)

Publication Number Publication Date
JP2003286002A true JP2003286002A (en) 2003-10-07
JP3722079B2 JP3722079B2 (en) 2005-11-30

Family

ID=28449418

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002088058A Expired - Fee Related JP3722079B2 (en) 2002-03-27 2002-03-27 Carbon monoxide removal equipment

Country Status (3)

Country Link
US (1) US7189373B2 (en)
EP (1) EP1369382A3 (en)
JP (1) JP3722079B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007302533A (en) * 2006-05-12 2007-11-22 Mitsubishi Heavy Ind Ltd Fuel reforming apparatus, fuel cell system, and method for removing co
JP2012014960A (en) * 2010-06-30 2012-01-19 Mitsubishi Heavy Ind Ltd Co removal system and method for co removal

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4265239B2 (en) * 2003-03-03 2009-05-20 日産自動車株式会社 Fuel reforming system
KR100784038B1 (en) * 2007-01-09 2007-12-10 삼성에스디아이 주식회사 Preferential oxidation reactor integrated with heat exchanger and operating method thereof
US8710106B2 (en) * 2010-07-29 2014-04-29 Precision Combustion, Inc. Sabatier process and apparatus for controlling exothermic reaction
US8258356B2 (en) 2010-08-17 2012-09-04 Uop Llc Selective CO oxidation for acetylene converter feed CO control
CN103389357A (en) * 2013-07-01 2013-11-13 安徽省旌德县天益医药化工厂 Gas concentration monitor
US11881093B2 (en) 2020-08-20 2024-01-23 Denso International America, Inc. Systems and methods for identifying smoking in vehicles
US11828210B2 (en) 2020-08-20 2023-11-28 Denso International America, Inc. Diagnostic systems and methods of vehicles using olfaction
US11636870B2 (en) 2020-08-20 2023-04-25 Denso International America, Inc. Smoking cessation systems and methods
US11760169B2 (en) 2020-08-20 2023-09-19 Denso International America, Inc. Particulate control systems and methods for olfaction sensors
US11760170B2 (en) 2020-08-20 2023-09-19 Denso International America, Inc. Olfaction sensor preservation systems and methods
US11813926B2 (en) 2020-08-20 2023-11-14 Denso International America, Inc. Binding agent and olfaction sensor
US11932080B2 (en) 2020-08-20 2024-03-19 Denso International America, Inc. Diagnostic and recirculation control systems and methods

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4046956A (en) * 1976-05-27 1977-09-06 United Technologies Corporation Process for controlling the output of a selective oxidizer
US6010675A (en) * 1992-03-19 2000-01-04 International Fuel Cells Corp. Method of and apparatus for removing carbon monoxide from gaseous media
JP3840677B2 (en) 1994-11-02 2006-11-01 トヨタ自動車株式会社 Fuel cell power generator
GB9720353D0 (en) * 1997-09-25 1997-11-26 Johnson Matthey Plc Hydrogen purification
JPH11255512A (en) * 1998-03-09 1999-09-21 Toyota Motor Corp Apparatus for decreasing carbon monoxide and its driving
US6245214B1 (en) * 1998-09-18 2001-06-12 Alliedsignal Inc. Electro-catalytic oxidation (ECO) device to remove CO from reformate for fuel cell application
JP2000188122A (en) 1998-10-12 2000-07-04 Toyota Motor Corp Carbon monoxide removing device
JP2000154002A (en) 1998-11-18 2000-06-06 Toyota Motor Corp Apparatus for reducing concentration of carbon monoxide in reform gas
US6332901B1 (en) * 1998-10-12 2001-12-25 Toyota Jidosha Kabushiki Kaisha Carbon monoxide reducing device for reducing carbon monoxide in a reformate gas
JP4193257B2 (en) 1998-12-02 2008-12-10 トヨタ自動車株式会社 CO transformer and hydrogen generator
JP2000203804A (en) * 1999-01-14 2000-07-25 Toyota Motor Corp Fuel reformer and reforming of fuel
JP3674441B2 (en) * 2000-02-16 2005-07-20 日産自動車株式会社 Reformer control device
US6916564B2 (en) * 2000-05-31 2005-07-12 Nuvera Fuel Cells, Inc. High-efficiency fuel cell power system with power generating expander
US6921595B2 (en) * 2000-05-31 2005-07-26 Nuvera Fuel Cells, Inc. Joint-cycle high-efficiency fuel cell system with power generating turbine
JP3900823B2 (en) * 2000-11-20 2007-04-04 日産自動車株式会社 Method for stopping fuel reforming system
JP4463437B2 (en) 2001-01-31 2010-05-19 本田技研工業株式会社 Carbon monoxide selective oxidation removal apparatus and carbon monoxide selective oxidation removal method
JP3778101B2 (en) * 2002-02-08 2006-05-24 日産自動車株式会社 Carbon monoxide removal system

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007302533A (en) * 2006-05-12 2007-11-22 Mitsubishi Heavy Ind Ltd Fuel reforming apparatus, fuel cell system, and method for removing co
JP2012014960A (en) * 2010-06-30 2012-01-19 Mitsubishi Heavy Ind Ltd Co removal system and method for co removal

Also Published As

Publication number Publication date
JP3722079B2 (en) 2005-11-30
EP1369382A3 (en) 2005-12-21
US20030185709A1 (en) 2003-10-02
EP1369382A2 (en) 2003-12-10
US7189373B2 (en) 2007-03-13

Similar Documents

Publication Publication Date Title
EP1198020B1 (en) Fuel cell drive system
JP4105758B2 (en) Fuel cell system
JP2003286002A (en) Carbon monoxide removing apparatus
JP2000053403A (en) Controller of reformer
US20060191202A1 (en) Fuel reforming system
JP2002079058A (en) Treatment of combustion exhaust gas of fuel reformer
EP1160902B1 (en) Fuel cell system
JP2005209547A (en) Fuel cell power generator and operating method for fuel cell power generator
JP5598019B2 (en) Fuel cell power generation system
JP4357306B2 (en) Fuel reformer and fuel cell system
JP4450563B2 (en) Fuel cell reformer
JP4634071B2 (en) Fuel cell power generation system
JP3778101B2 (en) Carbon monoxide removal system
JP2007179756A (en) Operation method of fuel battery
JP2006306665A (en) Operation method of hydrogen manufacturing device
JP2009187883A (en) Cell characteristic recovery operation method for fuel cell system
JP4998843B2 (en) Power supply system and control method thereof
JP2002047002A (en) Fuel reformer and method of manufacturing hydrogen
JP2008105892A (en) Stopping method for fuel reformer
JP2008146851A (en) Shutdown method of fuel cell power generating device and fuel cell power generating device
JP2008077973A (en) Fuel cell system and operation method for the fuel cell system
JP2003197234A (en) Fuel cell power generation system and it control method
JP6498531B2 (en) Fuel cell system and operation method thereof
JP2000154002A (en) Apparatus for reducing concentration of carbon monoxide in reform gas
JP2018160428A (en) Method of running fuel cell system

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050530

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050614

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050726

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050823

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050905

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees