JP2009187883A - Cell characteristic recovery operation method for fuel cell system - Google Patents

Cell characteristic recovery operation method for fuel cell system Download PDF

Info

Publication number
JP2009187883A
JP2009187883A JP2008028984A JP2008028984A JP2009187883A JP 2009187883 A JP2009187883 A JP 2009187883A JP 2008028984 A JP2008028984 A JP 2008028984A JP 2008028984 A JP2008028984 A JP 2008028984A JP 2009187883 A JP2009187883 A JP 2009187883A
Authority
JP
Japan
Prior art keywords
fuel cell
fuel
power generation
voltage
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008028984A
Other languages
Japanese (ja)
Inventor
Yoji Nakamori
洋二 中森
Soichiro Shimotori
宗一郎 霜鳥
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Toshiba Energy Systems and Solutions Corp
Original Assignee
Toshiba Corp
Toshiba Fuel Cell Power Systems Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp, Toshiba Fuel Cell Power Systems Corp filed Critical Toshiba Corp
Priority to JP2008028984A priority Critical patent/JP2009187883A/en
Publication of JP2009187883A publication Critical patent/JP2009187883A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Abstract

<P>PROBLEM TO BE SOLVED: To provide a cell characteristic recovery operation method for a fuel cell system, which can recover cell characteristics without decreasing the durability of a fuel cell. <P>SOLUTION: The cell characteristic recovery operation method includes: a fuel cell 2 formed by stacking unit cells; a fuel gas supply means 3 for supplying fuel gas to a fuel electrode 2a; and an oxidant gas supply means 4 for supplying oxidant gas to an oxidant electrode 2b, wherein the method recovers cell characteristics by temporarily more decreasing the cell voltage of the fuel cell 2 than that in the normal power generation. When cell voltage is lowered below the previously set value in normal power generation, operation is changed to the condition in which the cell voltage of the unit cell is lower than that in the normal operation, and no hydrogen is generated in proton reduction reaction in the oxidant electrode 2b. The operation condition is returned to that in the normal power generation before the cell voltage of the unit cell is lowered below 0.1 V. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、例えば固体高分子形燃料電池を用いた燃料電池システムに好適する燃料電池システムの電池特性回復操作方法に関する。   The present invention relates to a method for recovering cell characteristics of a fuel cell system suitable for a fuel cell system using, for example, a polymer electrolyte fuel cell.

周知の通り、燃料電池システムは、燃料改質装置により改質、生成された水素等の燃料ガスと、空気等の酸化剤ガスを燃料電池に供給し、水素と酸素の結合エネルギを燃料電池において直接電気エネルギに変換して外部に取り出す発電装置である。この燃料電池システムは、化学反応による発電であるため、比較的小型であるにもかかわらず発電効率が高く、汚染物質の排出及び騒音が少ない環境性に優れている。さらに、燃料電池システムは、電力の供給と共に、発電に伴い生じ、排出される熱を温水や蒸気として回収することにより、コージェネレーションシステムとしての適用が可能であることから、工場や病院、店舗などの業務用、一般家庭用あるいは自動車用など、幅広い用途への採用が期待されている。   As is well known, a fuel cell system supplies a fuel gas such as hydrogen reformed and generated by a fuel reformer and an oxidant gas such as air to the fuel cell, and combines the combined energy of hydrogen and oxygen in the fuel cell. This is a power generation device that directly converts to electric energy and takes it out. Since this fuel cell system is a power generation based on a chemical reaction, it has a high power generation efficiency despite its relatively small size, and is excellent in environmental performance with less pollutant emission and noise. Furthermore, the fuel cell system can be applied as a cogeneration system by recovering the heat generated and generated as a result of power generation along with the supply of electric power as hot water or steam, so factories, hospitals, stores, etc. It is expected to be used in a wide range of applications such as commercial use, general household use, and automobile use.

こうした燃料電池システムに用いられる燃料電池には、例えば固体高分子形燃料電池があり、これは、高分子電解質膜の両面に燃料極及び酸化剤極を接合した膜電極接合体を、その両側に燃料ガス流路及び酸化剤ガス流路が形成されたセパレータを設けて挟んだ構造を有している。また燃料極及び酸化剤極の一部を構成する触媒層は、白金や白金合金のような金属触媒を担持した炭素担体と高分子電解質との複合体から構成されている。そして、燃料電池は、一般に、このような構造の単電池を多数積層してなるスタックから構成されている。   As a fuel cell used in such a fuel cell system, for example, there is a solid polymer fuel cell, which includes a membrane electrode assembly in which a fuel electrode and an oxidant electrode are bonded on both sides of a polymer electrolyte membrane, on both sides thereof. A separator having a fuel gas channel and an oxidant gas channel is provided and sandwiched. The catalyst layer constituting part of the fuel electrode and the oxidant electrode is composed of a composite of a carbon support carrying a metal catalyst such as platinum or a platinum alloy and a polymer electrolyte. A fuel cell is generally composed of a stack formed by stacking a large number of unit cells having such a structure.

しかし、このような燃料電池システムでは、長時間連続発電することによって徐々に燃料電池の電池特性が低下していく現象が見られる。こうした電池特性が低下する現象には、電池特性が回復可能であるものと回復不可能であるものとがある。   However, in such a fuel cell system, there is a phenomenon in which the cell characteristics of the fuel cell gradually deteriorate due to continuous power generation for a long time. The phenomenon in which the battery characteristics are deteriorated includes those in which the battery characteristics can be recovered and those in which the battery characteristics cannot be recovered.

回復可能な特性低下の一つに酸化剤極内の白金酸化による特性低下が挙げられる。この場合の特性低下を回復させる方法としては、発電中の燃料電池の電池電圧を0.6V以下、好ましくは0.1V以下に一時的に低下させることによって、酸化剤極電位を卑にシフトさせ、酸化剤極に含まれる白金酸化物を白金に還元し、触媒活性を回復させ、電池特性低下を回復させる方法である(例えば、特許文献1参照。)。   One of the recoverable characteristic degradation is characteristic degradation due to platinum oxidation in the oxidizer electrode. As a method of recovering the characteristic deterioration in this case, the cell voltage of the fuel cell during power generation is temporarily reduced to 0.6 V or less, preferably 0.1 V or less, thereby shifting the oxidant electrode potential to the base. In this method, the platinum oxide contained in the oxidizer electrode is reduced to platinum, the catalytic activity is recovered, and the deterioration of battery characteristics is recovered (for example, see Patent Document 1).

しかしながら、こうした方法では、発電中の燃料電池の電池電圧を一時的に低下させる際に電池電圧の低下が過剰であると、酸化剤極でプロトン還元反応が生じて水素が発生することがある。水素の発生が酸化剤極であった場合には、白金触媒上で水素と酸素の直接燃焼反応が起こり、局所的に高温となる部分が生じる虞がある。燃焼反応により局所的に高温となると電解質膜の劣化が加速され、さらに電解質膜の劣化によって燃料電池の耐久性が低下してしまうことが考えられる。
特表2003−536232号公報
However, in such a method, when the battery voltage of the fuel cell during power generation is temporarily reduced, if the battery voltage is excessively reduced, a proton reduction reaction may occur at the oxidant electrode and hydrogen may be generated. When the generation of hydrogen is an oxidant electrode, a direct combustion reaction of hydrogen and oxygen occurs on the platinum catalyst, and there is a possibility that a portion that is locally hot is generated. It is conceivable that when the temperature is locally increased by the combustion reaction, the deterioration of the electrolyte membrane is accelerated, and the durability of the fuel cell is lowered due to the deterioration of the electrolyte membrane.
Special table 2003-536232 gazette

上記のような状況に鑑みて本発明はなされたもので、その目的とするところは燃料電池の電解質膜の劣化を加速させることなく電池特性の回復を行うことができ、また電池特性の回復を行った際に燃料電池の耐久性低下が生じる虞のない燃料電池システムの電池特性回復操作方法を提供することにある。   The present invention has been made in view of the above situation, and the object of the present invention is to recover the battery characteristics without accelerating the deterioration of the electrolyte membrane of the fuel cell, and to recover the battery characteristics. It is an object of the present invention to provide a method for recovering the cell characteristics of a fuel cell system that does not cause a decrease in the durability of the fuel cell when performed.

本発明の燃料電池システムの電池特性回復操作方法は、単電池を積層してなる燃料電池と、この燃料電池の燃料極に燃料ガスを供給する燃料ガス供給手段と、前記燃料電池の酸化剤極に酸化剤ガスを供給する酸化剤ガス供給手段とを備え、前記燃料電池の電池電圧を通常発電時の電池電圧よりも一時的に低下させるようにして電池特性の回復を行うようにした燃料電池システムの電池特性回復操作方法であって、通常発電時に電池電圧が予め設定した値を下回った際、前記単電池の電池電圧が通常発電時よりも低く、かつ前記酸化剤極でプロトン還元反応による水素発生が起こらない電圧となるよう運転条件を変える操作を行って発電を所定時間継続し、前記単電池の電池電圧が0.1Vを下回る前に運転条件を通常発電時の運転条件に戻すようにすることを特徴とする方法である。   A method for recovering battery characteristics of a fuel cell system according to the present invention includes a fuel cell formed by stacking unit cells, a fuel gas supply means for supplying fuel gas to a fuel electrode of the fuel cell, and an oxidant electrode of the fuel cell. And an oxidant gas supply means for supplying an oxidant gas to the fuel cell, wherein the battery voltage is restored by temporarily lowering the battery voltage of the fuel cell from that during normal power generation. A method for recovering battery characteristics of a system, wherein when the battery voltage falls below a preset value during normal power generation, the battery voltage of the unit cell is lower than during normal power generation, and is caused by a proton reduction reaction at the oxidant electrode. The operation condition is changed so that the voltage is such that hydrogen generation does not occur, power generation is continued for a predetermined time, and the operation condition is returned to the operation condition at the time of normal power generation before the battery voltage of the unit cell falls below 0.1V. A method characterized by Unisuru.

また、単電池を積層してなる燃料電池と、この燃料電池の燃料極に燃料ガスを供給する燃料ガス供給手段と、前記燃料電池の酸化剤極に酸化剤ガスを供給する酸化剤ガス供給手段とを備え、前記燃料電池の電池電圧を通常発電時の電池電圧よりも一時的に低下させるようにして電池特性の回復を行うようにした燃料電池システムの電池特性回復操作方法であって、前記燃料電池システムの発電時間が所定の時間を経過するごとに、前記単電池の電池電圧が通常発電時よりも低く、かつ前記酸化剤極でプロトン還元反応による水素発生が起こらない電圧となるよう運転条件を変える操作を行って発電を所定時間継続し、前記単電池の電池電圧が0.1Vを下回る前に運転条件を通常発電時の運転条件に戻すようにすることを特徴とする方法である。   Also, a fuel cell formed by stacking unit cells, fuel gas supply means for supplying fuel gas to the fuel electrode of the fuel cell, and oxidant gas supply means for supplying oxidant gas to the oxidant electrode of the fuel cell A battery characteristic recovery operation method for a fuel cell system, wherein the battery voltage is recovered by temporarily lowering the battery voltage of the fuel cell from the battery voltage during normal power generation, Every time the power generation time of the fuel cell system passes a predetermined time, the battery voltage of the unit cell is lower than that during normal power generation, and the oxidant electrode is operated so as not to generate hydrogen by proton reduction reaction. The method is characterized in that an operation for changing the condition is performed to continue power generation for a predetermined time, and the operating condition is returned to the operating condition at the time of normal power generation before the battery voltage of the unit cell falls below 0.1V. .

さらに、前記運転条件を変える操作が、前記酸化剤極への酸化剤ガスの供給流量を増減する操作であることを特徴とする方法であり、
さらに、前記運転条件を変える操作が、前記燃料電池から外部に取り出す電流量を通常発電時よりも増減する操作であることを特徴とする方法であり、
さらに、前記運転条件を変える操作が、前記燃料極への燃料ガスの供給流量をそれまでの供給量より増加させるようにした後に行なわれることを特徴とする方法である。
Furthermore, the operation for changing the operating conditions is an operation for increasing or decreasing the supply flow rate of the oxidant gas to the oxidant electrode,
Further, the operation for changing the operating condition is an operation for increasing or decreasing the amount of current taken out from the fuel cell as compared with that during normal power generation,
Furthermore, the operation for changing the operating condition is performed after the supply flow rate of the fuel gas to the fuel electrode is increased from the previous supply amount.

本発明によれば、電池電圧を酸化剤極でプロトン還元反応による水素発生が起こらない電圧、かつ通常発電時よりも低い電圧にして電池特性の回復を行うため、発生水素の燃焼反応によって燃料電池の電解質膜が局所的に高温とならず、電解質膜の劣化を加速させてしまうことなく電池特性の回復を行うことができ、その際に燃料電池の耐久性を低下させてしまう虞がない等の効果を奏する。   According to the present invention, since the battery voltage is recovered by setting the battery voltage at a voltage at which no hydrogen is generated by the proton reduction reaction at the oxidizer electrode and lower than that during normal power generation, the fuel cell is recovered by the combustion reaction of the generated hydrogen. The electrolyte membrane does not reach a high temperature locally, battery characteristics can be recovered without accelerating the deterioration of the electrolyte membrane, and there is no risk of reducing the durability of the fuel cell at that time, etc. The effect of.

以下本発明の実施の形態を、図面を参照して説明する。   Embodiments of the present invention will be described below with reference to the drawings.

先ず第1の実施形態を図1乃至図4により説明する。図1は燃料電池システムの概略構成を示す構成図であり、図2は電池特性の回復操作過程を示すフローチャートであり、図3は燃料電池の酸化剤極における水素発生量の酸化剤極電位依存性を示す図であり、図4は燃料電池の酸化剤極における過酸化水素発生量の酸化剤極電位依存性を示す図である。   First, a first embodiment will be described with reference to FIGS. FIG. 1 is a block diagram showing a schematic configuration of a fuel cell system, FIG. 2 is a flowchart showing a process for recovering cell characteristics, and FIG. FIG. 4 is a diagram showing the dependency of the amount of hydrogen peroxide generated on the oxidant electrode of the fuel cell on the oxidant electrode potential.

図1において、燃料電池システム1は、例えば固体高分子形の燃料電池2と、この燃料電池2の燃料極2aに、炭化水素系燃料の原燃料を改質して水素リッチガスを得て水素ガスを供給する燃料改質装置等の燃料ガス供給手段3と、燃料電池2の酸化剤極2bに、外部から空気を取り込み酸化剤ガスの酸素ガスを供給する酸化剤ガス供給手段4と、燃料電池2の電池電圧を監視し、燃料電池2の酸化剤極2bへの酸化剤ガス供給量を制御するようにしながら燃料電池システム1の運転を制御する制御装置5を備えて構成されている。なお、6aは燃料ガス供給管であり、7aは酸化剤ガス供給管である。また6bは燃料極ガス排出管であり、7bは酸化剤極ガス排出管である。   In FIG. 1, a fuel cell system 1 includes, for example, a solid polymer fuel cell 2 and a fuel electrode 2a of the fuel cell 2 that reforms a hydrocarbon-based raw fuel to obtain a hydrogen-rich gas to produce a hydrogen gas. A fuel gas supply means 3 such as a fuel reforming device, an oxidant gas supply means 4 for supplying air from the outside to the oxidant electrode 2b of the fuel cell 2 and supplying oxygen gas of the oxidant gas, and a fuel cell 2, and a controller 5 that controls the operation of the fuel cell system 1 while controlling the amount of oxidant gas supplied to the oxidant electrode 2 b of the fuel cell 2. 6a is a fuel gas supply pipe, and 7a is an oxidant gas supply pipe. Reference numeral 6b denotes a fuel electrode gas discharge pipe, and reference numeral 7b denotes an oxidant electrode gas discharge pipe.

また燃料電池2は、図示しないが単電池を多数積層してなるスタックから構成されており、その燃料極2aと酸化剤極2bとは、一部が白金や白金合金のような金属触媒を担持した炭素担体で構成されており、両極2a,2bの間に高分子電解質でなる電解質膜2cを挟持した構成となっている。そして燃料電池2は、燃料極2aに燃料ガス供給手段3の燃料改質装置等から燃料ガス供給管6aを介し供給された水素リッチガスの水素と、酸化剤極2bに酸化剤ガス供給手段4から酸化剤ガス供給管7aを介し供給された空気の酸素の結合エネルギを直接電気エネルギに変換するようにして発電を行っている。   Although not shown, the fuel cell 2 is composed of a stack formed by stacking a large number of single cells. The fuel electrode 2a and the oxidant electrode 2b partially carry a metal catalyst such as platinum or a platinum alloy. In this structure, an electrolyte membrane 2c made of a polymer electrolyte is sandwiched between the two electrodes 2a and 2b. The fuel cell 2 includes the hydrogen rich gas supplied to the fuel electrode 2a through the fuel gas supply pipe 6a from the fuel reformer of the fuel gas supply means 3 and the oxidant gas supply means 4 to the oxidant electrode 2b. Electricity is generated by directly converting oxygen binding energy of air supplied through the oxidant gas supply pipe 7a into electric energy.

このように構成された燃料電池システム1では、長時間にわたり連続して発電することにより、徐々に燃料電池2の電池特性が低下していく。このため、回復可能な酸化剤極2b内の白金酸化によって生じた電池特性の低下を回復させるべく、制御装置5の制御のもとに、通常の連続発電行っている時に電池電圧が予め設定した電圧値を下回る値となった場合、電池特性の回復操作を行うための運転条件を変える操作が開始、実行される。   In the fuel cell system 1 configured as described above, the battery characteristics of the fuel cell 2 gradually deteriorate due to continuous power generation over a long period of time. For this reason, in order to recover the deterioration of the battery characteristics caused by the platinum oxidation in the recoverable oxidant electrode 2b, the battery voltage is set in advance during normal continuous power generation under the control of the control device 5. When the voltage value falls below the voltage value, an operation for changing the operating condition for performing the battery characteristic recovery operation is started and executed.

すなわち、電池特性を回復する操作は、図2に示すように、先ず第1段階S1で、通常の連続発電を行っている時に、制御装置5で燃料電池2の単電池電圧が予め設定された通常の発電電圧よりも低い所定電圧を下回ったか否かを監視し続ける。そして、単電池電圧が予め設定された所定電圧を下回ったことを制御装置5が検知することによって開始される。   That is, as shown in FIG. 2, the operation for recovering the battery characteristics is performed in the first stage S1, when the normal continuous power generation is performed, the unit cell voltage of the fuel cell 2 is preset by the control device 5. It continues to monitor whether or not it falls below a predetermined voltage lower than the normal generated voltage. And it starts when the control apparatus 5 detects that the cell voltage has fallen below the predetermined voltage set beforehand.

単電池電圧が所定電圧を下回ったことを検知したことで、続く第2段階S2において、制御装置5が酸化剤ガス供給手段4から燃料電池2への酸化剤ガス供給流量を低減させるように運転条件を変更する制御を行う。この際、酸化剤ガス供給流量の低減によって単電池の発電電圧が通常発電電圧よりも低い電圧となるように、望ましくは0.6V以下の電圧となるよう制御する。   By detecting that the unit cell voltage has fallen below the predetermined voltage, the control device 5 is operated so as to reduce the flow rate of the oxidant gas supplied from the oxidant gas supply means 4 to the fuel cell 2 in the subsequent second stage S2. Control to change the condition. At this time, control is performed so that the generated voltage of the unit cell is lower than the normal generated voltage by reducing the flow rate of the oxidant gas supply, and is preferably 0.6 V or less.

さらに、第3段階S3で、制御装置5で監視しながら単電池電圧が通常発電電圧よりも低い電圧とした状態で所定時間運転を続け、単電池電圧が0.1Vを下回る前に、酸化剤ガス供給手段4から燃料電池2への酸化剤ガス供給流量を電池特性の回復操作を開始する前の流量以上に戻すように運転条件を変更する制御を行う。このとき、所定時間を経過するまで単電池電圧が0.1Vを下回らない通常発電電圧よりも低い電圧となるように、酸化剤ガス供給量を増減するよう調整しても良い。このように単電池電圧が0.1Vを下回らない通常発電電圧よりも低い電圧となるように操作することによって、酸化剤極2bに含まれる白金酸化物が還元され、電池特性は回復する。   Further, in the third step S3, the operation is continued for a predetermined time in a state where the unit cell voltage is lower than the normal power generation voltage while being monitored by the control device 5, and before the unit cell voltage falls below 0.1V, the oxidant Control is performed to change the operating condition so that the flow rate of the oxidant gas supplied from the gas supply means 4 to the fuel cell 2 is returned to the flow rate before starting the operation for restoring the battery characteristics. At this time, the oxidant gas supply amount may be adjusted to be increased or decreased so that the unit cell voltage is lower than the normal power generation voltage that does not fall below 0.1 V until a predetermined time elapses. Thus, by operating so that the unit cell voltage becomes a voltage lower than the normal power generation voltage not lower than 0.1 V, the platinum oxide contained in the oxidant electrode 2b is reduced, and the battery characteristics are recovered.

そして、電池特性の回復後、単電池電圧を所要とする通常の発電電圧とし、燃料電池2の通常の発電運転を再開する。   Then, after the battery characteristics are recovered, the normal power generation operation of the fuel cell 2 is resumed by setting the unit cell voltage to a normal power generation voltage.

なお、電池特性の回復操作は、酸化剤ガス供給流量を低減することによって酸化剤極2bの電位が卑にシフトし、酸化剤極2bに含まれる白金酸化物が還元されることに基づいており、図3に横軸に酸化剤極電位、縦軸に水素発生量を取って示すように、酸化剤極2bの電位が0.1Vを下回ると水素発生量が急激に増加し、0.1V以上では水素発生が生じない。このことから、単電池電圧が0.1Vを下回る前に、酸化剤ガス供給流量を電池特性の回復操作を開始する前の流量以上に戻すことで、酸化剤極2bでプロトン還元反応による水素の発生するのを防止することができる。   The operation for recovering the battery characteristics is based on the fact that the potential of the oxidant electrode 2b is shifted to the base by reducing the oxidant gas supply flow rate, and the platinum oxide contained in the oxidant electrode 2b is reduced. As shown in FIG. 3, the horizontal axis represents the oxidant electrode potential and the vertical axis represents the hydrogen generation amount, and when the potential of the oxidant electrode 2b falls below 0.1 V, the hydrogen generation amount rapidly increases to 0.1 V. Thus, hydrogen generation does not occur. From this, before the cell voltage falls below 0.1 V, the oxidant gas supply flow rate is returned to a value higher than the flow rate before starting the battery characteristic recovery operation, so that the oxidant electrode 2b generates hydrogen by proton reduction reaction. It can be prevented from occurring.

そして、回復操作の際に酸化剤極2bでの水素の発生がないことから、酸化剤極2bに供給される酸素による白金触媒上での直接燃焼反応の虞がなくなり、電気化学反応に比較して発熱量の大きい直接燃焼反応により生じる局所的な高温の発生の虞がないことから、電解質膜2cの劣化を防止することができる。   In addition, since there is no generation of hydrogen at the oxidant electrode 2b during the recovery operation, there is no possibility of direct combustion reaction on the platinum catalyst by oxygen supplied to the oxidant electrode 2b, which is compared with the electrochemical reaction. In addition, since there is no possibility of local high temperature generated by the direct combustion reaction having a large calorific value, the deterioration of the electrolyte membrane 2c can be prevented.

一方、燃料電池2の酸化剤極2bに供給される酸素によって酸化剤極2bで酸素還元反応が起こり、その副生成物として過酸化水素が生成される。このように反応の副生成物として生じる過酸化水素については、電解質膜2cの劣化加速に大きな影響を与えることが知られている。   On the other hand, oxygen supplied to the oxidant electrode 2b of the fuel cell 2 causes an oxygen reduction reaction at the oxidant electrode 2b, and hydrogen peroxide is generated as a byproduct. It is known that hydrogen peroxide generated as a by-product of the reaction in this way greatly affects the acceleration of deterioration of the electrolyte membrane 2c.

そこで、電池特性回復の操作を行った際に生成される過酸化水素について測定してみると、図4に横軸に酸化剤極電位、縦軸に過酸化水素生成量を取って示すように、過酸化水素の生成量は酸化剤極2bの電位に依存し、過酸化水素生成量は、酸化剤極2bの電位が0.1Vを下回ると急激に増加する。このことから、単電池電圧が0.1Vを下回らないようにすることで酸化剤極2bにおける急激な過酸化水素の生成を防止することができ、電解質膜2cの劣化の加速を抑制することができる。   Therefore, when measuring the hydrogen peroxide generated when the battery characteristic recovery operation is performed, as shown in FIG. 4, the horizontal axis represents the oxidant electrode potential and the vertical axis represents the hydrogen peroxide generation amount. The amount of hydrogen peroxide generated depends on the potential of the oxidant electrode 2b, and the amount of hydrogen peroxide generated increases rapidly when the potential of the oxidant electrode 2b falls below 0.1V. From this, it is possible to prevent the rapid generation of hydrogen peroxide in the oxidizer electrode 2b by preventing the cell voltage from falling below 0.1V, and to suppress the acceleration of the deterioration of the electrolyte membrane 2c. it can.

その結果、運転条件を変えて電池特性の回復操作を行う際、酸化剤極2bの電位が0.1Vを下回ることがないようにすることで、酸化剤極2bでの水素発生が抑制され、酸化剤極2bにおける水素と酸素とによる直接燃焼反応の発生の虞がなくなり、また、酸化剤極2bでの過酸化水素生成量の急激な増加が抑制される。それにより、燃料電池2の耐久性を低下させてしまう虞がない状態で、電池特性の回復を行うことができる。   As a result, when performing the operation of changing the battery characteristics by changing the operating conditions, hydrogen generation at the oxidant electrode 2b is suppressed by preventing the potential of the oxidant electrode 2b from falling below 0.1V, There is no risk of a direct combustion reaction due to hydrogen and oxygen at the oxidant electrode 2b, and a rapid increase in the amount of hydrogen peroxide produced at the oxidant electrode 2b is suppressed. Thereby, the battery characteristics can be recovered in a state where there is no possibility that the durability of the fuel cell 2 is lowered.

なお、本実施形態では、電池特性を回復する操作は予め設定した電圧値を下回る値となったことを制御装置5が検知することによって開始されるとしたが、必ずしもその通りである必要はなく、予め設定した時間ごとに電池特性回復操作を開始してもよい。その際は通常発電時に電池電圧を監視する必要はなく、それによってシステムの簡素化が図れる。また、各々の単電池電圧は直接測定するのではなく、単電池を積層してなるスタックの電圧から平均値として算出してもよい。   In the present embodiment, the operation for recovering the battery characteristics is started when the control device 5 detects that the value is lower than a preset voltage value. However, this is not necessarily the case. The battery characteristic recovery operation may be started every preset time. In that case, it is not necessary to monitor the battery voltage during normal power generation, thereby simplifying the system. Further, each cell voltage may not be directly measured, but may be calculated as an average value from the voltage of a stack formed by stacking unit cells.

第2の実施形態を図5及び図6によると共に、図3及び図4を参照するようにして説明する。図5は燃料電池システムの概略構成を示す構成図であり、図6は電池特性の回復操作過程を示すフローチャートである。なお、第1の実施形態と同一部分には同一符号を付して説明を省略し、第1の実施形態と異なる本実施形態の構成について説明する。   A second embodiment will be described with reference to FIGS. 5 and 6 and with reference to FIGS. FIG. 5 is a block diagram showing a schematic configuration of the fuel cell system, and FIG. 6 is a flowchart showing a process for recovering battery characteristics. In addition, the same code | symbol is attached | subjected to the same part as 1st Embodiment, description is abbreviate | omitted, and the structure of this embodiment different from 1st Embodiment is demonstrated.

図5において、燃料電池システム11は、例えば固体高分子形の燃料電池2と、この燃料電池2の燃料極2aに燃料ガスの水素ガスを供給する燃料ガス供給手段3と、燃料電池2の酸化剤極2bに酸化剤ガスの酸素ガスを供給する酸化剤ガス供給手段4と、燃料電池2の電池電圧を監視し、燃料電池2から取り出される電流量を制御しながら燃料電池システム11の運転を制御する制御装置12を備えて構成されている。   In FIG. 5, the fuel cell system 11 includes, for example, a polymer electrolyte fuel cell 2, a fuel gas supply means 3 for supplying hydrogen gas as fuel gas to the fuel electrode 2 a of the fuel cell 2, and an oxidation of the fuel cell 2. The oxidant gas supply means 4 for supplying oxygen gas of the oxidant gas to the agent electrode 2b and the battery voltage of the fuel cell 2 are monitored, and the operation of the fuel cell system 11 is controlled while controlling the amount of current taken from the fuel cell 2. A control device 12 for controlling is provided.

このように構成された燃料電池システム11では、燃料電池2において、燃料極2aに燃料改質装置等の燃料ガス供給手段3から燃料ガス供給管6aを介し供給された水素リッチガスの水素と、酸化剤極2bに酸化剤ガス供給手段4から酸化剤ガス供給管7aを介し供給された空気の酸素の結合エネルギを、直接電気エネルギに変換するようにして発電が行なわれる。   In the fuel cell system 11 configured as described above, in the fuel cell 2, the hydrogen rich gas supplied to the fuel electrode 2a from the fuel gas supply means 3 such as a fuel reformer via the fuel gas supply pipe 6a and the oxidation Electricity is generated by directly converting the oxygen binding energy of the air supplied from the oxidant gas supply means 4 to the agent electrode 2b through the oxidant gas supply pipe 7a into electric energy.

そして、長時間にわたり連続して発電することにより、徐々に燃料電池2の電池特性が低下していく。このため、回復可能な酸化剤極2b内の白金酸化によって生じた電池特性の低下を回復させるべく、制御装置12の制御のもとに、通常の連続発電行っている時に電池電圧が予め設定した電圧値を下回る値となった場合、電池特性の回復操作を行うための運転条件を変える操作が開始、実行される。   And the battery characteristic of the fuel cell 2 gradually deteriorates by continuously generating power for a long time. Therefore, in order to recover the deterioration of the battery characteristics caused by the platinum oxidation in the recoverable oxidizer electrode 2b, the battery voltage is set in advance during normal continuous power generation under the control of the control device 12. When the voltage value falls below the voltage value, an operation for changing the operating condition for performing the battery characteristic recovery operation is started and executed.

すなわち、電池特性を回復する操作は、図6に示すように、先ず第1段階S11で、通常の連続発電を行っている時に、制御装置12で燃料電池2の単電池電圧が予め設定された通常の発電電圧よりも低い所定電圧を下回ったか否かを監視し続ける。そして、単電池電圧が予め設定された所定電圧を下回ったことを制御装置12が検知することによって開始される。   That is, as shown in FIG. 6, the operation for recovering the battery characteristics is performed in the first stage S11 when the normal continuous power generation is performed, and the unit cell voltage of the fuel cell 2 is preset by the control device 12. It continues to monitor whether or not it falls below a predetermined voltage lower than the normal generated voltage. And it starts when the control apparatus 12 detects that the cell voltage has fallen below the predetermined voltage set beforehand.

単電池電圧が所定電圧を下回ったことを検知したことで、続く第2段階S12において、制御装置12が、その時点の通常発電において燃料電池2から取り出されている電流量よりも増加した電流量が外部に取り出されるように運転条件を変更する制御を行う。この際、燃料電池2からの取り出し電流量の増加によって単電池の発電電圧が通常発電電圧よりも低い電圧となるように、望ましくは0.6V以下の電圧となるよう制御する。さらに、望ましくは燃料電池2から取り出される電流量を増加させるよう運転条件を変更する前に、燃料ガス供給手段3を制御して燃料ガス供給流量を、電流量を増加させられるよう運転条件変更時点までの燃料ガス供給流量よりも増加させる。望ましくは、運転条件変更時点後電流量を増加したときに、その電流量から計算される消費燃料ガス流量以上に燃料ガス供給量を増加する。   By detecting that the unit cell voltage has fallen below the predetermined voltage, in the subsequent second stage S12, the control device 12 increases the amount of current that is larger than the amount of current extracted from the fuel cell 2 in the normal power generation at that time. Control is performed to change the operating conditions so that is extracted to the outside. At this time, the control is performed so that the generated voltage of the single cell is lower than the normal generated voltage by increasing the amount of current taken out from the fuel cell 2, preferably 0.6 V or less. Further, preferably, before changing the operating condition so as to increase the amount of current taken from the fuel cell 2, the fuel gas supply means 3 is controlled to change the fuel gas supply flow rate so that the current amount can be increased. Increase the fuel gas supply flow rate up to. Desirably, when the current amount is increased after the operating condition is changed, the fuel gas supply amount is increased beyond the consumed fuel gas flow rate calculated from the current amount.

さらに、第3段階S13で、制御装置12で監視しながら単電池電圧が通常発電電圧よりも低い電圧とした状態で所定時間運転を続け、単電池電圧が0.1Vを下回る前に、燃料電池2からの取り出し電流量を電池特性の回復操作開始前に取り出されていた電流量以下に戻すように運転条件を変更する制御を行う。このとき、所定時間を経過するまで単電池電圧が0.1Vを下回らない通常発電電圧よりも低い電圧となるように、電流量を増減するよう調整しても良い。このように単電池電圧が0.1Vを下回らない電圧、かつ通常発電電圧よりも低い電圧となるように操作することによって、酸化剤極2bに含まれる白金酸化物が還元され、電池特性は回復する。   Further, in the third step S13, the operation is continued for a predetermined time while the unit cell voltage is lower than the normal power generation voltage while being monitored by the control device 12, and before the unit cell voltage falls below 0.1V, the fuel cell Control is performed to change the operating condition so that the amount of current taken out from 2 is returned to the amount of current taken out before the start of the battery characteristic recovery operation. At this time, the current amount may be adjusted to increase or decrease so that the unit cell voltage is lower than the normal power generation voltage that does not fall below 0.1 V until a predetermined time elapses. By operating the cell voltage so that the cell voltage does not fall below 0.1V and lower than the normal power generation voltage, platinum oxide contained in the oxidizer electrode 2b is reduced, and the battery characteristics are recovered. To do.

そして、電池特性の回復後、単電池電圧を所要とする通常の発電電圧とし、燃料電池2の通常の発電運転を再開する。   Then, after the battery characteristics are recovered, the normal power generation operation of the fuel cell 2 is resumed by setting the unit cell voltage to a normal power generation voltage.

なお、電池特性の回復操作は、上記の第1の実施形態と同様に、運転条件を変えて電池特性の回復操作を行う際、酸化剤極2bの電位が0.1Vを下回ることがないようにすることで、図3に示されるように酸化剤極2bでの水素の発生が抑制され、酸化剤極2bの酸素による白金触媒上での直接燃焼反応の虞がなくなり、局所的な高温の発生の虞がないことから、電解質膜2cの劣化を防止することができる。さらに、図4に示されるように酸化剤極2bでの急激な過酸化水素の生成が防止できることから、電解質膜2cの劣化の加速を抑制することができる。その結果、燃料電池2の耐久性を低下させてしまう虞がない状態で、電池特性の回復を行うことができる。   Note that the battery characteristic recovery operation is performed so that the potential of the oxidizer electrode 2b does not fall below 0.1 V when the battery characteristic recovery operation is performed under different operating conditions, as in the first embodiment. As shown in FIG. 3, generation of hydrogen at the oxidant electrode 2b is suppressed, and there is no possibility of direct combustion reaction on the platinum catalyst due to oxygen at the oxidant electrode 2b. Since there is no possibility of the occurrence, deterioration of the electrolyte membrane 2c can be prevented. Furthermore, as shown in FIG. 4, since the rapid generation of hydrogen peroxide at the oxidant electrode 2b can be prevented, acceleration of deterioration of the electrolyte membrane 2c can be suppressed. As a result, the battery characteristics can be recovered in a state where there is no risk of reducing the durability of the fuel cell 2.

また、こうした燃料電池2から取り出される電気量をそれ以前よりも増加させるようにして行われる電池特性回復操作においては、その電池電圧の応答性は、上記の第1の実施形態における酸化剤ガス供給流量を制御する回復操作での電池電圧の応答性よりも速く、短い時間で電池特性回復操作を行うことができる。   Further, in the battery characteristic recovery operation performed so as to increase the amount of electricity taken out from the fuel cell 2 as compared with before, the responsiveness of the battery voltage is determined by the supply of the oxidant gas in the first embodiment. The battery characteristic recovery operation can be performed in a shorter time than the battery voltage response in the recovery operation for controlling the flow rate.

なお、本実施形態では、電池特性を回復する操作は予め設定した電圧値を下回る値となったことを制御装置12が検知することによって開始されるとしたが、必ずしもその通りである必要はなく、予め設定した時間ごとに電池特性回復操作を開始してもよい。その際は通常発電時に電池電圧を監視する必要はなく、それによってシステムの簡素化が図れる。また、各々の単電池電圧は直接測定するのではなく、単電池を積層してなるスタックの電圧から平均値として算出してもよい。   In the present embodiment, the operation for restoring the battery characteristics is started when the control device 12 detects that the value is lower than a preset voltage value. However, this is not necessarily the case. The battery characteristic recovery operation may be started every preset time. In that case, it is not necessary to monitor the battery voltage during normal power generation, thereby simplifying the system. Further, each cell voltage may not be directly measured, but may be calculated as an average value from the voltage of a stack formed by stacking unit cells.

本発明の第1の実施形態における燃料電池システムの概略構成を示す構成図である。It is a block diagram which shows schematic structure of the fuel cell system in the 1st Embodiment of this invention. 本発明の第1の実施形態における電池特性の回復操作過程を示すフローチャートである。3 is a flowchart illustrating a battery characteristic recovery operation process in the first embodiment of the present invention. 本発明の第1の実施形態に係る燃料電池の酸化剤極における水素発生量の酸化剤極電位依存性を示す図である。It is a figure which shows the oxidizing agent electrode potential dependence of the hydrogen generation amount in the oxidizing agent electrode of the fuel cell which concerns on the 1st Embodiment of this invention. 本発明の第1の実施形態に係る燃料電池の酸化剤極における過酸化水素生成量の酸化剤極電位依存性を示す図である。It is a figure which shows the oxidizing agent electrode potential dependence of the hydrogen peroxide production amount in the oxidizing agent electrode of the fuel cell which concerns on the 1st Embodiment of this invention. 本発明の第2の実施形態における燃料電池システムの概略構成を示す構成図である。It is a block diagram which shows schematic structure of the fuel cell system in the 2nd Embodiment of this invention. 本発明の第2の実施形態における電池特性の回復操作過程を示すフローチャートである。6 is a flowchart illustrating a battery characteristic recovery operation process according to a second embodiment of the present invention.

符号の説明Explanation of symbols

1,11…燃料電池システム
2…燃料電池
2a…燃料極
2b…酸化剤極
3…燃料ガス供給手段
4…酸化剤ガス供給手段
5,12…制御装置
DESCRIPTION OF SYMBOLS 1,11 ... Fuel cell system 2 ... Fuel cell 2a ... Fuel electrode 2b ... Oxidant electrode 3 ... Fuel gas supply means 4 ... Oxidant gas supply means 5, 12 ... Control device

Claims (5)

単電池を積層してなる燃料電池と、この燃料電池の燃料極に燃料ガスを供給する燃料ガス供給手段と、前記燃料電池の酸化剤極に酸化剤ガスを供給する酸化剤ガス供給手段とを備え、前記燃料電池の電池電圧を通常発電時の電池電圧よりも一時的に低下させるようにして電池特性の回復を行うようにした燃料電池システムの電池特性回復操作方法であって、
通常発電時に電池電圧が予め設定した値を下回った際、前記単電池の電池電圧が通常発電時よりも低く、かつ前記酸化剤極でプロトン還元反応による水素発生が起こらない電圧となるよう運転条件を変える操作を行って発電を所定時間継続し、前記単電池の電池電圧が0.1Vを下回る前に運転条件を通常発電時の運転条件に戻すようにすることを特徴とする燃料電池システムの電池特性回復操作方法。
A fuel cell formed by stacking unit cells; fuel gas supply means for supplying fuel gas to the fuel electrode of the fuel cell; and oxidant gas supply means for supplying oxidant gas to the oxidant electrode of the fuel cell. A battery characteristic recovery operation method for a fuel cell system, wherein the battery voltage is recovered by temporarily lowering the battery voltage of the fuel cell from that during normal power generation,
Operating conditions so that when the battery voltage falls below a preset value during normal power generation, the battery voltage of the unit cell is lower than that during normal power generation and does not cause hydrogen generation by proton reduction reaction at the oxidant electrode. The fuel cell system is characterized in that power generation is continued for a predetermined time by changing the operating condition, and the operating condition is returned to the operating condition during normal power generation before the battery voltage of the unit cell falls below 0.1V. Battery characteristics recovery operation method.
単電池を積層してなる燃料電池と、この燃料電池の燃料極に燃料ガスを供給する燃料ガス供給手段と、前記燃料電池の酸化剤極に酸化剤ガスを供給する酸化剤ガス供給手段とを備え、前記燃料電池の電池電圧を通常発電時の電池電圧よりも一時的に低下させるようにして電池特性の回復を行うようにした燃料電池システムの電池特性回復操作方法であって、
前記燃料電池システムの発電時間が所定の時間を経過するごとに、前記単電池の電池電圧が通常発電時よりも低く、かつ前記酸化剤極でプロトン還元反応による水素発生が起こらない電圧となるよう運転条件を変える操作を行って発電を所定時間継続し、前記単電池の電池電圧が0.1Vを下回る前に運転条件を通常発電時の運転条件に戻すようにすることを特徴とする燃料電池システムの電池特性回復操作方法。
A fuel cell formed by stacking unit cells; fuel gas supply means for supplying fuel gas to the fuel electrode of the fuel cell; and oxidant gas supply means for supplying oxidant gas to the oxidant electrode of the fuel cell. A battery characteristic recovery operation method for a fuel cell system, wherein the battery voltage is recovered by temporarily lowering the battery voltage of the fuel cell from that during normal power generation,
Each time the power generation time of the fuel cell system exceeds a predetermined time, the cell voltage of the unit cell is lower than that during normal power generation, and the oxidant electrode has a voltage at which hydrogen generation due to proton reduction reaction does not occur. A fuel cell characterized in that an operation for changing the operating condition is performed to continue power generation for a predetermined time, and the operating condition is returned to the operating condition during normal power generation before the battery voltage of the unit cell falls below 0.1V. System battery characteristics recovery operation method.
前記運転条件を変える操作が、前記酸化剤極への酸化剤ガスの供給流量を増減する操作であることを特徴とする請求項1または請求項2記載の燃料電池システムの電池特性回復操作方法。   3. The method for recovering battery characteristics of a fuel cell system according to claim 1, wherein the operation for changing the operating condition is an operation for increasing or decreasing a supply flow rate of the oxidant gas to the oxidant electrode. 前記運転条件を変える操作が、前記燃料電池から外部に取り出す電流量を通常発電時よりも増減する操作であることを特徴とする請求項1または請求項2記載の燃料電池システムの電池特性回復操作方法。   3. The operation for recovering battery characteristics of a fuel cell system according to claim 1, wherein the operation for changing the operating condition is an operation for increasing / decreasing an amount of current taken out from the fuel cell more than that during normal power generation. Method. 前記運転条件を変える操作が、前記燃料極への燃料ガスの供給流量をそれまでの供給量より増加させるようにした後に行なわれることを特徴とする請求項4記載の燃料電池システムの電池特性回復操作方法。   5. The battery characteristic recovery of a fuel cell system according to claim 4, wherein the operation for changing the operating condition is performed after the supply flow rate of the fuel gas to the fuel electrode is increased from the supply amount so far. Method of operation.
JP2008028984A 2008-02-08 2008-02-08 Cell characteristic recovery operation method for fuel cell system Pending JP2009187883A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008028984A JP2009187883A (en) 2008-02-08 2008-02-08 Cell characteristic recovery operation method for fuel cell system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008028984A JP2009187883A (en) 2008-02-08 2008-02-08 Cell characteristic recovery operation method for fuel cell system

Publications (1)

Publication Number Publication Date
JP2009187883A true JP2009187883A (en) 2009-08-20

Family

ID=41070910

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008028984A Pending JP2009187883A (en) 2008-02-08 2008-02-08 Cell characteristic recovery operation method for fuel cell system

Country Status (1)

Country Link
JP (1) JP2009187883A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013080463A1 (en) * 2011-11-28 2013-06-06 トヨタ自動車株式会社 Fuel cell system and method for controlling fuel cell system
JP2013125638A (en) * 2011-12-14 2013-06-24 Honda Motor Co Ltd Operational method of fuel cell
CN103683349A (en) * 2012-09-12 2014-03-26 上海恒劲动力科技有限公司 Spare voltage stabilization hydrogen energy power supply system

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005340022A (en) * 2004-05-27 2005-12-08 Matsushita Electric Ind Co Ltd Aging method and manufacturing method of fuel cell
JP2007103115A (en) * 2005-10-03 2007-04-19 Nissan Motor Co Ltd Fuel cell system

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005340022A (en) * 2004-05-27 2005-12-08 Matsushita Electric Ind Co Ltd Aging method and manufacturing method of fuel cell
JP2007103115A (en) * 2005-10-03 2007-04-19 Nissan Motor Co Ltd Fuel cell system

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013080463A1 (en) * 2011-11-28 2013-06-06 トヨタ自動車株式会社 Fuel cell system and method for controlling fuel cell system
JP2013114855A (en) * 2011-11-28 2013-06-10 Toyota Motor Corp Fuel cell system and fuel cell system controlling method
US20140335433A1 (en) * 2011-11-28 2014-11-13 Toyota Jidosha Kabushiki Kaisha Fuel cell system and control method of fuel cell system
JP2013125638A (en) * 2011-12-14 2013-06-24 Honda Motor Co Ltd Operational method of fuel cell
CN103683349A (en) * 2012-09-12 2014-03-26 上海恒劲动力科技有限公司 Spare voltage stabilization hydrogen energy power supply system

Similar Documents

Publication Publication Date Title
KR100961838B1 (en) External reforming type molten carbonate fuel cell system
JP4782241B2 (en) Fuel cell power generation system
JP5081574B2 (en) Operation method when load of fuel cell system increases
JP2007103115A (en) Fuel cell system
WO2020138338A1 (en) Fuel cell activation method and apparatus
JP4463846B2 (en) Hydrogen production power generation system
JP5173326B2 (en) Fuel cell system and operation method thereof
JP2008525980A (en) Startup and shutdown procedures for operating the fuel cell assembly
JP2009048854A (en) Fuel cell power generating device and its control method
JP2009187883A (en) Cell characteristic recovery operation method for fuel cell system
JP4727642B2 (en) Operation method of hydrogen production power generation system
JP2009104885A (en) Operation method on load decrease of fuel cell system
JP5215527B2 (en) Operation method of fuel cell
JP2009110666A (en) Fuel cell system and its control method
JP5520905B2 (en) Operation method of fuel cell power generation system
JP4969955B2 (en) Fuel cell system and power generation stopping method thereof
JP5366066B2 (en) Fuel cell power generation system and power generation start method thereof
JP2005285593A (en) Method for operating fuel cell generator
JP4998843B2 (en) Power supply system and control method thereof
JP2009076328A (en) Fuel cell power generation system and its control method
JP2009117170A (en) Hydrogen and power generating system, and load following power generation method therein
JP6498531B2 (en) Fuel cell system and operation method thereof
JP5265032B2 (en) Fuel cell system and power generation stopping method thereof
JP4246053B2 (en) Starting method of fuel cell power generation system
JP5592760B2 (en) Fuel cell power generation system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100311

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20110421

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120717

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120911

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130312

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130416

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20130521