JP2009076328A - Fuel cell power generation system and its control method - Google Patents

Fuel cell power generation system and its control method Download PDF

Info

Publication number
JP2009076328A
JP2009076328A JP2007244391A JP2007244391A JP2009076328A JP 2009076328 A JP2009076328 A JP 2009076328A JP 2007244391 A JP2007244391 A JP 2007244391A JP 2007244391 A JP2007244391 A JP 2007244391A JP 2009076328 A JP2009076328 A JP 2009076328A
Authority
JP
Japan
Prior art keywords
fuel
flow rate
reformer
blower
fuel cell
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007244391A
Other languages
Japanese (ja)
Other versions
JP5198019B2 (en
Inventor
Noritoshi Sanagi
徳寿 佐薙
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Toshiba Energy Systems and Solutions Corp
Original Assignee
Toshiba Corp
Toshiba Fuel Cell Power Systems Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp, Toshiba Fuel Cell Power Systems Corp filed Critical Toshiba Corp
Priority to JP2007244391A priority Critical patent/JP5198019B2/en
Publication of JP2009076328A publication Critical patent/JP2009076328A/en
Application granted granted Critical
Publication of JP5198019B2 publication Critical patent/JP5198019B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Fuel Cell (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a fuel cell power generation system in which system reliability is improved by maintaining an appropriate fuel flow rate, and its control method. <P>SOLUTION: The fuel cell power generation system consists of a reformer 1, a fuel cell stack 2, and an electric control device 3. The electric control device 3 is to monitor temperature of the reformer 1 obtained from a reformer temperature sensor 7, cell current of the fuel cell main body 2, the number of rotations of a fuel blower 4 and a reforming water pump 5, and fuel system pressure obtained by a fuel cell system pressure sensor 8, and based on these, decides the number of rotations of the fuel blower 4 to carry out adjustment of a fuel flow rate. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、燃料電池発電システム及びその制御方法に係り、特に、燃料電池スタックの信頼性を向上させる技術の改良に関する。   The present invention relates to a fuel cell power generation system and a control method thereof, and more particularly to improvement of a technique for improving the reliability of a fuel cell stack.

燃料電池は電解質の違い等により様々なタイプのものに分類されるが、電解質に固体高分子電解質膜を用いた固体高分子形燃料電池は、低温動作性や高出力密度等の特徴から、一般家庭用を視野に入れた小型コージェネレーションシステムや電気自動車用の動力源としての用途に適しており、今後、市場規模が急激に拡大しているタイプの燃料電池である。   Fuel cells are classified into various types depending on the difference in electrolytes, etc., but solid polymer fuel cells using a solid polymer electrolyte membrane as the electrolyte are generally used because of their low-temperature operability and high output density. This type of fuel cell is suitable for use as a power source for small-sized cogeneration systems and electric vehicles for household use, and the market scale is rapidly expanding in the future.

この固体高分子形燃料電池は、一般家庭用の定置用小型コージェネレーションシステムを例にとると、改質器と、燃料電池スタックと、電気制御装置及び熱利用系とからなる。改質器は、都市ガスやLPG等に代表される炭化水素系燃料から水素含有ガスを製造するものである。燃料電池スタックは、COシフト変成装置とCO選択酸化装置とで製造された副生ガスとしてCO2 、CO及びN2 が含まれる主成分をH2 とする水素リッチガスと、大気中の空気と、を燃料極および酸化剤極にそれぞれ供給して起電力を発生させるものである。そして、電気制御装置は、燃料電池スタックで発生した電気エネルギーを外部負荷に供給するものであり、熱利用系は、発電に伴う発熱を回収するものである。 This solid polymer fuel cell is composed of a reformer, a fuel cell stack, an electric control device, and a heat utilization system, taking a stationary small cogeneration system for home use as an example. The reformer produces a hydrogen-containing gas from a hydrocarbon fuel represented by city gas, LPG, or the like. The fuel cell stack includes a hydrogen-rich gas containing H 2 as a main component containing CO 2 , CO, and N 2 as a by-product gas produced by a CO shift converter and a CO selective oxidizer, air in the atmosphere, Are supplied to the fuel electrode and the oxidant electrode, respectively, to generate an electromotive force. The electric control device supplies electric energy generated in the fuel cell stack to an external load, and the heat utilization system recovers heat generated by power generation.

このような燃料電池発電システムにおいては、燃料流量計を有しないものがあり、この場合、燃料流量制御は、発電中は電池電流などから基準の燃料ブロワ回転数を与え、改質器温度で補正を加えることによって行っている(特許文献1及び2参照)。また、起動中は改質器バーナ点火、昇温などの各ステートで各々基準の燃料ブロワ回転数を与えている。
特開2004−047438号公報 特開2001−126748号公報
Some of such fuel cell power generation systems do not have a fuel flow meter. In this case, fuel flow control gives a reference fuel blower rotation speed from the battery current during power generation, and is corrected by the reformer temperature. (See Patent Documents 1 and 2). Further, during start-up, a reference fuel blower rotational speed is given in each state such as reformer burner ignition and temperature rise.
JP 2004-047438 A JP 2001-126748 A

しかしながら、上記のような従来の燃料ブロワ回転数に対する補正を改質器温度で行うだけでは、燃料ブロワ能力の個体差および燃料系圧力損失の個体差を補うことができず、発電中の燃料流量を適切に維持することが困難であった。起動中においても改質器温度のみでは、発電中と同様、燃料ブロワ能力の個体差および燃料系圧力損失の個体差を補うことができず、起動中の燃料流量を適切に保つことが困難であった。   However, merely performing correction for the conventional fuel blower rotation speed as described above at the reformer temperature cannot compensate for individual differences in fuel blower capacity and individual differences in fuel system pressure loss. It was difficult to maintain properly. Even during start-up, the reformer temperature alone cannot compensate for individual differences in fuel blower capacity and individual differences in fuel system pressure loss, just as during power generation, and it is difficult to maintain an appropriate fuel flow during start-up. there were.

燃料流量を適切に保つことができない場合、電池本体への水素供給量が適切になされなくなり、燃料電池発電システムが発電継続できなくなるだけでなく、電池本体などの主要機器に回復不能な損傷を与える可能性も考えられる。   If the fuel flow rate cannot be maintained properly, the amount of hydrogen supplied to the battery body will not be properly maintained, the fuel cell power generation system will not be able to continue generating electricity, and it will permanently damage the main equipment such as the battery body. There is a possibility.

さらに、起動中においても燃料流量を適切に保つことができない場合には、改質器バーナ点火の失敗によってシステムの起動ができないだけでなく、改質器バーナへ過大な燃料が導入することによって生じる不完全燃焼が発生する可能性がある。   Furthermore, if the fuel flow rate cannot be maintained properly even during start-up, not only the system cannot be started due to the failure of the reformer burner, but also caused by introducing excessive fuel into the reformer burner. Incomplete combustion may occur.

本発明は、上記課題を解決するためになされたものであり、その目的は、燃料流量を適切に保つことでシステムの信頼性を向上させる燃料電池発電システム及びその制御方法を提供することにある。   The present invention has been made to solve the above problems, and an object of the present invention is to provide a fuel cell power generation system and a control method therefor that improve the reliability of the system by keeping the fuel flow rate appropriate. .

以上の課題を解決するため、本発明は、炭化水素を含む原燃料ガスから水素リッチな改質ガスを生成するための改質器と、この改質器で得られた前記改質ガスを燃料ガスとして用い、この燃料ガスと酸化剤ガスとの電気化学反応により電気エネルギーを発生する燃料電池スタックと、前記燃料電池スタックに供給される前記燃料ガス及び酸化剤ガスの流量を燃料ブロワ及び酸化剤ブロワを制御して調整する電気制御装置とからなり、燃料流量センサを備えない燃料電池発電システムにおいて、前記改質器に改質器温度センサを備え、前記改質器に前記燃料ガスを供給する系に燃料系圧力センサを備え、前記改質器温度センサから得られる改質器温度と、予め設定した改質器温度設定値とから改質器温度補正係数を算出する手段と、前記燃料電池スタックから得られる電池電流に、前記改質器温度補正係数を乗じて、燃料流量設定値を算出する手段と、前記燃料ブロワの回転数から得られる燃料流量を基準算出値としてこの値に、前記燃料系圧力センサから得られる燃料系圧力から決まる燃料系圧力補正係数を乗じて、燃料流量を算出する手段と、前記燃料流量設定値と燃料流量との偏差から、前記燃料ブロワ回転数を求める手段と、を備えることを特徴とする。   In order to solve the above problems, the present invention provides a reformer for generating a hydrogen-rich reformed gas from a raw fuel gas containing hydrocarbons, and the reformed gas obtained by the reformer as a fuel. A fuel cell stack that generates electric energy by an electrochemical reaction between the fuel gas and an oxidant gas, and a flow rate of the fuel gas and the oxidant gas supplied to the fuel cell stack. And a fuel cell power generation system that does not include a fuel flow sensor, and that includes a reformer temperature sensor in the reformer and supplies the fuel gas to the reformer. A fuel system pressure sensor in the system, means for calculating a reformer temperature correction coefficient from a reformer temperature obtained from the reformer temperature sensor and a preset reformer temperature setting value; and The battery current obtained from the stack is multiplied by the reformer temperature correction coefficient to calculate a fuel flow rate setting value, and the fuel flow rate obtained from the rotational speed of the fuel blower is used as a reference calculation value to this value. Means for calculating a fuel flow rate by multiplying by a fuel system pressure correction coefficient determined from a fuel system pressure obtained from a fuel system pressure sensor; and means for determining the fuel blower rotational speed from a deviation between the fuel flow rate set value and the fuel flow rate And.

以上のような本発明によれば、燃料流量の算出に燃料ブロワの回転数だけでなく、改質蒸気量と燃料系圧力により補正を適切に施すことで、精度良く燃料流量を算出可能である。また、発電中の各状態量の関係と、起動中および起動前の各状態量の関係を発電中と起動中の相互に有効活用することで、システムの個体差を把握し、これに応じた燃料ブロワ回転数を与えることができる。これにより、燃料流量センサがなくとも、改質器温度と燃料系圧力によって燃料流量を適切に算出可能であり、システムの信頼性を向上させることが可能となる。   According to the present invention as described above, it is possible to accurately calculate the fuel flow rate by appropriately correcting not only the rotational speed of the fuel blower but also the reformed steam amount and the fuel system pressure in calculating the fuel flow rate. . In addition, by effectively utilizing the relationship between each state quantity during power generation and each state quantity during startup and before startup, the individual differences in the system can be grasped and responded accordingly. The fuel blower speed can be provided. Thereby, even if there is no fuel flow sensor, the fuel flow can be appropriately calculated based on the reformer temperature and the fuel system pressure, and the reliability of the system can be improved.

本発明によれば、燃料流量を適切に保つことでシステムの信頼性を向上させる燃料電池発電システム及びその制御方法を提供することができる。   ADVANTAGE OF THE INVENTION According to this invention, the fuel cell power generation system which improves the reliability of a system by maintaining a fuel flow rate appropriately, and its control method can be provided.

以下、本発明に係る代表的な実施形態(以下、本実施形態という。)について、図1及び2を参照して具体的に説明する。図1は、本実施形態における燃料電池発電システムの構成を示すブロック図であり、図2は本実施形態における燃料電池発電システムの制御ロジック図である。   Hereinafter, a typical embodiment (hereinafter referred to as this embodiment) according to the present invention will be specifically described with reference to FIGS. FIG. 1 is a block diagram showing a configuration of a fuel cell power generation system in the present embodiment, and FIG. 2 is a control logic diagram of the fuel cell power generation system in the present embodiment.

[構成]
図1において、本実施形態の燃料電池発電システムは、改質器1と、燃料電池スタック2と、電気制御装置3とからなる。改質器1は、都市ガスやLPG等に代表される炭化水素系燃料から水素リッチな改質ガスを製造し、燃料電池スタック2に供給するものである。この燃料電池スタック2に供給される水素量を適切に維持するために、燃料ブロワ4により適正量の原燃料がシステムに供給される。また、燃料電池発電システムの起動中においては、改質器1のバーナ室に対して、燃料ブロワ4により原燃料が供給されるとともに、空気ブロワ6によって空気が供給され、適切な空燃比により燃焼する。
[Constitution]
In FIG. 1, the fuel cell power generation system of this embodiment includes a reformer 1, a fuel cell stack 2, and an electric control device 3. The reformer 1 produces hydrogen-rich reformed gas from a hydrocarbon-based fuel typified by city gas or LPG and supplies it to the fuel cell stack 2. In order to appropriately maintain the amount of hydrogen supplied to the fuel cell stack 2, an appropriate amount of raw fuel is supplied to the system by the fuel blower 4. Further, during startup of the fuel cell power generation system, raw fuel is supplied to the burner chamber of the reformer 1 by the fuel blower 4 and air is supplied by the air blower 6 to burn at an appropriate air-fuel ratio. To do.

電気制御装置3は、改質器温度センサ7から得られる改質器1の温度と、燃料電池本体2の電池電流と、燃料ブロワ4並びに改質水ポンプ5の回転数と、燃料系圧力センサ8によって得られる燃料系圧力とを監視し、これらに基づいて、燃料ブロワ4の回転数を決定して燃料流量の調整を行うものである。   The electric control device 3 includes the temperature of the reformer 1 obtained from the reformer temperature sensor 7, the cell current of the fuel cell main body 2, the rotation speed of the fuel blower 4 and the reforming water pump 5, and the fuel system pressure sensor. The fuel system pressure obtained by 8 is monitored, and based on these, the rotational speed of the fuel blower 4 is determined and the fuel flow rate is adjusted.

[作用]
図2は、発電中における電気制御装置3の制御ロジックを示すものであり、具体的には次のとおりである。まず、従来と同様、燃料電池2の電池電流から決定される改質器温度設定値と、改質器1の温度センサ7から得られる改質器温度との偏差に、比例積分制御(以下、PI制御という。)を用いて、改質器温度補正係数を算出する。次に、燃料電池2の電池電流によって決定される燃料流量基準設定値に、上記の改質器温度補正係数を乗じて燃料流量設定値が算出される。
[Action]
FIG. 2 shows the control logic of the electric control device 3 during power generation, and is specifically as follows. First, as in the prior art, proportional integral control (hereinafter, referred to as a deviation between the reformer temperature set value determined from the battery current of the fuel cell 2 and the reformer temperature obtained from the temperature sensor 7 of the reformer 1). Reformer temperature correction coefficient is calculated using PI control). Next, the fuel flow rate set value is calculated by multiplying the fuel flow rate reference set value determined by the battery current of the fuel cell 2 by the reformer temperature correction coefficient.

燃料流量の算出値は、本実施形態では、燃料ブロワの回転数に加え、改質水ポンプの回転数と燃料系圧力とによって算出される。すなわち、本実施形態における燃料流量は、燃料ブロワ4の回転数から得られる燃料流量を基準算出値としてこの値に、燃料系圧力センサ8から得られる燃料系圧力から決まる燃料系圧力補正係数を乗じて算出する。これに加えて、燃料ブロワ回転数によって決定される燃料流量基準算出値に、改質水ポンプ回転数から決定される改質蒸気量補正係数を乗じることによってさらに補正を行うことも可能である。   In this embodiment, the calculated value of the fuel flow rate is calculated based on the number of revolutions of the reforming water pump and the fuel system pressure in addition to the number of revolutions of the fuel blower. That is, the fuel flow rate in this embodiment is obtained by multiplying this value by the fuel system pressure correction coefficient determined from the fuel system pressure obtained from the fuel system pressure sensor 8 with the fuel flow rate obtained from the rotational speed of the fuel blower 4 as a reference calculation value. To calculate. In addition to this, it is also possible to perform further correction by multiplying the fuel flow rate reference calculated value determined by the fuel blower rotational speed by the reforming steam amount correction coefficient determined from the reforming water pump rotational speed.

本実施形態では、以上のようにして算出された燃料流量設定値と、燃料流量との偏差からPI制御を用いて燃料ブロワ回転数の指令値が決定され、これを燃料ブロワ4に送る。これに基づいて、燃料ブロワ4は、改質器1に適切な流量の燃料を供給することとなる。   In the present embodiment, the command value for the fuel blower rotational speed is determined using PI control from the deviation between the fuel flow rate setting value calculated as described above and the fuel flow rate, and this is sent to the fuel blower 4. Based on this, the fuel blower 4 supplies the reformer 1 with an appropriate flow rate of fuel.

[効果]
以上のような本実施形態によれば、発電中に燃料ブロワ回転数と、改質器温度または燃料系圧力との関係を把握することで、燃料ブロワ能力の個体差および燃料系圧力損失の固体差を把握することができる。この特性を起動中の燃料ブロワ回転数の初期値として用いることができる。
[effect]
According to the present embodiment as described above, by grasping the relationship between the fuel blower rotation speed and the reformer temperature or the fuel system pressure during power generation, individual differences in the fuel blower capacity and the solids of the fuel system pressure loss are obtained. The difference can be grasped. This characteristic can be used as an initial value of the rotational speed of the fuel blower during startup.

また、発電中の特性だけでなく、起動前に燃料ブロワ回転数と燃料系圧力との関係を把握することで前記個体差を把握し、起動中の燃料ブロワ回転数の初期値や燃料ブロワ回転数と燃料流量基準算出値の関数を与えることができる。なお、前記関数は、得られた特性でシステムごとに都度自動的に変更される機能を備えるように構成しても良い。   In addition to the characteristics during power generation, the individual difference is grasped by grasping the relationship between the fuel blower rotation speed and the fuel system pressure before starting, and the initial value of the fuel blower rotating speed during startup and the fuel blower rotation A function of the number and the fuel flow reference calculation value can be given. In addition, you may comprise the said function so that it may be provided with the function automatically changed for every system with the acquired characteristic.

以上のように、燃料流量の算出に燃料ブロワの回転数だけでなく、改質蒸気量と燃料系圧力により補正を適切に施すことで、精度良く燃料流量を算出可能である。また、発電中の各状態量の関係と、起動中および起動前の各状態量の関係を発電中と起動中の相互に有効活用することで、システムの個体差を把握し、これに応じた燃料ブロワ回転数を与えることができる。   As described above, the fuel flow rate can be accurately calculated by appropriately correcting not only the rotational speed of the fuel blower but also the reformed steam amount and the fuel system pressure in the calculation of the fuel flow rate. In addition, by effectively utilizing the relationship between each state quantity during power generation and each state quantity during startup and before startup, the individual differences in the system can be grasped and responded accordingly. The fuel blower speed can be provided.

このような本実施形態の燃料電池発電システムによれば、燃料流量センサがなくとも、改質器温度と燃料系圧力によって燃料流量を適切に算出可能であり、システムの信頼性を向上させることが可能となる。   According to such a fuel cell power generation system of this embodiment, the fuel flow rate can be appropriately calculated based on the reformer temperature and the fuel system pressure without the fuel flow rate sensor, and the reliability of the system can be improved. It becomes possible.

[他の実施形態]
本発明は、上記の実施形態に限られるものではなく、例えば、次のような態様も包含するものである。上述の制御ロジックにおいては、改質蒸気量を、改質水ポンプ3による算出に代えて、改質蒸気調節弁や蒸気エゼクタによって算出する構成も採用可能である。また、電池電流は、発電出力などのシステム負荷を表す状態量で代替でき、各関数でなく数式でも構わない。さらに、改質器温度設定値は電池電流によらず一定としても構わない。
[Other Embodiments]
The present invention is not limited to the above embodiment, and includes, for example, the following aspects. In the control logic described above, a configuration in which the reformed steam amount is calculated by a reformed steam control valve or a steam ejector instead of calculation by the reformed water pump 3 can be employed. Further, the battery current can be replaced with a state quantity representing a system load such as a power generation output, and may be a mathematical expression instead of each function. Further, the reformer temperature set value may be constant regardless of the battery current.

また、燃料流量算出にあたって補正の順序を変えても構わない。さらに、制御方法は一般的に用いられている比例積分制御(PI制御)としたが、微分制御やその他の制御方式でも構わない。   Further, the order of correction may be changed when calculating the fuel flow rate. Furthermore, although the control method is generally used proportional integral control (PI control), differential control or other control methods may be used.

本発明の実施形態における燃料電池発電システムの構成を示すブロック図。The block diagram which shows the structure of the fuel cell power generation system in embodiment of this invention. 本発明の実施形態における燃料電池発電システムの制御ロジック図。The control logic figure of the fuel cell power generation system in the embodiment of the present invention. 従来の燃料電池発電システムの構成を示すブロック図。The block diagram which shows the structure of the conventional fuel cell power generation system.

符号の説明Explanation of symbols

1…改質器
2…燃料電池スタック
3…電気制御装置
4…燃焼ブロワ
5…改質水ポンプ、蒸気調節弁又は蒸気エゼクタ
6…空気ブロワ
7…改質器温度センサ
8…燃料系圧力センサ
DESCRIPTION OF SYMBOLS 1 ... Reformer 2 ... Fuel cell stack 3 ... Electric control device 4 ... Combustion blower 5 ... Reformed water pump, steam control valve or steam ejector 6 ... Air blower 7 ... Reformer temperature sensor 8 ... Fuel system pressure sensor

Claims (5)

炭化水素を含む原燃料ガスから水素リッチな改質ガスを生成するための改質器と、この改質器で得られた前記改質ガスを燃料ガスとして用い、この燃料ガスと酸化剤ガスとの電気化学反応により電気エネルギーを発生する燃料電池スタックと、前記燃料電池スタックに供給される前記燃料ガス及び酸化剤ガスの流量を燃料ブロワ及び酸化剤ブロワを制御して調整する電気制御装置とからなり、燃料流量センサを備えない燃料電池発電システムにおいて、
前記改質器に改質器温度センサを備え、
前記改質器に前記燃料ガスを供給する系に燃料系圧力センサを備え、
前記改質器温度センサから得られる改質器温度と、予め設定した改質器温度設定値とから改質器温度補正係数を算出する手段と、
前記燃料電池スタックから得られる電池電流に、前記改質器温度補正係数を乗じて、燃料流量設定値を算出する手段と、
前記燃料ブロワの回転数から得られる燃料流量を基準算出値としてこの値に、前記燃料系圧力センサから得られる燃料系圧力から決まる燃料系圧力補正係数を乗じて、燃料流量を算出する手段と、
前記燃料流量設定値と燃料流量との偏差から、前記燃料ブロワ回転数を求める手段と、を備えることを特徴とする燃料電池発電システム。
A reformer for generating a hydrogen-rich reformed gas from a raw fuel gas containing hydrocarbons, and using the reformed gas obtained by the reformer as a fuel gas, the fuel gas, an oxidant gas, A fuel cell stack that generates electric energy by an electrochemical reaction of the fuel cell, and an electric control device that controls the flow rate of the fuel gas and the oxidant gas supplied to the fuel cell stack by controlling the fuel blower and the oxidant blower. In a fuel cell power generation system that does not include a fuel flow sensor,
The reformer includes a reformer temperature sensor,
A fuel system pressure sensor is provided in a system for supplying the fuel gas to the reformer,
Means for calculating a reformer temperature correction coefficient from a reformer temperature obtained from the reformer temperature sensor and a preset reformer temperature set value;
Means for multiplying the battery current obtained from the fuel cell stack by the reformer temperature correction coefficient to calculate a fuel flow rate setting value;
Means for calculating the fuel flow rate by multiplying this value by the fuel system pressure correction coefficient determined from the fuel system pressure obtained from the fuel system pressure sensor, using the fuel flow rate obtained from the rotational speed of the fuel blower as a reference calculation value;
A fuel cell power generation system comprising: means for determining the fuel blower rotational speed from a deviation between the fuel flow rate setting value and the fuel flow rate.
前記改質器に供給される燃料ガスに蒸気量を調整する改質蒸気量制御手段と、
前記改質器蒸気量制御手段により算出される改質蒸気量補正係数を、前記燃料ブロワの回転数から得られる燃料流量の前記基準算出値に乗じる手段とを備えたことを特徴とする請求項1記載の燃料電池発電システム。
Reformed steam amount control means for adjusting the steam amount to the fuel gas supplied to the reformer;
And a means for multiplying the reference calculation value of the fuel flow rate obtained from the rotation speed of the fuel blower by a reforming steam amount correction coefficient calculated by the reformer steam amount control means. The fuel cell power generation system according to 1.
前記燃料流量設定値と燃料流量との偏差から求めた前記燃料ブロワ回転数を、起動時の燃料ブロワ回転数の初期値とする手段を備えたことを特徴とする請求項1又は2記載の燃料電池発電システム。   3. The fuel according to claim 1, further comprising means for setting the fuel blower rotational speed obtained from a deviation between the fuel flow rate set value and the fuel flow rate as an initial value of the fuel blower rotational speed at the time of startup. Battery power generation system. 前記燃料流量設定値と燃料流量との偏差から求めた前記燃料ブロワ回転数を、発電時の燃料ブロワ回転数の基準値とする手段を備えたことを特徴とする請求項1又は2記載の燃料電池発電システム。   3. The fuel according to claim 1, further comprising means for setting the fuel blower rotational speed obtained from the deviation between the fuel flow rate set value and the fuel flow rate as a reference value for the fuel blower rotational speed during power generation. Battery power generation system. 炭化水素を含む原燃料ガスから水素リッチな改質ガスを生成するための改質器と、この改質器で得られた前記改質ガスを燃料ガスとして用い、この燃料ガスと酸化剤ガスとの電気化学反応により電気エネルギーを発生する燃料電池スタックと、前記燃料電池スタックに供給される前記燃料ガス及び酸化剤ガスの流量を燃料ブロワ及び酸化剤ブロワを制御して調整する電気制御装置とを用い、燃料流量センサを用いずに、燃料流量を適切に保持する燃料電池発電システムの制御方法において、
前記電気制御装置は、
改質器温度センサから得られる改質器温度と、予め設定した改質器温度設定値とから改質器温度補正係数を算出する処理と、
前記燃料電池スタックから得られる電池電流に、前記改質器温度補正係数を乗じて、燃料流量設定値を算出する処理と、
前記燃料ブロワの回転数から得られる燃料流量を基準算出値としてこの値に、前記燃料系圧力センサから得られる燃料系圧力から決まる燃料系圧力補正係数を乗じて、燃料流量を算出する処理と、
前記燃料流量設定値と燃料流量との偏差から、前記燃料ブロワ回転数を求める処理と、を実行することを特徴とする燃料電池発電システムの制御方法。
A reformer for generating a hydrogen-rich reformed gas from a raw fuel gas containing hydrocarbons, and using the reformed gas obtained by the reformer as a fuel gas, the fuel gas, an oxidant gas, A fuel cell stack that generates electrical energy by an electrochemical reaction of the fuel cell, and an electric control device that controls the flow rate of the fuel gas and the oxidant gas supplied to the fuel cell stack by controlling the fuel blower and the oxidant blower. In a control method of a fuel cell power generation system that uses a fuel flow rate sensor without using a fuel flow rate sensor,
The electrical control device
A process of calculating a reformer temperature correction coefficient from the reformer temperature obtained from the reformer temperature sensor and a preset reformer temperature set value;
A process of calculating a fuel flow rate setting value by multiplying the battery current obtained from the fuel cell stack by the reformer temperature correction coefficient;
The fuel flow rate obtained from the rotational speed of the fuel blower is used as a reference calculation value, and this value is multiplied by a fuel system pressure correction coefficient determined from the fuel system pressure obtained from the fuel system pressure sensor.
A control method for a fuel cell power generation system, comprising: performing a process of obtaining the fuel blower rotational speed from a deviation between the fuel flow rate setting value and the fuel flow rate.
JP2007244391A 2007-09-20 2007-09-20 Fuel cell power generation system and control method thereof Expired - Fee Related JP5198019B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007244391A JP5198019B2 (en) 2007-09-20 2007-09-20 Fuel cell power generation system and control method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007244391A JP5198019B2 (en) 2007-09-20 2007-09-20 Fuel cell power generation system and control method thereof

Publications (2)

Publication Number Publication Date
JP2009076328A true JP2009076328A (en) 2009-04-09
JP5198019B2 JP5198019B2 (en) 2013-05-15

Family

ID=40611109

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007244391A Expired - Fee Related JP5198019B2 (en) 2007-09-20 2007-09-20 Fuel cell power generation system and control method thereof

Country Status (1)

Country Link
JP (1) JP5198019B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015232948A (en) * 2014-06-09 2015-12-24 本田技研工業株式会社 Fuel cell vehicle
JP2018037258A (en) * 2016-08-31 2018-03-08 東芝燃料電池システム株式会社 Fuel cell power generation system
JP2021068606A (en) * 2019-10-24 2021-04-30 大阪瓦斯株式会社 Gas consumption system

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003021071A (en) * 2001-07-10 2003-01-24 Nagano Keiki Co Ltd Gas booster
JP2003157871A (en) * 2001-11-22 2003-05-30 Toshiba Corp Fuel cell power generation system and control system for the same
JP2005521218A (en) * 2002-03-27 2005-07-14 ローベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツング Fuel cell reformer
JP2006059550A (en) * 2004-08-17 2006-03-02 Mitsubishi Materials Corp Fuel cell power plant and operation control method
JP2007149489A (en) * 2005-11-28 2007-06-14 Fuji Electric Systems Co Ltd Method of operating fuel cell power generation device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003021071A (en) * 2001-07-10 2003-01-24 Nagano Keiki Co Ltd Gas booster
JP2003157871A (en) * 2001-11-22 2003-05-30 Toshiba Corp Fuel cell power generation system and control system for the same
JP2005521218A (en) * 2002-03-27 2005-07-14 ローベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツング Fuel cell reformer
JP2006059550A (en) * 2004-08-17 2006-03-02 Mitsubishi Materials Corp Fuel cell power plant and operation control method
JP2007149489A (en) * 2005-11-28 2007-06-14 Fuji Electric Systems Co Ltd Method of operating fuel cell power generation device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015232948A (en) * 2014-06-09 2015-12-24 本田技研工業株式会社 Fuel cell vehicle
JP2018037258A (en) * 2016-08-31 2018-03-08 東芝燃料電池システム株式会社 Fuel cell power generation system
JP2021068606A (en) * 2019-10-24 2021-04-30 大阪瓦斯株式会社 Gas consumption system

Also Published As

Publication number Publication date
JP5198019B2 (en) 2013-05-15

Similar Documents

Publication Publication Date Title
JP4907861B2 (en) Fuel cell power generation system, its stop storage method, stop storage program
JP5081574B2 (en) Operation method when load of fuel cell system increases
JP6857846B2 (en) Fuel cell system and how to operate it
TW200937718A (en) Method of operating fuel cell with high power and high power fuel cell system
KR20150042616A (en) Device and Method for heating the Fuel cell and Apparatus having the same
JP5198019B2 (en) Fuel cell power generation system and control method thereof
JP2019207867A (en) Fuel cell system and method for operating the same
KR101418422B1 (en) System for independent start-up of fuel cell for ship
JP4727642B2 (en) Operation method of hydrogen production power generation system
JP2009104885A (en) Operation method on load decrease of fuel cell system
JP5482277B2 (en) Fuel cell system and fuel cell control method
JP2015220211A (en) Control device and control method of fuel cell
JP2007200771A (en) Reforming catalyst temperature control system and control method of fuel cell power generator
KR102102969B1 (en) Fuel cell-Engine hybrid power generation system using engine-generated power for system operation
JPH09298065A (en) Fuel cell generating device
JP2009187883A (en) Cell characteristic recovery operation method for fuel cell system
JP2009048841A (en) Initialization method and initialization device of fuel cell stack
JP5378252B2 (en) FUEL CELL SYSTEM AND METHOD FOR SETTING GENERATED POWER TARGET VALUE
JP2009117170A (en) Hydrogen and power generating system, and load following power generation method therein
JP3471513B2 (en) Fuel cell power generator and fuel switching test method thereof
JP2007311289A (en) Fuel cell power generation device, control program, and control method
JP2004207133A (en) Fuel cell system and operation method of fuel cell
JP5922435B2 (en) Fuel cell system and control method thereof
JP2003197240A (en) Fuel cell system
Tirnovan et al. Polymer electrolyte fuel cell system (PEFC) performance analysis

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20091116

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120522

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120723

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130115

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130206

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160215

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5198019

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees