JP2003285092A - Treatment method for anaerobic/aerobic activated sludge and apparatus therefor - Google Patents

Treatment method for anaerobic/aerobic activated sludge and apparatus therefor

Info

Publication number
JP2003285092A
JP2003285092A JP2002088185A JP2002088185A JP2003285092A JP 2003285092 A JP2003285092 A JP 2003285092A JP 2002088185 A JP2002088185 A JP 2002088185A JP 2002088185 A JP2002088185 A JP 2002088185A JP 2003285092 A JP2003285092 A JP 2003285092A
Authority
JP
Japan
Prior art keywords
time
aerobic
aeration
anaerobic
activated sludge
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002088185A
Other languages
Japanese (ja)
Inventor
Shunsaku Yagi
俊策 八木
Yutaka Nakamura
豊 中村
Hiroshi Obara
洋 小原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Environmental Systems and Engineering Co Ltd
Original Assignee
Panasonic Environmental Systems and Engineering Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Environmental Systems and Engineering Co Ltd filed Critical Panasonic Environmental Systems and Engineering Co Ltd
Priority to JP2002088185A priority Critical patent/JP2003285092A/en
Publication of JP2003285092A publication Critical patent/JP2003285092A/en
Pending legal-status Critical Current

Links

Landscapes

  • Purification Treatments By Anaerobic Or Anaerobic And Aerobic Bacteria Or Animals (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an anaerobic/aerobic activated sludge treatment method capable of removing nitrogen and phosphorus in water to be treated stably. <P>SOLUTION: In the anaerobic/aerobic activated sludge treatment method for performing the treatment of organic wastewater in an intermittent aeration tank 4 by biological treatment repeating a cycle comprising an aeration process and a non-aeration process, a predetermined ratio of an aerobic time and an oxygen-free time in the intermittent aeration tank 4 is set to a target ratio α<SB>0</SB>and the time Kx required until the concentration of dissolved oxygen DO becomes a predetermined value or less after the completion of the aeration process is calculated by measuring the DO in the intermittent aeration tank 4 before the front cycle. On the basis of this time Kx, the time of the aeration process and the time of the non-aeration process are controlled so that the ratio of the aerobic time and the oxygen-free time of the cycle of this time becomes the target ratio α<SB>0</SB>. <P>COPYRIGHT: (C)2004,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、有機性排水の処理
を間欠曝気槽において曝気工程と非曝気工程とからなる
サイクルの繰り返しによる生物処理で行う嫌気・好気活
性汚泥処理方法及び装置に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an anaerobic / aerobic activated sludge treatment method and apparatus for treating organic wastewater by biological treatment by repeating a cycle consisting of an aeration step and a non-aeration step in an intermittent aeration tank. Is.

【0002】[0002]

【従来の技術】従来から、下排水等の被処理水中の有機
基質は、主に曝気槽において微生物群である活性汚泥に
より生物処理されている。しかし、最近では、閉鎖性水
域における富栄養化を防ぐため、従来の目的であった有
機物の除去と同時に被処理水中の窒素やリン等の栄養塩
類の除去が求められており、これらの栄養塩類除去を目
的としてコスト面で有利な生物学的処理方法が取り入れ
られるようになった。
2. Description of the Related Art Conventionally, an organic substrate in water to be treated such as sewage is biologically treated mainly by activated sludge which is a group of microorganisms in an aeration tank. However, recently, in order to prevent eutrophication in closed water areas, it has been required to remove nutrients such as nitrogen and phosphorus in the water to be treated at the same time as the conventional purpose of removing organic substances. A cost-effective biological treatment method has been introduced for the purpose of removal.

【0003】栄養塩類を除去する生物学的処理方法の1
つとして、従来の標準活性汚泥法の応用である間欠曝気
式活性汚泥法が多く採用されている。この処理方法は活
性汚泥処理槽に被処理水を連続的に流入させ、曝気を行
う曝気工程と曝気を停止する非曝気工程を交互に繰り返
して生物学的硝化・脱窒とリンの放出・過剰摂取による
処理を行い、窒素は窒素ガスとして大気中へ、リンは活
性汚泥内に蓄積され余剰汚泥として水処理系外へそれぞ
れ除去され、生物処理液の混合液を後段の沈殿槽等で固
液分離し、上澄水を処理水として放流する方法である。
One of biological treatment methods for removing nutrients
As an example, the intermittent aeration type activated sludge method, which is an application of the conventional standard activated sludge method, is often adopted. In this treatment method, the water to be treated is continuously flowed into the activated sludge treatment tank, and the aeration process for performing aeration and the non-aeration process for stopping aeration are alternately repeated to cause biological nitrification / denitrification and release / excess of phosphorus. Treatment by ingestion, nitrogen as nitrogen gas into the atmosphere, phosphorus as accumulated in activated sludge and removed as surplus sludge outside the water treatment system, respectively, and the mixed liquid of biological treatment liquid is solid-liquid in the subsequent settling tank etc. It is a method of separating and discharging supernatant water as treated water.

【0004】[0004]

【発明が解決しようとする課題】間欠曝気式活性汚泥法
において、施設管理者による曝気・非曝気工程のタイマ
ー運転が行われることが多いが、曝気・非曝気工程時間
の設定が、窒素・リン除去を効率よく安定的に行うため
の好気時間と無酸素時間の比率となっていない場合が多
く、処理施設本来の処理能力を発揮できていないことが
多かった。
In the intermittent aeration type activated sludge method, facility managers often operate timers for the aeration / non-aeration process, but the aeration / non-aeration process time is set to nitrogen / phosphorus. In many cases, the ratio of aerobic time to anaerobic time for efficient and stable removal was not set, and the original processing capacity of the processing facility was often not exhibited.

【0005】間欠曝気式活性汚泥法の制御方法として提
案されている特開平5−264426号公報に記載のよ
うな曝気工程時間のみを制御する方法では、非曝気工程
時間が曝気工程時間に比べて長くなりすぎる場合があ
り、汚泥内に摂取されたリンが放出されリン除去性能が
悪化する問題があった。
In the method of controlling only the aeration step time as disclosed in Japanese Patent Laid-Open No. 5-264426 proposed as a control method for the intermittent aeration type activated sludge method, the non-aeration step time is longer than the aeration step time. There is a problem that it may become too long, and the phosphorus ingested in the sludge is released, and the phosphorus removal performance deteriorates.

【0006】また、図2のように間欠曝気槽内において
実際の好気時間To(DOが所定値以上の時間)及び無
酸素時間Ta(DOが所定値以下の時間)は曝気工程停
止からDOが所定値以下になるまでの時間Kxにより変
化するため、曝気工程時間TAと非曝気工程時間TNを
制御しても、好気時間Toと無酸素時間Taが窒素・リ
ンの除去に最適な比率となっていない場合が多かった。
Further, as shown in FIG. 2, the actual aerobic time To (DO is a predetermined value or more) and anaerobic time Ta (DO is a predetermined value or less) in the intermittent aeration tank after the aeration process is stopped. Since it changes depending on the time Kx until the value becomes equal to or less than a predetermined value, even if the aeration process time TA and the non-aeration process time TN are controlled, the aerobic time To and the anoxic time Ta are the optimum ratios for removing nitrogen and phosphorus. It was often not.

【0007】既に活性汚泥処理法のシミュレーションに
よるさまざまな制御方法が提案されているが、多種多様
の微生物が存在し流入水量、成分、その他条件が常時変
化する実施設に適用しようとする場合、多くの自動計測
器を必要とし、コスト面及び管理面で実用的ではなかっ
た。
Various control methods by simulation of the activated sludge treatment method have already been proposed, but when it is applied to an actual facility where various kinds of microorganisms exist and the amount of influent water, components, and other conditions constantly change, many control methods are used. , Which was not practical in terms of cost and management.

【0008】本発明は上記従来例の問題点を解消するこ
とを目的とする。
An object of the present invention is to solve the above-mentioned problems of the conventional example.

【0009】[0009]

【課題を解決するための手段】本発明は、有機性排水の
処理を間欠曝気槽において曝気工程と非曝気工程とから
なるサイクルの繰り返しによる生物処理で行う嫌気・好
気活性汚泥処理方法において、前記間欠曝気槽における
好気時間と無酸素時間の所定の比率を目標比率α0とし
て設定し、前サイクル以前の間欠曝気槽内溶存酸素濃度
DOの測定により曝気工程終了後から前記DOが所定値
以下になるまでの時間Kxを求め、この時間Kxに基づ
き今回サイクルの好気時間と無酸素時間が前記目標比率
α0となるように曝気工程時間と非曝気工程時間を制御
することを特徴とする。
The present invention provides a method for treating anaerobic / aerobic activated sludge in which treatment of organic wastewater is carried out by biological treatment by repeating a cycle consisting of an aeration step and a non-aeration step in an intermittent aeration tank, A predetermined ratio of aerobic time and anoxic time in the intermittent aeration tank is set as a target ratio α 0 , and the DO is determined to be a predetermined value after completion of the aeration step by measuring the dissolved oxygen concentration DO in the intermittent aeration tank before the previous cycle. The time Kx until it becomes below is obtained, and based on this time Kx, the aeration process time and the non-aeration process time are controlled so that the aerobic time and the anoxic time of this cycle become the target ratio α 0. To do.

【0010】本発明の作用は次のとおりである。すなわ
ち、間欠曝気式活性汚泥法で窒素またはリン除去が安定
して行えるのは好気時間Toと無酸素時間Taの比率α
が処理目的に対して最適範囲内にあるときである。もし
αが最適範囲内にない場合、窒素・リン除去性能が大き
く悪化する。例えばαが最適範囲から外れて小さい場合
は必要な好気時間が確保できず硝化・リン吸収反応が十
分に進行せず、無酸素時間が好気時間に対して長くなり
すぎるため、間欠曝気槽内が嫌気状態になり汚泥内に蓄
積されたリンが放出される。逆にαが最適範囲から外れ
て大きい場合は必要な無酸素時間が確保できず脱窒反応
が十分に進行しない。本発明はこの点に着目し、熟練者
の経験や後述のシミュレーション法で得られた最適のα
を目標比率α0とし、常にこのα0となるように曝気工程
時間と非曝気工程時間を制御して、間欠曝気槽を運転
し、被処理水の窒素及びリンの除去を安定して行うこと
ができるようにしたものである。そして、前サイクル以
前の間欠曝気槽内のDО変化を測定して、前記Kxを求
め、このKxに基づいて、目標比率α0が維持される曝
気工程時間、非曝気工程時間を求めうるようにしたので
ある。
The operation of the present invention is as follows. That is, nitrogen or phosphorus can be stably removed by the intermittent aeration type activated sludge method by the ratio α of the aerobic time To and the anoxic time Ta.
Is within the optimum range for the processing purpose. If α is not within the optimum range, the nitrogen / phosphorus removal performance deteriorates significantly. For example, when α is out of the optimum range, the required aerobic time cannot be secured, the nitrification / phosphorus absorption reaction does not proceed sufficiently, and the anoxic time becomes too long for the aerobic time. The inside becomes anaerobic, and the phosphorus accumulated in the sludge is released. On the other hand, when α is out of the optimum range and is large, the required anoxic time cannot be secured and the denitrification reaction does not proceed sufficiently. The present invention pays attention to this point, and the optimum α obtained by the experience of experts and the simulation method described later.
Is set as the target ratio α 0, and the aeration process time and non-aeration process time are controlled so that this is always α 0 , the intermittent aeration tank is operated, and nitrogen and phosphorus in the water to be treated are stably removed. It was made possible. Then, the DO change in the intermittent aeration tank before the previous cycle is measured to obtain the Kx, and based on this Kx, the aeration process time and the non-aeration process time at which the target ratio α 0 is maintained can be calculated. I did.

【0011】例えば非曝気工程時間を一定として間欠曝
気槽を運転する場合には、前記α0と前記Kxが与えら
れると、演算により曝気工程時間が求められる。
For example, when the intermittent aeration tank is operated with the non-aeration process time being constant, the aeration process time is obtained by calculation when α 0 and Kx are given.

【0012】上記構成において、間欠曝気槽において流
入負荷、活性汚泥濃度、その他各種条件を示す入力値に
基づいてASM2d等の水質シミュレーションモデルを
用いた演算装置により、窒素、リンのいずれかの除去率
もしくは両者の除去率の合計が最も高くなる好気時間と
無酸素時間の比率と、曝気工程時間、非曝気工程時間、
1サイクル時間、好気時間、無酸素時間のいずれか1つ
とを求め、前記比率を前記目標比率α0とするように構
成すると、より正確に前記α0を自動的に求めることが
できるとともに、最適の曝気工程時間等を自動的に求め
ることができる。
In the above structure, the removal rate of either nitrogen or phosphorus is calculated by an arithmetic unit using a water quality simulation model such as ASM2d based on input values indicating inflow load, activated sludge concentration and other various conditions in the intermittent aeration tank. Or the ratio of aerobic time and anaerobic time at which the total of the removal rates of both is highest, aeration process time, non-aeration process time,
If one of the one cycle time, the aerobic time, and the anoxic time is calculated and the ratio is set to the target ratio α 0 , the α 0 can be calculated more accurately and automatically. The optimum aeration process time and the like can be automatically obtained.

【0013】さらに上記構成において、間欠曝気槽内ま
たは間欠曝気槽から排出される処理液のpH及び間欠曝
気槽から排出される処理液の窒素濃度、リン濃度を測定
し、これらの測定値に基づき前記目標比率α0を補正す
るように構成すると、シミュレーション等で得られたα
0をできるだけ実施設に適した値に近づけることがで
き、何らかの理由で当初設定されたα0が実施設に適し
ていない場合でも自動的に補正することが可能となり、
窒素・リンの除去性能を改善することができる。
Further, in the above structure, the pH of the treatment liquid discharged in or from the intermittent aeration tank and the nitrogen concentration and phosphorus concentration of the treatment liquid discharged from the intermittent aeration tank are measured, and based on these measured values When it is configured to correct the target ratio α 0 , α obtained by simulation or the like
It is possible to make 0 as close as possible to the value suitable for the actual installation, and even if for some reason the initially set α 0 is not suitable for the actual installation, it becomes possible to automatically correct it.
Nitrogen / phosphorus removal performance can be improved.

【0014】[0014]

【発明の実施の形態】以下、本発明の実施形態について
詳細に説明する。
BEST MODE FOR CARRYING OUT THE INVENTION Embodiments of the present invention will be described in detail below.

【0015】図1は、本発明の実施形態の嫌気・好気汚
泥処理装置を示すブロック図である。
FIG. 1 is a block diagram showing an anaerobic / aerobic sludge treatment device according to an embodiment of the present invention.

【0016】被処理水1は前段の間欠曝気槽または嫌気
槽2より間欠曝気槽4へ送られ汚泥3と混合し曝気装置
5により曝気工程と非曝気工程とからなるサイクルの繰
り返しによる生物処理が行われる。曝気装置5を運転す
ることにより間欠曝気槽4内は好気状態(溶存酸素が存
在する状態)となり、被処理水中に含まれる有機基質の
処理が行われ、窒素成分については硝化反応(NH4
NがNOx−Nに酸化される反応)が進行し、さらにリ
ン成分は汚泥3内に摂取される。その後、曝気装置5を
停止すると間欠曝気槽4内のDOは低下し始め、やがて
無酸素状態(溶存酸素は存在しないが、NOx−Nが存
在する状態)となり、脱窒反応が進行し硝化された窒素
成分は窒素ガスとして大気中に放出される。さらに無酸
素状態が続き脱窒反応が完了すれば、嫌気状態(溶存酸
素もNOx−Nも存在しない状態)となり、リン成分が
汚泥3より放出される。
The water to be treated 1 is sent from the intermittent aeration tank or anaerobic tank 2 in the previous stage to the intermittent aeration tank 4 and mixed with the sludge 3, and the aeration device 5 performs biological treatment by repeating a cycle including an aeration step and a non-aeration step. Done. By operating the aeration device 5, the inside of the intermittent aeration tank 4 becomes an aerobic state (the state in which dissolved oxygen exists), the organic substrate contained in the water to be treated is treated, and the nitrogen component reacts with the nitrification reaction (NH 4
The reaction in which N is oxidized to NOx-N) progresses, and the phosphorus component is further taken into the sludge 3. After that, when the aeration device 5 is stopped, the DO in the intermittent aeration tank 4 begins to decrease, and eventually becomes anoxic (a state in which dissolved oxygen does not exist, but NOx-N exists), and a denitrification reaction progresses to nitrify. The nitrogen component is released into the atmosphere as nitrogen gas. Further, when the anoxic state continues and the denitrification reaction is completed, the state becomes anaerobic (a state in which neither dissolved oxygen nor NOx-N exists), and the phosphorus component is released from the sludge 3.

【0017】前記曝気装置5の運転を制御する制御装置
(制御手段)8には、好気時間T0と無酸素時間Taの
比率α(=T0/Ta)として、最適と考えられる目標
比率α0と、最適と考えられる非曝気工程時間TNが、
設定されている。
A control device (control means) 8 for controlling the operation of the aeration device 5 has a target ratio considered to be optimum as a ratio α (= T 0 / Ta) of the aerobic time T 0 and the anoxic time Ta. α 0 and the optimum non-aeration process time TN are
It is set.

【0018】また間欠曝気槽4内にはDO計6が設置さ
れており、測定されたDOは制御装置8に送られる。制
御装置8は曝気工程終了後からDOが所定値(0〜0.5mg
/L程度)以下になるまでの時間Kxを求め、これを記憶
する。このようにして求められた時間Kxと前記目標比
率α0、非曝気工程時間TNから、制御装置8は次式
(1)によって、曝気工程時間TAを演算する。
A DO meter 6 is installed in the intermittent aeration tank 4, and the measured DO is sent to the controller 8. After the aeration process is completed, the control device 8 has a predetermined value of DO (0 to 0.5 mg).
The time Kx until it becomes less than or equal to (about L) is memorized. From the time Kx thus obtained, the target ratio α 0 , and the non-aeration process time TN, the control device 8 calculates the aeration process time TA by the following equation (1).

【0019】 TA=α0(TN−Kx)+Kx ……(1) 制御装置8は、上記のようにして前サイクル以前のDО
測定により、前記時間Kxを求め、この時間Kxに基づ
き今回サイクルの曝気工程時間TAを求め、曝気装置5
の運転を制御する。
TA = α 0 (TN−Kx) + Kx (1) The controller 8 controls the DO before the previous cycle as described above.
By the measurement, the time Kx is obtained, and the aeration process time TA of the current cycle is obtained based on the time Kx.
Control the operation of.

【0020】なお、前サイクル以前のKxとは直前のサ
イクルのKxや過去の履歴例えば日変動や週間変動パタ
ーンに基づいて選定されたKxのことをいう。
The Kx before the previous cycle means the Kx of the immediately preceding cycle or the Kx selected based on the past history such as the daily fluctuation or the weekly fluctuation pattern.

【0021】また前記目標比率α0は処理目的に応じて
決定すればよい。すなわち、窒素除去、特に硝化を重視
するのであれば一般的にはα0を1より大きくすればよ
いし、多段式間欠曝気法において前段の槽でのリン放出
を重視するのであればα0をできるだけ小さくすればよ
い。また、α0は熟練管理者による経験に基づいて決定
し、これを制御装置8に手入力してもよいし、後述のシ
ミュレーション方法で決定し、これを制御装置8に自動
入力するようにしてもよい。
The target ratio α 0 may be determined according to the processing purpose. That is, nitrogen removal, particularly in general as long as emphasis on nitrification may be greater than 1 to alpha 0, the alpha 0 if the emphasis on phosphorus release in front of the tank in the multistage intermittent aeration It should be as small as possible. Further, α 0 may be determined based on experience by a skilled manager and manually input to the control device 8, or may be determined by a simulation method described later and automatically input to the control device 8. Good.

【0022】また、当初の曝気工程時間TNの入力値は
運転マニュアルや過去の事例より決定できる。処理目的
にもよるが、TN=30〜150分程度が一般的に多
い。例えばTN=60分とすればよい。その制御装置8
への入力方法は熟練管理者による経験に基づいて決定
し、これを手入力してもよいし、後述のシミュレーショ
ン方法で決定した結果を自動入力してもよい。
Further, the input value of the initial aeration process time TN can be determined from the operation manual or past cases. Although it depends on the purpose of treatment, TN = 30 to 150 minutes is generally common. For example, TN = 60 minutes may be set. The control device 8
The input method may be determined based on the experience of a skilled manager and may be manually input, or the result determined by the simulation method described below may be automatically input.

【0023】制御装置8による曝気装置5の制御の一例
を図2に示す。図2は縦軸を間欠曝気槽内のDO、横軸
を時間とし、DOの変化を示したものである。Kxの長
短は曝気工程終了時のDO及び流入負荷条件によって変
化する。例えば、曝気工程終了時のDOが高い場合はK
xが長くなり、逆にDOが低い場合はKxが短くなる。
また、流入負荷が低い場合はKxが長くなり、逆に流入
負荷が高い場合はKxが短くなる。本実施の形態ではこ
のKxの長短に適応するように、曝気工程時間TAを演
算によって求め(非曝気工程時間TNは一定)、常に前
記αが目標比率α0となるようにしているのである。
An example of control of the aeration device 5 by the control device 8 is shown in FIG. In FIG. 2, the vertical axis represents DO in the intermittent aeration tank, and the horizontal axis represents time, showing changes in DO. The length of Kx varies depending on the DO and inflow load conditions at the end of the aeration process. For example, if the DO at the end of the aeration process is high, K
x becomes longer, and conversely, when DO is low, Kx becomes short.
Further, when the inflow load is low, Kx becomes long, and conversely, when the inflow load is high, Kx becomes short. In the present embodiment, the aeration step time TA is calculated by calculation (the non-aeration step time TN is constant) so as to adapt to the length of Kx, and the above α is always the target ratio α 0 .

【0024】間欠曝気槽4内で処理された処理液7は後
段の固液分離槽17へ送られる。固液分離槽17では液
中の汚泥は重力沈降により槽底部に沈降し、上澄液は処
理水18として系外へ排出される。槽底部に沈降した汚
泥はリン成分を摂取した状態であり、その一部は返送汚
泥19として前記嫌気槽2に送られるとともに、一部は
余剰汚泥20として系外へ排出される。なお、前記嫌気
槽2が設定されていない場合には、前記返送汚泥19は
間欠曝気槽に返送される。また図1では固液分離槽17
は重力沈降によるもの(一般的に沈殿槽と呼ばれる)が
図示されているが、膜分離や加圧浮上分離など他の固液
分離手段を用いてもよい。
The processing liquid 7 processed in the intermittent aeration tank 4 is sent to the solid-liquid separation tank 17 in the subsequent stage. In the solid-liquid separation tank 17, sludge in the liquid settles to the bottom of the tank due to gravity settling, and the supernatant liquid is discharged outside the system as treated water 18. The sludge settling at the bottom of the tank is in a state of ingesting a phosphorus component, part of which is sent to the anaerobic tank 2 as return sludge 19, and part of it is discharged to the outside of the system as excess sludge 20. When the anaerobic tank 2 is not set, the returned sludge 19 is returned to the intermittent aeration tank. Further, in FIG. 1, the solid-liquid separation tank 17
Is shown by gravity settling (generally called a settling tank), but other solid-liquid separation means such as membrane separation or pressure floating separation may be used.

【0025】前記目標比率α0および非曝気工程時間T
Nを算出する方法にシミュレーションを用いる方法があ
る。具体的には表2に示す反応をプログラミングした演
算装置9に表1に示す項目を入力し、数百から数千パタ
ーンの曝気工程時間TAと非曝気工程時間TNの組合せ
によるシミュレーションを行い、窒素、リンのいずれか
の除去率、もしくは両者の除去率の合計が最も高くなる
α0と曝気工程時間TAまたは非曝気工程時間TNの範
囲を求めるものである。
The target ratio α 0 and the non-aeration process time T
There is a method of using simulation as a method of calculating N. Specifically, the items shown in Table 1 are input to the arithmetic unit 9 in which the reactions shown in Table 2 are programmed, and a simulation is performed by combining several hundred to several thousand patterns of the aeration process time TA and the non-aeration process time TN. , The removal rate of either phosphorus, or the range of α 0 and the aeration step time TA or the non-aeration step time TN in which the removal rate of both is the highest.

【0026】なお、ここでいうシミュレーションとは、
IAWQ(International Association on Water Quali
ty;国際水質学会)により作成された、ASM2d(IA
WQ Activated Sludge Model No.2d)等を基本として、V
isual Basic、FORTRAN、C言語等の一般に使用されてい
るコンピュータ言語を用いて作成した水質シミュレーシ
ョンモデルを用いて行うものである。
The simulation here means
IAWQ (International Association on Water Quali
ty; ASM2d (IA
WQ Activated Sludge Model No.2d)
This is done using a water quality simulation model created using commonly used computer languages such as isual Basic, FORTRAN, and C language.

【0027】[0027]

【表1】 [Table 1]

【0028】[0028]

【表2】 以下に、シミュレーションによる前記目標比率α0およ
び非曝気工程時間TNの求め方の一例を示す。
[Table 2] An example of how to obtain the target ratio α 0 and the non-aeration process time TN by simulation is shown below.

【0029】演算装置への入力 表2に示す反応をプログラミングした演算装置9に表1
に示す流入負荷、活性汚泥濃度、その他条件を入力す
る。演算装置9への入力は、自動計測器による自動入力
でもよいし、頻繁に数値が変化しない項目であれば、あ
る時点で採水して分析した値、また処理施設ごとにあま
り数値に差がでない項目については文献等から引用した
値をそれぞれ代表値として手動で入力してもよい。自動
で入力する場合は、図1に示すように有機性排水12の
成分分析計13(例えばBOD計、窒素濃度計、リン濃
度計等)、流入流量計14や間欠曝気槽4にMLSS計
15を設置し、流入負荷および活性汚泥濃度を演算装置
9に入力するようにすればよい。また、曝気工程から非
曝気工程へ移行したときの間欠曝気槽4のDO減少速度
から流入負荷の状態を判断することも有効である。な
お、本実施形態に図示されていない計測機器を演算装置
9への入力に使用してもよいが、最低限必要なものに限
定することがコスト面、管理面から有利である。 最適運転範囲グラフの作成 次に演算装置9により数百から数千パターンの曝気工程
時間TAと非曝気工程時間TNの組合せによるシミュレ
ーションを行い、その結果を一方の軸にα、他方の軸に
非曝気工程時間TNを表し、窒素、リンの除去率を等高
線で表すと図3のようなグラフが作成できる。図3は窒
素とリンの除去率の合計を等高線で示したが、除去率の
等高線は目標とする処理目的に応じて選択すればよい。
すなわち、窒素除去を重視するのであれば図4のように
窒素除去率のみを等高線で表せばよいし、リン除去を重
視するのであれば図5のようにリン除去率のみを等高線
で表せばよい。また、シミュレーションの実施頻度は特
に限定はされないが、流入負荷の変動が大きい等、入力
値が頻繁に変化する場合は頻度を多くすることが好まし
い。
Input to the arithmetic unit Table 1 is shown in the arithmetic unit 9 in which the reactions shown in Table 2 are programmed.
Enter the inflow load, activated sludge concentration, and other conditions shown in. The input to the arithmetic unit 9 may be an automatic input by an automatic measuring device, or if the value does not change frequently, the value collected and analyzed at a certain point in time, and there is not much difference in the value between treatment facilities. For items that are not, you may manually enter the values quoted from documents etc. as representative values. When inputting automatically, as shown in FIG. 1, a component analyzer 13 (for example, a BOD meter, a nitrogen concentration meter, a phosphorus concentration meter, etc.) of the organic wastewater 12, an inflow flow meter 14 and an MLSS meter 15 in the intermittent aeration tank 4. May be installed, and the inflow load and the activated sludge concentration may be input to the arithmetic unit 9. Moreover, it is also effective to judge the state of the inflow load from the DO reduction rate of the intermittent aeration tank 4 when the aeration process is changed to the non-aeration process. Although a measuring device not shown in the present embodiment may be used for input to the arithmetic unit 9, it is advantageous from the viewpoint of cost and management to limit the measuring device to the minimum required device. Creation of Optimal Operating Range Graph Next, a simulation is performed by the arithmetic unit 9 by a combination of several hundred to several thousand patterns of aeration process time TA and non-aeration process time TN, and the result is α on one axis and non-aeration on the other axis. When the aeration step time TN is represented and the removal rates of nitrogen and phosphorus are represented by contour lines, a graph as shown in FIG. 3 can be created. Although FIG. 3 shows the total removal rate of nitrogen and phosphorus by contour lines, the contour line of the removal rate may be selected according to the target processing purpose.
That is, if nitrogen removal is emphasized, only the nitrogen removal rate may be represented by contour lines as shown in FIG. 4, and if phosphorus removal is emphasized, only phosphorus removal rate may be represented by contour lines as shown in FIG. . Although the frequency of performing the simulation is not particularly limited, it is preferable to increase the frequency when the input value changes frequently such as when the inflow load is largely changed.

【0030】このグラフより窒素、リンのいずれかの除
去率もしくは両者の除去率の合計が最も高くなる領域
(図3では1.55の範囲)が求められ、その領域の中
心付近の座標を最も除去率が高く安定すると予測される
点であると判断し、前記目標比率α0と非曝気工程時間
TN(図3の場合α0=1.20、TN=30分)が決定
できる。
From this graph, a region (the range of 1.55 in FIG. 3) where the removal rate of nitrogen or phosphorus or the sum of the removal rates of both is highest is determined, and the coordinates near the center of the region are determined to be the highest. The target ratio α 0 and the non-aeration process time TN (α 0 = 1.20, TN = 30 minutes in the case of FIG. 3) can be determined by determining that the removal rate is high and stable.

【0031】これらの値α0、TNは演算装置9から制
御装置8に自動入力され、制御装置8において記憶され
る。
These values α 0 and TN are automatically input from the arithmetic unit 9 to the control unit 8 and stored in the control unit 8.

【0032】なお、本実施形態では制御装置8と演算装
置9を別個の装置としているが、制御装置8と演算装置
9を一体化させた装置を用いることも可能である。
Although the control device 8 and the arithmetic device 9 are separate devices in the present embodiment, it is also possible to use a device in which the control device 8 and the arithmetic device 9 are integrated.

【0033】また、本実施形態では前記目標比率α0
非曝気工程時間TNをシミュレーションによって求める
対象としているが、非曝気工程時間TNを、曝気工程時
間TA、1サイクル時間Tc、好気時間To、無酸素時
間Taのいずれかと置き換えてもよい。
Further, in the present embodiment, the target ratio α 0 and the non-aeration process time TN are obtained by simulation, but the non-aeration process time TN is defined as the aeration process time TA, the cycle time Tc, and the aerobic time To. , And the anoxic time Ta may be replaced.

【0034】図1に示す装置において、前記目標比率α
0と非曝気工程時間TNを予め制御装置8に与え、Kx
の変化に基づき曝気工程時間TAを演算して処理を行っ
ているが、このような処理によっても目標処理水質を達
成できなかった場合、図1に示す窒素・リン自動分析計
(窒素・リン濃度計測計)22により測定される間欠曝
気槽4から排出される処理液の窒素濃度、リン濃度とp
H計11により測定される間欠曝気槽4内または間欠曝
気槽4から排出される処理液のpHに基づいて、表3に
示すように前記目標比率α0を漸増または漸減すること
により、より実施設に適した運転を行うことが可能とな
る。
In the apparatus shown in FIG. 1, the target ratio α
0 and the non-aeration process time TN are given to the controller 8 in advance, and Kx
Although the aeration process time TA is calculated based on the change in the treatment, the treatment is performed, but when the target treated water quality cannot be achieved by such treatment, the nitrogen / phosphorus automatic analyzer (nitrogen / phosphorus concentration shown in Fig. 1 Nitrogen concentration, phosphorus concentration and p of the treatment liquid discharged from the intermittent aeration tank 4 measured by the measuring instrument 22
Based on the pH of the treatment liquid discharged in or from the intermittent aeration tank 4 measured by the H meter 11, as shown in Table 3, by gradually increasing or decreasing the target ratio α 0 , a more actual result can be obtained. It will be possible to perform operation suitable for the facility.

【0035】[0035]

【表3】 上記表3について、前記制御装置8による前記α0の補
正方法を具体的に説明する。
[Table 3] With reference to Table 3 above, a method of correcting the α 0 by the control device 8 will be specifically described.

【0036】一般的な組成の下水処理において処理水窒
素(T−N)濃度の目標値を10mg/L、処理水リン
(T−P)濃度の目標値を1.0mg/Lとしたとき、
目標値を達成できない主な原因として次の3通りが考え
られ、これに対応できるように制御装置8は前記α0
補正する。 処理水中のNH4−N残存 処理水(T−N)濃度として検出される窒素成分は、通
常はほとんどNО3−Nである。しかし、前記α0が小さ
すぎる場合、例えば硝化・脱窒を目的としている間欠曝
気槽で前記α0を0.5に設定した場合、硝化が十分に
進行しないため、処理水中にNО3−Nが少なく、NH4
−Nが残存する場合がある。このとき間欠曝気槽4内は
通常よりpHが高い(一般的には6.7〜7.0程度以
上)。したがって、処理水(T−N)濃度が目標値以上
のとき、間欠曝気槽4のpHより前記α0が小さいと判
断し前記α0を漸増する。 処理水中のNО3−N残存 前述したように処理水(T−N)濃度として検出される
窒素成分は、通常はほとんどNО3−Nである。しか
し、前記α0が大きすぎる場合、例えば硝化・脱窒を目
的としている間欠曝気槽4で前記α0を2.5に設定し
た場合、硝化が十分に進行するが脱窒が進行しないた
め、処理水中にNО3−Nが高濃度で残存する場合があ
る。このとき間欠曝気槽4内は硝化のみ進行し脱窒が進
行しないため(通常脱窒によりpHが上昇する。)、p
Hが低下する(一般的には6.0〜6.3程度以下)。
したがって、処理水(T−N)濃度が目標値以上のと
き、間欠曝気槽4のpHより前記α0が大きいと判断し
前記α0を漸減する。 処理水中のPО4−P残存 処理水(T−P)濃度として検出されるリン成分は、通
常はほとんどPО4−Pである。しかし、前記α0が小さ
すぎる場合、例えばリン吸収を目的としている間欠曝気
槽で前記α0を0.5に設定した場合、リン吸収が十分
に進行せず無酸素時間が長くなりすぎた結果嫌気状態と
なり、活性汚泥が吸収したリンを細胞外に放出するた
め、処理水中にPО4−Pが高濃度で残存する場合があ
る。このとき間欠曝気槽4内は通常よりpHが高い(一
般的には6.7〜7.0程度以上)。したがって、処理
水(T−P)濃度が目標値以上の時、間欠曝気槽4のp
Hより前記α0が小さいと判断し前記α0を漸増する。
When the target value of the treated water nitrogen (TN) concentration is 10 mg / L and the target value of the treated water phosphorus (TP) concentration is 1.0 mg / L in the general composition sewage treatment,
There are the following three main reasons why the target value cannot be achieved, and the control device 8 corrects α 0 so as to cope with the following three reasons. The nitrogen component detected as the NH 4 —N residual treated water (TN) concentration in the treated water is usually almost NO 3 —N. However, if the alpha 0 is too small, for example when the alpha 0 in an intermittent aeration tank which is intended to nitrification and denitrification set to 0.5 because the nitrification does not proceed sufficiently, NО 3 -N in the treated water Less, NH 4
-N may remain. At this time, the pH in the intermittent aeration tank 4 is higher than usual (generally, about 6.7 to 7.0 or higher). Therefore, when the treated water (TN) concentration is equal to or higher than the target value, it is determined that α 0 is smaller than the pH of the intermittent aeration tank 4, and the α 0 is gradually increased. Residual NO 3 -N in treated water As described above, the nitrogen component detected as the concentration of treated water (TN) is usually almost NO 3 -N. However, since the case alpha 0 is too large, for example when the alpha 0 in the intermittent aeration tank 4 that the nitrification and denitrification purposes set 2.5, nitrification can proceed sufficiently denitrification does not proceed, sometimes in the treated water NО 3 -N remains at a high concentration. At this time, in the intermittent aeration tank 4, only nitrification proceeds and denitrification does not proceed (normally denitrification raises the pH), so p
H decreases (generally, 6.0 to 6.3 or less).
Therefore, when the treated water (TN) concentration is equal to or higher than the target value, it is determined that the α 0 is higher than the pH of the intermittent aeration tank 4, and the α 0 is gradually reduced. The phosphorus component detected as the concentration of PO 4 -P residual treated water (TP) in the treated water is usually almost PO 4 -P. However, if the alpha 0 is too small, for example when the alpha 0 in an intermittent aeration tank which is intended to phosphorus absorption is set to 0.5, the result of anoxia time phosphorus absorption does not proceed sufficiently is too long An anaerobic condition occurs, and phosphorus absorbed by the activated sludge is released to the outside of the cell, so that PO 4 -P may remain at a high concentration in the treated water. At this time, the pH in the intermittent aeration tank 4 is higher than usual (generally, about 6.7 to 7.0 or higher). Therefore, when the treated water (TP) concentration is equal to or higher than the target value, p of the intermittent aeration tank 4 is increased.
It is determined that α 0 is smaller than H, and α 0 is gradually increased.

【0037】前記α0の漸増、漸減は上記シミュレーシ
ョンで求めた最も除去率が高い範囲内で行うことが望ま
しい。つまり、図3の場合、非曝気工程時間TNを一定
(30分)とし前記α0を0.9〜1.4の範囲で漸
増、漸減すればよい。また窒素・リン濃度の測定は自動
分析計による連続測定が好ましいが、測定値に時間変動
や日変動がない場合は、ある時点で実際に採水し分析を
行った結果を代表値として制御装置8に手入力してもよ
い。
It is desirable that the gradual increase and the gradual decrease of α 0 be performed within the range where the removal rate is the highest obtained by the above simulation. That is, in the case of FIG. 3, the non-aeration process time TN may be fixed (30 minutes), and the α 0 may be gradually increased or decreased in the range of 0.9 to 1.4. In addition, continuous measurement with an automatic analyzer is preferable for measuring nitrogen and phosphorus concentrations, but if the measured values do not fluctuate with time or day, the control device uses the result of actual water sampling at a certain point as a representative value. You may manually enter 8.

【0038】[0038]

【発明の効果】以上詳細に説明した通り、本発明によれ
ば、被処理水の窒素及びリンの除去を安定して行うこと
ができる。
As described in detail above, according to the present invention, nitrogen and phosphorus in the water to be treated can be stably removed.

【0039】また、本発明によれば、シミュレーション
により前記目標比率α0と非曝気工程時間等の時間の最
適範囲を求めることが可能となり、より高精度に、被処
理水の窒素及びリンの除去を行うことができる。
Further, according to the present invention, it is possible to obtain the optimum range of the target ratio α 0 and the time such as the non-aeration process time by simulation, and it is possible to remove nitrogen and phosphorus in the water to be treated with higher accuracy. It can be performed.

【0040】さらに、本発明によれば、前記目標比率α
0を補正することにより、より実施設に適した処理を行
うことができる。
Further, according to the present invention, the target ratio α
By correcting 0 , it is possible to perform processing more suitable for the implementation.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施の形態を示す説明図である。FIG. 1 is an explanatory diagram showing an embodiment of the present invention.

【図2】曝気・非曝気工程の一例を示す図である。FIG. 2 is a diagram showing an example of an aeration / non-aeration process.

【図3】窒素・リン除去シミュレーションの一例を示す
図である。
FIG. 3 is a diagram showing an example of a nitrogen / phosphorus removal simulation.

【図4】窒素除去シミュレーションの一例を示す図であ
る。
FIG. 4 is a diagram showing an example of a nitrogen removal simulation.

【図5】リン除去シミュレーションの一例を示す図であ
る。
FIG. 5 is a diagram showing an example of a phosphorus removal simulation.

【符号の説明】[Explanation of symbols]

2 嫌気槽 4 間欠曝気槽 5 曝気装置 6 DO計 8 制御装置 9 演算装置 17 固液分離槽 22 窒素・リン自動分析計 2 Anaerobic tank 4 Intermittent aeration tank 5 Aeration device 6 DO meter 8 control device 9 arithmetic unit 17 Solid-liquid separation tank 22 Nitrogen and phosphorus automatic analyzer

───────────────────────────────────────────────────── フロントページの続き (72)発明者 小原 洋 大阪府吹田市垂水町3丁目28番33号 松下 環境空調エンジニアリング株式会社内大阪 支店内 Fターム(参考) 4D040 BB22 BB32 BB72 BB91    ─────────────────────────────────────────────────── ─── Continued front page    (72) Inventor Hiroshi Ohara             Matsushita 3-28-33, Tarumi-cho, Suita City, Osaka Prefecture             Environmental Air Conditioning Engineering Co., Ltd. Osaka             Within the branch F term (reference) 4D040 BB22 BB32 BB72 BB91

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 有機性排水の処理を間欠曝気槽において
曝気工程と非曝気工程とからなるサイクルの繰り返しに
よる生物処理で行う嫌気・好気活性汚泥処理方法におい
て、前記間欠曝気槽における好気時間と無酸素時間の所
定の比率を目標比率α0として設定し、前サイクル以前
の間欠曝気槽内溶存酸素濃度DOの測定により曝気工程
終了後から前記DOが所定値以下になるまでの時間Kx
を求め、この時間Kxに基づき今回サイクルの好気時間
と無酸素時間が前記目標比率α 0となるように曝気工程
時間と非曝気工程時間を制御することを特徴とする嫌気
・好気活性汚泥処理方法。
1. Treatment of organic wastewater in an intermittent aeration tank
For repeating cycle consisting of aeration process and non-aeration process
Odor of anaerobic and aerobic activated sludge treated by biological treatment
The aerobic time and anoxic time in the intermittent aeration tank.
The constant ratio is the target ratio α0Set as before the previous cycle
Aeration process by measuring the dissolved oxygen concentration DO in the intermittent aeration tank
Time Kx from the end to the time when the DO becomes below a predetermined value
And based on this time Kx, the aerobic time of this cycle
And the anoxic time is the target ratio α 0Aeration process so that
Anaerobic characterized by controlling the time and non-aeration process time
-Aerobic activated sludge treatment method.
【請求項2】 間欠曝気槽において流入負荷、活性汚泥
濃度、その他各種条件を示す入力値に基づいてASM2
d等の水質シミュレーションモデルを用いた演算装置に
より、窒素、リンのいずれかの除去率もしくは両者の除
去率の合計が最も高くなる好気時間と無酸素時間の比率
と、曝気工程時間、非曝気工程時間、1サイクル時間、
好気時間、無酸素時間のいずれか1つとを求め、前記比
率を前記目標比率α0とすることを特徴とする請求項1
記載の嫌気・好気活性汚泥処理方法。
2. The ASM2 based on input values indicating inflow load, activated sludge concentration, and other various conditions in the intermittent aeration tank.
By using an arithmetic unit using a water quality simulation model such as d, the removal rate of either nitrogen or phosphorus or the sum of the removal rates of both is highest, the ratio of aerobic time and anoxic time, aeration process time, non-aeration Process time, 1 cycle time,
2. One of aerobic time and anaerobic time is obtained, and the ratio is set to the target ratio α 0.
Anaerobic / aerobic activated sludge treatment method described.
【請求項3】 間欠曝気槽内または間欠曝気槽から排出
される処理液のpH及び間欠曝気槽から排出される処理
液の窒素濃度、リン濃度を測定し、これらの測定値に基
づき前記目標比率α0を補正する請求項1または2記載
の嫌気・好気活性汚泥処理方法。
3. The pH of the treatment liquid discharged in or from the intermittent aeration tank and the nitrogen concentration and phosphorus concentration of the treatment liquid discharged from the intermittent aeration tank are measured, and the target ratio is determined based on these measured values. The anaerobic / aerobic activated sludge treatment method according to claim 1 or 2, wherein α 0 is corrected.
【請求項4】 有機性排水の処理を間欠曝気槽において
曝気工程と非曝気工程とからなるサイクルの繰返しによ
る生物処理で行う嫌気・好気活性汚泥処理装置におい
て、 前記生物処理を行う間欠曝気槽と、 前記間欠曝気槽内の溶存酸素濃度DOを測定するDО計
と、 前記間欠曝気槽における好気時間と無酸素時間の所定の
比率が目標比率α0として設定されるとともに、曝気工
程時間、非曝気工程時間、1サイクル時間、好気時間、
無酸素時間のいずれか1つが設定され、前記DO計の前
サイクル以前の測定結果に基づき曝気工程終了後から前
記DОが所定値以下になるまでの時間Kxを求め、この
時間Kxに基づき今回のサイクルの好気時間と無酸素時
間が前記目標比率α0となるように曝気工程時間と非曝
気工程時間を制御する制御手段とを、 備えたことを特徴とする嫌気・好気活性汚泥処理装置。
4. An anaerobic / aerobic activated sludge treatment device for treating organic wastewater by biological treatment by repeating a cycle of an aeration process and a non-aeration process in an intermittent aeration tank, wherein the intermittent aeration tank for performing the biological treatment. And a DO meter for measuring the dissolved oxygen concentration DO in the intermittent aeration tank, a predetermined ratio of aerobic time and anoxic time in the intermittent aeration tank is set as a target ratio α 0 , and the aeration process time, Non-aeration process time, 1 cycle time, aerobic time,
Any one of the anaerobic time is set, and the time Kx from the end of the aeration step until the DO becomes below a predetermined value is obtained based on the measurement result before the previous cycle of the DO meter, and the time Kx of this time is calculated based on this time Kx. An anaerobic / aerobic activated sludge treatment device, comprising: control means for controlling the aeration process time and the non-aeration process time so that the aerobic time and the anoxic time of the cycle become the target ratio α 0. .
【請求項5】 間欠曝気槽において流入負荷、活性汚泥
濃度、その他各種条件を示す入力値に基づいてASM2
d等の水質シミュレーションモデルを用いた演算装置で
あって、窒素、リンのいずれかの除去率もしくは両者の
除去率の合計が最も高くなる好気時間と無酸素時間の比
率と曝気工程時間、非曝気工程時間、1サイクル時間、
好気時間、無酸素時間のいずれか1つの時間を求める演
算装置を備え、この演算装置で求められた前記比率を前
記目標比率α0として、前記いずれか1つの時間と共に
制御手段に入力するように構成したことを特徴とする請
求項4記載の嫌気・好気活性汚泥処理装置。
5. The ASM2 based on input values indicating inflow load, activated sludge concentration, and other various conditions in the intermittent aeration tank.
An arithmetic unit using a water quality simulation model such as d, wherein the removal rate of either nitrogen or phosphorus or the sum of the removal rates of both is highest, the ratio of aerobic time and anoxic time, and the aeration process time, Aeration process time, 1 cycle time,
An arithmetic unit for determining any one of the aerobic time and the anaerobic period is provided, and the ratio obtained by this arithmetic unit is input to the control means together with any one of the times as the target ratio α 0. The anaerobic / aerobic activated sludge treatment device according to claim 4, which is configured as follows.
【請求項6】 間欠曝気槽内または間欠曝気槽から排出
される処理液のpHを測定するpH計と、間欠曝気槽か
ら排出される処理液の窒素濃度、リン濃度を測定する窒
素・リン濃度測定計とを備え、前記制御手段は、測定さ
れたpH、窒素濃度、リン濃度に基づき前記目標比率α
0を補正する機能を有することを特徴とする請求項4ま
たは5記載の嫌気・好気活性汚泥処理装置。
6. A pH meter for measuring the pH of a treatment liquid discharged in or from the intermittent aeration tank, and a nitrogen / phosphorus concentration for measuring the nitrogen concentration and the phosphorus concentration of the treatment liquid discharged from the intermittent aeration tank. And a control unit for controlling the target ratio α based on the measured pH, nitrogen concentration, and phosphorus concentration.
The anaerobic / aerobic activated sludge treatment device according to claim 4 or 5, which has a function of correcting 0 .
JP2002088185A 2002-03-27 2002-03-27 Treatment method for anaerobic/aerobic activated sludge and apparatus therefor Pending JP2003285092A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002088185A JP2003285092A (en) 2002-03-27 2002-03-27 Treatment method for anaerobic/aerobic activated sludge and apparatus therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002088185A JP2003285092A (en) 2002-03-27 2002-03-27 Treatment method for anaerobic/aerobic activated sludge and apparatus therefor

Publications (1)

Publication Number Publication Date
JP2003285092A true JP2003285092A (en) 2003-10-07

Family

ID=29234124

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002088185A Pending JP2003285092A (en) 2002-03-27 2002-03-27 Treatment method for anaerobic/aerobic activated sludge and apparatus therefor

Country Status (1)

Country Link
JP (1) JP2003285092A (en)

Similar Documents

Publication Publication Date Title
JP4334317B2 (en) Sewage treatment system
JP4229999B2 (en) Biological nitrogen removal equipment
JP4008694B2 (en) Sewage treatment plant water quality controller
KR100633831B1 (en) Computing process apparatus for information on water quality
JP2006315004A (en) Water quality control unit for sewage disposal plant
JPH1043788A (en) Control method for biological water treating device
JP6334244B2 (en) Water treatment process control system
JP2002126779A (en) Sludge treatment method and apparatus used therefor
JPH0938690A (en) Method for controlling injection of flocculating agent in water treatment
JPH07299495A (en) Nitrification accelerating method for activated sludge circulation modulating method and method for predicting nitrification rate
JP2003285092A (en) Treatment method for anaerobic/aerobic activated sludge and apparatus therefor
JP6529886B2 (en) Organic wastewater treatment system, control method and computer program
JP6375257B2 (en) Water treatment equipment
JPH1015590A (en) Removal of nitrogen of waste water and apparatus therefor
JP3942488B2 (en) Control method and apparatus for intermittent aeration method
JP4573575B2 (en) Advanced sewage treatment method and apparatus
JPH0938683A (en) Biological water treating device
JP3213657B2 (en) Wastewater treatment method and apparatus
JP2001009497A (en) Biological water treatment and equipment therefor
JP4190177B2 (en) Method and apparatus for adding organic carbon source in biological denitrification treatment
JP2004000986A (en) Method for controlling biological water treatment apparatus
JP4453287B2 (en) Sewage treatment method and sewage treatment control system
JP3690537B2 (en) Intermittent aeration
JP2002336889A (en) Water quality simulation system
JP4026057B2 (en) Water quality simulation equipment

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050204

A977 Report on retrieval

Effective date: 20070601

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Effective date: 20080527

Free format text: JAPANESE INTERMEDIATE CODE: A131

A521 Written amendment

Effective date: 20080725

Free format text: JAPANESE INTERMEDIATE CODE: A523

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20091222