JP2003282576A - Heat treatment setting method for silicon substrate, method for heat treatment of silicon substrate and manufacturing method for silicon substrate - Google Patents

Heat treatment setting method for silicon substrate, method for heat treatment of silicon substrate and manufacturing method for silicon substrate

Info

Publication number
JP2003282576A
JP2003282576A JP2002084712A JP2002084712A JP2003282576A JP 2003282576 A JP2003282576 A JP 2003282576A JP 2002084712 A JP2002084712 A JP 2002084712A JP 2002084712 A JP2002084712 A JP 2002084712A JP 2003282576 A JP2003282576 A JP 2003282576A
Authority
JP
Japan
Prior art keywords
heat treatment
silicon substrate
heavy metal
temperature
concentration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002084712A
Other languages
Japanese (ja)
Other versions
JP4638650B2 (en
Inventor
Toshimi Tobe
敏視 戸部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Handotai Co Ltd
Original Assignee
Shin Etsu Handotai Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Etsu Handotai Co Ltd filed Critical Shin Etsu Handotai Co Ltd
Priority to JP2002084712A priority Critical patent/JP4638650B2/en
Publication of JP2003282576A publication Critical patent/JP2003282576A/en
Application granted granted Critical
Publication of JP4638650B2 publication Critical patent/JP4638650B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a finding method for cooling conditions, capable more effectively developing an IG capacity in accordance with the initial amount of contamination of heavy metal and the density of oxygen deposit of a silicone substrate. <P>SOLUTION: The heat treatment condition of the silicon substrate is set by a method, wherein the relation between a heat treatment temperature T and a heat treatment time t upon continuous cooling is calculated by equations (1): 1/τ=3 D[(C<SB>0</SB>-C<SB>eq</SB>)/(C<SB>p</SB>-C<SB>eq</SB>)]<SP>1/3</SP>[4πn/3]<SP>2/3</SP>, (2): t=τ1n[(CE-C<SB>eq</SB>)/(C<SB>0</SB>-C<SB>eq</SB>)], (3): T=T<SB>0</SB>-R<SB>c</SB>t from the initial heavy metal contamination density C<SB>0</SB>, the density of oxygen deposit n and the density CE of a desired impurity, then, a C-C-T chart, showing the calculated relation between the heat treatment temperature T and the heat treatment time t, is created and a tangential line, passing a point of a temperature T<SB>0</SB>on the temperature axis of the created C-C-T chart, whereat the initial heavy metal contamination density C<SB>0</SB>becomes the degree of solid solution C<SB>eq</SB>of the heavy metal, while contacting with a curve in the C-C-T chart with a maximum inclination, is drawn to determine optimum cooling speed by the inclination of the tangential line. <P>COPYRIGHT: (C)2004,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、シリコンウエーハ
中の不純物をシリコン基板中の欠陥にゲッタリングす
る、いわゆるインターナルゲッタリングで不純物を除去
する際に効果的な冷却速度を設定することにより、表面
が清浄なシリコン基板でデバイスを作製する技術に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention is to set an effective cooling rate when removing impurities by so-called internal gettering, in which impurities in a silicon wafer are gettered to defects in a silicon substrate. The present invention relates to a technique for manufacturing a device with a silicon substrate whose surface is clean.

【0002】[0002]

【従来の技術】従来、一般にICやLSI等の半導体装置を
作製する半導体ウエーハとしては、チョクラルスキー法
(CZ法)や浮遊帯溶融法(FZ法)によって成長させたシリコ
ン単結晶を用いるが、デバイス作製のための熱処理中
に、何らかの重金属汚染が発生した場合、完成したデバ
イス動作に多大な悪影響が及ぶ。そこで、重金属不純物
がウエーハ中に混入した際、デバイス動作領域である表
面から重金属不純物を除去し、ウエーハ内部や裏面に閉
じ込める手法が発達した。
2. Description of the Related Art Conventionally, the Czochralski method has been used as a semiconductor wafer for producing semiconductor devices such as IC and LSI.
Although a silicon single crystal grown by the (CZ method) or the floating zone melting method (FZ method) is used, if any heavy metal contamination occurs during the heat treatment for device fabrication, the completed device operation will be adversely affected. Reach Therefore, a method has been developed in which, when heavy metal impurities are mixed in the wafer, the heavy metal impurities are removed from the surface, which is the device operation region, and confined inside or on the back surface of the wafer.

【0003】これをゲッタリング技術という。このゲッ
タリング法は、重金属不純物を閉じ込めるウエーハの位
置によって区別されており、ウエーハの内部に閉じ込め
る方法をインターナルゲッタリング(Internal Getterin
g:IG)、裏面に閉じ込める方法をエクスターナルゲッタ
リング(External Gettering:EG)と呼ぶ。
This is called a gettering technique. This gettering method is distinguished by the position of the wafer in which the heavy metal impurities are confined, and the method of confining inside the wafer is determined by the internal gettering method.
g: IG), the method of confining it on the back side is called External Gettering (EG).

【0004】前者の代表例はウエーハ内部に酸素析出物
を形成し、それに重金属不純物を捕獲する方法で、後者
では、裏面に機械的歪み層を形成するサンドブラスト法
や多結晶シリコン膜を堆積するポリバックシール法(Pol
y-Si Back Seal:PBS)がある。従来、これらのゲッタリ
ング手法を単独または複合させ、シリコン単結晶ウエー
ハに付加し、重金属不純物をデバイス動作領域から除去
できる特性を持つ、優れたシリコン単結晶ウエーハが作
製されている。
A typical example of the former is a method of forming oxygen precipitates inside the wafer and capturing heavy metal impurities therein. In the latter, a sand blast method for forming a mechanical strain layer on the back surface or a poly silicon for depositing a polycrystalline silicon film. Back seal method (Pol
y-Si Back Seal: PBS) is available. Conventionally, an excellent silicon single crystal wafer has been produced which has the property of removing heavy metal impurities from the device operating region by adding these gettering methods individually or in combination and adding them to the silicon single crystal wafer.

【0005】ところでIGで不純物を除去する場合、C
Zシリコン基板中に形成された酸素析出物を不純物の析
出核とし、デバイス作製熱処理中に不純物を酸素析出物
に拡散し、析出させることになる。その不純物が実際に
捕獲される速度をゲッタリング速度と定義した場合、そ
のゲッタリング速度には温度依存性があることが知られ
ている。
By the way, when impurities are removed by IG, C
The oxygen precipitates formed in the Z silicon substrate are used as impurity precipitation nuclei, and the impurities are diffused into the oxygen precipitates during the device fabrication heat treatment to be precipitated. When the rate at which the impurities are actually captured is defined as the gettering rate, it is known that the gettering rate has temperature dependence.

【0006】つまり、高温ではシリコン基板中の不純物
の拡散は速いが、不純物の固溶度も高いため、酸素析出
物に捕獲できる量が少なくなり、また不純物の捕獲速度
も比較的低く、低温では固溶度が低いため不純物析出の
駆動力は高いが、拡散が遅いので、ゲッタリング速度と
しては低くなる。
That is, at high temperatures, the diffusion of impurities in the silicon substrate is fast, but since the solid solubility of the impurities is also high, the amount that can be trapped in oxygen precipitates is small, and the trapping rate of impurities is relatively low. Since the solid solubility is low, the driving force for impurity precipitation is high, but since the diffusion is slow, the gettering speed is low.

【0007】従って、適当な温度において最適なゲッタ
リングが行われるはずであるが、従来、適当な熱処理条
件を設定する方法が存在しなかったため、熱処理条件
は、経験的に得られた条件を用いるか、あるいはデバイ
ス工程のデバイス作製上の都合により決められていた。
そのため、所望の不純物濃度のシリコン基板(ゲッタリ
ングにより所望不純物濃度となったシリコン基板)を得
るのに不要な時間を費やす場合が多かった。
Therefore, although optimum gettering should be performed at an appropriate temperature, conventionally, there is no method for setting an appropriate heat treatment condition. Therefore, the heat treatment condition should be an empirically obtained condition. Or, it was determined by the convenience of device fabrication in the device process.
Therefore, it often takes unnecessary time to obtain a silicon substrate having a desired impurity concentration (a silicon substrate having a desired impurity concentration by gettering).

【0008】このような問題を解決するために本願発明
者によってなされた発明(特開平11−283986号
公報参照)は、最適な熱処理温度と時間を設定できる画
期的な方法である。シリコン基板中の初期重金属汚染濃
度と、酸素析出物密度と、所望の不純物濃度から、図3
に示すT−T−T線図(Time-Temperature-Transformat
ion Diagram)と呼ばれる図面を作成することにより、
容易にその最適熱処理条件を設定できる。この図は目的
の濃度まで重金属不純物濃度を低減させる際の熱処理温
度と時間の関係を示したもので、最適な熱処理条件はノ
ーズと呼ばれる熱処理時間の最短部にて決定できる。ま
たこの図から、他の事情により最適条件にて熱処理が実
施できない場合にも、ある温度でどの程度の時間が必要
かが一目瞭然でわかる。
The invention made by the inventor of the present application to solve such a problem (see Japanese Patent Application Laid-Open No. 11-283986) is an epoch-making method capable of setting the optimum heat treatment temperature and time. From the initial heavy metal contamination concentration in the silicon substrate, the oxygen precipitate density, and the desired impurity concentration, FIG.
T-T-T diagram (Time-Temperature-Transformat
By creating a drawing called ion diagram)
The optimum heat treatment conditions can be set easily. This figure shows the relationship between the heat treatment temperature and the time for reducing the concentration of heavy metal impurities to the target concentration, and the optimum heat treatment condition can be determined at the shortest part of the heat treatment time called the nose. Also, from this figure, it is clear at a glance how much time is required at a certain temperature even when the heat treatment cannot be performed under the optimum conditions due to other circumstances.

【0009】しかし実際のデバイス作製プロセスにおい
て、重金属汚染低減のために等温保持の低温熱処理工程
を施すことはコスト的に不利であり、あまり行われてい
ない。従って、実際には高温熱処理からウエーハを取り
出す際の連続冷却工程において重金属除去の効果を得て
いるのが現状である。しかるにT−T−T線図は本来、
等温保持による重金属濃度の減少の様子を表したもの
で、定性的な概算としては冷却時に応用できるものの、
厳密な取り扱いはできない。そのため冷却工程をゲッタ
リングプロセスととらえた場合には、厳密な意味での最
適冷却時間設定法が存在していなかった。
However, in the actual device manufacturing process, the low temperature heat treatment step of isothermal holding for reducing heavy metal contamination is disadvantageous in terms of cost and is not performed so often. Therefore, in reality, the effect of removing heavy metals is obtained in the continuous cooling step when the wafer is taken out from the high temperature heat treatment. However, the T-T-T diagram is originally
It shows how the concentration of heavy metals decreases due to isothermal holding.Although it can be applied during cooling as a qualitative rough estimate,
Strict handling is not possible. Therefore, when the cooling process is regarded as a gettering process, there is no strict sense of the optimal cooling time setting method.

【0010】[0010]

【発明が解決しようとする課題】従来の方法は前記のご
とく、連続冷却工程にて不純物を除去するという観点か
ら見た場合、定性的な条件設定法であり、必ずしも最適
条件ではない場合があった。本発明はこのような問題点
に鑑みなされたもので、シリコン基板の初期重金属汚染
量、酸素析出物密度に応じて、より効果的にIG能力を
発揮できる冷却条件を見出す方法を提供することを目的
とする。
As described above, the conventional method is a qualitative condition setting method from the viewpoint of removing impurities in the continuous cooling step, and may not always be the optimum condition. It was The present invention has been made in view of the above problems, and provides a method for finding a cooling condition that can more effectively exert the IG capability, depending on the initial heavy metal contamination amount of the silicon substrate and the oxygen precipitate density. To aim.

【0011】[0011]

【課題を解決するための手段】上記課題を解決するため
の本発明は、シリコン基板にインターナルゲッタリング
を行う場合のシリコン基板の熱処理条件を設定する方法
において、シリコン基板中の初期重金属汚染濃度C0と、
酸素析出物密度nと、所望の不純物濃度CEとから、下記
(1)式、(2)式および(3)式より連続冷却の場合
の熱処理温度Tと熱処理時間tの関係を算出し、算出され
た熱処理温度Tと熱処理時間tの関係を示すC−C−T線
図を作成し、前記作成されたC−C−T線図の温度軸上
で前記初期重金属汚染濃度C0がシリコン中の重金属の固
溶度Ceqとなる温度T0の点を通りC−C−T線図の曲線
と最大の傾きになるように接する接線を引き、該接線の
傾きにより最適冷却速度を決定することを特徴とするシ
リコン基板の熱処理条件を設定する方法である(請求項
1)。 1/τ=3D[(C0-Ceq)/(Cp-Ceq)]1/3[4πn/3]2/3 …(1) t=-τln[(CE-Ceq)/(C0-Ceq)] …(2) T=T0-Rct …(3) (ここで、C0:初期重金属汚染濃度(原子/cm3)、 CE:所望の不純物濃度(原子/cm3)、 Ceq:シリコン中の重金属の固溶度(原子/cm3)、 k:ボルツマン定数、T:熱処理温度(K)、t:熱処理時間
(s)、 1/τ:ゲッタリング速度(s-1)、 D:重金属の拡散係数(cm2/s)、 Cp:析出物中の重金属濃度、n:酸素析出物密度(内部微
小欠陥密度,個/cm3) T0:初期重金属汚染濃度が固溶度となる温度、Rc:冷却速
度。)
According to the present invention for solving the above-mentioned problems, in a method of setting a heat treatment condition of a silicon substrate when performing internal gettering on the silicon substrate, an initial heavy metal contamination concentration in the silicon substrate is set. C 0 ,
From the oxygen precipitate density n and the desired impurity concentration C E , the relationship between the heat treatment temperature T and the heat treatment time t in the case of continuous cooling is calculated from the following equations (1), (2) and (3), A C-C-T diagram showing the relationship between the calculated heat-treatment temperature T and heat-treatment time t was created, and the initial heavy metal contamination concentration C 0 was silicon on the temperature axis of the created C-C-T diagram. A tangent line is drawn through the point of the temperature T 0 at which the solid solubility of the heavy metal is C eq and the curve of the CCT diagram has the maximum slope, and the optimum cooling rate is determined by the slope of the tangent line. This is a method for setting the heat treatment conditions for the silicon substrate. 1 / τ = 3D [(C 0 -C eq ) / (C p -C eq )] 1/3 [4πn / 3] 2 /3… (1) t = -τln [(C E -C eq ) / (C 0 -C eq)] ... (2) T = T 0 -R c t ... (3) ( wherein, C 0: initial heavy metal contamination concentration (atoms / cm 3), C E: desired impurity concentration ( Atom / cm 3 ), C eq : solid solubility of heavy metal in silicon (atom / cm 3 ), k: Boltzmann constant, T: heat treatment temperature (K), t: heat treatment time
(s), 1 / τ: gettering rate (s -1 ), D: diffusion coefficient of heavy metals (cm 2 / s), C p : heavy metal concentration in precipitates, n: oxygen precipitate density (internal microdefects) Density, pieces / cm 3 ) T 0 : Temperature at which the initial heavy metal contamination concentration becomes solid solubility, R c : Cooling rate. )

【0012】このように、シリコン基板中の初期重金属
汚染濃度と、酸素析出物密度と、所望の不純物濃度とか
ら、前記(1)式、(2)式および(3)式より算出さ
れた連続冷却中の熱処理温度Tと熱処理時間tの関係か
ら、C−C−T(Continuas-Cooling-Transformation D
iagram)線図を作成し、前記作成されたC−C−T線図
の温度軸上で前記初期重金属汚染濃度C0がシリコン中の
重金属の固溶度Ceqとなる温度T0の点を通りC−C−T
線図の曲線と最大の傾きになるように接する接線を引
き、該接線の傾きにより最適冷却速度を決定することに
よって、熱処理条件を設定すれば、実際に熱処理をした
場合との誤差が少なく、きわめて精度よく冷却中にゲッ
タリングが起こり、所望重金属濃度に低減できる冷却条
件を設定することができる。
As described above, the continuous heavy metal contamination concentration in the silicon substrate, the oxygen precipitate density, and the desired impurity concentration are continuously calculated from the above equations (1), (2) and (3). From the relationship between the heat treatment temperature T and the heat treatment time t during cooling, C-CT (Continuas-Cooling-Transformation D
iagram) diagram is created, and the point of temperature T 0 at which the initial heavy metal contamination concentration C 0 becomes the solid solubility C eq of heavy metal in silicon is plotted on the temperature axis of the created C-C-T diagram. Street C-C-T
Draw a tangent line that is tangent to the curve of the diagram so as to have the maximum slope, and determine the optimum cooling rate by the slope of the tangent line to set the heat treatment conditions, so that there is little error with the actual heat treatment, Gettering occurs during cooling with extremely high precision, and it is possible to set cooling conditions that can reduce the concentration of heavy metal to a desired level.

【0013】この場合、前記(1)式、(2)式および
(3)式による連続冷却の場合の熱処理温度と熱処理時
間の関係の算出は、差分法により行なうことが好ましい
(請求項2)。このように、上記式の解析を差分法を用
いて行なうことにより、比較的簡便に解析を行ない、C
−C−T線図を作成することができる。
In this case, it is preferable to calculate the relationship between the heat treatment temperature and the heat treatment time in the case of continuous cooling by the equations (1), (2) and (3) by the difference method (claim 2). . In this way, by performing the analysis of the above equation using the difference method, the analysis can be performed relatively easily.
-A C-T diagram can be created.

【0014】また本発明は、本発明の方法により設定さ
れた熱処理条件によってシリコン基板の熱処理を行なう
ことを特徴とするシリコン基板を熱処理する方法である
(請求項3)。この方法によって熱処理を行えば、不純
物を除去するのに適した冷却条件によって熱処理を行う
ことができるため、効率よくシリコン基板から不純物を
除去することができる。
Further, the present invention is a method for heat treating a silicon substrate, characterized in that the silicon substrate is heat-treated under the heat treatment conditions set by the method of the present invention (claim 3). If the heat treatment is performed by this method, the heat treatment can be performed under cooling conditions suitable for removing the impurities, and thus the impurities can be efficiently removed from the silicon substrate.

【0015】また本発明は、少なくとも本発明の熱処理
する工程を有することを特徴とするシリコン基板の製造
方法である(請求項4)。このようなシリコン基板の製
造方法は、ゲッタリングにより所望の不純物濃度となっ
たシリコン基板を確実に製造することができる製造方法
である。そのためデバイス歩留りの向上を確実に図るこ
とができる。
Further, the present invention is a method for manufacturing a silicon substrate, which comprises at least the heat treatment step of the present invention (claim 4). Such a method of manufacturing a silicon substrate is a method of reliably manufacturing a silicon substrate having a desired impurity concentration by gettering. Therefore, it is possible to surely improve the device yield.

【0016】また、本発明はコンピュータにシリコン基
板の熱処理条件を設定させるためのプログラムであっ
て、該プログラムはコンピュータに、前記本発明の熱処
理条件を設定する方法によって前記熱処理条件を設定さ
せるものであることを特徴とするコンピュータにシリコ
ン基板の熱処理条件を設定させるためのプログラムであ
る(請求項5)。
Further, the present invention is a program for causing a computer to set the heat treatment conditions of a silicon substrate, the program causing the computer to set the heat treatment conditions by the method for setting the heat treatment conditions of the present invention. A program for causing a computer to set heat treatment conditions for a silicon substrate (claim 5).

【0017】このように、本発明を実行するためのプロ
グラムは、コンピュータに本発明の方法によって前記熱
処理条件を算出させるものであるから、これによりコン
ピュータに熱処理条件を設定させれば、きわめて精度よ
く冷却中にゲッタリングが起こり、所望重金属濃度に低
減することができるウエーハの熱処理条件を簡単かつ容
易に設定することができる。
As described above, the program for executing the present invention causes the computer to calculate the heat treatment condition by the method of the present invention. Therefore, if the computer is made to set the heat treatment condition by this, the program can be performed very accurately. Gettering occurs during cooling, and the heat treatment conditions of the wafer that can reduce the concentration of the heavy metal to a desired value can be set easily and easily.

【0018】さらに本発明は、本発明のプログラムを記
録したことを特徴とする記録媒体である(請求項6)。
このように、本発明のプログラムを記録媒体に記録して
おけば、必要時に必要な場所において、各コンピュータ
に入力して使用することができるので、極めて便利であ
る。
Further, the present invention is a recording medium on which the program of the present invention is recorded (claim 6).
As described above, if the program of the present invention is recorded in the recording medium, it can be input to each computer and used at a necessary place when necessary, which is extremely convenient.

【0019】以下、本発明につき更に詳細に説明する。
本発明者は、従来は、種々の初期重金属汚染濃度、酸素
析出物密度をもったシリコン基板を、種々の熱処理条件
で実際に多量のシリコン基板に長時間の熱処理を施すこ
とによって適正な熱処理条件を経験的に模索していたの
を、もっと簡単に数値計算により割り出すことができな
いか、種々検討した結果、既出の発明(特開平11−2
83986号公報参照)を開発した。しかしこの既出の
方法で有効なのは等温保持の場合であり、定性的に連続
冷却の場合の傾向をつかむことはできても、実際の厳密
な場合における連続冷却時の不純物減少の様子を把握す
ることはできなかった。
The present invention will be described in more detail below.
The inventors of the present invention have hitherto been able to perform appropriate heat treatment conditions by subjecting silicon substrates having various initial heavy metal contamination concentrations and oxygen precipitate densities to a large number of silicon substrates under various heat treatment conditions for a long time. However, as a result of various studies as to whether or not it is possible to more easily find out by numerical calculation, it was found that the above-mentioned invention (JP-A-11-2
83986). However, this method is effective only for isothermal holding, and it is possible to qualitatively grasp the tendency of continuous cooling, but to grasp the state of impurity reduction during continuous cooling in actual strict cases. I couldn't.

【0020】そこで本発明者は厳密な冷却時の取り扱い
をするために、この既出の方法に、冷却中に刻々と変わ
る温度変化を考慮に入れた方法を開発した。これによ
り、連続冷却時を不純物低減工程(ゲッタリングプロセ
ス)とした場合において、初期重金属汚染濃度、酸素析
出物密度および所望の不純物濃度を決定するだけで、数
値計算によって、短時間にかつ高精度でより効果的な冷
却速度を知ることを可能とした。
Therefore, the present inventor has developed, in order to perform strict handling at the time of cooling, a method that takes into account the temperature change which changes momentarily during cooling, in addition to the above-mentioned method. Therefore, when continuous cooling is used as an impurity reduction process (gettering process), the initial heavy metal contamination concentration, the oxygen precipitate density, and the desired impurity concentration can be determined simply by numerical calculation in a short time and with high accuracy. It became possible to know the more effective cooling rate.

【0021】特に、本発明では、前記(1)式、(2)
式および(3)式よりC−C−T線図を作成し、作成し
たC−C−T線図上で、冷却速度を決定することによ
り、熱処理条件設定の精度を格段に向上させている点に
特徴を有する。
Particularly, in the present invention, the above formulas (1) and (2) are used.
A C-C-T diagram is created from the formula and the formula (3), and the cooling rate is determined on the created C-C-T diagram, thereby significantly improving the accuracy of heat treatment condition setting. It is characterized by points.

【0022】そして、上記のような方法によって設定さ
れた熱処理条件により、シリコン基板の熱処理を行い、
シリコン基板を製造すれば、従来のような場当たり的
で、経験的に決定されたものではなく、精度が良い熱処
理条件を設定できるため、簡単かつ確実に所望の不純物
濃度のシリコン基板を得ることができる。
Then, the heat treatment of the silicon substrate is performed under the heat treatment conditions set by the above method,
When a silicon substrate is manufactured, it is possible to easily and surely obtain a silicon substrate having a desired impurity concentration because it is possible to set a heat treatment condition with high precision, which is not adventitious and empirically determined as in the past. it can.

【0023】[0023]

【発明の実施の形態】以下、本発明の実施の形態を具体
的な計算をするモデルの内容を例示して説明するが、発
明はこれらに限定されるものではない。図2は熱処理温
度280℃における酸素析出物密度が8×109個/cm3で、初
期汚染量が8×1012原子/cm3ないし2×1014原子/cm3であ
る場合のFeのゲッタリング速度、すなわち酸素析出物
へFeが析出することによる固溶Fe濃度減衰の様子を
示したものである。このように、シリコン基板中に過飽
和に固溶した不純物のFe原子の濃度は、時間の指数関
数に従い減少する(戸部他;応用物理学会研究会、シリ
コンテクノロジーNo. 5, 9th November 1998, p.44-49
参照)。その様子は以下の(4)式で示されている。 C=C0+(C0-Ceq)exp(-t/τ) 1/τ=4πDnr …(4) (ここで、C:固溶Fe濃度(原子/cm3)、C0:初期汚染濃
度(原子/cm3)、 Ceq:シリコン中のFeの固溶度(=4.3×1022exp(-2.1eV/
kT),原子/cm3) (M.Aoki et al;J.Appl.Phys. 72(3)(1992)895-898参
照)、 k:ボルツマン定数、T:絶対温度(K)、t:熱処理時間(s)、 1/τ:ゲッタリング速度(s-1)、 D:Feの拡散係数(=1.3×10-3exp(-0.68eV/kT), cm2/
s) (E.R.Weber; Appl.Phys.A30(1983)1.参照) n:酸素析出物密度(内部微小欠陥(BMD)密度,個/c
m3))。
BEST MODE FOR CARRYING OUT THE INVENTION The embodiments of the present invention will be described below by exemplifying the contents of a model for concrete calculation, but the invention is not limited thereto. Fig. 2 shows the amount of Fe when the density of oxygen precipitates at the heat treatment temperature of 280 ° C is 8 × 10 9 atoms / cm 3 and the initial contamination amount is 8 × 10 12 atoms / cm 3 to 2 × 10 14 atoms / cm 3 . The gettering rate, that is, the state of solid solution Fe concentration attenuation due to the precipitation of Fe in oxygen precipitates is shown. Thus, the concentration of superatomic solid solution Fe atoms in the silicon substrate decreases in accordance with the exponential function of time (Tobe et al .; Japan Society of Applied Physics, Silicon Technology No. 5, 9th November 1998, p. 44-49
reference). The state is shown by the following equation (4). C = C 0 + (C 0 -C eq ) exp (-t / τ) 1 / τ = 4πD nr (4) (where C: solid solution Fe concentration (atoms / cm 3 ), C 0 : initial pollution Concentration (atoms / cm 3 ), C eq : Solid solubility of Fe in silicon (= 4.3 × 10 22 exp (-2.1 eV /
kT), atoms / cm 3 ) (see M.Aoki et al; J.Appl.Phys. 72 (3) (1992) 895-898), k: Boltzmann constant, T: absolute temperature (K), t: heat treatment Time (s), 1 / τ: Gettering speed (s -1 ), D: Diffusion coefficient of Fe (= 1.3 × 10 -3 exp (-0.68 eV / kT), cm 2 /
s) (ERWeber; Appl.Phys.A30 (1983) 1.) n: Oxygen precipitate density (internal microdefect (BMD) density, number / c
m 3 )).

【0024】以下、この1/τをゲッタリング速度と呼
ぶ。ゲッタリング進行の様子は図2からこの(4)式で
的確に表現できることがよくわかる。しかし、実際の不
純物析出過程ではFe等の不純物の半径は一定ではな
く、不純物が析出するにつれて大きくなるため、この
(4)式よりゲッタリング速度を導出すると実際の場合
と合わないことがある。そこで本願発明者は、前述の特
開平11−283986号において、不純物半径の変化
も考慮に入れた下記の(1)式を提案した。この(1)
式によると、実際の場合にあったゲッタリング速度を数
値計算により導出することができる。 1/τ=3D[(C0-Ceq)/(Cp-Ceq)]1/3[4πn/3]2/3 …(1) (ここで、Cp:Fe析出物中(FeSiを仮定)のF
e濃度(=25.6×1021原子/cm3))。
Hereinafter, this 1 / τ will be referred to as a gettering speed. It can be seen from FIG. 2 that the progress of gettering can be accurately expressed by the equation (4). However, in the actual impurity precipitation process, the radius of impurities such as Fe is not constant and increases with the precipitation of impurities. Therefore, deriving the gettering speed from equation (4) may not match the actual case. Therefore, the inventor of the present application has proposed the following equation (1) in consideration of the change in the impurity radius in the above-mentioned Japanese Patent Laid-Open No. 11-283986. This (1)
According to the formula, the gettering speed that is actually present can be derived by numerical calculation. 1 / τ = 3D [(C 0 -C eq ) / (C p -C eq )] 1/3 [4πn / 3] 2/3 (1) (where C p : Fe precipitate (FeSi 2 )
e concentration (= 25.6 × 10 21 atoms / cm 3 )).

【0025】次に、上記の(1)式を用いて、T−T−
T線図を求める方法を示す。例えば、(1)式で各温度
におけるゲッタリング速度1/τが計算できるが、ゲッタ
リング終了後、ウエーハ内に残存していても構わないと
する所望の不純物濃度をCEとする。この場合、(4)式
におけるCがCEに等しいとして、(4)式からその時の
時間を計算する。その時間tは以下の(2)式で示され
る。 t=-τln[(CE-Ceq)/(C0-Ceq)] …(2)
Next, using the above equation (1), TT-
A method for obtaining a T-line diagram will be shown. For example, although the gettering speed 1 / τ at each temperature can be calculated by the equation (1), a desired impurity concentration which may remain in the wafer after the gettering is finished is C E. In this case, assuming that C in the equation (4) is equal to C E , the time at that time is calculated from the equation (4). The time t is shown by the following equation (2). t = -τln [(C E -C eq ) / (C 0 -C eq )]… (2)

【0026】この(2)式でτとCeqは温度の関数であ
る。従って、(2)式で表される残存Fe濃度がCEにな
る時間tも温度の関数となる。ある温度に対して(1)
式を用いて得られたτを(2)式に代入し、時間tを得
た後、温度に対して時間tをプロットしたものが、T−
T−T線図であり、その例は既に示した図3である。こ
の例では、酸素析出物密度が1×109個/cm3、初期汚染濃
度が1×1013原子/cm3、および所望の不純物濃度CE原子/
cm3の場合を計算している。図3において残留Fe濃度
が到達目標濃度CEになる最短の温度と時間は図3中の曲
線Aのノーズ(鼻)を形成しているa点であることがわか
る。つまりゲッタリングのための最適熱処理は610℃、1
10minの等温熱処理であり、その後任意に冷却しても所
望の残留Fe濃度のシリコンウエーハを得ることができ
る。
In this equation (2), τ and C eq are functions of temperature. Therefore, the time t at which the residual Fe concentration represented by the equation (2) becomes C E is also a function of temperature. For a certain temperature (1)
Substituting τ obtained by using the equation into the equation (2) to obtain the time t, and plotting the time t against the temperature is T−
FIG. 4 is a TT diagram, an example of which is FIG. 3 already shown. In this example, the oxygen precipitate density is 1 × 10 9 atoms / cm 3 , the initial contamination concentration is 1 × 10 13 atoms / cm 3 , and the desired impurity concentration C E atoms / cm 3 .
The case of cm 3 is calculated. In FIG. 3, it can be seen that the shortest temperature and time at which the residual Fe concentration reaches the target target concentration C E is the point a that forms the nose (nose) of the curve A in FIG. That is, the optimum heat treatment for gettering is 610 ℃, 1
It is an isothermal heat treatment for 10 minutes, and a silicon wafer having a desired residual Fe concentration can be obtained even if it is optionally cooled thereafter.

【0027】上記のような等温熱処理でなく、ある速度
での冷却で所望の濃度までゲッタリングを進行させたい
場合は、図3の時間0における初期汚染濃度が固溶度に
一致する温度であるb点からa点を結ぶ直線を引く。この
直線の傾きが最適冷却速度であり、図3の例では-2.4℃
/分である。
When it is desired to progress the gettering to a desired concentration by cooling at a certain speed instead of the above-described isothermal heat treatment, at a temperature at which the initial contamination concentration at time 0 in FIG. 3 corresponds to the solid solubility. Draw a straight line from point b to point a. The slope of this straight line is the optimum cooling rate, and in the example of Fig. 3, it is -2.4 ° C.
/ Minute.

【0028】あるいは図3の曲線Bに示すように、
(2)式のCE=1×1012原子/cm3までゲッタリングを進行
させたい場合も示してある。このようにして、各条件の
T−T−T線図を作成し、ゲッタリングに最適な等温熱
処理温度とそれに必要な最低時間が得られ、または最適
冷却温度を求めることができる。
Alternatively, as shown by the curve B in FIG.
It is also shown that gettering is desired to proceed to C E = 1 × 10 12 atoms / cm 3 in the equation (2). In this way, a T-T-T diagram for each condition can be created, and the optimum isothermal heat treatment temperature for gettering and the minimum time required for it can be obtained, or the optimum cooling temperature can be obtained.

【0029】しかし、上記のT−T−T線図の作成手順
を見ればわかるように、T−T−T線図は基本的に等温
保持を想定した熱処理温度と時間の関係図である。従っ
て、これを冷却過程に応用する場合は一定の目安にしか
ならない。そこで、本発明では厳密な冷却時の取り扱い
をするため、(1)式中の因子のうち、温度に依存する
因子であるCeq:シリコン中の重金属の固溶度とD:重金属
の拡散係数を一定値とせず、冷却中に刻々と変わる温度
を時間の関数としてとらえ直した。すなわち現在の温度
Tは下記の(3)式のように表わせる。 T=T0-Rct …(3)
However, as can be seen by looking at the procedure for creating the T-T-T diagram described above, the T-T-T diagram is basically a relationship diagram of heat treatment temperature and time assuming isothermal holding. Therefore, when this is applied to the cooling process, it can only serve as a constant guide. Therefore, in the present invention, in order to strictly handle cooling, among the factors in the formula (1), C eq, which is a factor depending on temperature, is solid solubility of heavy metal in silicon and D is diffusion coefficient of heavy metal. Was not a constant value, and the temperature that changed every moment during cooling was recaptured as a function of time. Ie current temperature
T can be expressed by the following equation (3). T = T 0 -R c t ... (3)

【0030】ここでT0は初期汚染濃度と固溶度が一致す
る温度であり、冷却の開始温度に相当する。Rcは冷却速
度、tは時間である。こう考えると(2)式の左辺であ
る時間は単純な温度の関数とはならず、いわゆる陰伏し
た方程式になるため、解析的に解くことは不可能とな
る。
Here, T 0 is the temperature at which the initial pollution concentration and the solid solubility coincide with each other, and corresponds to the cooling start temperature. R c is the cooling rate and t is the time. Considering this, the time on the left-hand side of equation (2) does not become a simple function of temperature, but becomes a so-called hidden equation, which makes it impossible to solve analytically.

【0031】そこで数値解法が必要となる。本発明の実
施態様としては、例えば、比較的簡便で扱いやすい差分
法を用いることが好ましい。この差分法による解法で、
連続冷却中におけるFe濃度が目的濃度まで減衰する温
度と時間を示したものをC−C−T線図として図1に示
す。図3のT−T−T線図と同様な図になるが、目的濃
度までの低減達成曲線が長時間側に後退している様子が
わかる。これは連続冷却であるので冷却開始時点では、
Feの過飽和度が十分でないため、ある程度低温まで冷
却が進まないとゲッタリング挙動が進行しないことに起
因する。つまり等温保持の場合より、時間は必要な方向
にシフトする。この図はその様子をよく示している。
Therefore, a numerical solution is needed. As an embodiment of the present invention, it is preferable to use a difference method that is relatively simple and easy to handle. By this difference method,
FIG. 1 is a C-C-T diagram showing the temperature and time for the Fe concentration to decay to the target concentration during continuous cooling. Although the figure is similar to the T-T-T diagram of FIG. 3, it can be seen that the reduction achievement curve up to the target concentration recedes toward the long time side. Since this is continuous cooling, at the start of cooling,
This is because the degree of supersaturation of Fe is not sufficient, and the gettering behavior does not proceed unless the cooling progresses to a low temperature to some extent. That is, the time shifts in the necessary direction as compared with the case of holding the same temperature. This figure shows the situation well.

【0032】このC−C−T線図から、最適冷却速度を
得るには、温度軸上の初期汚染濃度が固溶度と一致する
温度とC−C−T線図の曲線に向けて最大の傾きになる
よう接線を引き、その傾きが最適冷却速度となる。図1
の例では1013原子/cm3の初期汚染、BMD密度が109個/cm3
の条件で、低減目標濃度が1012原子/cm3であれば-6℃/
分、低減目標濃度が1011原子/cm3であれば-1℃/分が最
大の冷却速度と定まる。こうして定まった最適冷却速度
より徐冷であれば、任意の冷却速度を用いても低減目標
値までFe濃度を減衰させることが可能となる。
From this C-C-T diagram, in order to obtain the optimum cooling rate, the temperature at which the initial contamination concentration on the temperature axis coincides with the solid solubility and the maximum toward the curve of the C-C-T diagram. A tangent line is drawn so that it becomes the inclination of, and the inclination becomes the optimal cooling rate. Figure 1
In the example, the initial contamination was 10 13 atoms / cm 3 , and the BMD density was 10 9 atoms / cm 3
Under the conditions, if the target reduction concentration is 10 12 atoms / cm 3 , -6 ℃ /
If the reduction target concentration is 10 11 atoms / cm 3 , the maximum cooling rate is -1 ° C / min. If the cooling rate is slower than the optimum cooling rate thus determined, the Fe concentration can be attenuated to the reduction target value even if an arbitrary cooling rate is used.

【0033】C−C−T線図は連続冷却時におけるゲッ
タリングの目標濃度までの低減時間を温度に対して示し
たものである。したがって、このC−C−T線図を用い
て、等温保持の場合を考えることはできない。等温保持
の場合は先に示したT−T−T線図の方が厳密である。
しかし、前述したように実際のデバイス作製工程におい
ては、等温保持の低温熱処理はあまり行われないため、
ほとんどの場合において本願発明のC−C−T線図を用
いた方法が有利である。
The C-C-T diagram shows the reduction time to the target concentration of gettering with respect to temperature during continuous cooling. Therefore, the case of isothermal holding cannot be considered using this C-C-T diagram. In the case of isothermal holding, the TT diagram shown above is more rigorous.
However, as described above, in the actual device manufacturing process, low temperature heat treatment for isothermal holding is not often performed,
In most cases, the method using the C-C-T diagram of the present invention is advantageous.

【0034】なお、本発明における最適冷却速度という
熱処理条件は、あくまでも所定の濃度までFeをIGで
除去するのに最適、最短である条件という意味であり、
実際にシリコン基板を製造するにあたっては、デバイス
工程等の都合により、上記最適熱処理条件以外の条件で
実施してもかまわない。
The heat treatment condition called the optimum cooling rate in the present invention means that it is the optimum condition and the shortest condition for removing Fe up to a predetermined concentration by IG.
When actually manufacturing a silicon substrate, it may be carried out under conditions other than the above optimum heat treatment conditions due to the convenience of the device process and the like.

【0035】すなわち、例えば冷却速度を設定するにあ
たっては、必ずしも最大の傾きである接線の条件に限定
されるわけでなく、最大の傾きをとる接線より徐冷条件
で実施すれば、十分に本発明の効果を得ることができ、
本発明が実施される条件に応じて適当に熱処理条件を変
更、修正して実施することが可能である。
That is, when setting the cooling rate, for example, the condition of the tangent line having the maximum inclination is not necessarily limited, and if the cooling is performed from the tangential line having the maximum inclination, the present invention can be sufficiently performed. The effect of
The heat treatment conditions can be appropriately changed or modified according to the conditions under which the present invention is carried out.

【0036】[0036]

【実施例】以下、本発明の実施例および比較例を挙げて
具体的に説明するが、本発明はこれらに限定されるもの
ではない。 (実施例)本発明によるシリコン基板の熱処理条件を設
定する方法により、シリコン基板中の初期重金属汚染濃
度と、酸素析出物密度と、所望の不純物濃度とから、連
続冷却の場合の熱処理温度および熱処理時間の関係を算
出することによって、C−C−T線図を作成し、該C−
C−T線図より最適冷却速度を決定した。次に、上記の
計算により求めた結果を検証するために、実際にシリコ
ン基板に熱処理を行う実験を行い、上記計算予測と比較
した。
EXAMPLES Hereinafter, the present invention will be specifically described with reference to Examples and Comparative Examples, but the present invention is not limited thereto. (Example) By the method of setting the heat treatment conditions of the silicon substrate according to the present invention, the heat treatment temperature and the heat treatment in the case of continuous cooling were determined from the initial heavy metal contamination concentration in the silicon substrate, the oxygen precipitate density, and the desired impurity concentration. A C-C-T diagram is created by calculating the time relationship, and the C-C-T diagram is created.
The optimum cooling rate was determined from the CT chart. Next, in order to verify the result obtained by the above calculation, an experiment in which a silicon substrate was actually heat-treated was conducted and compared with the above calculation prediction.

【0037】まず、本実施例において実際に熱処理を行
うシリコン基板の初期重金属汚染濃度と酸素析出物密度
を測定した。測定の結果は、初期重金属汚染濃度が1×1
013原子/cm3、酸素析出物密度が1×109個/cm3であっ
た。それらに従って、上記熱処理条件の設定においても
初期重金属汚染濃度C0=1×1013原子/cm3、酸素析出物密
度n=1×109個/cm3として熱処理条件を設定した。また所
望の不純物濃度CEは、CE=1011原子/cm3とし、この場合
についての最適冷却速度を設定した。
First, in this example, the initial heavy metal contamination concentration and the oxygen precipitate density of the silicon substrate which was actually subjected to the heat treatment were measured. The measurement result shows that the initial heavy metal contamination concentration is 1 × 1
The concentration was 0 13 atoms / cm 3 , and the density of oxygen precipitates was 1 × 10 9 atoms / cm 3 . Accordingly, also in the above heat treatment conditions, the heat treatment conditions were set such that the initial heavy metal contamination concentration C 0 = 1 × 10 13 atoms / cm 3 and the oxygen precipitate density n = 1 × 10 9 atoms / cm 3 . The desired impurity concentration C E was C E = 10 11 atoms / cm 3, and the optimum cooling rate in this case was set.

【0038】前記(1)式、(2)式および(3)式よ
り連続冷却の場合の熱処理温度と熱処理時間の関係を算
出し、図1に示すようなC−C−T線図を作成した。な
お、この場合における熱処理温度と熱処理時間の関係の
算出は差分法を用いて行なった。そして図1に示すよう
に、作成されたC−C−T線図の温度軸上で初期重金属
汚染濃度がシリコン中の重金属の固溶度となる温度(こ
の場合では824℃)の点を通り、所望の不純物濃度CE
=1011原子/cm3についての曲線と最大の傾きになるよう
に接する接線を引いた。この結果、最適冷却速度-1℃/
分を得た。
The relationship between the heat treatment temperature and the heat treatment time in the case of continuous cooling is calculated from the equations (1), (2) and (3), and a C-C-T diagram as shown in FIG. 1 is prepared. did. The calculation of the relationship between the heat treatment temperature and the heat treatment time in this case was performed using the difference method. Then, as shown in FIG. 1, the temperature of the created C-C-T diagram passes through the point where the initial heavy metal contamination concentration becomes the solid solubility of heavy metal in silicon (824 ° C. in this case). , Desired impurity concentration C E
A tangent line was drawn to obtain the maximum slope with the curve for = 10 11 atoms / cm 3 . As a result, the optimal cooling rate -1 ℃ /
Got a minute.

【0039】次に、上記の計算により求めた結果を検証
するために、前述のシリコン基板に、初期汚染濃度が固
溶度となる温度824℃から、計算で求めた冷却速度-1
℃/分で冷却する熱処理を行ない重金属不純物を除去す
る実験を行った。その結果、冷却後のシリコン基板の不
純物濃度は、CE=0.9×1011原子/cm3となっており、目
標値を達成できるものであった。したがって、本発明に
よる計算の正しさが実証されていることがわかる。
Next, in order to verify the results obtained by the above calculation, the cooling rate -1 obtained by the calculation was calculated from the temperature 824 ° C. at which the initial contamination concentration became the solid solubility on the above-mentioned silicon substrate.
An experiment was conducted to remove heavy metal impurities by performing a heat treatment of cooling at ℃ / min. As a result, the impurity concentration of the silicon substrate after cooling was C E = 0.9 × 10 11 atoms / cm 3 , which was a target value. Therefore, it can be seen that the correctness of the calculation according to the present invention has been proved.

【0040】(比較例)シリコン基板中の初期重金属汚
染濃度と、酸素析出物密度と、所望の不純物濃度とか
ら、熱処理温度および熱処理時間の関係を算出すること
によって、T−T−T線図を作成し、該T−T−T線図
より最適冷却速度を決定した。次に、上記の計算により
求めた結果を検証するために、実際にシリコン基板に熱
処理を行う実験を行い、上記計算予測と比較した。
(Comparative Example) The T-T-T diagram was obtained by calculating the relationship between the heat treatment temperature and the heat treatment time from the initial heavy metal contamination concentration in the silicon substrate, the oxygen precipitate density, and the desired impurity concentration. Was prepared and the optimum cooling rate was determined from the T-T-T diagram. Next, in order to verify the result obtained by the above calculation, an experiment in which a silicon substrate was actually heat-treated was conducted and compared with the above calculation prediction.

【0041】実施例と同様に、初期重金属汚染濃度C0=1
×1013原子/cm3、酸素析出物密度n=1×109個/cm3、所望
の不純物濃度CE=1011原子/cm3とし、この場合について
の最適冷却速度を設定した。ただし、この比較例では、
上記値から(1)式および(2)式より、図3に示すよ
うなT−T−T線図を作成した。そして、作成されたT
−T−T線図の温度軸上で初期重金属汚染濃度がシリコ
ン中の重金属の固溶度となる温度(この場合では824
℃)のb点と、所望の不純物濃度CE=1011原子/cm3につ
いての曲線Aのノーズの点であるa点とを結ぶ線を引い
た。そして、この線の傾きから最適冷却速度-2.4℃/分
を得た。
As in the example, the initial heavy metal contamination concentration C 0 = 1
The optimum cooling rate in this case was set at × 10 13 atoms / cm 3 , oxygen precipitate density n = 1 × 10 9 atoms / cm 3 , and desired impurity concentration C E = 10 11 atoms / cm 3 . However, in this comparative example,
From the above values, a T-T-T diagram as shown in FIG. 3 was created from the equations (1) and (2). And the created T
The temperature at which the initial heavy metal contamination concentration becomes the solid solubility of heavy metal in silicon on the temperature axis of the -TT diagram (in this case, 824
(B) of the curve A and the point a, which is the nose point of the curve A for the desired impurity concentration C E = 10 11 atoms / cm 3 , were drawn. The optimum cooling rate of -2.4 ° C / min was obtained from the slope of this line.

【0042】次に、上記の計算により求めた結果を検証
するために、実施例と同じ初期重金属汚染濃度及び酸素
析出物密度のシリコン基板に、初期汚染濃度が固溶度と
なる温度824℃から、計算で求めた冷却速度-2.4℃/
分で冷却する熱処理を行ない重金属不純物を除去する実
験を行った。その結果、冷却後のシリコン基板の不純物
濃度は、CE=4.9×1011原子/cm3となっており、目標値
を達成できないものであった。
Next, in order to verify the results obtained by the above calculation, from a temperature of 824 ° C. at which the initial contamination concentration becomes a solid solubility on a silicon substrate having the same initial heavy metal contamination concentration and oxygen precipitate density as in the example. , Cooling rate calculated -2.4 ℃ /
An experiment was conducted to remove heavy metal impurities by performing heat treatment for cooling by minutes. As a result, the impurity concentration of the silicon substrate after cooling was C E = 4.9 × 10 11 atoms / cm 3 , which was not the target value.

【0043】なお、本発明は、上記実施形態に限定され
るものではない。上記実施形態は例示であり、本発明の
特許請求の範囲に記載された技術的思想と実質的に同一
な構成を有し、同様な作用効果を奏するものは、いかな
るものであっても本発明の技術的範囲に包含される。
The present invention is not limited to the above embodiment. The above-described embodiments are merely examples, and the present invention has substantially the same configuration as the technical idea described in the scope of claims of the present invention, and has any similar effects to the present invention. It is included in the technical scope of.

【0044】例えば、本発明で言う熱処理条件とは、シ
リコン単結晶インゴットをウエーハに加工する工程、デ
バイス作製工程等で加わる全ての熱処理のことを示して
おり、従って設定されるシリコン基板の熱処理条件と
は、単に特定デバイス工程後の場合に限られるものでは
なく、ウエーハ加工後、デバイス工程中、デバイス工程
後等いずれの場合であっても、シリコン基板に熱処理を
加える場合であれば、本発明を適用して熱処理条件を設
定することができる。
For example, the heat treatment conditions referred to in the present invention refer to all the heat treatments added in the process of processing a silicon single crystal ingot into a wafer, the device manufacturing process, etc., and accordingly, the heat treatment conditions of the silicon substrate to be set. The present invention is not limited to the case after the specific device step, and in any case after the wafer processing, during the device step, after the device step, etc., if the heat treatment is applied to the silicon substrate, the present invention Can be applied to set heat treatment conditions.

【0045】また上記では、重金属不純物として、Fe
をゲッタリング除去する場合につき例を挙げて説明した
が、本発明は、これには限定されず、Cu、Ni、Co
等他の重金属汚染の除去においても、当然適用でき、効
果を奏するものである。
In the above, Fe is used as a heavy metal impurity.
However, the present invention is not limited to this, and Cu, Ni, Co
It is naturally applicable and effective for removing other heavy metal contamination.

【0046】[0046]

【発明の効果】以上説明したように、本発明によれば、
シリコン基板にインターナルゲッタリングを行う場合の
シリコン基板の熱処理条件を設定する方法において、シ
リコン基板中の初期重金属汚染濃度と、酸素析出物密度
と、所望の不純物濃度とから、きわめて短時間で、簡単
かつ正確に、熱処理の冷却速度を算出することができ、
それによって適正な熱処理条件を設定することができ
る。特に本発明は、実際のデバイス作製プロセスにおけ
る連続冷却工程をゲッタリングプロセスとしてとらえた
場合の冷却条件を正確に設定できるものであり、従来の
方法よりも実際の製造工程に適用しやすいものである。
As described above, according to the present invention,
In the method of setting the heat treatment conditions for the silicon substrate when performing internal gettering on the silicon substrate, the initial heavy metal contamination concentration in the silicon substrate, the oxygen precipitate density, and the desired impurity concentration, in an extremely short time, The cooling rate of heat treatment can be calculated easily and accurately,
Thereby, proper heat treatment conditions can be set. In particular, the present invention can accurately set the cooling conditions when the continuous cooling step in the actual device manufacturing process is regarded as the gettering process, and is easier to apply to the actual manufacturing step than the conventional method. .

【0047】従って、初期重金属汚染濃度や酸素析出物
密度の異なる多量のウエーハを用いて、実際に長時間の
熱処理をして条件を見出すというようなことが必要なく
なり、きわめて迅速かつ低コストで適正な熱処理条件を
決定することができる。そして、従来のように場当たり
的で、経験的に決定されたものではなく、精度が良い熱
処理条件なため、実際にシリコン基板の製造工程に基板
を流してみた場合に、デバイス歩留まりの向上を確実に
図ることができる。
Therefore, it is not necessary to actually perform heat treatment for a long time to find out the conditions by using a large number of wafers having different initial heavy metal contamination concentrations and oxygen precipitate densities. Heat treatment conditions can be determined. And since it is an ad hoc method, which is not empirically determined as in the past, and the heat treatment conditions are accurate, it is possible to improve the device yield when the substrate is actually flown into the manufacturing process of the silicon substrate. Can be achieved.

【図面の簡単な説明】[Brief description of drawings]

【図1】C−C−T線図の一例を示した図である。FIG. 1 is a diagram showing an example of a C-C-T diagram.

【図2】固溶Fe濃度と熱処理時間の関係を示した図で
ある。
FIG. 2 is a diagram showing a relationship between a solid solution Fe concentration and a heat treatment time.

【図3】T−T−T線図の一例を示した図である。FIG. 3 is a diagram showing an example of a TT-T diagram.

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 シリコン基板にインターナルゲッタリン
グを行う場合のシリコン基板の熱処理条件を設定する方
法において、シリコン基板中の初期重金属汚染濃度C
0と、酸素析出物密度nと、所望の不純物濃度CEとから、
下記(1)式、(2)式および(3)式より連続冷却の
場合の熱処理温度Tと熱処理時間tの関係を算出し、算出
された熱処理温度Tと熱処理時間tの関係を示すC−C−
T線図を作成し、前記作成されたC−C−T線図の温度
軸上で前記初期重金属汚染濃度C0がシリコン中の重金属
の固溶度Ceqとなる温度T0の点を通りC−C−T線図の
曲線と最大の傾きになるように接する接線を引き、該接
線の傾きにより最適冷却速度を決定することを特徴とす
るシリコン基板の熱処理条件を設定する方法。 1/τ=3D[(C0-Ceq)/(Cp-Ceq)]1/3[4πn/3]2/3 …(1) t=-τln[(CE-Ceq)/(C0-Ceq)] …(2) T=T0-Rct …(3) (ここで、C0:初期重金属汚染濃度(原子/cm3)、 CE:所望の不純物濃度(原子/cm3)、 Ceq:シリコン中の重金属の固溶度(原子/cm3)、 k:ボルツマン定数、T:熱処理温度(K)、t:熱処理時間
(s)、 1/τ:ゲッタリング速度(s-1)、 D:重金属の拡散係数(cm2/s)、 Cp:析出物中の重金属濃度、n:酸素析出物密度(内部微
小欠陥密度,個/cm3) T0:初期重金属汚染濃度が固溶度となる温度、Rc:冷却速
度。)
1. A method for setting a heat treatment condition for a silicon substrate when internal gettering is performed on the silicon substrate, wherein an initial heavy metal contamination concentration C in the silicon substrate is set.
0 , the oxygen precipitate density n, and the desired impurity concentration C E ,
The relationship between the heat treatment temperature T and the heat treatment time t in the case of continuous cooling is calculated from the following equations (1), (2), and (3), and the relationship between the calculated heat treatment temperature T and the heat treatment time t is C- C-
A T diagram is created, and the initial heavy metal contamination concentration C 0 passes through the temperature T 0 point at which the initial heavy metal contamination concentration C 0 becomes the solid solubility C eq of heavy metal in silicon on the temperature axis of the created C-C T diagram. A method for setting a heat treatment condition for a silicon substrate, which comprises drawing a tangent line tangent to the curve of the C-C-T diagram so as to have a maximum slope, and determining the optimum cooling rate based on the slope of the tangent line. 1 / τ = 3D [(C 0 -C eq ) / (C p -C eq )] 1/3 [4πn / 3] 2 /3… (1) t = -τln [(C E -C eq ) / (C 0 -C eq)] ... (2) T = T 0 -R c t ... (3) ( wherein, C 0: initial heavy metal contamination concentration (atoms / cm 3), C E: desired impurity concentration ( Atom / cm 3 ), C eq : solid solubility of heavy metal in silicon (atom / cm 3 ), k: Boltzmann constant, T: heat treatment temperature (K), t: heat treatment time
(s), 1 / τ: gettering rate (s -1 ), D: diffusion coefficient of heavy metal (cm 2 / s), C p : concentration of heavy metal in precipitates, n: density of oxygen precipitates (internal microdefects) Density, pieces / cm 3 ) T 0 : Temperature at which the initial heavy metal contamination concentration becomes solid solubility, R c : Cooling rate. )
【請求項2】 請求項1に記載のシリコン基板の熱処理
条件を設定する方法において、前記(1)式、(2)式
および(3)式による連続冷却の場合の熱処理温度と熱
処理時間の関係の算出は、差分法により行なうことを特
徴とするシリコン基板の熱処理条件を設定する方法。
2. The method for setting the heat treatment conditions for a silicon substrate according to claim 1, wherein the relationship between the heat treatment temperature and the heat treatment time in the case of continuous cooling according to the equations (1), (2) and (3). The method of setting the heat treatment conditions of the silicon substrate, characterized in that is calculated by the difference method.
【請求項3】 請求項1または請求項2に記載の方法に
より設定された熱処理条件によってシリコン基板の熱処
理を行なうことを特徴とするシリコン基板を熱処理する
方法。
3. A method for heat treating a silicon substrate, which comprises subjecting the silicon substrate to heat treatment under the heat treatment conditions set by the method according to claim 1.
【請求項4】 少なくとも請求項3に記載の熱処理する
工程を有することを特徴とするシリコン基板の製造方
法。
4. A method of manufacturing a silicon substrate, comprising at least the heat treatment step according to claim 3.
【請求項5】 コンピュータにシリコン基板の熱処理条
件を設定させるためのプログラムであって、該プログラ
ムはコンピュータに、請求項1または請求項2に記載の
方法によって前記熱処理条件を設定させるものであるこ
とを特徴とするコンピュータにシリコン基板の熱処理条
件を設定させるためのプログラム。
5. A program for causing a computer to set heat treatment conditions for a silicon substrate, the program causing a computer to set the heat treatment conditions according to the method of claim 1 or 2. A program for causing a computer to set heat treatment conditions for a silicon substrate.
【請求項6】 請求項5に記載のプログラムを記録した
ことを特徴とする記録媒体。
6. A recording medium on which the program according to claim 5 is recorded.
JP2002084712A 2002-03-26 2002-03-26 Method for setting heat treatment conditions for silicon substrate, method for heat treating silicon substrate, and method for manufacturing silicon substrate Expired - Fee Related JP4638650B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002084712A JP4638650B2 (en) 2002-03-26 2002-03-26 Method for setting heat treatment conditions for silicon substrate, method for heat treating silicon substrate, and method for manufacturing silicon substrate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002084712A JP4638650B2 (en) 2002-03-26 2002-03-26 Method for setting heat treatment conditions for silicon substrate, method for heat treating silicon substrate, and method for manufacturing silicon substrate

Publications (2)

Publication Number Publication Date
JP2003282576A true JP2003282576A (en) 2003-10-03
JP4638650B2 JP4638650B2 (en) 2011-02-23

Family

ID=29231927

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002084712A Expired - Fee Related JP4638650B2 (en) 2002-03-26 2002-03-26 Method for setting heat treatment conditions for silicon substrate, method for heat treating silicon substrate, and method for manufacturing silicon substrate

Country Status (1)

Country Link
JP (1) JP4638650B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007029385A1 (en) * 2005-09-02 2007-03-15 Komatsu Denshi Kinzoku Kabushiki Kaisha Method of predicting behavior of internal gettering in silicon substrate and storage medium storing program for predicting of the behavior
CN111788662A (en) * 2018-02-16 2020-10-16 信越半导体株式会社 Heat treatment method for single crystal silicon wafer

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007029385A1 (en) * 2005-09-02 2007-03-15 Komatsu Denshi Kinzoku Kabushiki Kaisha Method of predicting behavior of internal gettering in silicon substrate and storage medium storing program for predicting of the behavior
JP2007067338A (en) * 2005-09-02 2007-03-15 Sumco Techxiv株式会社 Method for evaluating action of internal gettering in silicon wafer, and storage medium with program for evaluating the action stored thereon
US7920999B2 (en) 2005-09-02 2011-04-05 Sumco Techxiv Corporation Method of predicting internal gettering behavior in silicon substrates and storage medium storing program for predicting internal gettering behavior
CN111788662A (en) * 2018-02-16 2020-10-16 信越半导体株式会社 Heat treatment method for single crystal silicon wafer

Also Published As

Publication number Publication date
JP4638650B2 (en) 2011-02-23

Similar Documents

Publication Publication Date Title
US7759227B2 (en) Silicon semiconductor substrate heat-treatment method and silicon semiconductor substrate treated by the method
US20060130736A1 (en) Methods for manufacturing silicon wafer and silicon epitaxial wafer, and silicon epitaxial wafer
TW201339378A (en) Qualitative crystal defect evaluation method
US5386796A (en) Method for testing quality of silicon wafer
US7244306B2 (en) Method for measuring point defect distribution of silicon single crystal ingot
JP2003282576A (en) Heat treatment setting method for silicon substrate, method for heat treatment of silicon substrate and manufacturing method for silicon substrate
WO2019123706A1 (en) Metal contamination evaluation method
WO2002027778A1 (en) Method of heat-treating silicon wafer
JP3933010B2 (en) Method for measuring point defect distribution of silicon single crystal ingot
JP4284886B2 (en) Method for evaluating oxygen precipitate density in silicon wafers
JP3811582B2 (en) Heat treatment method for silicon substrate and method for producing epitaxial wafer using the substrate
JP4675542B2 (en) Evaluation method of gettering ability
JP3508541B2 (en) Method for setting heat treatment conditions for silicon substrate, method for heat treating silicon substrate, and method for manufacturing silicon substrate
JP3915606B2 (en) Method for measuring point defect distribution of silicon single crystal ingot
JP3896919B2 (en) Method for evaluating Ni contamination of silicon wafer
JP4200845B2 (en) Method for measuring point defect distribution of silicon single crystal ingot
US10648101B2 (en) Silicon wafer
JP4449842B2 (en) Measuring method of semiconductor substrate
JPH039078B2 (en)
JP2019145597A (en) Heat treatment method of silicon single crystal wafer
JPH0714755A (en) Silicon semiconductor substrate and production thereof
JPH08111444A (en) Atomic vacancy distribution evaluation method of silicon wafer for semiconductor substrate
JP4370571B2 (en) Annealing wafer evaluation method and quality assurance method
JP2023169790A (en) Silicon wafer heat treatment method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041015

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070615

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070710

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070907

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20071204

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080204

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20080228

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20080328

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101008

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101126

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131203

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4638650

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees