JP2003282156A - Abnormality detection device of battery pack and abnormality detection method therefor - Google Patents

Abnormality detection device of battery pack and abnormality detection method therefor

Info

Publication number
JP2003282156A
JP2003282156A JP2002083631A JP2002083631A JP2003282156A JP 2003282156 A JP2003282156 A JP 2003282156A JP 2002083631 A JP2002083631 A JP 2002083631A JP 2002083631 A JP2002083631 A JP 2002083631A JP 2003282156 A JP2003282156 A JP 2003282156A
Authority
JP
Japan
Prior art keywords
abnormality
battery
cells
voltage
assembled battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002083631A
Other languages
Japanese (ja)
Other versions
JP3975798B2 (en
Inventor
Yoshiyuki Nakayama
佳行 中山
Makoto Motono
誠 本野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2002083631A priority Critical patent/JP3975798B2/en
Publication of JP2003282156A publication Critical patent/JP2003282156A/en
Application granted granted Critical
Publication of JP3975798B2 publication Critical patent/JP3975798B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Tests Of Electric Status Of Batteries (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Secondary Cells (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To easily and accurately detect an abnormality of cells constituting a battery pack. <P>SOLUTION: An abnormality detection device detects an abnormality of the battery pack 300 constituted by connecting a plurality of cells in series. This abnormality detection device 100 includes an equalization circuit for equalizing capacity of a plurality of cells and a CPU 112 which determines that the cell having a low voltage of each cell measured after each cell is discharged by the same amount using the equalization circuit from a state where capacity of each cell is equalized in the cell whose fully charged capacity is reduced and that the cell having a high voltage of each cell measured when a large current is made to flow into the set battery 300 is the cell whose internal resistance value rises. <P>COPYRIGHT: (C)2004,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、組電池の異常検出
装置に関し、特に、複数の単電池を直列に接続して構成
される組電池の異常を検出する異常検出装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an abnormality detecting device for an assembled battery, and more particularly to an abnormality detecting device for detecting an abnormality in an assembled battery formed by connecting a plurality of cells in series.

【0002】[0002]

【従来の技術】車両に搭載されて駆動源に電力を供給し
たり、補機に電力供給したりする電池として、複数の単
電池を直列に接続して構成される組電池がある。このよ
うな組電池を構成する単電池は、各単電池の使用の経過
に伴って、劣化する、この劣化は、電池内部の活物質の
腐食などにより発生し、満充電容量の低下や電池の内部
抵抗の上昇などの現象が表れる。
2. Description of the Related Art As a battery mounted on a vehicle to supply electric power to a drive source or electric power to an auxiliary machine, there is an assembled battery constituted by connecting a plurality of unit cells in series. The unit cells that make up such an assembled battery deteriorate with the use of each unit cell. This deterioration occurs due to corrosion of the active material inside the battery, etc., and decreases the full charge capacity and battery A phenomenon such as an increase in internal resistance appears.

【0003】また、単電池の自己放電電流のばらつき
や、単電池に付設される単電池電圧検出回路の消費電流
のばらつき等に起因して単電池個々の電圧がばらつく。
これに加えて、充電効率のばらつきにより単電池個々の
電圧がばらつく。このような単電池からなる組電池の電
圧アンバランスを解消する均等化装置が提案されてい
る。この均等化装置では、単電池毎に電圧を検出し、最
低電圧の単電池とほぼ同じ電圧となるよう他の単電池を
放電することにより、各単電池の電圧アンバランスを解
消する。
Further, the voltage of each unit cell varies due to variations in the self-discharge current of the unit cell, variations in the consumption current of the unit cell voltage detection circuit attached to the unit cell, and the like.
In addition to this, the voltage of each single cell varies due to variations in charging efficiency. There has been proposed an equalization device that eliminates the voltage imbalance of an assembled battery composed of such single cells. In this equalization device, the voltage is detected for each unit cell, and the other unit cells are discharged so that the voltage becomes substantially the same as the lowest voltage unit cell, thereby eliminating the voltage imbalance of each unit cell.

【0004】さらに、こうした組電池の均等化装置に関
して、特開2002−10512号公報は、組電池の容
量を調整する方法を開示する。
Further, regarding such a battery pack equalizing device, Japanese Patent Laid-Open No. 2002-10512 discloses a method for adjusting the capacity of the battery pack.

【0005】この公報に開示された容量調整方法は、組
電池を構成する単電池の開放電圧の最低電圧値を容量調
整目標値として設定する設定ステップと、各単電池毎に
目標値との偏差に対応した放電時間を算出する算出ステ
ップと、算出された放電時間だけ放電させる放電ステッ
プと、他の多数の単電池よりもも相対的に電圧低下量が
大きいけれども、時間の経過に順次対応して他の多数の
単電池の電圧と同レベルへ近づいていく単電池を異常で
はないと、最大電圧値と最低電圧値を除く単電池の電圧
の平均で求めるからしきい値を越えるほどに開放電圧が
低下する単電池を異常であると判断する判断ステップと
を含む。
The capacity adjustment method disclosed in this publication has a setting step of setting the minimum open circuit voltage value of the unit cells constituting the assembled battery as a capacity adjustment target value, and a deviation from the target value for each unit cell. The calculation step for calculating the discharge time corresponding to the above, the discharge step for discharging for the calculated discharge time, and the voltage drop amount being relatively larger than those of many other single cells, the steps corresponding to the passage of time sequentially. If it is not abnormal for a cell that approaches the same level as the voltage of many other cells, it is calculated by averaging the voltages of the cells excluding the maximum voltage value and the minimum voltage value. A determination step of determining that the unit cell whose voltage has dropped is abnormal.

【0006】この容量調整方法では、単電池毎に放電時
間を算出し、放電後の開放電圧に基づいて、正常な電圧
低下量にある単電池と異常な電圧低下量の単電池とを明
確に識別して、異常が発生している単電池を検出するこ
とができる。
In this capacity adjusting method, the discharge time is calculated for each unit cell, and the unit cell having a normal voltage drop amount and the unit cell having an abnormal voltage drop amount are clearly defined based on the open circuit voltage after discharge. It is possible to identify and detect a cell in which an abnormality has occurred.

【0007】[0007]

【発明が解決しようとする課題】しかしながら、上述の
公報に開示された異常検出装置では、放電時間を各単電
池毎に算出しなければならず、異常検出装置の構成が複
雑になる。
However, in the abnormality detecting device disclosed in the above publication, the discharge time must be calculated for each unit cell, and the configuration of the abnormality detecting device becomes complicated.

【0008】本発明は、上述の課題を解決するためにな
されたものであって、組電池を構成する単電池の異常を
容易かつ正確に検出することができる、組電池の異常検
出装置および異常検出方法を提供することである。
The present invention has been made in order to solve the above-mentioned problems, and is an abnormality detecting device and abnormality for an assembled battery capable of easily and accurately detecting an abnormality in a battery cell that constitutes the assembled battery. It is to provide a detection method.

【0009】[0009]

【課題を解決するための手段】第1の発明に係る異常検
出装置は、複数の単電池を直列に接続して構成される組
電池の異常を検出する。この異常検出装置は、複数の単
電池の容量の均等化を図るための容量均等化手段と、各
単電池の容量が均等化された状態から、各単電池を均一
に放電した際に測定した各単電池の電圧に基づいて、組
電池を構成する単電池の異常を判定するための異常判定
手段とを含む。
An abnormality detecting device according to a first aspect of the present invention detects an abnormality in an assembled battery formed by connecting a plurality of cells in series. This abnormality detecting device was measured when the cells were uniformly discharged from a capacity equalizing means for equalizing the capacities of the plurality of cells and a state where the capacities of the cells were equalized. An abnormality determining unit for determining abnormality of the unit cells that form the assembled battery based on the voltage of each unit cell.

【0010】第1の発明によると、容量均等化手段によ
り各単電池の容量が均等化された状態から、各単電池に
おける放電量を均一にして放電させる。このとき、たと
えば、容量均等化手段に含まれる各単電池に対応付けて
設けられた抵抗(抵抗値は同じ)に同じ放電時間だけ放
電させる。このようにして同じ放電量を放電した場合、
劣化して満充電容量が低下した単電池における開放電圧
の低下は、初期状態の単電池における開放電圧の低下よ
りも大きい。このため、満充電容量が低下して大きく開
放電圧が低下した単電池を、劣化した電池であって異常
と判断できる。また、たとえば、組電池を大容量の負荷
に接続して大電流で放電した場合、劣化して内部抵抗が
大きくなった単電池における電圧降下は、初期状態の単
電池における電圧降下よりも大きい。このため、単電池
の内部抵抗が上昇して、大きく開放電圧が低下した単電
池を、劣化した電池であって異常と判断できる。その結
果、組電池を構成する単電池の異常を容易かつ正確に検
出することができる、組電池の異常検出装置を提供する
ことができる。
According to the first aspect of the invention, the capacity of each unit cell is equalized by the capacity equalizing means, and then the discharge amount of each unit cell is made uniform. At this time, for example, a resistor (having the same resistance value) provided in association with each unit cell included in the capacity equalizing unit is discharged for the same discharge time. When the same amount of discharge is discharged in this way,
The drop in the open circuit voltage of the deteriorated single battery whose full charge capacity has decreased is larger than the drop in the open circuit voltage of the single battery in the initial state. Therefore, it is possible to determine that a unit cell whose full-charge capacity has dropped and whose open-circuit voltage has dropped significantly is a battery that has deteriorated and is abnormal. Further, for example, when the assembled battery is connected to a large-capacity load and discharged with a large current, the voltage drop in the unit cell whose deterioration has increased the internal resistance is larger than the voltage drop in the unit cell in the initial state. Therefore, the internal resistance of the unit cell is increased, and the unit cell in which the open circuit voltage is greatly reduced can be determined to be abnormal because it is a deteriorated battery. As a result, it is possible to provide an abnormality detecting device for an assembled battery, which can easily and accurately detect an abnormality in a single battery constituting the assembled battery.

【0011】第2の発明に係る組電池の異常検出装置
は、第1の発明の構成に加えて、異常判定手段は、各単
電池の容量が均等化された状態から、容量均等化手段を
用いて各単電池を同じ量だけ放電した際に測定した各単
電池の電圧に基づいて、組電池を構成する単電池の異常
を判定するための手段を含む。
According to a second aspect of the present invention, in addition to the configuration of the first aspect of the invention, the abnormality determining device includes an abnormality determining means that changes the capacity equalizing means from a state in which the capacity of each unit cell is equalized. Means for determining an abnormality of the unit cells forming the assembled battery is included based on the voltage of each unit cell measured when the same amount of each unit cell is discharged.

【0012】第2の発明によると、容量均等化手段によ
り各単電池の容量が均等化された状態から、各単電池に
おける放電量を均一にして放電させる。このとき、容量
均等化手段に含まれる各単電池に対応付けて設けられた
抵抗(抵抗値は同じ)に同じ放電時間だけ放電させる。
このようにして同じ放電量を放電した場合、劣化して満
充電容量が低下した単電池における開放電圧の低下は、
初期状態の単電池における開放電圧の低下よりも大き
い。このため、満充電容量が低下して大きく開放電圧が
低下した単電池を、劣化した電池であって異常と判断で
きる。その結果、組電池を構成する単電池の異常を容易
かつ正確に検出することができる、組電池の異常検出装
置を提供することができる。
According to the second aspect of the invention, the capacity of each unit cell is equalized by the capacity equalizing means, and then the discharge amount of each unit cell is made uniform. At this time, the resistors (having the same resistance value) provided in association with the individual cells included in the capacity equalizing unit are discharged for the same discharging time.
When the same amount of discharge is discharged in this way, the decrease in open-circuit voltage in a unit cell with deteriorated full charge capacity is
It is larger than the drop in the open circuit voltage in the initial unit cell. Therefore, it is possible to determine that a unit cell whose full-charge capacity has dropped and whose open-circuit voltage has dropped significantly is a battery that has deteriorated and is abnormal. As a result, it is possible to provide an abnormality detecting device for an assembled battery, which can easily and accurately detect an abnormality in a single battery constituting the assembled battery.

【0013】第3の発明に係る組電池の異常検出装置
は、第1の発明の構成に加えて、異常判定手段は、各単
電池の容量が均等化された状態から、組電池を大容量の
負荷に接続することにより放電した際に測定した各単電
池の電圧に基づいて、組電池を構成する単電池の異常を
判定するための手段を含む。
According to a third aspect of the present invention, in addition to the structure of the first aspect of the invention, in the abnormality detecting device of the assembled battery, the abnormality determining means sets the large capacity of the assembled battery from the state where the capacities of the individual cells are equalized. And a unit for determining an abnormality of the unit cells constituting the battery pack, based on the voltage of each unit cell measured when the unit cell is discharged by being connected to the load.

【0014】第3の発明によると、容量均等化手段によ
り各単電池の容量が均等化された状態から、各単電池に
おける放電量を均一にして放電させる。このとき、組電
池を大容量の負荷に接続して大電流で放電した場合、劣
化して内部抵抗が大きくなった単電池における電圧降下
は、初期状態の単電池における電圧降下よりも大きい。
このため、単電池の内部抵抗が上昇して大きく開放電圧
が低下した単電池を、劣化した電池であって異常と判断
できる。その結果、組電池を構成する単電池の異常を容
易かつ正確に検出することができる、組電池の異常検出
装置を提供することができる。
According to the third invention, from the state where the capacity of each unit cell is equalized by the capacity equalizing means, the discharge amount in each unit cell is made uniform and discharged. At this time, when the assembled battery is connected to a large-capacity load and discharged with a large current, the voltage drop in the unit cell with deterioration and increased internal resistance is larger than the voltage drop in the unit cell in the initial state.
Therefore, it is possible to determine that a unit cell in which the internal resistance of the unit cell is increased and the open circuit voltage is greatly reduced is a deteriorated battery and is abnormal. As a result, it is possible to provide an abnormality detecting device for an assembled battery, which can easily and accurately detect an abnormality in a single battery constituting the assembled battery.

【0015】第4の発明に係る組電池の異常検出装置
は、第1〜第3のいずれかの発明の構成に加えて、単電
池は、リチウム電池であるものである。
In the battery pack abnormality detection device according to the fourth aspect of the invention, in addition to the structure of any one of the first to third aspects of the invention, the unit cell is a lithium battery.

【0016】第4の発明によると、複数のリチウム電池
から構成される組電池の異常を正確に検出できる異常検
出装置を提供できる。
According to the fourth aspect of the present invention, it is possible to provide an abnormality detecting device capable of accurately detecting an abnormality in an assembled battery composed of a plurality of lithium batteries.

【0017】第5の発明に係る異常検出方法は、複数の
単電池を直列に接続して構成される組電池の異常を検出
する。この異常検出方法は、複数の単電池の容量の均等
化を図る容量均等化ステップと、各単電池の容量が均等
化された状態から、各単電池を均一に放電した際に測定
した各単電池の電圧に基づいて、組電池を構成する単電
池の異常を判定する異常判定ステップとを含む。
The abnormality detecting method according to the fifth aspect of the present invention detects an abnormality in an assembled battery formed by connecting a plurality of unit cells in series. This anomaly detection method consists of a capacity equalization step for equalizing the capacities of a plurality of cells, and each cell measured when the cells are uniformly discharged from the state where the capacities of the cells are equalized. An abnormality determination step of determining abnormality of the unit cells that form the assembled battery based on the voltage of the battery.

【0018】第5の発明によると、容量均等化ステップ
にて各単電池の容量が均等化された状態から、各単電池
における放電量を均一にして放電させる。このとき、た
とえば、容量均等化ステップにて使用される、各単電池
に対応付けて設けられた抵抗(抵抗値は同じ)に同じ放
電時間だけ放電させる。このようにして同じ放電量を放
電した場合、劣化して満充電容量が低下した単電池にお
ける開放電圧の低下は、初期状態の単電池における開放
電圧の低下よりも大きい。このため、満充電容量が低下
して、大きく開放電圧が低下した単電池を、劣化した電
池であって異常と判断できる。また、たとえば、組電池
を大容量の負荷に接続して大電流で放電した場合、劣化
して内部抵抗が大きくなった単電池における電圧降下
は、初期状態の単電池における電圧降下よりも大きい。
このため、単電池の内部抵抗が上昇して大きく開放電圧
が低下した単電池を、劣化した電池であって異常と判断
できる。その結果、組電池を構成する単電池の異常を容
易かつ正確に検出することができる、組電池の異常検出
方法を提供することができる。
According to the fifth aspect of the present invention, the capacity of each unit cell is equalized in the capacity equalizing step, and the discharge amount of each unit cell is made uniform. At this time, for example, the resistors (corresponding to the same resistance value) provided in association with the individual cells, which are used in the capacity equalization step, are discharged for the same discharge time. When the same amount of discharge is discharged in this way, the decrease in the open circuit voltage in the unit cell in which the full charge capacity is deteriorated and deteriorated is larger than the decrease in the open circuit voltage in the initial unit cell. Therefore, it is possible to determine that a single cell whose full-charge capacity has dropped and whose open-circuit voltage has dropped greatly is abnormal because it is a deteriorated battery. Further, for example, when the assembled battery is connected to a large-capacity load and discharged with a large current, the voltage drop in the unit cell whose deterioration has increased the internal resistance is larger than the voltage drop in the unit cell in the initial state.
Therefore, it is possible to determine that a unit cell in which the internal resistance of the unit cell is increased and the open circuit voltage is greatly reduced is a deteriorated battery and is abnormal. As a result, it is possible to provide a method for detecting an abnormality in a battery pack that can easily and accurately detect an abnormality in a single battery that constitutes the battery pack.

【0019】第6の発明に係る異常検出方法は、第5の
発明の構成に加えて、異常判定ステップは、各単電池の
容量が均等化された状態から、容量均等化ステップを用
いて各単電池を同じ量だけ放電した際に測定した各単電
池の電圧に基づいて、組電池を構成する単電池の異常を
判定するステップを含む。
In the abnormality detecting method according to the sixth aspect of the present invention, in addition to the configuration of the fifth aspect, the abnormality determining step is performed by using the capacity equalizing step from the state where the capacities of the individual cells are equalized. The method includes a step of determining abnormality of the unit cells forming the assembled battery based on the voltage of each unit cell measured when the unit cells are discharged by the same amount.

【0020】第6の発明によると、容量均等化ステップ
にて各単電池の容量が均等化された状態から、各単電池
における放電量を均一にして放電させる。このとき、容
量均等化ステップにて使用される、各単電池に対応付け
て設けられた抵抗(抵抗値は同じ)に同じ放電時間だけ
放電させる。このようにして同じ放電量を放電した場
合、劣化して満充電容量が低下した単電池における開放
電圧の低下は、初期状態の単電池における開放電圧の低
下よりも大きい。このため、満充電容量が低下して大き
く開放電圧が低下した単電池を、劣化した電池であって
異常と判断できる。その結果、組電池を構成する単電池
の異常を容易かつ正確に検出することができる、組電池
の異常検出方法を提供することができる。
According to the sixth aspect of the present invention, the capacity of each unit cell is equalized in the capacity equalizing step, and the discharge amount of each unit cell is made uniform. At this time, the resistors (corresponding to the same resistance value) provided in association with the individual cells used in the capacity equalization step are discharged for the same discharge time. When the same amount of discharge is discharged in this way, the decrease in the open circuit voltage in the unit cell in which the full charge capacity is deteriorated and deteriorated is larger than the decrease in the open circuit voltage in the initial unit cell. Therefore, it is possible to determine that a unit cell whose full-charge capacity has dropped and whose open-circuit voltage has dropped significantly is a battery that has deteriorated and is abnormal. As a result, it is possible to provide a method for detecting an abnormality in a battery pack that can easily and accurately detect an abnormality in a single battery that constitutes the battery pack.

【0021】第7の発明に係る異常検出方法が、第5の
発明の構成に加えて、異常判定ステップは、各単電池の
容量が均等化された状態から、組電池を大容量の負荷に
接続することにより放電した際に測定した各単電池の電
圧に基づいて、組電池を構成する単電池の異常を判定す
るステップを含む。
In the abnormality detecting method according to the seventh aspect of the present invention, in addition to the configuration of the fifth aspect, in the abnormality determining step, the assembled battery is loaded into a large-capacity load from a state where the capacities of the individual cells are equalized. The method includes a step of determining an abnormality of the unit cells forming the battery pack, based on the voltage of each unit cell measured when the cells are discharged by being connected.

【0022】第7の発明によると、容量均等化ステップ
にて各単電池の容量が均等化された状態から、各単電池
における放電量を均一にして放電させる。このとき、組
電池を大容量の負荷に接続して大電流で放電した場合、
劣化して内部抵抗が大きくなった単電池における電圧降
下は、初期状態の単電池における電圧降下よりも大き
い。このため、単電池の内部抵抗が上昇して大きく開放
電圧が低下した単電池を、劣化した電池であって異常と
判断できる。その結果、組電池を構成する単電池の異常
を容易かつ正確に検出することができる、組電池の異常
検出方法を提供することができる。
According to the seventh aspect of the present invention, the capacity of each unit cell is equalized in the capacity equalizing step, and then the discharge amount of each unit cell is made uniform. At this time, if the assembled battery is connected to a large capacity load and discharged with a large current,
The voltage drop in the unit cell whose deterioration has increased the internal resistance is larger than the voltage drop in the unit cell in the initial state. Therefore, it is possible to determine that a unit cell in which the internal resistance of the unit cell is increased and the open circuit voltage is greatly reduced is a deteriorated battery and is abnormal. As a result, it is possible to provide a method for detecting an abnormality in a battery pack that can easily and accurately detect an abnormality in a single battery that constitutes the battery pack.

【0023】第8の発明に係る異常検出方法が、第5〜
第7のいずれかの発明の構成に加えて、単電池は、リチ
ウム電池であるものである。
The abnormality detecting method according to the eighth aspect of the present invention is
In addition to the configuration of any one of the seventh invention, the unit cell is a lithium battery.

【0024】第8の発明によると、複数のリチウム電池
から構成される組電池の異常を正確に検出できる異常検
出方法を提供できる。
According to the eighth aspect of the present invention, it is possible to provide an abnormality detecting method capable of accurately detecting an abnormality in the assembled battery composed of a plurality of lithium batteries.

【0025】[0025]

【発明の実施の形態】以下、図面を参照しつつ、本発明
の実施の形態について説明する。以下の説明では、同一
の部品には同一の符号を付してある。それらの名称およ
び機能も同じである。したがってそれらについての詳細
な説明は繰返さない。なお、以下の説明では、リチウム
電池により組電池が構成されているとして説明するがこ
れに限定されない。また、この組電池は車両に搭載され
ているものとして説明する。
BEST MODE FOR CARRYING OUT THE INVENTION Embodiments of the present invention will be described below with reference to the drawings. In the following description, the same parts are designated by the same reference numerals. Their names and functions are also the same. Therefore, detailed description thereof will not be repeated. In addition, in the following description, it is assumed that the assembled battery is composed of a lithium battery, but the present invention is not limited to this. Further, the battery pack will be described as being installed in a vehicle.

【0026】<第1の実施の形態>図1に、本実施の形
態に係る組電池の異常検出システムを示す。この異常検
出システムは、リレー200と、組電池300と、リレ
ー200を介して負荷400に接続された組電池300
の異常を検出する異常検出装置100とを含む。N(N
は自然数)個の単電池が、直列に接続されている。異常
検出装置100は、組電池300を構成する単電池B
(1)〜B(N)の接続点と導電ラインL(0)〜L
(N)を介して接続された電池ECU(Electronic Con
trol Unit)110と、導電ラインL(0)〜L(N)
間に各々直列に接続されたトランジスタT(1)〜T
(N)と抵抗R(1)〜R(N)とを含む。なお、抵抗
R(1)〜R(N)の抵抗値は、すべて同じである。
<First Embodiment> FIG. 1 shows an assembled battery abnormality detection system according to the present embodiment. This abnormality detection system includes a relay 200, an assembled battery 300, and an assembled battery 300 connected to a load 400 via the relay 200.
The abnormality detection device 100 for detecting the abnormality. N (N
Is a natural number) cells are connected in series. The abnormality detection device 100 includes a single battery B that constitutes the battery pack 300.
(1) to B (N) connection points and conductive lines L (0) to L
Battery ECU (Electronic Con) connected via (N)
control unit 110 and conductive lines L (0) to L (N)
Transistors T (1) to T connected in series between
(N) and resistors R (1) to R (N) are included. The resistance values of the resistors R (1) to R (N) are all the same.

【0027】組電池300は、リチウム電池である単電
池B(1)〜B(N)を直列に接続して構成されてい
る。組電池300には、リレー200を介して負荷40
0が接続される。
The assembled battery 300 is constructed by connecting cells B (1) to B (N), which are lithium batteries, in series. A load 40 is applied to the assembled battery 300 via the relay 200.
0 is connected.

【0028】電池ECU110は、CPU112と、C
PU112で実行されるプログラムを記憶したROM
(Read Only Memory)114と、一時的にデータを記憶
するRAM(Random Access Memory)116とを含む。こ
の電池ECU100からは、組電池300の異常を表示
するインジケータ120への点灯信号や各トランジスタ
T(1)〜T(N)へのオンオフ信号などが出力ポート
を介して出力される。
The battery ECU 110 includes a CPU 112 and a C
ROM storing programs executed by PU 112
A (Read Only Memory) 114 and a RAM (Random Access Memory) 116 for temporarily storing data are included. From the battery ECU 100, a lighting signal to the indicator 120 that indicates an abnormality of the assembled battery 300, an on / off signal to each of the transistors T (1) to T (N), and the like are output via the output port.

【0029】電池ECU100からのオンオフ信号によ
りトランジスタT(1)〜T(N)がオンされると、オ
ンされたトランジスタを介して直列に接続された抵抗に
電流が流れて、電力が消費される。
When the transistors T (1) to T (N) are turned on by an on / off signal from the battery ECU 100, a current flows through the resistors connected in series via the turned on transistors, and power is consumed. .

【0030】電池ECU110のCPU112は、各単
電池B(1)〜B(N)の電圧VB(1)〜VB(N)
を検出する。CPU112は、各単電池B(1)〜B
(N)の電圧VB(1)〜VB(N)を、導電ラインL
(0)〜L(N)のライン間の電位差として検出する。
The CPU 112 of the battery ECU 110 controls the voltages VB (1) to VB (N) of the cells B (1) to B (N).
To detect. The CPU 112 uses the individual batteries B (1) to B
The voltage VB (1) to VB (N) of (N) is applied to the conductive line L.
It is detected as the potential difference between the lines (0) to L (N).

【0031】電池ECU110のCPU112は、予め
定められたタイミングから、設定された充電時間が経過
をしたことを計測することができるタイマを内蔵する。
CPU112は、このタイマにより、均等化処理後のテ
スト放電時間の完了を検知する。抵抗R(1)〜R
(N)の抵抗値は、すべて同じであるので、放電量と放
電時間とは相関関係を有する。以下の説明では、放電量
を直接検知しないで、均等化処理後に、均等化回路の抵
抗R(1)〜R(N)を用いて、各単電池に共通する放
電時間だけ放電して、その放電時間経過後の各単電池の
電圧に基づいて異常な単電池を検出するとして説明する
が、本発明はこれに限定されない。たとえば、放電時間
以外の物理量を検知してその物理量に基づいて放電量を
算出して、その放電量が各単電池において均一になるよ
うに放電した後の電圧に基づいて異常な単電池を検出す
るものであってもよい。
The CPU 112 of the battery ECU 110 has a built-in timer capable of measuring that a set charging time has elapsed from a predetermined timing.
The CPU 112 uses this timer to detect the completion of the test discharge time after the equalization process. Resistance R (1) -R
Since the resistance values of (N) are all the same, the discharge amount and the discharge time have a correlation. In the following description, the discharge amount is not directly detected, and after the equalization process, the resistors R (1) to R (N) of the equalization circuit are used to discharge for a discharge time common to each unit cell, The description will be made assuming that an abnormal cell is detected based on the voltage of each cell after the discharge time has passed, but the present invention is not limited to this. For example, a physical quantity other than the discharge time is detected, the discharge quantity is calculated based on that physical quantity, and an abnormal cell is detected based on the voltage after discharging so that the discharge quantity becomes uniform in each cell. It may be one that does.

【0032】図2を参照して、本実施の形態に係る組電
池の異常検出システムで異常を検出する対象であるリチ
ウム電池のSOC(States Of Charge)とOCV(Open
Current Voltage)との関係について説明する。図2に示
すように、横軸にSOCを縦軸にOCVをとった場合、
リチウム電池は、SOCの上昇に従ってOCVが上昇す
る傾向を有する。測定されたOCVが4.1ボルトの場
合にはSOCが100%という関係を有する。
Referring to FIG. 2, SOC (States Of Charge) and OCV (Open) of the lithium battery which is the object of abnormality detection in the battery pack abnormality detection system according to the present embodiment.
The relationship with (Current Voltage) will be described. As shown in FIG. 2, when SOC is taken on the horizontal axis and OCV is taken on the vertical axis,
Lithium batteries have a tendency for OCV to increase as SOC increases. If the measured OCV is 4.1 volts, the SOC has a relationship of 100%.

【0033】図3を参照して、リチウム電池の容量とO
CVとの関係について説明する。図3には、初期状態の
リチウム電池と、劣化状態にあるリチウム電池とについ
て、容量とOCVの関係を示す。初期状態にあり劣化し
ていないリチウム電池においては、計測されたOCVが
4.1ボルトの場合に満充電となり約12Ahの電気量
を充電した状態にある。一方、経時的な変化により劣化
して満充電容量が低下したリチウム電池においては、測
定されたOCVが4.1ボルトであっても、充電された
電気容量は8Ah程度である。すなわち、リチウム電池
のOCVが同じ4.1ボルトと測定された場合であって
も、初期状態のリチウム電池は12Ah、劣化したリチ
ウム電池は8Ahの容量が充電された状態である。
Referring to FIG. 3, the lithium battery capacity and O
The relationship with CV will be described. FIG. 3 shows the relationship between the capacity and the OCV of the lithium battery in the initial state and the lithium battery in the deteriorated state. The lithium battery in the initial state and not deteriorated is fully charged when the measured OCV is 4.1 V and is in a state of being charged with an electric quantity of about 12 Ah. On the other hand, in a lithium battery whose full charge capacity has deteriorated due to deterioration over time, the charged electric capacity is about 8 Ah even if the measured OCV is 4.1 V. That is, even when the OCV of the lithium battery is measured to be 4.1 V, which is the same, the capacity of the lithium battery in the initial state is 12 Ah and the capacity of the deteriorated lithium battery is 8 Ah.

【0034】図3に示すように、リチウム電池を充電す
ることにより容量もOCVも上昇し、リチウム電池から
放電することにより容量もOCVも下降する。また、図
3に示すように、初期状態にあるリチウム電池および劣
化状態にあるリチウム電池に対して、満充電状態から同
じ放電量ΔQをそれぞれ放電すると、初期状態のリチウ
ム電池のOCVよりも劣化状態のリチウム電池のOCV
が低くなる。
As shown in FIG. 3, when the lithium battery is charged, both the capacity and OCV increase, and when the lithium battery is discharged, both the capacity and OCV decrease. Further, as shown in FIG. 3, when the same amount of discharge ΔQ is discharged from the fully charged state to the lithium battery in the initial state and the lithium battery in the deteriorated state, the deterioration state is higher than the OCV of the lithium battery in the initial state. OCV of lithium battery
Will be lower.

【0035】図4を参照して、本実施の形態に係る組電
池の異常検出装置100の電池ECU110で実行され
るプログラムの制御構造について説明する。
Referring to FIG. 4, a control structure of a program executed by battery ECU 110 of battery pack abnormality detection device 100 according to the present embodiment will be described.

【0036】ステップ(以下、ステップをSと略す)1
00にて、電池ECU110のCPU112は、各単電
池の電圧VB(K)(K=1〜N)を検知する。S10
2にて、CPU112は、電圧VBのばらつきがΔVよ
りも小さいか否かを判断する。電圧VBのばらつきがΔ
Vよりも小さい場合には(S102にてYES)、処理
はS106へ移される。もしそうでないと(S102に
てNO)、処理はS104へ移される。
Step (hereinafter, step is abbreviated as S) 1
At 00, CPU 112 of battery ECU 110 detects voltage VB (K) (K = 1 to N) of each unit cell. S10
At 2, the CPU 112 determines whether the variation of the voltage VB is smaller than ΔV. The variation of the voltage VB is Δ
If it is smaller than V (YES in S102), the process proceeds to S106. If not (NO in S102), the process proceeds to S104.

【0037】S104にて、CPU112は、均等化回
路を用いて均等化処理を行なう。このとき、各単電池の
電圧が単電池の電圧VB(K)の中で最低の電圧になる
まで、トランジスタT(K)がオンされて、単電池がそ
れぞれ放電される。
At S104, CPU 112 performs equalization processing using the equalization circuit. At this time, the transistor T (K) is turned on and the unit cells are discharged until the voltage of each unit cell becomes the lowest voltage among the unit cell voltages VB (K).

【0038】S106にて、CPU112はテスト放電
条件を満足したか否かを判断する。この判断は、均等化
処理が完了した後であって、負荷400と組電池300
とが、切り離されているか否かにより判断される。テス
ト放電条件を満足していると(S106にてYES)、
処理はS108へ移される。もしそうでないと(S10
6にてNO)、処理はS106へ戻され、テスト放電条
件を満足するまで待つ。
At S106, CPU 112 determines whether or not the test discharge condition is satisfied. This determination is made after the equalization process is completed, and the load 400 and the battery pack 300 are
Are determined by whether or not they are separated. If the test discharge conditions are satisfied (YES in S106),
The process proceeds to S108. If not (S10
(NO in 6), the process is returned to S106 and waits until the test discharge condition is satisfied.

【0039】S108にて、CPU112は、トランジ
スタT(K)(K=1〜N)をオンする。S110に
て、CPU112は、タイマをスタートさせる。S11
2にて、CPU112は、タイマスタートから予め定め
られた時間が経過したか否かを判断する。タイマスター
トから予め定められた時間が経過すると(S112にて
YES)、処理はS114へ移される。もしそうでない
と(S112にてNO)、処理はS112へ戻され、タ
イマスタートから予め定められた時間が経過するまで待
つ。
At S108, CPU 112 turns on transistor T (K) (K = 1 to N). In S110, CPU 112 starts a timer. S11
At 2, the CPU 112 determines whether or not a predetermined time has elapsed since the timer was started. When a predetermined time has elapsed from the timer start (YES in S112), the process proceeds to S114. If not (NO in S112), the process is returned to S112 and waits until a predetermined time has elapsed from the timer start.

【0040】S114にて、CPU112は、トランジ
スタT(K)(K=1〜N)をオフする。S116に
て、CPU112は、変数Kを初期化(K=1)する。
S118にて、CPU112はK番目の単電池の電圧V
B(K)を検知する。S120にて、CPU112は、
K番目の単電池の電圧VB(K)が、予め定められた、
電圧に関するしきい値VBLIMよりも低いか否かを判
断する。K番目の単電池の電圧VB(K)がしきい値V
BLIMよりも低い場合には(S120にてYES)、
処理はS122へ移される。もしそうでないと(S12
0にてNO)、処理はS124へ移される。
At S114, CPU 112 turns off transistor T (K) (K = 1 to N). In S116, CPU 112 initializes variable K (K = 1).
In S118, the CPU 112 causes the voltage V of the Kth unit cell to rise to V
B (K) is detected. In S120, the CPU 112
The voltage VB (K) of the Kth unit cell is predetermined,
It is determined whether or not it is lower than the threshold value VBLIM related to the voltage. The voltage VB (K) of the Kth unit cell is the threshold value V
If it is lower than BLIM (YES in S120),
The process proceeds to S122. If not (S12
(NO at 0), the process proceeds to S124.

【0041】S122にて、CPU112は、K番目の
単電池の異常フラグをセットする。S124にて、CP
U112は、変数Kに1を加算する。S126にて、C
PU112は、変数Kが単電池の個数Nよりも大きいか
否かを判断する。変数Kが単電池の個数Nよりも大きい
場合には(S126にてYES)、処理はS128へ移
される。もしそうでないと(S126にてNO)、処理
はS118へ戻され、次の単電池についての処理が行な
われる。
At S122, CPU 112 sets the abnormality flag of the Kth cell. CP at S124
U112 adds 1 to the variable K. In S126, C
The PU 112 determines whether the variable K is larger than the number N of unit cells. If variable K is larger than the number N of unit cells (YES in S126), the process proceeds to S128. If not (NO in S126), the process returns to S118 and the process for the next unit cell is performed.

【0042】S128にて、CPU112は、異常フラ
グがセットされた単電池を異常としてRAM116に記
憶する。その後、CPU112は、インジケータ120
に対して単電池の異常に関する情報を表示させる。
At S128, CPU 112 stores the unit cell having the abnormality flag set as an abnormality in RAM 116. After that, the CPU 112 sets the indicator 120.
To display information about the abnormality of the unit cell.

【0043】以上のような構造およびフローチャートに
基づく本実施の形態に係る電池ECUのCPU112の
動作について説明する。
The operation of the CPU 112 of the battery ECU according to the present embodiment will be described based on the above structure and flowchart.

【0044】車両が停止してイグニッションスイッチが
オフなどされると、各単電池の電圧VB(K)(K=1
〜N)が検知される(S100)。電圧VBのばらつき
がΔVよりも小さいと(S102にてYES)、均等化
処理は行なわれずテスト放電条件が満足しているか否か
が判断される(S106)。
When the vehicle is stopped and the ignition switch is turned off, the voltage VB (K) of each cell (K = 1
~ N) are detected (S100). When the variation in voltage VB is smaller than ΔV (YES in S102), the equalization process is not performed and it is determined whether the test discharge condition is satisfied (S106).

【0045】テスト放電条件が満足されていると(S1
06にてYES)、トランジスタT(K)(K=1〜
N)がオンされる(S108)。タイマがスタートされ
(S110)、予め定められた時間が経過すると(S1
12にてYES)、トランジスタT(K)(K=1〜
N)がオフされる(S114)。K番目の単電池の電圧
VB(K)が検知される(S118)。検知された電圧
VB(K)が予め定められたしきい値VBLIMよりも
低い場合には(S120にてYES)、K番目の単電池
の異常フラグがセットされる(S122)。
If the test discharge conditions are satisfied (S1
06: YES), the transistor T (K) (K = 1 to 1)
N) is turned on (S108). The timer is started (S110), and when a predetermined time elapses (S1
12 is YES), the transistor T (K) (K = 1 to 1)
N) is turned off (S114). The voltage VB (K) of the Kth unit cell is detected (S118). If the detected voltage VB (K) is lower than the predetermined threshold value VBLIM (YES in S120), the abnormality flag of the Kth cell is set (S122).

【0046】このとき、図3を用いて説明したように、
単電池において同じ放電量を放電した場合であっても、
初期状態のリチウム電池に比べて劣化したリチウム電池
は、より低くOCVが測定される。そのため、K番目の
単電池の電圧VB(K)が予め定められたしきい値VB
LIMよりも低い場合には、その単電池が劣化している
ものとして異常フラグがセットされる。このような処理
が、単電池の個数N回だけ繰返し行なわれる。すべての
単電池についての処理が行なわれると、異常フラグがセ
ットされた単電池を異常としてRAM116に記憶され
る(S128)。
At this time, as described with reference to FIG.
Even when discharging the same amount of discharge in a single cell,
The deteriorated lithium battery has a lower OCV measured as compared to the lithium battery in the initial state. Therefore, the voltage VB (K) of the Kth unit cell is set to the predetermined threshold value VB.
If it is lower than LIM, the abnormality flag is set as that the unit cell has deteriorated. Such a process is repeated for the number of unit cells N times. When the process is performed for all the unit cells, the unit cells for which the abnormality flag is set are stored as an abnormality in the RAM 116 (S128).

【0047】以上のようにして、本実施の形態に係る異
常検出装置によると、均等化回路により単電池の容量の
ばらつきをなくした後、その均等化回路の単電池にそれ
ぞれ対応して設けられた抵抗を用いて同じ時間だけ放電
する。このとき、均等化回路の抵抗は同じ抵抗値である
ため、同じ放電時間だけ放電すると同じ電気量ΔQが放
電される。複数の単電池において同じ電気量ΔQを放電
した場合に、より多くOCVが低下した電池は満充電容
量が低下した電池として判断できる。
As described above, according to the abnormality detecting device of the present embodiment, the equalizing circuit eliminates the variation in the capacity of the unit cells, and then is provided corresponding to the unit cells of the equalizing circuit. The same resistance is used to discharge for the same time. At this time, since the resistances of the equalizing circuit have the same resistance value, the same amount of electricity ΔQ is discharged when discharging for the same discharging time. When the same amount of electricity ΔQ is discharged in a plurality of cells, a battery whose OCV has decreased more can be determined as a battery whose full charge capacity has decreased.

【0048】なお、本実施の形態においては、テスト放
電後の単電池の電圧VB(K)が予め定められたしきい
値VBLIMよりも低い場合に満充電容量が低下した単
電池と判断したが、本発明はこれに限定されない。本発
明は、テスト放電後の単電池の電圧VB(K)がその組
電池を構成する他の電池よりも相対的に低い場合に、満
充電容量が低下した単電池と判断する、すべての判断方
法を含む。
In this embodiment, when the voltage VB (K) of the unit cell after the test discharge is lower than the predetermined threshold value VBLIM, it is determined that the unit cell has a reduced full charge capacity. However, the present invention is not limited to this. In the present invention, all the judgments are made that when the voltage VB (K) of the unit cell after the test discharge is relatively lower than the other batteries constituting the assembled battery, it is determined that the unit cell has a reduced full charge capacity. Including the method.

【0049】<第2の実施の形態>以下、本発明の第2
の実施の形態に係る組電池の異常検出システムを示す。
図5に示すように、本実施の形態に係る異常検知システ
ムは、第1の実施の形態に係る異常検出装置100を含
む。この異常検出装置100は、第1の実施の形態の組
電池300である36ボルトバッテリ302に接続され
る。36ボルトバッテリ302は、それぞれの単電池B
(1)〜B(N)に内部抵抗RB(1)〜RB(N)を
含む。また、リレー200は、DC/DCコンバータ5
00に接続され、DC/DCコンバータ500は12ボ
ルトバッテリ600に接続される。
<Second Embodiment> The second embodiment of the present invention will be described below.
2 shows an assembled battery abnormality detection system according to the embodiment.
As shown in FIG. 5, the abnormality detection system according to the present embodiment includes the abnormality detection device 100 according to the first embodiment. The abnormality detection device 100 is connected to the 36-volt battery 302 that is the assembled battery 300 according to the first embodiment. The 36-volt battery 302 is a unit cell B
Internal resistances RB (1) to RB (N) are included in (1) to B (N). Further, the relay 200 includes the DC / DC converter 5
00, the DC / DC converter 500 is connected to a 12 volt battery 600.

【0050】リレー200がオンされると、36ボルト
バッテリ302からDC/DCコンバータ500を介し
て12ボルトバッテリ600に大電流が流れる。これ以
外のハードウェア構成については、前述の第1の実施の
形態に係る異常検知システムにおけるハードウェア構成
と同じであるため、ここでの詳細な説明は繰返さない。
When the relay 200 is turned on, a large current flows from the 36-volt battery 302 to the 12-volt battery 600 via the DC / DC converter 500. The hardware configuration other than this is the same as the hardware configuration in the abnormality detection system according to the first embodiment described above, and therefore detailed description thereof will not be repeated here.

【0051】図6を参照して、本実施の形態に係る異常
検出装置100の電池ECU110で実行されるプログ
ラムの制御構造について説明する。なお、図6に示すフ
ローチャートの中で、前述の図4に示したフローチャー
トと同じ処理については同じステップ番号を付してあ
る。それらについての処理も同じである。したがって、
それらについての詳細な説明はここでは繰返さない。
Referring to FIG. 6, a control structure of a program executed by battery ECU 110 of abnormality detecting device 100 according to the present embodiment will be described. In the flowchart shown in FIG. 6, the same steps as those in the flowchart shown in FIG. 4 are designated by the same step numbers. The processing for them is also the same. Therefore,
Detailed description thereof will not be repeated here.

【0052】S200にて、CPU112は、リレー2
00をオンして、DC/DCコンバータ500に電力を
供給してテスト放電を開始する。S202にて、CPU
112は、変数Kを初期化(K=1)する。S204に
て、CPU112は、K番目の電池の電圧VB(K)を
検知する。S206にて、CPU112は、電圧VB
(K)をRAM116に記憶する。S208にて、CP
U112は、変数Kに1を加算する。S210にて、C
PU112は、変数Kが単電池の個数Nよりも大きいか
否かを判断する。変数Kが単電池の個数Nよりも大きい
場合には(S210にてYES)、処理はS212へ移
される。もしそうでないと(S210にてNO)、処理
はS204へ戻され、次の単電池についての処理が行な
われる。
At S200, CPU 112 causes relay 2
00 is turned on to supply power to the DC / DC converter 500 to start the test discharge. In S202, CPU
112 initializes the variable K (K = 1). In S204, CPU 112 detects voltage VB (K) of the Kth battery. In S206, the CPU 112 sets the voltage VB
(K) is stored in the RAM 116. CP at S208
U112 adds 1 to the variable K. In S210, C
The PU 112 determines whether the variable K is larger than the number N of unit cells. If variable K is larger than the number N of unit cells (YES in S210), the process proceeds to S212. If not (NO in S210), the process returns to S204 and the process for the next unit cell is performed.

【0053】S212にて、CPU112は、リレー2
00をオフして、テスト放電を終了させる。S214に
て、CPU112は、N個の単電池の中で最低電圧VB
MINを判定する。この最低電圧であると判定された単
電池は、電池の内部抵抗の上昇による電圧降下が最も小
さく、組電池の中で最も劣化していない単電池である。
At S212, the CPU 112 causes the relay 2
00 is turned off to end the test discharge. In S214, the CPU 112 sets the lowest voltage VB among the N cells.
Determine MIN. The unit cell determined to have the lowest voltage has the smallest voltage drop due to the increase in the internal resistance of the battery, and is the unit cell that has not deteriorated the most in the assembled battery.

【0054】S216にて、CPU112は、変数Kを
初期化(K=1)する。S218にて、CPU112
は、評価値Eを、E=電圧VB(K)/VBMINとし
て算出する。S220にて、CPU112は、評価値E
が予め定められたしきい値EMAXよりも大きいか否か
を判断する。評価値Eが予め定められたしきい値EMA
Xよりも大きい場合には(S220にてYES)、処理
はS222へ移される。もしそうでないと(S220に
てNO)、処理はS224へ移される。このとき、1番
目の電池B(1)に付随する内部抵抗RB(1)よりも
電池B(2)に付随する内部抵抗RB(2)の方が大き
い場合には、2番目の電池B(2)において電池の内部
抵抗による電圧降下がより大きく発生する。そのため、
電圧VB(K)が高く検知される。その結果、2番目の
電池B(2)の評価値Eが、1番目の電池B(1)の評
価値Eよりも大きく算出される。
At S216, CPU 112 initializes variable K (K = 1). In S218, the CPU 112
Calculates the evaluation value E as E = voltage VB (K) / VBMIN. In S220, the CPU 112 causes the evaluation value E
Is greater than a predetermined threshold value EMAX. Threshold value EMA where evaluation value E is predetermined
If larger than X (YES in S220), the process proceeds to S222. If not (NO in S220), the process proceeds to S224. At this time, if the internal resistance RB (2) associated with the battery B (2) is larger than the internal resistance RB (1) associated with the first battery B (1), the second battery B ( In 2), a larger voltage drop occurs due to the internal resistance of the battery. for that reason,
The voltage VB (K) is detected high. As a result, the evaluation value E of the second battery B (2) is calculated to be larger than the evaluation value E of the first battery B (1).

【0055】S222にて、CPU112は、K番目の
単電池の異常フラグをセットする。S224にて、CP
U112は、変数Kに1を加算する。S226にて、C
PU112は、変数Kが単電池の個数Nよりも大きいか
否かを判断する。変数Kが単電池の個数Nよりも大きい
場合には(S226にてYES)、処理はS128へ移
される。もしそうでないと(S226にてNO)、処理
はS218へ戻され、次の単電池についての処理が行な
われる。
In S222, CPU 112 sets the abnormality flag of the Kth cell. CP at S224
U112 adds 1 to the variable K. In S226, C
The PU 112 determines whether the variable K is larger than the number N of unit cells. If variable K is larger than the number N of unit cells (YES in S226), the process proceeds to S128. If not (NO in S226), the process returns to S218 and the process for the next unit cell is performed.

【0056】以上のような構造およびフローチャートに
基づく、本実施の形態に係る異常検出装置100のCP
U112の動作について説明する。
The CP of the abnormality detecting apparatus 100 according to the present embodiment based on the above-described structure and flowchart.
The operation of U112 will be described.

【0057】車両が停止してイグニッションスイッチが
オフされるなどの条件が整うと、各単電池の電圧VB
(K)(K=1〜N)が検知される(S100)。電圧
VBのばらつきがΔVよりも小さいと(S102にてY
ES)、均等化処理が行なわれず、リレー200がオン
されて、DC/DCコンバータ500に36ボルトバッ
テリから電力が供給されてテスト放電が開始される(S
200)。この状態でK番目の単電池の電圧VB(K)
が検知され(S204)、検知された電圧VB(K)が
RAM116に記憶される(S206)。このような処
理が、すべての単電池について繰返し行なわれる。
When conditions such as when the vehicle is stopped and the ignition switch is turned off are satisfied, the voltage VB of each unit cell is
(K) (K = 1 to N) is detected (S100). If the variation of the voltage VB is smaller than ΔV (Y in S102
ES), the equalization process is not performed, the relay 200 is turned on, the DC / DC converter 500 is supplied with power from the 36-volt battery, and test discharge is started (S).
200). In this state, the voltage VB (K) of the Kth unit cell
Is detected (S204), and the detected voltage VB (K) is stored in the RAM 116 (S206). Such a process is repeated for all the unit cells.

【0058】その後、リレー200がオフされテスト放
電が終了する(S212)。N個の単電池の中で最低電
圧VBMINが判定される(S214)。それぞれの単
電池についてRAM116に記憶された電圧VB(K)
をVBMINで除算して、評価値Eが算出される(S2
18)。算出された評価値Eが予め定められたしきい値
EMAXよりも大きいと(S220にてYES)、K番
目の単電池の異常フラグがセットされる(S222)。
このような処理が、すべての単電池に対して繰返し実行
される。
After that, the relay 200 is turned off and the test discharge ends (S212). The lowest voltage VBMIN among the N cells is determined (S214). The voltage VB (K) stored in the RAM 116 for each unit cell
Is divided by VBMIN to calculate the evaluation value E (S2
18). When the calculated evaluation value E is larger than the predetermined threshold value EMAX (YES in S220), the abnormality flag of the Kth cell is set (S222).
Such processing is repeatedly executed for all the unit cells.

【0059】以上のようにして、本実施の形態に係る組
電池の異常検出装置によると、組電池に接続されたDC
/DCコンバータなどを用いて、たとえば100アンペ
ア程度の大電流を流したときの各単電池の電圧を測定す
る。経時的な変化により単電池の内部抵抗が上昇した単
電池においては電圧降下として現われる電圧VB(K)
が大きく測定される。内部抵抗による電圧降下が大きい
電池は、劣化した電池であるとしての異常フラグがセッ
トされ、組電池を構成する単電池の異常を検出すること
ができる。
As described above, according to the battery pack abnormality detection apparatus in this embodiment, the DC connected to the battery pack is connected.
Using a / DC converter or the like, the voltage of each cell is measured when a large current of, for example, about 100 amperes flows. The voltage VB (K) that appears as a voltage drop in a unit cell whose internal resistance has risen due to changes over time
Is greatly measured. For a battery having a large voltage drop due to internal resistance, an abnormality flag indicating that the battery is deteriorated is set, and the abnormality of the unit cells constituting the assembled battery can be detected.

【0060】なお、本実施の形態においては、大電流を
流している場合の、最低電圧VBMIN単電池に対する
電圧VB(K)の比率である評価値Eが、予め定められ
たしきい値EMAXよりも大きい場合に、内部抵抗が上
昇した単電池と判断したが、本発明はこれに限定されな
い。本発明は、テスト放電中の単電池の電圧VB(K)
が、その組電池を構成する他の電池よりも相対的に高い
場合に、内部抵抗が上昇した単電池と判断する、すべて
の判断方法を含む。
In the present embodiment, the evaluation value E, which is the ratio of the voltage VB (K) to the lowest voltage VBMIN cell when a large current is applied, is based on a predetermined threshold value EMAX. However, the present invention is not limited to this. The present invention is applied to the voltage VB (K) of the unit cell during the test discharge.
However, when the battery pack is relatively higher than the other batteries constituting the battery pack, it is judged that the battery cell has a higher internal resistance.

【0061】今回開示された実施の形態はすべての点で
例示であって制限的なものではないと考えられるべきで
ある。本発明の範囲は上記した説明ではなくて特許請求
の範囲によって示され、特許請求の範囲と均等の意味お
よび範囲内でのすべての変更が含まれることが意図され
る。
The embodiments disclosed this time are to be considered as illustrative in all points and not restrictive. The scope of the present invention is shown not by the above description but by the claims, and is intended to include meanings equivalent to the claims and all modifications within the scope.

【図面の簡単な説明】[Brief description of drawings]

【図1】 本発明の第1の実施の形態に係る異常検出シ
ステムの制御ブロック図である。
FIG. 1 is a control block diagram of an abnormality detection system according to a first embodiment of the present invention.

【図2】 SOCとOCVとの関係を表わす図である。FIG. 2 is a diagram showing a relationship between SOC and OCV.

【図3】 容量とOCVとの関係を表わす図である。FIG. 3 is a diagram showing a relationship between capacity and OCV.

【図4】 本発明の第1の実施の形態に係る異常検出シ
ステムの電池ECUで実行されるプログラムの制御構造
を示すフローチャートである。
FIG. 4 is a flowchart showing a control structure of a program executed by the battery ECU of the abnormality detection system according to the first embodiment of the present invention.

【図5】 本発明の第2の実施の形態に係る異常検出シ
ステムの制御ブロック図である。
FIG. 5 is a control block diagram of an abnormality detection system according to a second embodiment of the present invention.

【図6】 本発明の第2の実施の形態に係る異常検出シ
ステムの電池ECUで実行されるプログラムの制御構造
を示すフローチャートである。
FIG. 6 is a flowchart showing a control structure of a program executed by a battery ECU of the abnormality detection system according to the second embodiment of the present invention.

【符号の説明】[Explanation of symbols]

100 異常検出装置、110 電池ECU、112
CPU、114 ROM、116 RAM、200 リ
レー、300 組電池、302 36Vバッテリ、40
0 負荷、500 DC/DCコンバータ、600 1
2Vバッテリ。
100 abnormality detection device, 110 battery ECU, 112
CPU, 114 ROM, 116 RAM, 200 relay, 300 assembled battery, 302 36V battery, 40
0 load, 500 DC / DC converter, 600 1
2V battery.

フロントページの続き Fターム(参考) 2G016 CA03 CB05 CB11 CB12 CC01 CC02 CC04 CC10 CC12 CC27 CC28 CD04 CD14 CE00 5G003 BA03 EA08 GC05 5H030 AA10 AS08 FF44 FF52 Continued front page    F-term (reference) 2G016 CA03 CB05 CB11 CB12 CC01                       CC02 CC04 CC10 CC12 CC27                       CC28 CD04 CD14 CE00                 5G003 BA03 EA08 GC05                 5H030 AA10 AS08 FF44 FF52

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】 複数の単電池を直列に接続して構成され
る組電池の異常を検出する異常検出装置であって、 前記複数の単電池の容量の均等化を図るための容量均等
化手段と、 各前記単電池の容量が均等化された状態から、各前記単
電池を均一に放電した際に測定した各前記単電池の電圧
に基づいて、前記組電池を構成する単電池の異常を判定
するための異常判定手段とを含む、組電池の異常検出装
置。
1. An abnormality detecting device for detecting an abnormality in an assembled battery configured by connecting a plurality of unit cells in series, the capacity equalizing means for equalizing the capacities of the plurality of unit cells. And, from the state where the capacity of each of the unit cells is equalized, based on the voltage of each of the unit cells measured when the unit cells are uniformly discharged, abnormality of the unit cells constituting the assembled battery An abnormality detecting device for an assembled battery, comprising: abnormality determining means for determining.
【請求項2】 前記異常判定手段は、各前記単電池の容
量が均等化された状態から、前記容量均等化手段を用い
て各前記単電池を同じ量だけ放電した際に測定した各前
記単電池の電圧に基づいて、前記組電池を構成する単電
池の異常を判定するための手段を含む、請求項1に記載
の組電池の異常検出装置。
2. The abnormality determining means measures each of the cells measured when the cells are discharged by the same amount using the capacity equalizing means from a state in which the capacities of the cells are equalized. The abnormality detecting device for an assembled battery according to claim 1, further comprising means for determining an abnormality of a single battery forming the assembled battery based on a voltage of the battery.
【請求項3】 前記異常判定手段は、各前記単電池の容
量が均等化された状態から、前記組電池を大容量の負荷
に接続することにより放電した際に測定した各前記単電
池の電圧に基づいて、前記組電池を構成する単電池の異
常を判定するための手段を含む、請求項1に記載の組電
池の異常検出装置。
3. The abnormality determination means measures the voltage of each of the cells when the assembled battery is discharged by connecting the assembled battery to a large-capacity load from a state where the capacities of the cells are equalized. The battery pack abnormality detection device according to claim 1, further comprising means for determining an abnormality of a single battery constituting the battery pack based on the above.
【請求項4】 前記単電池は、リチウム電池である、請
求項1〜3のいずれかに記載の組電池の異常検出装置。
4. The assembled battery abnormality detection device according to claim 1, wherein the unit cell is a lithium battery.
【請求項5】 複数の単電池を直列に接続して構成され
る組電池の異常を検出する異常検出方法であって、 前記複数の単電池の容量の均等化を図る容量均等化ステ
ップと、 各前記単電池の容量が均等化された状態から、各前記単
電池を均一に放電した際に測定した各前記単電池の電圧
に基づいて、前記組電池を構成する単電池の異常を判定
する異常判定ステップとを含む、組電池の異常検出方
法。
5. An abnormality detection method for detecting an abnormality in an assembled battery configured by connecting a plurality of unit cells in series, which comprises a capacity equalizing step for equalizing the capacities of the plurality of unit cells. From the state where the capacities of the respective unit cells are equalized, based on the voltage of each unit cell measured when the unit cells are uniformly discharged, the abnormality of the unit cells constituting the assembled battery is determined. An abnormality detection method for an assembled battery, comprising: an abnormality determination step.
【請求項6】 前記異常判定ステップは、各前記単電池
の容量が均等化された状態から、前記容量均等化ステッ
プを用いて各前記単電池を同じ量だけ放電した際に測定
した各前記単電池の電圧に基づいて、前記組電池を構成
する単電池の異常を判定するステップを含む、請求項5
に記載の組電池の異常検出方法。
6. The abnormality determining step includes measuring the cells when the cells are discharged by the same amount using the capacity equalizing step from a state in which the cells have equalized capacities. 6. The method according to claim 5, further comprising the step of determining an abnormality of a single battery included in the assembled battery based on a battery voltage.
The method for detecting an abnormality in the assembled battery according to.
【請求項7】 前記異常判定ステップは、各前記単電池
の容量が均等化された状態から、前記組電池を大容量の
負荷に接続することにより放電した際に測定した各前記
単電池の電圧に基づいて、前記組電池を構成する単電池
の異常を判定するステップを含む、請求項5に記載の組
電池の異常検出方法。
7. The abnormality determining step comprises measuring the voltage of each unit cell measured when the assembled battery is discharged by connecting the assembled battery to a large-capacity load from a state where the capacities of the unit cells are equalized. The method for detecting an abnormality in a battery pack according to claim 5, further comprising the step of determining an abnormality in a battery cell included in the battery pack based on the above.
【請求項8】 前記単電池は、リチウム電池である、請
求項5〜7のいずれかに記載の組電池の異常検出方法。
8. The assembled battery abnormality detection method according to claim 5, wherein the unit cell is a lithium battery.
JP2002083631A 2002-03-25 2002-03-25 Abnormality detection apparatus and abnormality detection method for battery pack Expired - Fee Related JP3975798B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002083631A JP3975798B2 (en) 2002-03-25 2002-03-25 Abnormality detection apparatus and abnormality detection method for battery pack

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002083631A JP3975798B2 (en) 2002-03-25 2002-03-25 Abnormality detection apparatus and abnormality detection method for battery pack

Publications (2)

Publication Number Publication Date
JP2003282156A true JP2003282156A (en) 2003-10-03
JP3975798B2 JP3975798B2 (en) 2007-09-12

Family

ID=29231326

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002083631A Expired - Fee Related JP3975798B2 (en) 2002-03-25 2002-03-25 Abnormality detection apparatus and abnormality detection method for battery pack

Country Status (1)

Country Link
JP (1) JP3975798B2 (en)

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007195312A (en) * 2006-01-18 2007-08-02 Toyota Motor Corp Lifetime estimating device for secondary batteries
WO2008053969A1 (en) 2006-11-02 2008-05-08 Panasonic Corporation Abnormality detecting device for storage element, abnormality detecting method for storage element, abnormality detecting program for storage element, and computer-readable recording medium containing abnormality detecting program for storage element is recorded
WO2008065910A1 (en) 2006-11-27 2008-06-05 Panasonic Corporation Accumulator failure detecting device, accumulator failure detecting method, accumulator failure detecting program, and computer-readable recording medium containing the accumulator failure detecting program
JP2008295250A (en) * 2007-05-28 2008-12-04 Sony Corp Battery pack and control method
JP2010032412A (en) * 2008-07-30 2010-02-12 Sanyo Electric Co Ltd Power supply for vehicle
JP2010271267A (en) * 2009-05-25 2010-12-02 Mitsubishi Motors Corp Battery monitoring device
JP2012057956A (en) * 2010-09-06 2012-03-22 Calsonic Kansei Corp Deterioration degree estimation apparatus for battery
WO2012077751A1 (en) * 2010-12-09 2012-06-14 三菱重工業株式会社 Battery system
JPWO2011121975A1 (en) * 2010-03-31 2013-07-04 パナソニック株式会社 Vehicle power supply
WO2014122832A1 (en) * 2013-02-06 2014-08-14 日本電気株式会社 Power storage device and deterioration determination method
CN104614631A (en) * 2015-01-19 2015-05-13 清华大学 Identification method for micro short circuit of battery
CN105223517A (en) * 2015-11-11 2016-01-06 国网黑龙江省电力有限公司绥化供电公司 The online balanced monitoring method of a kind of battery pack
WO2017163990A1 (en) * 2016-03-22 2017-09-28 日本電気株式会社 Monitoring device, monitoring system, and monitoring method
WO2019181138A1 (en) * 2018-03-19 2019-09-26 三菱自動車工業株式会社 Device for measuring degree of deterioration of secondary battery
JP2020038812A (en) * 2018-09-05 2020-03-12 株式会社Gsユアサ Method of recycling secondary battery, management device, and computer program
JP2020063983A (en) * 2018-10-17 2020-04-23 横河電機株式会社 Battery management system, battery management method and battery management program
CN111413629A (en) * 2020-02-24 2020-07-14 上海蔚来汽车有限公司 Short circuit monitoring method, system and device for single batteries in power battery
JP2020141522A (en) * 2019-02-28 2020-09-03 株式会社デンソー Abnormality diagnostic apparatus of power unit
CN111913113A (en) * 2020-07-14 2020-11-10 蜂巢能源科技有限公司 Method and device for identifying short circuit in electric core, storage medium and electronic equipment
JP2021072755A (en) * 2019-11-01 2021-05-06 トヨタ自動車株式会社 Battery controller and abnormality detection method
US20210218262A1 (en) * 2019-03-18 2021-07-15 Lg Chem, Ltd. Battery Management Apparatus
CN113866669A (en) * 2020-06-30 2021-12-31 宁德时代新能源科技股份有限公司 Method, device, equipment and medium for detecting short circuit fault inside battery cell

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2413420B1 (en) 2009-03-27 2018-11-21 Hitachi, Ltd. Electric storage device
CN106932722A (en) * 2015-12-30 2017-07-07 华为技术有限公司 The internal short-circuit detection method and device of a kind of electrokinetic cell

Cited By (46)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007195312A (en) * 2006-01-18 2007-08-02 Toyota Motor Corp Lifetime estimating device for secondary batteries
US8085051B2 (en) 2006-11-02 2011-12-27 Panasonic Corporation Abnormality detecting device for storage element, abnormality detecting method for storage element, abnormality detecting program for storage element, and computer-readable recording medium storing abnormality detecting program
EP2083494A4 (en) * 2006-11-02 2010-02-10 Panasonic Corp Abnormality detecting device for storage element, abnormality detecting method for storage element, abnormality detecting program for storage element, and computer-readable recording medium containing abnormality detecting program for storage element is recorded
JP2008118777A (en) * 2006-11-02 2008-05-22 Matsushita Electric Ind Co Ltd Abnormality detecting device for storage element, abnormality detecting method for storage element, and abnormality detecting program for storage element
WO2008053969A1 (en) 2006-11-02 2008-05-08 Panasonic Corporation Abnormality detecting device for storage element, abnormality detecting method for storage element, abnormality detecting program for storage element, and computer-readable recording medium containing abnormality detecting program for storage element is recorded
EP2083494A1 (en) * 2006-11-02 2009-07-29 Panasonic Corporation Abnormality detecting device for storage element, abnormality detecting method for storage element, abnormality detecting program for storage element, and computer-readable recording medium containing abnormality detecting program for storage element is recorded
WO2008065910A1 (en) 2006-11-27 2008-06-05 Panasonic Corporation Accumulator failure detecting device, accumulator failure detecting method, accumulator failure detecting program, and computer-readable recording medium containing the accumulator failure detecting program
EP2088445A1 (en) * 2006-11-27 2009-08-12 Panasonic Corporation Accumulator failure detecting device, accumulator failure detecting method, accumulator failure detecting program, and computer-readable recording medium containing the accumulator failure detecting program
EP2088445A4 (en) * 2006-11-27 2013-03-06 Panasonic Corp Accumulator failure detecting device, accumulator failure detecting method, accumulator failure detecting program, and computer-readable recording medium containing the accumulator failure detecting program
JP2008295250A (en) * 2007-05-28 2008-12-04 Sony Corp Battery pack and control method
JP2010032412A (en) * 2008-07-30 2010-02-12 Sanyo Electric Co Ltd Power supply for vehicle
JP2010271267A (en) * 2009-05-25 2010-12-02 Mitsubishi Motors Corp Battery monitoring device
JPWO2011121975A1 (en) * 2010-03-31 2013-07-04 パナソニック株式会社 Vehicle power supply
US9071081B2 (en) 2010-03-31 2015-06-30 Panasonic Intellectual Property Management Co., Ltd. Power source device for vehicle
JP5799251B2 (en) * 2010-03-31 2015-10-21 パナソニックIpマネジメント株式会社 Vehicle power supply
JP2012057956A (en) * 2010-09-06 2012-03-22 Calsonic Kansei Corp Deterioration degree estimation apparatus for battery
WO2012077751A1 (en) * 2010-12-09 2012-06-14 三菱重工業株式会社 Battery system
JP2012122872A (en) * 2010-12-09 2012-06-28 Mitsubishi Heavy Ind Ltd Battery system
CN103229064A (en) * 2010-12-09 2013-07-31 三菱重工业株式会社 Battery system
US10038325B2 (en) 2013-02-06 2018-07-31 Nec Corporation Electric storage device and deterioration determination method
WO2014122832A1 (en) * 2013-02-06 2014-08-14 日本電気株式会社 Power storage device and deterioration determination method
CN104614631A (en) * 2015-01-19 2015-05-13 清华大学 Identification method for micro short circuit of battery
CN105223517A (en) * 2015-11-11 2016-01-06 国网黑龙江省电力有限公司绥化供电公司 The online balanced monitoring method of a kind of battery pack
WO2017163990A1 (en) * 2016-03-22 2017-09-28 日本電気株式会社 Monitoring device, monitoring system, and monitoring method
JP7003911B2 (en) 2016-03-22 2022-01-21 日本電気株式会社 Monitoring equipment, monitoring system and monitoring method
JPWO2017163990A1 (en) * 2016-03-22 2019-01-31 日本電気株式会社 Monitoring device, monitoring system, and monitoring method
WO2019181138A1 (en) * 2018-03-19 2019-09-26 三菱自動車工業株式会社 Device for measuring degree of deterioration of secondary battery
JP2020038812A (en) * 2018-09-05 2020-03-12 株式会社Gsユアサ Method of recycling secondary battery, management device, and computer program
JP7192323B2 (en) 2018-09-05 2022-12-20 株式会社Gsユアサ Method for reusing secondary battery, management device, and computer program
JP2020063983A (en) * 2018-10-17 2020-04-23 横河電機株式会社 Battery management system, battery management method and battery management program
WO2020079978A1 (en) * 2018-10-17 2020-04-23 横河電機株式会社 Battery management system, battery management method, and battery management program
JP2020141522A (en) * 2019-02-28 2020-09-03 株式会社デンソー Abnormality diagnostic apparatus of power unit
JP7115362B2 (en) 2019-02-28 2022-08-09 株式会社デンソー Abnormal diagnosis device for power supply
US11824395B2 (en) * 2019-03-18 2023-11-21 Lg Energy Solution, Ltd. Battery management apparatus
US20210218262A1 (en) * 2019-03-18 2021-07-15 Lg Chem, Ltd. Battery Management Apparatus
US11508997B2 (en) 2019-11-01 2022-11-22 Toyota Jidosha Kabushiki Kaisha Battery control device and abnormality sensing method
CN112787367A (en) * 2019-11-01 2021-05-11 丰田自动车株式会社 Battery control device and abnormality sensing method
JP2021072755A (en) * 2019-11-01 2021-05-06 トヨタ自動車株式会社 Battery controller and abnormality detection method
JP7226249B2 (en) 2019-11-01 2023-02-21 トヨタ自動車株式会社 BATTERY CONTROL DEVICE AND ABNORMALITY DETECTION METHOD
WO2021169487A1 (en) * 2020-02-24 2021-09-02 上海蔚来汽车有限公司 Short-circuit monitoring method, system and device for cells in power battery
CN111413629A (en) * 2020-02-24 2020-07-14 上海蔚来汽车有限公司 Short circuit monitoring method, system and device for single batteries in power battery
CN111413629B (en) * 2020-02-24 2024-02-02 上海蔚来汽车有限公司 Short circuit monitoring method, system and device for single battery in power battery
CN113866669A (en) * 2020-06-30 2021-12-31 宁德时代新能源科技股份有限公司 Method, device, equipment and medium for detecting short circuit fault inside battery cell
US11614494B2 (en) 2020-06-30 2023-03-28 Contemporary Amperex Technology Co., Limited Method, apparatus, device and medium for detecting internal short-circuit fault of battery cell
CN113866669B (en) * 2020-06-30 2023-09-15 宁德时代新能源科技股份有限公司 Method, device, equipment and medium for detecting internal short circuit fault of battery cell
CN111913113A (en) * 2020-07-14 2020-11-10 蜂巢能源科技有限公司 Method and device for identifying short circuit in electric core, storage medium and electronic equipment

Also Published As

Publication number Publication date
JP3975798B2 (en) 2007-09-12

Similar Documents

Publication Publication Date Title
JP3975798B2 (en) Abnormality detection apparatus and abnormality detection method for battery pack
US9438059B2 (en) Battery control apparatus and battery control method
EP2574948B1 (en) Electric storage device monitor
US7785729B2 (en) Battery pack and battery pack producing method
JP5348987B2 (en) How to detect battery deterioration
JP5075741B2 (en) Imbalance determination circuit, power supply device, and imbalance determination method
US20120013180A1 (en) Battery control apparatus, battery control method, and vehicle
US20130069584A1 (en) Battery charging apparatus and battery charging method
EP2058891B1 (en) Charging control device for a storage battery
US20100030498A1 (en) Secondary battery deterioration judging device and backup power supply
CN109616704B (en) Device for battery management and method for managing charging of a battery
WO2008065910A1 (en) Accumulator failure detecting device, accumulator failure detecting method, accumulator failure detecting program, and computer-readable recording medium containing the accumulator failure detecting program
JP2010098866A (en) Imbalance determination circuit, imbalance reduction circuit, battery power supply, and imbalance evaluation method
EP3011351A2 (en) Method for estimating state of health of a battery in a hybrid vehicle
EP3149500A1 (en) Method for determining the reliability of state of health parameter values
US8180508B2 (en) Electricity storage control apparatus and method of controlling electricity storage
WO2010010662A1 (en) Imbalance determination circuit, power supply device, and imbalance determination method
US7612540B2 (en) Lithium-ion battery diagnostic and prognostic techniques
JP2004271342A (en) Charging and discharging control system
JP2003243042A (en) Detecting method and device for degree of deterioration of lithium battery as component of package battery
JP3975796B2 (en) Abnormality detection apparatus and abnormality detection method for battery pack
JP2002075461A (en) Deterioration judging device for secondary cell, deterioration judging method, managing device and managing method of secondary cell
US20220214404A1 (en) Method for determining battery state and battery state determination device
JP2001186682A (en) Method of controlling discharge of battery
JP4870268B2 (en) Secondary battery life judgment method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041124

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20061221

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070529

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070611

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100629

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110629

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110629

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120629

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120629

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130629

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees