JP7115362B2 - Abnormal diagnosis device for power supply - Google Patents

Abnormal diagnosis device for power supply Download PDF

Info

Publication number
JP7115362B2
JP7115362B2 JP2019036810A JP2019036810A JP7115362B2 JP 7115362 B2 JP7115362 B2 JP 7115362B2 JP 2019036810 A JP2019036810 A JP 2019036810A JP 2019036810 A JP2019036810 A JP 2019036810A JP 7115362 B2 JP7115362 B2 JP 7115362B2
Authority
JP
Japan
Prior art keywords
period
value
power supply
variation
evaluation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019036810A
Other languages
Japanese (ja)
Other versions
JP2020141522A (en
Inventor
友樹 長井
大和 宇都宮
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP2019036810A priority Critical patent/JP7115362B2/en
Priority to DE102020104984.6A priority patent/DE102020104984A1/en
Publication of JP2020141522A publication Critical patent/JP2020141522A/en
Application granted granted Critical
Publication of JP7115362B2 publication Critical patent/JP7115362B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L3/00Electric devices on electrically-propelled vehicles for safety purposes; Monitoring operating variables, e.g. speed, deceleration or energy consumption
    • B60L3/0023Detecting, eliminating, remedying or compensating for drive train abnormalities, e.g. failures within the drive train
    • B60L3/0046Detecting, eliminating, remedying or compensating for drive train abnormalities, e.g. failures within the drive train relating to electric energy storage systems, e.g. batteries or capacitors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/48Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte
    • H01M10/482Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte for several batteries or cells simultaneously or sequentially
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L3/00Electric devices on electrically-propelled vehicles for safety purposes; Monitoring operating variables, e.g. speed, deceleration or energy consumption
    • B60L3/12Recording operating variables ; Monitoring of operating variables
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/12Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries responding to state of charge [SoC]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/18Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries of two or more battery modules
    • B60L58/21Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries of two or more battery modules having the same nominal voltage
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/396Acquisition or processing of data for testing or for monitoring individual cells or groups of cells within a battery
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/425Structural combination with electronic components, e.g. electronic circuits integrated to the outside of the casing
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J13/00Circuit arrangements for providing remote indication of network conditions, e.g. an instantaneous record of the open or closed condition of each circuitbreaker in the network; Circuit arrangements for providing remote control of switching means in a power distribution network, e.g. switching in and out of current consumers by using a pulse code signal carried by the network
    • H02J13/00002Circuit arrangements for providing remote indication of network conditions, e.g. an instantaneous record of the open or closed condition of each circuitbreaker in the network; Circuit arrangements for providing remote control of switching means in a power distribution network, e.g. switching in and out of current consumers by using a pulse code signal carried by the network characterised by monitoring
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0013Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries acting upon several batteries simultaneously or sequentially
    • H02J7/0014Circuits for equalisation of charge between batteries
    • H02J7/0016Circuits for equalisation of charge between batteries using shunting, discharge or bypass circuits
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/54Drive Train control parameters related to batteries
    • B60L2240/547Voltage
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/327Testing of circuit interrupters, switches or circuit-breakers
    • G01R31/3277Testing of circuit interrupters, switches or circuit-breakers of low voltage devices, e.g. domestic or industrial devices, such as motor protections, relays, rotation switches
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R35/00Testing or calibrating of apparatus covered by the other groups of this subclass
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/425Structural combination with electronic components, e.g. electronic circuits integrated to the outside of the casing
    • H01M2010/4271Battery management systems including electronic circuits, e.g. control of current or voltage to keep battery in healthy state, cell balancing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2220/00Batteries for particular applications
    • H01M2220/20Batteries in motive systems, e.g. vehicle, ship, plane
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2310/00The network for supplying or distributing electric power characterised by its spatial reach or by the load
    • H02J2310/40The network being an on-board power network, i.e. within a vehicle
    • H02J2310/48The network being an on-board power network, i.e. within a vehicle for electric vehicles [EV] or hybrid vehicles [HEV]
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0029Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with safety or protection devices or circuits

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Sustainable Energy (AREA)
  • Mechanical Engineering (AREA)
  • Transportation (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Manufacturing & Machinery (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Chemical & Material Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Secondary Cells (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Tests Of Electric Status Of Batteries (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)

Description

本発明は、電源装置が異常か否かの診断を行う異常診断装置に関する。 The present invention relates to an abnormality diagnosis device for diagnosing whether or not a power supply device is abnormal.

車両に搭載される電源装置の中には、次のものがある。電源装置は、組電池と均等化回路とを有する。組電池は、複数の電池セルを有する。均等化回路は、各電池セルに対する放電スイッチを有しており、充電量が多い電池セルに対する放電スイッチをONにすることにより、各電池セルの充電量の均等化する均等化処理を行う。 Among power supply devices mounted on vehicles, there are the following. The power supply device has an assembled battery and an equalization circuit. The assembled battery has a plurality of battery cells. The equalization circuit has a discharge switch for each battery cell, and by turning ON the discharge switch for a battery cell with a large amount of charge, performs equalization processing to equalize the amount of charge of each battery cell.

そして、そのような均等化回路を診断する診断装置の中には、放電を行うべきときに、放電スイッチが正しくONになっているか否かを検出して、ONになっていれば正常と診断し、ONになっていなければ異常と診断するものがある。そして、そのような診断装置を示す文献としては、特許文献1がある。 Some diagnostic devices for diagnosing such an equalization circuit detect whether or not the discharge switch is correctly turned on when discharging should be performed, and if it is turned on, the device is diagnosed as normal. However, if it is not turned ON, there is something that is diagnosed as abnormal. Patent Document 1 is a document showing such a diagnostic device.

特開2016-152720号公報JP 2016-152720 A

上記の診断装置によれば、放電スイッチの異常を発見することができる。それにより、均等化処理が異常であると診断できる。しかしながら、電源装置の異常は、放電スイッチの異常や均等化処理の異常以外の要因によっても発生し得ることに、本発明者は着目した。 According to the diagnostic device described above, it is possible to discover an abnormality in the discharge switch. Thereby, it can be diagnosed that the equalization process is abnormal. However, the inventor of the present invention has noticed that an abnormality in the power supply can be caused by factors other than an abnormality in the discharge switch and an abnormality in the equalization process.

具体的には、例えば、電池セルの充電量のバラツキの増加速度が想定以上である場合には、たとえ放電スイッチが正常であり、放電による均等化処理自体は正常に行われていても、その想定以上のバラツキの増加を、均等化処理により十分に抑えることができない。そのため、電源装置が、各電池セルの充電量をバランスのとれた状態に維持するセルバランス機能を喪失してしまう。そして、このようにバラツキ速度が想定以上になるといった現象は、例えば、各電池セルが不均等に劣化することや、組電池の製造当初の段階で各電池セルの品質に差があること等により、一部の電池セルでのみ勢いよく自己放電すること等により起こり得る。 Specifically, for example, if the rate of increase in variation in the charge amount of the battery cells is greater than expected, even if the discharge switch is normal and the equalization process itself by discharge is performed normally, the The equalization process cannot sufficiently suppress an increase in variation beyond expectations. As a result, the power supply device loses the cell balance function of maintaining the charge amount of each battery cell in a balanced state. Such a phenomenon in which the speed of variation exceeds expectations is due to, for example, uneven deterioration of each battery cell and differences in the quality of each battery cell at the initial stage of manufacturing the assembled battery. , only some of the battery cells may self-discharge vigorously.

そして、このような要因による電源装置の異常は、上記の診断装置では発見できない。 Abnormalities in the power supply due to such factors cannot be found by the diagnostic apparatus described above.

本発明は、上記事情に鑑みてなされたものであり、均等化処理の異常以外の要因による電源装置の異常を、発見できるようにすることを主たる目的とする。 SUMMARY OF THE INVENTION The present invention has been made in view of the above circumstances, and a main object of the present invention is to enable detection of an abnormality in a power supply due to a factor other than an abnormality in equalization processing.

本発明の異常診断装置は、電源装置が、異常か否かを診断する。電源装置は、複数の電池セルを有する組電池と、複数の前記電池セルの充電量を均等化する均等化処理を行うための均等化回路と、所定の処理期間には必要に応じて前記均等化処理を行い、所定の休止期間には前記均等化処理を行わないように、前記均等化回路を制御する制御装置と、を有する。 An abnormality diagnosis device of the present invention diagnoses whether or not a power supply device is abnormal. A power supply device includes an assembled battery having a plurality of battery cells, an equalization circuit for performing equalization processing for equalizing the charge amounts of the plurality of battery cells, and the equalization circuit as necessary during a predetermined processing period. a control device for controlling the equalization circuit so as to perform the equalization process and not perform the equalization process during a predetermined idle period.

異常診断装置は、期間検出部と増加量検出部と診断部とを有する。前記期間検出部は、所定時点から所定の診断タイミングまでの期間である評価期間内における前記処理期間及び前記休止期間の少なくともいずれか一方を検出する。 The abnormality diagnosis device has a period detection section, an increase detection section, and a diagnosis section. The period detection unit detects at least one of the processing period and the pause period within an evaluation period, which is a period from a predetermined point in time to a predetermined diagnosis timing.

前記増加量検出部は、前記診断タイミングにおける前記電池セルの充電量のバラツキを示すバラツキ値から、所定の基準値を減算した値であるバラツキ増加量を検出する。前記診断部は、前記評価期間内における前記処理期間が長いほど大きくなること、及び前記評価期間内における前記休止期間が長いほど小さくなることの少なくともいずれか一方を満たす評価値が、所定の第1閾値よりも大きく、且つ前記バラツキ増加量が所定の第2閾値よりも大きいことを条件に、前記電源装置を異常と診断する。 The increase detection unit detects an increase in variation, which is a value obtained by subtracting a predetermined reference value from a variation value indicating variation in the charge amount of the battery cell at the diagnosis timing. The diagnosis unit determines that an evaluation value that satisfies at least one of increasing as the processing period within the evaluation period becomes longer and decreasing as the rest period within the evaluation period becomes longer is a predetermined first evaluation value. The power supply device is diagnosed as abnormal on condition that it is larger than the threshold and the amount of variation increase is larger than a predetermined second threshold.

本発明によれば、均等化処理の異常に基づいて電源装置を異常と診断する訳ではなく、バラツキ増加量が第2閾値よりも大きいことに基づいて電源装置を異常と診断するので、均等化処理の異常以外の要因による電源装置の異常を発見できる。 According to the present invention, the power supply is not diagnosed as abnormal based on the abnormality of the equalization process, but is diagnosed as abnormal based on the fact that the increase in variation is greater than the second threshold. Abnormalities in the power supply due to factors other than process abnormalities can be discovered.

しかし、もし仮に、バラツキ増加量が第2閾値よりも大きいことのみに基づいて、電源装置を異常と診断した場合には、次に示す弊害が生じ得る。例えば、一時的に休止期間に対して処理期間が極端に短くなった場合には、たとえ電源装置が正常であっても、処理期間が不充分であることにより、充電量のバラツキの増加に均等化処理が追いつかず、バラツキ値が増加する。それにより、バラツキ増加量が第2閾値を超えてしまい、電源装置が異常と誤診されてしまう。 However, if the power supply is diagnosed as abnormal based only on the fact that the increase in variation is greater than the second threshold, the following adverse effects may occur. For example, if the processing period is temporarily extremely short compared to the rest period, even if the power supply is normal, the insufficient processing period will cause an increase in variations in the amount of charge. The processing cannot catch up, and the variation value increases. As a result, the increase in variation exceeds the second threshold, and the power supply is erroneously diagnosed as abnormal.

その点、本発明では、評価期間内における処理期間が大きいほど大きくなる、又は評価期間内における休止期間が大きいほど小さくなる評価値が、第1閾値よりも大きいことを条件に、電源装置を異常と判定する。そのため、上記のように、たとえ電源装置が正常であっても、一時的に休止期間に対して処理期間が極端に短くなったことにより、バラツキ増加量が第2閾値を超えて電源装置が異常と誤診される、といった弊害を抑制できる。 In this regard, in the present invention, the evaluation value that increases as the processing period within the evaluation period increases or decreases as the idle period increases within the evaluation period is greater than the first threshold, and the power supply is abnormal. I judge. Therefore, as described above, even if the power supply is normal, the increase in variation exceeds the second threshold due to the processing period being temporarily extremely short compared to the rest period, and the power supply becomes abnormal. It is possible to suppress the adverse effects of being misdiagnosed as

第1実施形態の異常診断装置を示す概略図Schematic diagram showing the abnormality diagnosis device of the first embodiment 異常診断装置による診断を示すフローチャートFlowchart showing diagnosis by abnormality diagnosis device 処理期間が充分である場合のバラツキ値の推移を示すグラフGraph showing changes in variation values when the processing period is sufficient 処理期間が不充分である場合のバラツキ値の推移を示すグラフGraph showing changes in variation values when the processing period is insufficient 第2実施形態において、処理期間が充分である場合の同推移を示すグラフGraph showing the same transition when the processing period is sufficient in the second embodiment

次に本発明の実施形態について図面を参照しつつ説明する。ただし、本発明は実施形態に限定されるものではなく、発明の趣旨を逸脱しない範囲で適宜変更して実施できる。 Next, embodiments of the present invention will be described with reference to the drawings. However, the present invention is not limited to the embodiments, and can be modified as appropriate without departing from the gist of the invention.

[第1実施形態]
図1は、第1実施形態の異常診断装置50及びその周辺を示す概略図である。車両には、走行用の動力装置の他、電源装置40、異常診断装置50等が搭載されている。動力装置は起動スイッチ75を有する。
[First Embodiment]
FIG. 1 is a schematic diagram showing an abnormality diagnosis device 50 of the first embodiment and its surroundings. The vehicle is equipped with a power supply device 40, an abnormality diagnosis device 50, and the like, in addition to a driving power device. The power plant has an activation switch 75 .

電源装置40は、組電池10と均等化回路20と制御部30とを有する。組電池10は、複数の電池セル13を有する。均等化回路20は、複数の引出配線21と複数の接続配線25と複数の電気抵抗22と複数の放電スイッチ26とを有する。制御部30は、電圧検出部31とバラツキ検出部32とスイッチ制御部33とを有する。異常診断装置50は、期間検出部51と増加量検出部52と診断部53とを有する。バラツキ検出部32とスイッチ制御部33と期間検出部51と増加量検出部52と診断部53とは、それぞれECU64の一部により構成されている。ECU64には、補機バッテリ65が接続されている。 The power supply device 40 has an assembled battery 10 , an equalization circuit 20 and a control section 30 . The assembled battery 10 has a plurality of battery cells 13 . The equalization circuit 20 has a plurality of lead wires 21 , a plurality of connection wires 25 , a plurality of electrical resistors 22 and a plurality of discharge switches 26 . The control unit 30 has a voltage detection unit 31 , a variation detection unit 32 and a switch control unit 33 . The abnormality diagnosis device 50 has a period detection section 51 , an increase detection section 52 and a diagnosis section 53 . The variation detection unit 32, the switch control unit 33, the period detection unit 51, the increment detection unit 52, and the diagnosis unit 53 are each configured by a part of the ECU 64. FIG. An auxiliary battery 65 is connected to the ECU 64 .

まず、動力装置について詳述する。動力装置は、エンジンであってもよいし、モータであってもよいし、その両方からなるもの(ハイブリッド)であってもよい。起動スイッチ75は、ONになると動力装置が起動し、OFFになると動力装置が停止する。以下では、起動スイッチ75がONになることを、単に「起動ON」といい、起動スイッチ75がOFFになることを、単に「起動OFF」という。また、起動スイッチ75がONである期間を、「起動ON期間」といい、起動スイッチ75がOFFである期間を、「起動OFF期間」という。 First, the power unit will be described in detail. The power unit may be an engine, a motor, or a combination of both (hybrid). When the start switch 75 is turned on, the power plant is started, and when it is turned off, the power plant is stopped. Hereinafter, turning on the start switch 75 is simply referred to as "starting on", and turning off the start switch 75 is simply referred to as "starting off". A period during which the activation switch 75 is ON is referred to as a "activation ON period", and a period during which the activation switch 75 is OFF is referred to as a "activation OFF period".

次に、電源装置40について詳述する。複数の電池セル13は、直列に接続されている。図では、模式的に電池セル13を3つのみ示している。各電池セル13は、本実施形態ではリチウム電池であるが、その他の電池であってもよい。複数の引出配線21は、組電池10の両端と、電池セル13どうしの各間に接続されている。各接続配線25は、同じ電池セル13の両端に接続されている引出配線21どうしを接続している。これにより、均等化回路20は、各電池セル13を放電可能になっている。 Next, the power supply device 40 will be described in detail. A plurality of battery cells 13 are connected in series. In the drawing, only three battery cells 13 are schematically shown. Each battery cell 13 is a lithium battery in this embodiment, but may be another battery. A plurality of lead wires 21 are connected between both ends of the assembled battery 10 and between the battery cells 13 . Each connection wiring 25 connects the lead wirings 21 connected to both ends of the same battery cell 13 . This allows the equalization circuit 20 to discharge each battery cell 13 .

放電スイッチ26は、接続配線25に設けられている。放電スイッチ26は、各電池セル13の放電のON,OFFを切り替えるための半導体スイッチであり、スイッチ制御部33により制御される。詳しくは、各放電スイッチ26は、スイッチ制御部33から電流が入力されない間はOFFであり、スイッチ制御部33から電力が入力されるとONになる。電気抵抗22は、引出配線21に設けられている。電気抵抗22は、電池セル13を放電させる放電時に、放電電流が大きくなり過ぎないようにするための抵抗である。 The discharge switch 26 is provided on the connection wiring 25 . The discharge switch 26 is a semiconductor switch for switching between ON and OFF of the discharge of each battery cell 13 and is controlled by the switch control section 33 . Specifically, each discharge switch 26 is OFF while no current is input from the switch control section 33 , and is turned ON when power is input from the switch control section 33 . The electrical resistor 22 is provided on the lead wiring 21 . The electrical resistance 22 is a resistance for preventing the discharge current from becoming too large when the battery cell 13 is discharged.

電圧検出部31は、各電池セル13の端子間電圧Vn(n=1,2・・・)を検出するものである。電圧検出部31は、検出した端子間電圧Vnを、バラツキ検出部32へ送信する。 The voltage detection unit 31 detects a terminal voltage Vn (n=1, 2 . . . ) of each battery cell 13 . The voltage detection unit 31 transmits the detected inter-terminal voltage Vn to the variation detection unit 32 .

バラツキ検出部32は、電圧検出部31が検出した各端子間電圧Vnに基づいて、各電池セル13の充電量Qn(n=1,2・・・)を算出する。以下、それらの充電量Qnの中で最も小さいものを、「最小充電量Qmin」といい、最も大きいものを、「最大充電量Qmax」という。バラツキ検出部32は、各電池セル13について、その充電量Qnから最小充電量Qminを減算した値であるバラツキ量ΔQn(n=1,2・・・)を算出する。以下では、最大充電量Qmaxの電池セル13のバラツキ量ΔQnを、バラツキ値Zという。すなわち、バラツキ値Zは、最大充電量Qmaxから最小充電量Qminを減算した値に相当する。バラツキ検出部32は、算出した各バラツキ量ΔQnをスイッチ制御部33に提供すると共に、算出したバラツキ値Zを増加量検出部52に提供する。 The variation detection unit 32 calculates the charge amount Qn (n=1, 2 . . . ) of each battery cell 13 based on the inter-terminal voltage Vn detected by the voltage detection unit 31 . Hereinafter, the smallest charge amount Qn will be referred to as "minimum charge amount Qmin", and the largest charge amount Qn will be referred to as "maximum charge amount Qmax". The variation detection unit 32 calculates a variation amount ΔQn (n=1, 2 . Hereinafter, the variation amount ΔQn of the battery cells 13 with the maximum charge amount Qmax is referred to as the variation value Z. As shown in FIG. That is, the variation value Z corresponds to a value obtained by subtracting the minimum charge amount Qmin from the maximum charge amount Qmax. The variation detection unit 32 provides the calculated variation amount ΔQn to the switch control unit 33 and provides the calculated variation value Z to the increase amount detection unit 52 .

スイッチ制御部33は、必要に応じて各放電スイッチ26をONにすることにより、各電池セル13の充電量Qnを均等化する均等化処理を行う。詳しくは、その均等化処理では、各電池セル13を、そのバラツキ量ΔQnだけ放電させることにより、各電池セル13の充電量Qnを最小充電量Qminに揃える。 The switch control unit 33 turns on each discharge switch 26 as necessary to perform equalization processing for equalizing the charge amount Qn of each battery cell 13 . More specifically, in the equalization process, each battery cell 13 is discharged by the amount of variation ΔQn to equalize the charge amount Qn of each battery cell 13 to the minimum charge amount Qmin.

スイッチ制御部33は、所定の処理期間T1には均等化処理を行い、所定の休止期間T2には均等化処理を行わない。本実施形態では、処理期間T1は、均等化処理を実施可能な期間であり、休止期間T2は、均等化処理を実施不能な期間である。処理期間T1は起動OFF期間を含む。他方、休止期間T2は起動ON期間を含む。 The switch control unit 33 performs the equalization process during the predetermined processing period T1, and does not perform the equalization process during the predetermined idle period T2. In this embodiment, the processing period T1 is a period during which the equalization process can be performed, and the pause period T2 is a period during which the equalization process cannot be performed. The processing period T1 includes an activation OFF period. On the other hand, the idle period T2 includes the startup ON period.

詳しくは、起動ON期間は、次に示す理由で、均等化処理を実施不能な期間、すなわち、休止期間T2になる。組電池10の電力が使用されている期間又は組電池10が充電されている期間は、組電池10を含む閉回路が形成されることになる。そのため、電圧検出部31は、このとき各電池セル13の端子間電圧Vnを検出すると、各電池セル13のCCV(閉回路電圧)を検出することになる。他方、組電池10が充放電していない期間は、組電池10を含む閉回路が形成されない、すなわち開回路が形成されることになる。そのため、電圧検出部31は、このとき各電池セル13の端子間電圧Vnを検出すると、各電池セル13のOCV(開回路電圧)を検出することになる。閉回路では、各電池セル13の内部抵抗に電流が流れるので、CCVは、OCVからその内部抵抗に流れる電流による電圧降下分だけ、減算した値になる。 Specifically, the startup ON period becomes a period during which the equalization process cannot be performed, that is, a pause period T2 for the following reasons. A closed circuit including the assembled battery 10 is formed during the period in which the power of the assembled battery 10 is used or the period in which the assembled battery 10 is charged. Therefore, when the voltage detection unit 31 detects the inter-terminal voltage Vn of each battery cell 13 at this time, the voltage detection unit 31 detects the CCV (closed circuit voltage) of each battery cell 13 . On the other hand, during the period in which the assembled battery 10 is not charged or discharged, a closed circuit including the assembled battery 10 is not formed, that is, an open circuit is formed. Therefore, when the voltage detection unit 31 detects the inter-terminal voltage Vn of each battery cell 13 at this time, the voltage detection unit 31 detects the OCV (open circuit voltage) of each battery cell 13 . In a closed circuit, current flows through the internal resistance of each battery cell 13, so CCV is a value obtained by subtracting the voltage drop due to the current flowing through the internal resistance from OCV.

ところで、バラツキ検出部32は、各電池セル13のOCVに基づいて、その電池セル13の充電量Qn(SOC)を算出する。そのため、各電池セル13のCCVしか検出できない起動ON期間は、バラツキ検出部32は、各電池セル13の充電量Qnを検出できず、そのため各電池セル13のバラツキ量ΔQnを検出できない。そのため、起動ON期間は、均等化処理を実施不能な期間、すなわち休止期間T2になる。 By the way, the variation detection unit 32 calculates the charge amount Qn (SOC) of each battery cell 13 based on the OCV of each battery cell 13 . Therefore, during the startup ON period when only the CCV of each battery cell 13 can be detected, the variation detector 32 cannot detect the charge amount Qn of each battery cell 13, and therefore cannot detect the variation amount ΔQn of each battery cell 13. Therefore, the startup ON period becomes a period during which the equalization process cannot be performed, that is, a pause period T2.

他方、起動OFF期間は、基本的には組電池10の電力が使用されることも、組電池10が充電されることもないので、その殆どの期間で電圧検出部31は各電池セル13のOCVを検出できる。そのため、起動OFF期間は、概ね均等化処理を実施可能な期間、すなわち処理期間T1になる。 On the other hand, during the start-off period, the power of the assembled battery 10 is basically not used and the assembled battery 10 is not charged. OCV can be detected. Therefore, the boot-off period is approximately the period during which the equalization process can be performed, that is, the processing period T1.

ただし、起動OFF期間であっても、次に示す所定の期間については、適宜、休止期間T2にしてもよい。例えば、起動OFF期間であっても、組電池10の電力が使用される期間や、組電池10が充電される期間があれば、その期間は各電池セル13のOCVを検出することができないので、休止期間T2にするとよい。 However, even during the boot-off period, the following predetermined period may be appropriately set to the idle period T2. For example, if there is a period in which the power of the assembled battery 10 is used or a period in which the assembled battery 10 is charged, the OCV of each battery cell 13 cannot be detected during that period even during the startup OFF period. , and the pause period T2.

また例えば、起動OFF期間であっても、各電池セル13のOCVが所定範囲内であるときも、次に示す理由で休止期間T2にするとよい。一般的に、各電池セル13の充電量Qnが上がると、その電池セル13のOCVも上がる。そのため、電池セル13のOCVから充電量Qnを求めることができる。しかし、電池セル13の仕様によっては、電池セル13のOCVが当該所定範囲内であるときは、充電量Qnが上がってもOCVは殆ど上がらない。そのため、OCVから充電量Qnを求めることができない。そのため、各電池セル13のOCVが所定範囲内であるときも、均等化処理を行わない休止期間T2にするとよい。 Further, for example, even in the startup OFF period, when the OCV of each battery cell 13 is within a predetermined range, it is preferable to set the idle period T2 for the following reasons. Generally, when the charge amount Qn of each battery cell 13 increases, the OCV of that battery cell 13 also increases. Therefore, the charge amount Qn can be obtained from the OCV of the battery cell 13 . However, depending on the specification of the battery cell 13, when the OCV of the battery cell 13 is within the predetermined range, the OCV hardly increases even if the charge amount Qn increases. Therefore, the charge amount Qn cannot be obtained from the OCV. Therefore, even when the OCV of each battery cell 13 is within a predetermined range, it is preferable to set the idle period T2 in which the equalization process is not performed.

また例えば、起動OFF期間であっても、電源装置40の温度が高すぎたり低すぎたりする等、温度条件が均等化処理を行うには適さない期間があれば、その期間も休止期間T2にするとよい。また例えば、起動OFF期間であっても、電圧検出部31の状態がセル電圧を検出するのに適さない期間があれば、その期間も休止期間T2にするとよい。また例えば、起動OFF期間において、ECU64から補機バッテリ65を外した期間がある場合には、その期間を記憶し、その期間は、処理期間T1ではなく休止期間T2としてカウントするようにしてもよい。その期間は、スイッチ制御部33の電源がOFFになることにより、均等化処理が不能になるからである。 Further, for example, even during the startup OFF period, if there is a period in which the temperature conditions are not suitable for performing the equalization process, such as when the temperature of the power supply device 40 is too high or too low, that period is also included in the rest period T2. do it. Further, for example, if there is a period in which the state of the voltage detection unit 31 is not suitable for detecting the cell voltage even during the startup OFF period, that period may also be set as the idle period T2. Further, for example, if there is a period during which the auxiliary battery 65 is removed from the ECU 64 in the startup OFF period, the period may be stored and counted as the idle period T2 instead of the processing period T1. . This is because the equalization process cannot be performed during that period because the switch control unit 33 is powered off.

次に異常診断装置50について詳述する。増加量検出部52は、起動ONの際に、所定の診断タイミングにおけるバラツキ増加量ΔZを検出する。診断タイミングは、起動ONにより組電池10が使用される直前のタイミングである。バラツキ増加量ΔZは、バラツキ値Zから基準値Zoを減算した値である。バラツキ値Zは、上記のとおり、最大充電量Qmaxの電池セル13のバラツキ量ΔQnである。基準値Zoは、以前の診断タイミングにおけるバラツキ値Zである。 Next, the abnormality diagnosis device 50 will be described in detail. The increase detection unit 52 detects the variation increase ΔZ at a predetermined diagnostic timing when the startup is turned on. The diagnosis timing is the timing immediately before the assembled battery 10 is used due to activation ON. The variation increase amount ΔZ is a value obtained by subtracting the reference value Zo from the variation value Z. As described above, the variation value Z is the variation amount ΔQn of the battery cells 13 with the maximum charge amount Qmax. The reference value Zo is the variation value Z at the previous diagnosis timing.

期間検出部51は、起動ONの際に、評価期間Te内における処理期間T1及び休止期間T2を検出する。評価期間Teは、前回の起動ONから今回の起動ON(診断タイミング)までの期間である。そして、期間検出部51は、処理期間T1を休止期間T2で割った値(T1/T2)である評価値Eを算出する。 The period detection unit 51 detects the processing period T1 and the pause period T2 within the evaluation period Te when the activation is turned on. The evaluation period Te is a period from the previous startup ON to the current startup ON (diagnosis timing). Then, the period detection unit 51 calculates an evaluation value E that is a value (T1/T2) obtained by dividing the processing period T1 by the pause period T2.

診断部53は、電源装置40が異常か否かの異常診断を行う。診断部53は、評価値Eが第1閾値X1よりも大きいことを条件に、異常診断を行う。第1閾値X1は、電源装置40が正常な場合において、電源装置40がセルバランス機能を発揮するのに最低限必要な評価値E=T1/T2の値である。セルバランス機能は、各電池セル13の充電量Qnをバランスの取れた状態に維持する機能である。 The diagnosis unit 53 diagnoses whether or not the power supply device 40 is abnormal. The diagnosis unit 53 performs abnormality diagnosis on condition that the evaluation value E is greater than the first threshold value X1. The first threshold value X1 is a minimum required evaluation value E=T1/T2 for the power supply device 40 to exhibit the cell balance function when the power supply device 40 is normal. The cell balance function is a function of maintaining the charge amount Qn of each battery cell 13 in a balanced state.

さらに、診断部53は、前回の起動OFFから今回の起動ON(診断タイミング)までの期間である直近駐車期間Tsが第3閾値X3よりも大きいこと条件に、異常診断を行う。第3閾値X3は、組電池10の使用後において各電池セル13内の分極が解消されるのに必要な待ち期間、すなわち、電圧検出部31が電池セル13のOCVを正確に検出するために最低限必要な開回路の形成期間である。 Further, the diagnosis unit 53 performs abnormality diagnosis on the condition that the most recent parking period Ts, which is the period from the previous activation OFF to the current activation ON (diagnosis timing), is greater than the third threshold value X3. The third threshold value X3 is a waiting period required for the polarization in each battery cell 13 to be eliminated after the assembled battery 10 is used, that is, the voltage detection unit 31 can accurately detect the OCV of the battery cell 13. This is the minimum required open circuit formation period.

そして、診断部53は、異常診断では、今回の診断タイミングにおけるバラツキ増加量ΔZが第2閾値X2よりも大きいことを条件に、電源装置40を異常と診断する。第2閾値X2は、バラツキ増加量ΔZが異常に大きいことを判定する閾値である。 Then, in the abnormality diagnosis, the diagnosis unit 53 diagnoses the power supply device 40 as abnormal on the condition that the variation increase amount ΔZ at the current diagnosis timing is larger than the second threshold value X2. The second threshold value X2 is a threshold value for determining that the variation increase amount ΔZ is abnormally large.

上記の第1~第3閾値X1~X3は、固定値であってもよいし、変数であってもよい。各閾値X1~X3を変数にする場合、次のように設定することができる。例えば、閾値としての最適値が電源装置40の温度に依存して変化する場合等には、当該閾値を、当該温度に応じて変化する変数にすることができる。具体的には、閾値としての最適値が、電源装置40の温度上昇に伴い大きくなる場合には、当該閾値を温度上昇に伴い大きくなる変数にするとよい。また、閾値としての最適値が、電源装置40の温度上昇に伴い小さくなる場合には、当該閾値を、温度上昇に伴い小さくなる変数にするとよい。また例えば、第2閾値X2については、その閾値としての最適値が、評価値Eや処理期間T1や休止期間T2に応じて変わる場合には、それらの増減に従い変化する変数にするとよい。 The first to third thresholds X1 to X3 may be fixed values or variables. If the thresholds X1 to X3 are variables, they can be set as follows. For example, if the optimum value for the threshold changes depending on the temperature of the power supply device 40, the threshold can be a variable that changes according to the temperature. Specifically, if the optimum value for the threshold increases as the temperature of the power supply device 40 rises, the threshold may be set to a variable that increases as the temperature rises. Also, if the optimum value for the threshold decreases as the temperature of the power supply device 40 rises, the threshold may be a variable that decreases as the temperature rises. Also, for the second threshold value X2, for example, if the optimum value as the threshold value changes according to the evaluation value E, the processing period T1, or the rest period T2, it is preferable to use a variable that changes according to the increase or decrease of them.

これらの変数の値は、マップや数式により求めることができる。具体的には、例えば、閾値としての最適値が、電源装置40の温度に伴い変化する変数である場合、当該閾値は、当該温度と当該閾値の補正値との関係を規定したマップにより求めてもよいし、当該関係を規定した数式により求めてもよい。 The values of these variables can be obtained from maps and formulas. Specifically, for example, when the optimum value as the threshold is a variable that changes with the temperature of the power supply device 40, the threshold is obtained from a map that defines the relationship between the temperature and the correction value of the threshold. Alternatively, the relationship may be obtained by a formula that defines the relationship.

他方、各閾値X1~X3を固定値にする場合、例えば、想定される全使用温度範囲内において最も異常と判定され難くなる温度に合わせて、当該閾値の大きさを設定することができる。 On the other hand, if each of the threshold values X1 to X3 is set to a fixed value, for example, the size of the threshold value can be set according to the temperature at which it is most difficult to be determined to be abnormal within the entire assumed operating temperature range.

図2は、異常診断装置50による診断を示すフローチャートである。基準値Zoが未設定の状態において、起動ON(S101)になったら、今回の起動ONのタイミングにおける評価値E=T1/T2を検出し、その評価値Eが第1閾値X1よりも大きいか否かを判定する(S102)。評価値Eが第1閾値X1よりも小さいと判定した場合(S102:NO)、休止期間T2に対して処理期間T1が不充分であるとして、診断を終了する。そして、次回の起動ONはS101からスタートする。他方、S102で、評価値Eが第1閾値X1よりも大きいと判定した場合(S102:YES)、休止期間T2に対して処理期間T1が充分であるとして、次のステップS103に進む。 FIG. 2 is a flowchart showing diagnosis by the abnormality diagnosis device 50. As shown in FIG. When the startup is turned ON (S101) in a state where the reference value Zo is not set, the evaluation value E=T1/T2 at the timing of the startup ON this time is detected, and whether the evaluation value E is greater than the first threshold value X1. It is determined whether or not (S102). When it is determined that the evaluation value E is smaller than the first threshold value X1 (S102: NO), the diagnosis is terminated assuming that the processing period T1 is insufficient with respect to the rest period T2. Then, the next startup ON starts from S101. On the other hand, when it is determined in S102 that the evaluation value E is greater than the first threshold value X1 (S102: YES), it is determined that the processing period T1 is sufficient for the pause period T2, and the process proceeds to the next step S103.

そのステップS103では、今回の起動ONのタイミングにおける直近駐車期間Tsが第3閾値X3よりも大きいか否かを判定する(S103)。直近駐車期間Tsが第3閾値X3よりも小さいと判定した場合(S103:NO)、電池セル13の分極が解消されておらず正確なOCVを取得できない可能性が高いとして、診断を終了する。そして、次回の起動ONは、S101からスタートする。他方、S103で、直近駐車期間Tsが第3閾値X3よりも大きいと判定した場合(S103:YES)、電池セル13の正確なOCVを取得できるとして、次のステップ(S104)に進む。そのステップS104では、今回の起動ONのタイミングにおけるバラツキ値Zを基準値Zoとしてセットする(S104)。その後は、起動OFFになり再び起動ON(S201)になるまで待機する。 In step S103, it is determined whether or not the most recent parking period Ts at the timing of the current activation ON is greater than the third threshold value X3 (S103). If it is determined that the most recent parking period Ts is smaller than the third threshold value X3 (S103: NO), it is highly likely that the polarization of the battery cell 13 has not been eliminated and an accurate OCV cannot be obtained, and the diagnosis ends. Then, the next startup ON starts from S101. On the other hand, when it is determined in S103 that the most recent parking period Ts is greater than the third threshold value X3 (S103: YES), the correct OCV of the battery cell 13 can be acquired, and the process proceeds to the next step (S104). In step S104, the variation value Z at the timing of the current startup ON is set as the reference value Zo (S104). After that, it is turned off and waits until it is turned on again (S201).

そして、再び起動ON(S201)になったら、今回の起動ONのタイミングにおける評価値E=T1/T2を検出し、その評価値Eが第1閾値X1よりも大きいか否かを判定する(S202)。評価値Eが第1閾値X1よりも小さいと判定した場合(S202:NO)、休止期間T2に対して処理期間T1が不充分であるとして、診断を終了する。そして、次回の起動ONは、S101からスタートする。そのため、その後のS104で、基準値Zoが、その時最新のバラツキ値Zにリセットされることになる。他方、S202で、評価値Eが第1閾値X1よりも大きいと判定した場合(S202:YES)、休止期間T2に対して処理期間T1が充分であるとして、次のステップS203に進む。 Then, when the activation is turned ON again (S201), the evaluation value E=T1/T2 at the timing of the activation ON this time is detected, and it is determined whether or not the evaluation value E is greater than the first threshold value X1 (S202). ). When it is determined that the evaluation value E is smaller than the first threshold value X1 (S202: NO), the diagnosis is terminated assuming that the processing period T1 is insufficient with respect to the rest period T2. Then, the next startup ON starts from S101. Therefore, in subsequent S104, the reference value Zo is reset to the latest variation value Z at that time. On the other hand, when it is determined in S202 that the evaluation value E is greater than the first threshold value X1 (S202: YES), it is determined that the processing period T1 is sufficient for the pause period T2, and the process proceeds to the next step S203.

そのステップS203では、今回の起動ONのタイミングにおける直近駐車期間Tsが、第3閾値X3よりも大きいか否かを判定する(S203)。直近駐車期間Tsが第3閾値X3よりも小さいと判定した場合(S203:NO)、電池セル13の正確なOCVを取得できない可能性が高いとして、診断を終了する。そして、次回の起動ONは、S201からスタートする。他方、S203で、直近駐車期間Tsが第3閾値X3よりも大きいと判定した場合(S203:YES)、電池セル13の正確なOCVを取得できるとして、次のステップ(S204)に進む。 In step S203, it is determined whether or not the most recent parking period Ts at the timing of the current activation ON is greater than the third threshold value X3 (S203). If it is determined that the most recent parking period Ts is smaller than the third threshold value X3 (S203: NO), it is highly likely that an accurate OCV of the battery cell 13 cannot be obtained, and the diagnosis is terminated. Then, the next startup ON starts from S201. On the other hand, when it is determined in S203 that the most recent parking period Ts is greater than the third threshold value X3 (S203: YES), the correct OCV of the battery cell 13 can be obtained, and the process proceeds to the next step (S204).

そのステップS204では、今回の起動ONのタイミングにおけるバラツキ増加量ΔZが、第2閾値X2よりも大きいか否かを判定する(S204)。バラツキ増加量ΔZが第2閾値X2よりも小さいと判定した場合(S204:NO)、バラツキ増加量ΔZが正常の範囲内であるとして、電源装置40を正常と診断する。そして、次回の起動ONは、S201からスタートする。他方、バラツキ増加量ΔZが、第2閾値X2よりも大きい場合(S204:YES)、バラツキ増加量ΔZが異常であるとして、電源装置40を異常と診断する(S205)。そして、組電池10の使用を禁止する。 In step S204, it is determined whether or not the variation increase amount ΔZ at the timing of the current startup ON is greater than the second threshold value X2 (S204). When it is determined that the variation increase ΔZ is smaller than the second threshold value X2 (S204: NO), the variation increase ΔZ is within the normal range, and the power supply device 40 is diagnosed as normal. Then, the next startup ON starts from S201. On the other hand, if the variation increase ΔZ is greater than the second threshold value X2 (S204: YES), the power supply device 40 is diagnosed as abnormal because the variation increase ΔZ is abnormal (S205). Then, use of the assembled battery 10 is prohibited.

本実施形態によれば、次の効果が得られる。図3は、休止期間T2に対する処理期間T1が充分(J=T1/T2>X1)な場合のバラツキ値Zの推移を示すグラフである。電源装置40のセルバラツキ速度が想定内の正常時には、下側の折れ線に示すように、休止期間T2でのバラツキ値Zの増加分を、処理期間T1での均等化処理により充分に減少させることができる。そのため、バラツキ増加量ΔZが第2閾値X2を超えることがない。 According to this embodiment, the following effects are obtained. FIG. 3 is a graph showing transition of the variation value Z when the processing period T1 is sufficient with respect to the idle period T2 (J=T1/T2>X1). When the cell variation speed of the power supply device 40 is normal within the expected range, the increase in the variation value Z during the rest period T2 is sufficiently reduced by the equalization process during the processing period T1, as indicated by the lower polygonal line. can be done. Therefore, the variation increase amount ΔZ does not exceed the second threshold value X2.

他方、電源装置40のセルバラツキ速度が想定以上の異常時には、上側の折れ線に示すように、休止期間T2でのバラツキ値Zの増加分を、処理期間T1での均等化処理により充分に減少させることができない。そのため、バラツキ増加量ΔZが第2閾値X2を超える。それを検出することにより、電源装置40を異常と診断できる。 On the other hand, when the cell variation speed of the power supply device 40 is more than expected, the increase in the variation value Z during the pause period T2 is sufficiently reduced by the equalization process during the processing period T1, as indicated by the upper polygonal line. I can't. Therefore, the variation increase amount ΔZ exceeds the second threshold value X2. By detecting this, the power supply device 40 can be diagnosed as abnormal.

なお、図では、異常の場合、所定の起動ONとその次の起動ONとの間におけるバラツキ増加量ΔZが第2閾値X2を超えているが、連続する2回の起動ONどうしの間だけでは、バラツキ増加量ΔZが第2閾値X2を超えない場合でも、診断部53は、電源装置40を異常と診断することができる。詳しくは、評価値Eが第1閾値X1よりも小さくならない限りは、基準値Zoはリセットされない。そのため、基準値Zoがリセットされないまま異常状態が続けば、バラツキ増加量ΔZが蓄積していく。そのため、所定の起動ONとその何回か後の起動ONとの間におけるバラツキ増加量ΔZが、第2閾値X2を超える。それを検出することにより、電源装置40を異常と診断することができる。 In the figure, in the case of an abnormality, the variation increase amount ΔZ between a predetermined start-on and the next start-on exceeds the second threshold value X2. , the diagnosing unit 53 can diagnose the power supply device 40 as abnormal even when the variation increase amount ΔZ does not exceed the second threshold value X2. Specifically, the reference value Zo is not reset unless the evaluation value E is smaller than the first threshold value X1. Therefore, if the abnormal state continues without the reference value Zo being reset, the variation increase amount ΔZ accumulates. Therefore, the variation increase amount ΔZ between a predetermined activation ON and the activation ON after several times exceeds the second threshold value X2. By detecting this, the power supply device 40 can be diagnosed as abnormal.

図4は、休止期間T2に対する処理期間T1が一時的に不充分(T1/T2<X1)になった場合のバラツキ値Zの推移を示すグラフである。下側の折れ線に示すように、電源装置40のセルバラツキ速度が想定内の正常時であっても、休止期間T2に対する処理期間T1が不充分であるため、休止期間T2でのバラツキ値Zの増加分を、処理期間T1での均等化処理により充分に減少させることがでない。そのため、正常時においても、バラツキ増加量ΔZが第2閾値X2を超えることになり得る。 FIG. 4 is a graph showing transition of the variation value Z when the processing period T1 is temporarily insufficient with respect to the rest period T2 (T1/T2<X1). As shown in the lower polygonal line, even when the cell variation speed of the power supply device 40 is normal within the expected range, the processing period T1 is insufficient for the idle period T2. The increment cannot be sufficiently reduced by the equalization processing during the processing period T1. Therefore, even in the normal state, the variation increase amount ΔZ may exceed the second threshold value X2.

その点、本実施形態では、このように、評価値E=T1/T2が、第1閾値X1よりも小さい場合には、電源装置40が異常か否かの診断を行わない。そのため、たとえ電源装置40が正常であっても、一時的に処理期間T1が極端に小さくなったことにより、バラツキ増加量ΔZが増加して電源装置40が異常と診断される、といった弊害を抑制できる。 In this regard, in this embodiment, when the evaluation value E=T1/T2 is smaller than the first threshold value X1, the diagnosis of whether the power supply device 40 is abnormal is not performed. Therefore, even if the power supply 40 is normal, the increase in variation ΔZ increases due to a temporary extremely short processing period T1, and the power supply 40 is diagnosed as abnormal. can.

また、本実施形態によれば、次に示す弊害も抑制できる。評価値Eが第1閾値X1よりも小さいと、電源装置40が正常でも、バラツキ値Zが増加してバラツキ増加量ΔZが増加する。その点、本実施形態では、評価値Eが第1閾値X1よりも小さくなった際は、その後に評価値E=T1/T2が第1閾値X1よりも大きくなった際に、基準値Zoを最新のバラツキ値Zに更新する。そのため、バラツキ増加量ΔZが正常でも増加するといった弊害を防止できる。 Moreover, according to this embodiment, the following adverse effects can also be suppressed. If the evaluation value E is smaller than the first threshold value X1, even if the power supply device 40 is normal, the variation value Z increases and the variation increment ΔZ increases. In this respect, in the present embodiment, when the evaluation value E becomes smaller than the first threshold value X1, and then the evaluation value E=T1/T2 becomes larger than the first threshold value X1, the reference value Zo is set to Update to the latest variation value Z. Therefore, it is possible to prevent the adverse effect of increasing even when the variation increase amount ΔZ is normal.

また、本実施形態では、起動ONの際における組電池10の電力が使用される直前のタイミングにバラツキ増加量ΔZを検出する。その組電池10の電力が使用される直前のタイミングでは、電池セル13の分極が最も解消しているため、バラツキ値Zを精度よく検出できる。そのため、異常診断の精度も上がる。 Further, in the present embodiment, the variation increase amount ΔZ is detected at the timing immediately before the electric power of the assembled battery 10 is used when the start-up is ON. Since the polarization of the battery cells 13 is most resolved at the timing immediately before the power of the assembled battery 10 is used, the variation value Z can be detected with high accuracy. Therefore, the accuracy of abnormality diagnosis is also improved.

また、本実施形態では、直近駐車期間Tsが第3閾値X3よりも大きいことを条件に、電源装置40が異常か否かの診断を行う。そのため、電池セル13の分極が充分に解消していない状態で電池セル13のOCVを検出することにより、異常診断の精度が下がるといった弊害を抑制することができる。 Moreover, in this embodiment, it is diagnosed whether the power supply device 40 is abnormal on the condition that the most recent parking period Ts is greater than the third threshold value X3. Therefore, by detecting the OCV of the battery cell 13 in a state in which the polarization of the battery cell 13 is not sufficiently eliminated, it is possible to suppress the adverse effect of lowering the accuracy of abnormality diagnosis.

また、本実施形態では、概ね起動OFFからONまでの起動OFF期間に均等化処理を行い、起動ONからOFFまでの起動ON期間に均等化処理を休止する仕様の電源装置40の異常診断に対応することができる。また、本実施形態では、電源装置40が異常と診断された場合には、電源装置40を使用し続けることを禁止することで、電源装置40の劣化を防止することができる。 Further, in this embodiment, the equalization process is generally performed during the startup OFF period from startup OFF to ON, and the equalization process is suspended during the startup ON period from startup ON to OFF. can do. Further, in the present embodiment, when the power supply device 40 is diagnosed as abnormal, continued use of the power supply device 40 is prohibited, thereby preventing deterioration of the power supply device 40 .

[第2実施形態]
次に第2実施形態について説明する。以下の実施形態では、それ以前の実施形態のものと同一の又は対応する部材等は、同一の符号を付する。本実施形態については、第1実施形態をベースに、これと異なる点を中心に説明する。
[Second embodiment]
Next, a second embodiment will be described. In the following embodiments, members that are the same as or correspond to those in the previous embodiments are denoted by the same reference numerals. The present embodiment will be described based on the first embodiment, focusing on points that differ from this.

本実施形態では、第1実施形態とは逆に、処理期間T1が概ね起動ON期間となり、休止期間T2が概ね起動OFF期間となる。このような構成は、例えば、各電池セル13について、内部抵抗を予め取得しておき、その内部抵抗とそれに流れる電流とCCVとから、OCVを算出することにより、実施できる。なお、起動OFF期間については、本実施形態でも、均等化処理を実施可能であるが、ここでは、休止期間T2にしている。 In the present embodiment, contrary to the first embodiment, the processing period T1 is approximately the activation ON period, and the rest period T2 is approximately the activation OFF period. Such a configuration can be implemented, for example, by obtaining the internal resistance of each battery cell 13 in advance and calculating the OCV from the internal resistance, the current flowing through it, and the CCV. As for the boot-off period, although the equalization process can be performed in this embodiment as well, it is set to the pause period T2 here.

図5は、本実施形態において、休止期間T2に対する処理期間T1が充分(T1/T2>X1)な場合のバラツキ値Zの期間変化を示すグラフである。本実施形態によれば、起動ONからOFFまでの起動ON期間に均等化処理を行い、起動OFFからONまでの起動OFF期間に均等化処理を休止する仕様の電源装置40の異常診断を行うことができる。 FIG. 5 is a graph showing changes in the variation value Z over time when the processing period T1 is sufficient for the rest period T2 (T1/T2>X1) in this embodiment. According to this embodiment, the abnormality diagnosis is performed for the power supply device 40 that has specifications such that the equalization process is performed during the activation ON period from activation ON to OFF, and the equalization process is suspended during the activation OFF period from activation OFF to ON. can be done.

[他の実施形態]
以上の実施形態は、例えば次のように変更して実施できる。各電池セル13のバラツキ量ΔQnを、その電池セル13の充電量Qnから最小充電量Qminを減算したものにするのに代えて、その電池セル13の充電量Qnから、全ての電池セル13の充電量Qnの平均値を減算したものにしてもよい。さらに、その場合において、均等化処理を、バラツキ量ΔQnがプラスの電池セル13を放電して、バラツキ量ΔQnがマイナスの電池セル13を充電する処理にしてもよい。
[Other embodiments]
For example, the above embodiment can be implemented by changing as follows. Instead of setting the amount of variation ΔQn of each battery cell 13 to the amount obtained by subtracting the minimum charge amount Qmin from the charge amount Qn of the battery cell 13, It may be obtained by subtracting the average value of the charge amount Qn. Furthermore, in that case, the equalization process may be a process of discharging the battery cells 13 with the positive variation ΔQn and charging the battery cells 13 with the negative variation ΔQn.

また、バラツキ値Zを、最大充電量Qmaxから最小充電量Qminを減算した値にするのに代えて、最大充電量Qmaxを最小充電量Qminで割った値にしてもよい。 Further, instead of setting the variation value Z to a value obtained by subtracting the minimum charge amount Qmin from the maximum charge amount Qmax, a value obtained by dividing the maximum charge amount Qmax by the minimum charge amount Qmin may be used.

また、評価期間Teを、前回の起動ONから今回の起動ONまでの期間にするのに代えて、数回前の起動ONから今回の起動ONまでの期間にしたり、今回の起動ONの例えば24時間前から今回の起動ONまでの期間にしたりしてもよい。 Also, instead of setting the evaluation period Te to the period from the previous activation ON to the current activation ON, it is set to the period from the activation ON several times before to the current activation ON. It may be a period from before the time to the current activation ON.

また、評価値Eを、処理期間T1を休止期間T2で割った値にするのに代えて、処理期間T1にしてもよい。その場合、休止期間T2に対して処理期間T1が充分にあったか否かの判定(S102,S202)は、シンプルに、処理期間T1が第1閾値X1を超えたか否かの判定になる。また、評価値Eを、休止期間T2の逆数(1/T2)にしてもよい。その場合、休止期間T2に対して処理期間T1が充分にあったか否かの判定(S102,S202)は、シンプルに、休止期間T2が第1閾値X1の逆数(1/X1)を超えたか否かの判定になる。 Also, the evaluation value E may be set to the processing period T1 instead of the value obtained by dividing the processing period T1 by the idle period T2. In that case, the determination (S102, S202) as to whether or not the processing period T1 is sufficient with respect to the pause period T2 is simply a determination as to whether or not the processing period T1 has exceeded the first threshold value X1. Also, the evaluation value E may be the reciprocal of the pause period T2 (1/T2). In that case, the determination (S102, S202) of whether or not the processing period T1 was sufficient with respect to the rest period T2 is simply based on whether the rest period T2 exceeded the reciprocal (1/X1) of the first threshold value X1. will be judged.

また、評価値Eを、処理期間T1から休止期間T2を減算したもの(E=T1-T2)にしてもよい。また、評価値Eを、その他のT1とT2との関数(例:E=8×T1-T2)にしてもよい。また、評価値Eを、その他の、評価期間Te内における処理期間T1が大きいほど大きくなり、かつ、評価期間Te内における休止期間T2が大きいほど小さくなる関数にしてもよい。また、評価値Eを、その他の、評価期間Te内における処理期間T1が大きいほど大きくなること、及び評価期間Te内における休止期間T2が大きいほど小さくなることの少なくともいずれか一方を満たす関数にしてもよい。 Alternatively, the evaluation value E may be the processing period T1 minus the idle period T2 (E=T1-T2). Also, the evaluation value E may be another function of T1 and T2 (eg, E=8×T1−T2). Alternatively, the evaluation value E may be a function that increases as the processing period T1 within the evaluation period Te increases and decreases as the pause period T2 within the evaluation period Te increases. Also, the evaluation value E is set as a function that satisfies at least one of the following: the larger the processing period T1 within the evaluation period Te, the larger the evaluation value E, and the larger the pause period T2 within the evaluation period Te, the smaller the evaluation value E. good too.

また、診断タイミングを、起動ONの際における組電池10の電力が使用される直前のタイミングにするのに代えて、起動OFF期間における直近駐車期間Tsが第3閾値X3よりも大きくなったタイミングにしてもよい。 Further, instead of setting the diagnostic timing to the timing just before the electric power of the assembled battery 10 is used when the activation is ON, it is set to the timing when the most recent parking period Ts in the activation OFF period becomes larger than the third threshold value X3. may

また、S202で、評価値Eが第1閾値X1よりも小さいと判定した場合(S202:NO)、S101に戻るのに代えて、S201に戻るようにしてもよい。また、S203で、直近駐車期間Tsが第3閾値X3よりも小さいと判定した場合(S203:NO)、又はS204で、バラツキ増加量ΔZが第2閾値X2よりも小さいと判定した場合(S204)、S201に戻るのに代えて、S101に戻るようにしてもよい。 Further, when it is determined in S202 that the evaluation value E is smaller than the first threshold value X1 (S202: NO), instead of returning to S101, the process may return to S201. Further, when it is determined in S203 that the most recent parking period Ts is smaller than the third threshold value X3 (S203: NO), or when it is determined in S204 that the variation increase amount ΔZ is smaller than the second threshold value X2 (S204). , instead of returning to S201, the process may return to S101.

また、異常診断装置50は、S204でYESと判定した場合、電源装置40を異常と判定する(S205)代わりに、異常カウントを1つ上げて、次回の起動ONではS101又はS201から再びスタートするようにしてもよい。そして、異常カウントが所定回数以上になった場合にのみS205に進んで、電源装置40を異常と診断するようにしてもよい。この場合、診断をより慎重に行うことができる。 Further, when the abnormality diagnosis device 50 determines YES in S204, instead of determining that the power supply device 40 is abnormal (S205), the abnormality diagnosis device 50 increases the abnormality count by one, and restarts from S101 or S201 at the next activation ON. You may do so. Then, only when the abnormality count reaches a predetermined number of times or more, the process may proceed to S205 and the power supply device 40 may be diagnosed as abnormal. In this case, the diagnosis can be made more cautiously.

また、S101~S104をなくして、基準値Zoを固定値にしたり、温度等により変化する変数にしたりしてもよい。また、S103又はS203、すなわち、今回の起動ONのタイミングにおける直近駐車期間Tsが第3閾値X3よりも大きいか否かの判定を、無くしてもよい。また、第2実施形態においても、第1実施形態と同様に、均等化処理を実施不能な期間のみを休止期間T2にしてもよい。そして、起動ON期間及び起動OFF期間の両方の大半を処理期間T1にしてもよい。 Alternatively, S101 to S104 may be omitted, and the reference value Zo may be a fixed value or a variable variable depending on temperature or the like. Further, S103 or S203, that is, the determination of whether or not the most recent parking period Ts at the timing of the activation ON this time is greater than the third threshold value X3 may be eliminated. Also in the second embodiment, as in the first embodiment, only the period during which the equalization process cannot be performed may be set as the idle period T2. Then, most of both the activation ON period and the activation OFF period may be set to the processing period T1.

10…組電池、13…電池セル、20…均等化回路、30…制御部、40…電源装置、50…異常診断装置、51…期間検出部、52…増加量検出部、53…診断部、E…評価値、T1…処理期間、T2…休止期間、Te…評価期間、X1…第1閾値、X2…第2閾値、Z…バラツキ値、Zo…基準値、ΔZ…バラツキ増加量。 DESCRIPTION OF SYMBOLS 10... Assembled battery, 13... Battery cell, 20... Equalization circuit, 30... Control part, 40... Power supply device, 50... Abnormal diagnosis device, 51... Period detection part, 52... Increase detection part, 53... Diagnosis part, E... evaluation value, T1... processing period, T2... pause period, Te... evaluation period, X1... first threshold value, X2... second threshold value, Z... variation value, Zo... reference value, ?Z... increase in variation.

Claims (10)

複数の電池セル(13)を有する組電池(10)と、複数の前記電池セルの充電量を均等化する均等化処理を行うための均等化回路(20)と、所定の処理期間(T1)には必要に応じて前記均等化処理を行い、所定の休止期間(T2)には前記均等化処理を行わないように、前記均等化回路を制御する制御部(30)と、を有する電源装置(40)が、異常か否かを診断する異常診断装置(50)において、
所定時点から所定の診断タイミングまでの期間である評価期間(Te)内における前記処理期間及び前記休止期間の少なくともいずれか一方を検出する期間検出部(51)と、
前記診断タイミングにおける前記電池セルの充電量のバラツキを示すバラツキ値(Z)から、所定の基準値(Zo)を減算した値であるバラツキ増加量(ΔZ)を検出する増加量検出部(52)と、
前記評価期間内における前記処理期間が長いほど大きくなること、及び前記評価期間内における前記休止期間が長いほど小さくなることの少なくともいずれか一方を満たす評価値(E)が、所定の第1閾値(X1)よりも大きく、且つ前記バラツキ増加量が所定の第2閾値(X2)よりも大きいことを条件に、前記電源装置を異常と診断する診断部(53)と、
を有する異常診断装置。
An assembled battery (10) having a plurality of battery cells (13), an equalization circuit (20) for performing equalization processing for equalizing the charge amounts of the plurality of battery cells, and a predetermined processing period (T1) and a control unit (30) for controlling the equalization circuit so that the equalization process is performed as necessary in and the equalization process is not performed during a predetermined rest period (T2). (40) in an abnormality diagnosis device (50) for diagnosing whether or not there is an abnormality,
a period detection unit (51) for detecting at least one of the processing period and the rest period within an evaluation period (Te), which is a period from a predetermined point in time to a predetermined diagnosis timing;
An increase detection unit (52) for detecting a variation increase (ΔZ), which is a value obtained by subtracting a predetermined reference value (Zo) from a variation value (Z) indicating variation in the charge amount of the battery cell at the diagnostic timing. When,
An evaluation value (E) that satisfies at least one of increasing the processing period within the evaluation period and decreasing the pause period within the evaluation period is a predetermined first threshold value ( X1) and the increase in variation is greater than a predetermined second threshold value (X2), a diagnosis unit (53) diagnosing the power supply device as abnormal;
Abnormal diagnosis device having
前記診断部により前記評価値が前記第1閾値よりも小さいと判定された後は、前記評価値が前記第1閾値よりも大きくなった際に、前記基準値を最新の前記バラツキ値に更新してから、前記電源装置が異常か否かの次回の診断を行う、請求項1に記載の異常診断装置。 After the diagnosis unit determines that the evaluation value is smaller than the first threshold, the reference value is updated to the latest variation value when the evaluation value becomes larger than the first threshold. 2. The abnormality diagnosis device according to claim 1, wherein the next diagnosis as to whether or not the power supply device is abnormal is performed after that. 前記電源装置は車両に搭載されるものであり、
前記処理期間は、前記車両の走行用の動力装置の起動スイッチ(75)がOFFになっている間の起動OFF期間を含み、前記休止期間は、前記起動スイッチがONになっている間の起動ON期間を含む、請求項1又は2に記載の異常診断装置。
The power supply device is mounted on a vehicle,
The processing period includes a start-off period during which the start switch (75) of the power plant for running the vehicle is turned off, and the rest period is a start-up period during which the start switch is turned on. 3. The abnormality diagnosis device according to claim 1, including an ON period.
前記電源装置は車両に搭載されるものであり、
前記処理期間は、前記車両の走行用の動力装置の起動スイッチ(75)がONになっている間の起動ON期間を含み、前記休止期間は、前記起動スイッチがOFFになっている間の起動OFF期間を含む、請求項1又は2に記載の異常診断装置。
The power supply device is mounted on a vehicle,
The processing period includes an activation ON period during which the activation switch (75) of the power unit for running the vehicle is ON, and the idle period is activation during the activation switch is OFF. 3. The abnormality diagnosis device according to claim 1, including an OFF period.
前記電源装置は車両に搭載されるものであり、
前記診断タイミングは、前記車両の走行用の動力装置の起動スイッチ(75)がONになって前記組電池の電力が使用される直前のタイミングである、請求項1~4のいずれか1項に記載の異常診断装置。
The power supply device is mounted on a vehicle,
5. The diagnostic timing according to any one of claims 1 to 4, wherein the diagnosis timing is a timing immediately before an activation switch (75) of a power plant for running the vehicle is turned on and electric power of the assembled battery is used. Abnormal diagnosis device as described.
前記診断部は、前記起動スイッチが最後にOFFになってから前記診断タイミングまでの期間である直近駐車期間(Ts)が、所定の第3閾値(X3)よりも長いことを条件に、前記電源装置が異常か否かの診断を行う、請求項5に記載の異常診断装置。 The diagnosing unit detects the power supply on the condition that a most recent parking period (Ts), which is a period from when the start switch is finally turned off to the diagnosis timing, is longer than a predetermined third threshold value (X3). 6. The abnormality diagnosis device according to claim 5, which diagnoses whether or not the device is abnormal. 前記評価期間は、前記起動スイッチが前回ONになってから今回ONになるまで期間である、請求項5又は6に記載の異常診断装置。 7. The abnormality diagnosis device according to claim 5, wherein said evaluation period is a period from when said start switch was turned on last time to when said start switch is turned on this time. 前記評価値は、前記処理期間を前記休止期間で割った値である、請求項1~7のいずれか1項に記載の異常診断装置。 The abnormality diagnosis device according to any one of claims 1 to 7, wherein said evaluation value is a value obtained by dividing said processing period by said idle period. 前記第1閾値及び前記第2閾値の少なくともいずれか一方は、前記電源装置の温度により変化する変数である、請求項1~8のいずれか1項に記載の異常診断装置。 The abnormality diagnosis device according to any one of claims 1 to 8, wherein at least one of said first threshold and said second threshold is a variable that changes according to the temperature of said power supply device. 前記診断部は、所定回数以上の前記診断タイミングにおいて、前記評価値が前記第1閾値よりも大きく、且つ前記バラツキ増加量が前記第2閾値よりも大きいことを条件に、前記電源装置を異常と診断する、請求項1~9のいずれか1項に記載の異常診断装置。 The diagnostic unit determines that the power supply device is abnormal on condition that the evaluation value is greater than the first threshold value and the variation increase amount is greater than the second threshold value at the diagnostic timing of a predetermined number of times or more. The abnormality diagnosis device according to any one of claims 1 to 9, which diagnoses.
JP2019036810A 2019-02-28 2019-02-28 Abnormal diagnosis device for power supply Active JP7115362B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2019036810A JP7115362B2 (en) 2019-02-28 2019-02-28 Abnormal diagnosis device for power supply
DE102020104984.6A DE102020104984A1 (en) 2019-02-28 2020-02-26 Irregularity diagnosing device for power supply device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019036810A JP7115362B2 (en) 2019-02-28 2019-02-28 Abnormal diagnosis device for power supply

Publications (2)

Publication Number Publication Date
JP2020141522A JP2020141522A (en) 2020-09-03
JP7115362B2 true JP7115362B2 (en) 2022-08-09

Family

ID=72046635

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019036810A Active JP7115362B2 (en) 2019-02-28 2019-02-28 Abnormal diagnosis device for power supply

Country Status (2)

Country Link
JP (1) JP7115362B2 (en)
DE (1) DE102020104984A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113985287A (en) * 2021-10-19 2022-01-28 安徽明德源能科技有限责任公司 Battery cell safety identification method and device

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003282156A (en) 2002-03-25 2003-10-03 Toyota Motor Corp Abnormality detection device of battery pack and abnormality detection method therefor
JP2008118777A (en) 2006-11-02 2008-05-22 Matsushita Electric Ind Co Ltd Abnormality detecting device for storage element, abnormality detecting method for storage element, and abnormality detecting program for storage element
JP2010123321A (en) 2008-11-18 2010-06-03 Sony Corp Battery pack and method of controlling same
JP2012514449A (en) 2010-02-22 2012-06-21 エルジー・ケム・リミテッド Cell balance circuit abnormality diagnosis apparatus and method
JP2012165580A (en) 2011-02-08 2012-08-30 Toyota Motor Corp Control device of power storage device
US20170133864A1 (en) 2015-11-09 2017-05-11 Hyundai Motor Company Method for diagnosing error of cell balancing
JP2018529304A (en) 2016-07-12 2018-10-04 エルジー・ケム・リミテッド Battery cell balancing method and system

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5002919B2 (en) * 2005-07-07 2012-08-15 日産自動車株式会社 Voltage variation control device
JP4872496B2 (en) * 2006-07-06 2012-02-08 日産自動車株式会社 Battery detection device
JP4858378B2 (en) * 2007-09-14 2012-01-18 日本テキサス・インスツルメンツ株式会社 Cell voltage monitoring device for multi-cell series batteries

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003282156A (en) 2002-03-25 2003-10-03 Toyota Motor Corp Abnormality detection device of battery pack and abnormality detection method therefor
JP2008118777A (en) 2006-11-02 2008-05-22 Matsushita Electric Ind Co Ltd Abnormality detecting device for storage element, abnormality detecting method for storage element, and abnormality detecting program for storage element
JP2010123321A (en) 2008-11-18 2010-06-03 Sony Corp Battery pack and method of controlling same
JP2012514449A (en) 2010-02-22 2012-06-21 エルジー・ケム・リミテッド Cell balance circuit abnormality diagnosis apparatus and method
JP2012165580A (en) 2011-02-08 2012-08-30 Toyota Motor Corp Control device of power storage device
US20170133864A1 (en) 2015-11-09 2017-05-11 Hyundai Motor Company Method for diagnosing error of cell balancing
JP2018529304A (en) 2016-07-12 2018-10-04 エルジー・ケム・リミテッド Battery cell balancing method and system

Also Published As

Publication number Publication date
JP2020141522A (en) 2020-09-03
DE102020104984A1 (en) 2020-09-03

Similar Documents

Publication Publication Date Title
JP5050325B2 (en) Battery control device
US8125187B2 (en) Method of controlling battery charging and discharging in a hybrid car power source
US9562949B2 (en) Battery monitoring device
JP3659068B2 (en) Battery management device
US20080053715A1 (en) Battery control apparatus, electric vehicle, and computer-readable medium storing a program that causes a computer to execute processing for estimating a state of charge of a secondary battery
US20110231122A1 (en) Method and system for determining the kind of a battery
EP2058891B1 (en) Charging control device for a storage battery
JP4006881B2 (en) Battery discharge capacity detection method and apparatus, and vehicle battery control apparatus
US20130271068A1 (en) Battery control apparatus and battery control method
JP5493407B2 (en) Battery pack capacity adjustment device
JP6565446B2 (en) Battery deterioration determination device, battery deterioration determination method, and vehicle
JP2012178953A (en) Method of detecting state of assembled battery and controller
JP2004031120A (en) Fault diagnosis device and method for battery pack
KR20090073811A (en) Method for balancing of high voltage battery pack
JP2003282156A (en) Abnormality detection device of battery pack and abnormality detection method therefor
JP2008027658A (en) Battery pack and disconnection detection method thereof
JP2016151513A (en) Battery system monitoring device
US11223212B2 (en) Battery control device for homogenizing battery cells
JP7115362B2 (en) Abnormal diagnosis device for power supply
JP2008298643A (en) Method of detecting abnormality in internal current consumption of packed battery
JP2013026058A (en) Power supply device for vehicle
SE534537C2 (en) Determination of battery condition
JP6583718B2 (en) Battery deterioration judgment device
JP6742471B2 (en) Battery system monitoring device
US11105309B2 (en) Control device for drive system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210716

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220525

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220628

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220711

R151 Written notification of patent or utility model registration

Ref document number: 7115362

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151