JP2003272812A - Induction heating device - Google Patents

Induction heating device

Info

Publication number
JP2003272812A
JP2003272812A JP2002298793A JP2002298793A JP2003272812A JP 2003272812 A JP2003272812 A JP 2003272812A JP 2002298793 A JP2002298793 A JP 2002298793A JP 2002298793 A JP2002298793 A JP 2002298793A JP 2003272812 A JP2003272812 A JP 2003272812A
Authority
JP
Japan
Prior art keywords
heated
heating coil
electric conductor
current
heating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002298793A
Other languages
Japanese (ja)
Other versions
JP3465711B2 (en
Inventor
Motonari Hirota
泉生 弘田
Atsushi Fujita
篤志 藤田
Takahiro Miyauchi
貴宏 宮内
Yuji Fujii
裕二 藤井
Akira Kataoka
章 片岡
Katsuyuki Aihara
勝行 相原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2002298793A priority Critical patent/JP3465711B2/en
Publication of JP2003272812A publication Critical patent/JP2003272812A/en
Application granted granted Critical
Publication of JP3465711B2 publication Critical patent/JP3465711B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Induction Heating Cooking Devices (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an induction heating device which can heat an object to be heated made of material with low magnetic permeability and high electric conductivity, and reduce the buoyancy acting on the same. <P>SOLUTION: For the induction heating device, a conductive body 27, having a function increasing an equivalent resistance of an input impedance of a heating coil 21, measured by locating the object to be heated and the conductive body 27 to the position where they are in a state of being heated, by using a frequency close to a heating frequency; is installed between the heating coil 21 and the object to be heated made of the material with low magnetic permeability and high electric conductivity. By the above, the buoyancy acting on the object to be heated is reduced by reducing the current flowing through the heating coil 21, and shift and floatation of the object to be heated caused by the buoyancy are reduced even when a large power is supplied. <P>COPYRIGHT: (C)2003,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、一般家庭やオフィ
ス、レストラン、工場などで使用される誘導加熱装置に
関するものであり、さらに詳しくはアルミニウムや銅と
いった低透磁率かつ高電気伝導率なる特性の材料ででき
た被加熱物を加熱する誘導加熱調理器、誘導加熱式湯沸
かし器、誘導加熱式アイロン、またはその他の誘導加熱
式加熱装置等で、特にアルミニウムを加熱可能とする誘
導加熱装置に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an induction heating device used in general households, offices, restaurants, factories, etc. More specifically, it has a low magnetic permeability and a high electric conductivity such as aluminum and copper. The present invention relates to an induction heating cooker for heating a material to be heated, an induction heating water heater, an induction heating iron, or another induction heating device, and particularly to an induction heating device capable of heating aluminum. .

【0002】[0002]

【従来の技術】以下従来の誘導加熱装置として、誘導加
熱コイルから高周波磁界が発生し、電磁誘導による渦電
流で鍋等の被加熱物が加熱される誘導加熱調理器を図1
3を用いて説明する。
2. Description of the Related Art An induction heating cooker in which a high frequency magnetic field is generated from an induction heating coil and an object to be heated such as a pan is heated by an eddy current caused by electromagnetic induction is shown in FIG.
3 will be used for the explanation.

【0003】図13において1は鍋形状をした被加熱物
である。2は加熱コイルで、図示しない高周波インバー
タから高周波電流を供給され高周波磁界を発生し、被加
熱物1に磁界を照射する。3はフェライトなどの高透磁
率の磁性体で、加熱コイル2からの高周波磁界を効率よ
く被加熱物1に伝達するために設けている。4は絶縁体
で、具体的にはセラミック材の厚み4mmなるプレート
であり、被加熱物1が載置される。
In FIG. 13, reference numeral 1 denotes a pot-shaped object to be heated. A heating coil 2 is supplied with a high-frequency current from a high-frequency inverter (not shown), generates a high-frequency magnetic field, and irradiates the object to be heated 1 with the magnetic field. Reference numeral 3 denotes a magnetic material having a high magnetic permeability such as ferrite, which is provided for efficiently transmitting the high frequency magnetic field from the heating coil 2 to the object to be heated 1. Reference numeral 4 is an insulator, specifically, a plate made of a ceramic material having a thickness of 4 mm, on which the object to be heated 1 is placed.

【0004】また、絶縁体4の裏面には、コンデンサ7
を介してアースあるいは整流器の入力または出力電位に
接続されたカーボン製の導電性塗膜5が印刷され、さら
に、加熱コイル2の周部にはリング状に加工された磁気
シールドリング6が設けられている。
A capacitor 7 is provided on the back surface of the insulator 4.
A conductive coating film 5 made of carbon, which is connected to the ground or the input or output potential of the rectifier via the, is printed, and a magnetic shield ring 6 processed in a ring shape is provided around the heating coil 2. ing.

【0005】この構成において、加熱コイル2から高周
波磁界が発生すると、底部に誘起した電磁誘導による渦
電流のために被加熱物1が加熱される。また、導電性塗
膜5の静電シールド作用により、加熱コイル2に発生す
る高周波高電圧と浮游容量によって加熱コイル2から人
体を介して大地へと漏洩する漏れ電流が抑制される。ま
た、磁気シールドリング6には、加熱コイル2から発生
する高周波磁界により、誘導電流が発生しその誘導電流
が反磁界を発生し結果的に加熱コイル2周囲に漏洩する
磁界を抑制することができる。
In this structure, when a high frequency magnetic field is generated from the heating coil 2, the object to be heated 1 is heated by the eddy current due to the electromagnetic induction induced at the bottom. Further, due to the electrostatic shield effect of the conductive coating film 5, the leakage current leaking from the heating coil 2 to the ground through the human body due to the high frequency high voltage generated in the heating coil 2 and the floating capacity is suppressed. Further, in the magnetic shield ring 6, an induced current is generated by the high frequency magnetic field generated from the heating coil 2, and the induced current generates a demagnetizing field, and as a result, a magnetic field leaking to the periphery of the heating coil 2 can be suppressed. .

【0006】[0006]

【特許文献1】特開平7−211444号公報[Patent Document 1] Japanese Unexamined Patent Publication No. 7-212144

【特許文献2】特開平6−310675号公報[Patent Document 2] JP-A-6-310675

【0007】[0007]

【発明が解決しようとする課題】上記従来の構成におい
て、被加熱物1の底面には電流が誘起され、この電流は
加熱コイル電流との相互作用で被加熱物1の底に加熱コ
イル2から遠ざかろうとする反発力を生じる。一方被加
熱物1が鉄などの高透磁率材料で、抵抗率がある程度大
きい鉄製である場合には、所定の出力を得ようとする場
合に、誘導される電流値が少なくてよく上記の反発力が
小さいと同時に、磁束が被加熱物1に吸収されるので吸
引力が働き、被加熱物1が浮き上がったりずれたりする
恐れはなかった。
In the above conventional structure, an electric current is induced in the bottom surface of the object to be heated 1, and this current interacts with the heating coil current to cause the heating coil 2 to flow from the heating coil 2 to the bottom of the object to be heated 1. A repulsive force that tries to move away is generated. On the other hand, when the object to be heated 1 is made of a material having a high magnetic permeability such as iron and has a relatively high resistivity, the induced current value may be small and the above-mentioned repulsion may be required in order to obtain a predetermined output. At the same time as the force is small, the magnetic flux is absorbed by the object to be heated 1 so that the attraction force works, and there is no fear that the object to be heated 1 floats or shifts.

【0008】一方、特に被加熱物1がアルミニウムや銅
といった低透磁率かつ高電気伝導率なる材料製である場
合には、所定の加熱出力を得るために加熱コイル2に流
す電流を大きくして被加熱物1に電流を多く流す必要が
あり、反発力が大きくなると同時に、被加熱物1が鉄な
どの高透磁率材料である場合のような吸引力が働かな
い。従って、加熱コイル2の磁界と誘導電流の作用によ
り被加熱物1に加熱コイル2から遠ざかる方向に浮力が
強く働き、被加熱物1の重量が軽い場合には、被加熱物
1が浮力によりずれたり、被加熱物1の戴置面からの浮
きが生じるおそれがある。
On the other hand, especially when the object to be heated 1 is made of a material having a low magnetic permeability and a high electric conductivity such as aluminum or copper, the current passed through the heating coil 2 is increased in order to obtain a predetermined heating output. It is necessary to apply a large amount of current to the object to be heated 1 and the repulsive force becomes large, and at the same time, the attraction force as in the case where the object to be heated 1 is a high magnetic permeability material such as iron does not work. Therefore, due to the action of the magnetic field of the heating coil 2 and the induced current, buoyancy acts strongly on the object to be heated 1 in the direction away from the heating coil 2, and when the weight of the object to be heated 1 is light, the object to be heated 1 is displaced by the buoyancy. Or, the object to be heated 1 may float from the mounting surface.

【0009】図15にこの時の加熱コイル2の電流の流
れと被加熱物1に流れる渦電流のマクロ的な流れを示
す。図15(ア)は加熱コイル2に流れる電流の向きを
被加熱物1側からみた図である。同図(イ)は、被加熱
物1に流れる渦電流を加熱コイル2と逆側((ア)と同
方向側)から見た図である。
FIG. 15 shows a current flow in the heating coil 2 and a macroscopic flow of the eddy current flowing in the object to be heated 1 at this time. FIG. 15A shows the direction of the current flowing through the heating coil 2 as viewed from the side of the object to be heated 1. FIG. 4A is a view of the eddy current flowing in the object to be heated 1 as viewed from the side opposite to the heating coil 2 (the side in the same direction as (A)).

【0010】図に示すように被加熱物1に流れる渦電流
は加熱コイル2に流れる電流と逆向きかつ略同形状のル
ープ状で流れる。従って同じ断面積(略加熱コイル2の
面積)の永久磁石2つが異極(例えばN極とN極)で存
在することとほぼ等価になって、大きな反発力となるも
のである。
As shown in the drawing, the eddy current flowing through the object to be heated 1 flows in a loop shape having a direction opposite to that of the current flowing through the heating coil 2 and having substantially the same shape. Therefore, it is substantially equivalent to the existence of two permanent magnets having the same cross-sectional area (approximately the area of the heating coil 2) with different poles (for example, N pole and N pole), which is a large repulsive force.

【0011】この現象は、被加熱物1の材料がアルミニ
ウムや銅である場合に顕著である。すなわち同じ低透磁
率材料であっても、非磁性SUSのようなアルミニウム
や銅よりも電気伝導率が低い材料の場合は、加熱コイル
2に流す電流が少なくても十分な発熱が得られるので、
被加熱物1に誘導される電流が発生する反発磁界が小と
なるものである。図14に、アルミニウムで作られた被
加熱物1を加熱時の入力電力と浮力の相関の一例を示
す。図14のグラフにおいて、横軸は入力電力で、縦軸
は浮力で示している。この図で分かるように、入力電力
の増加に伴い、浮力も増加し、その浮力が被加熱物1の
重量を超えると、被加熱物1のずれ、浮き等が生じるこ
とになる。
This phenomenon is remarkable when the material of the article to be heated 1 is aluminum or copper. That is, even with the same low magnetic permeability material, in the case of a material having a lower electric conductivity than aluminum or copper such as non-magnetic SUS, sufficient heat generation can be obtained even with a small current flowing through the heating coil 2.
The repulsive magnetic field generated by the current induced in the object to be heated 1 is small. FIG. 14 shows an example of the correlation between the input power and the buoyancy when heating the object to be heated 1 made of aluminum. In the graph of FIG. 14, the horizontal axis represents input power and the vertical axis represents buoyancy. As can be seen from this figure, as the input power increases, the buoyancy also increases, and when the buoyancy exceeds the weight of the object to be heated 1, the object to be heated 1 is displaced or floats.

【0012】こういった背景から昨今、特開昭61−1
28492号公報や、特開昭62−276787号公報
で開示されているような重量センサを用いて被加熱物の
移動を検出する技術、特開昭61−71582号公報で
開示されているような磁気センサを用いて被加熱物1の
位置を検出する技術、さらに特開平4−765633号
公報で開示されているような共振周波数検出手段を用い
て被加熱物1が浮力により移動したことを検出する技術
等が開示されている。
Against this background, there is a recent trend in Japanese Patent Laid-Open No. 61-1.
No. 28492 and Japanese Patent Laid-Open No. 62-276787, a technique for detecting movement of an object to be heated by using a weight sensor as disclosed in Japanese Patent Laid-Open No. 61-71582. A technique for detecting the position of the object to be heated 1 using a magnetic sensor, and a resonance frequency detecting means disclosed in Japanese Patent Laid-Open No. 4-765633 are used to detect that the object to be heated 1 has moved due to buoyancy. Techniques for doing so are disclosed.

【0013】しかしながら、いずれの技術も被加熱物1
に所定以上の浮力が作用したこと、あるいは被加熱物1
が浮いたあるいは移動したことを検出した場合に、それ
以上浮かないように、あるいは移動しないように被加熱
物1を加熱するための加熱電力を抑制したりあるいは加
熱動作そのものを停止するものであり、このような場合
には、十分な火力が得られず、更には調理動作の継続が
中断されるという状況に陥ってしまうという課題があっ
た。
However, in any of the techniques, the object to be heated 1
Buoyancy above a certain level has been applied to the object, or the object to be heated 1
When it is detected that the object floats or moves, the heating power for heating the object to be heated 1 is suppressed so as not to move further or move, or the heating operation itself is stopped. In such a case, there is a problem that sufficient heating power cannot be obtained, and further, the situation in which the continuation of the cooking operation is interrupted falls into a situation.

【0014】例えば、質量300gのアルミニウム製の
雪平鍋で、200ccの水を加熱する場合、図14より
約850W以上の入力電力で浮力が鍋と調理物(水)の
合計質量を上回り、鍋が浮き上がってこの電力以上の入
力電力で加熱することが困難となる。従って上記従来の
方式においては、例えばアルミ負荷鍋と検知した場合に
鍋の浮き上がる入力電力以下、例えば800Wに入力電
力を抑制することが鍋浮きを生じない様にするための対
策手段として想定できるが、発明者らの実験によれば、
この様な入力電力で加熱しても上記の水を沸騰状態にす
ることは困難であり、アルミニウム製の鍋を加熱できる
誘導加熱調理器としては加熱性能が極めて低いものとな
る(入力1000W程度であれば200ccの水は沸騰
状態とすることは可能であるが加熱速度は遅い)。
For example, when heating 200 cc of water in an aluminum snow pan with a mass of 300 g, the buoyancy exceeds the total mass of the pan and the food (water) with an input power of about 850 W or more as shown in FIG. It floats and it becomes difficult to heat with input power higher than this power. Therefore, in the above-described conventional method, for example, suppressing the input power to less than the input power at which the pan floats when it is detected as an aluminum load pan, for example, 800 W, can be assumed as a countermeasure for preventing the pan from floating. According to the experiments by the inventors,
Even if heated with such input power, it is difficult to bring the water into a boiling state, and the heating performance is extremely low as an induction heating cooker capable of heating an aluminum pot (with an input of about 1000 W). If so, 200 cc of water can be brought to a boiling state, but the heating rate is slow).

【0015】そこで本発明は、上記従来の課題を解決す
るもので、簡単な構成で被加熱物に働く浮力を低減し、
被加熱物が軽量であっても十分な入力電力を確保でき
る、使い勝手の良い誘導加熱調理器、あるいはアルミニ
ウム製の負荷を安定的に加熱することのできる誘導加熱
装置を実現することを主たる目的とし、さらには加熱コ
イル2に高周波電流を供給する高周波回路のスイッチン
グ素子の損失を同時に低減することを目的としたもので
ある。
Therefore, the present invention solves the above-mentioned conventional problems by reducing the buoyancy acting on the object to be heated with a simple structure,
The main purpose is to realize an easy-to-use induction heating cooker that can secure sufficient input power even if the object to be heated is lightweight, or an induction heating device that can stably heat an aluminum load. Further, the purpose is to simultaneously reduce the loss of the switching element of the high frequency circuit which supplies the high frequency current to the heating coil 2.

【0016】[0016]

【課題を解決するための手段】前記従来の課題を解決す
るために、本発明の誘導加熱装置は、アルミニウム若し
くは銅又はこれらと略同等以上の電気伝導率を有する低
透磁率材料からなる被加熱物と、加熱コイルとの間に電
気導体を設け、この電気導体は、加熱コイルの等価直列
抵抗(被加熱物及び電気導体を加熱状態と同様の位置配
置で、加熱周波数近傍の周波数を使用して測定した加熱
コイルの入力インピーダンスにおける等価直列抵抗(以
下単に加熱コイルの等価直列抵抗と呼ぶ)を大きくする
ものである。
In order to solve the above-mentioned conventional problems, the induction heating apparatus of the present invention comprises a heated object made of aluminum or copper or a low magnetic permeability material having an electric conductivity substantially equal to or higher than that of aluminum or copper. An electric conductor is provided between the object and the heating coil, and this electric conductor uses an equivalent series resistance of the heating coil (a position similar to that of the object to be heated and the electric conductor being in a heated state and a frequency near the heating frequency). The equivalent series resistance (hereinafter simply referred to as the equivalent series resistance of the heating coil) in the input impedance of the heating coil measured by the method is increased.

【0017】このような電気導体は、同一出力を得る場
合の加熱コイルに流れる電流を低減して、加熱コイルの
発生する磁界により前記被加熱鍋に対して働く浮力を低
減する浮力低減機能を有する。この結果アルミニウム若
しくは銅又はこれらと略同等以上の電気伝導率を有しか
つ低透磁率材料からなる被加熱物を加熱した時に浮き上
がったりずれたりするのを防止するとともに、加熱コイ
ルに高周波電流を供給するスイッチング素子や共振コン
デンサ等の部品の損失を低減することができる。
Such an electric conductor has a buoyancy reducing function of reducing the current flowing through the heating coil when the same output is obtained, and reducing the buoyancy acting on the heated pot by the magnetic field generated by the heating coil. . As a result, it is possible to prevent the object to be heated or lifted or displaced from being heated when the object to be heated, which has an electric conductivity of aluminum or copper or substantially the same as or higher than those, and is made of a low-permeability material is heated, and supplies a high frequency current to the heating coil. It is possible to reduce the loss of components such as switching elements and resonance capacitors that operate.

【0018】[0018]

【発明の実施の形態】請求項1に記載の発明は、本発明
の誘導加熱装置は、アルミニウム若しくは銅又はこれら
と略同等以上の電気伝導率を有する低透磁率材料からな
る被加熱物を誘導加熱可能な加熱コイルと、前記加熱コ
イルと前記被加熱物との間に設けられた電気導体とを備
え、前記電気導体は前記加熱コイルに対向して前記被加
熱物を配置した時の前記加熱コイルの等価直列抵抗を大
きくするとともに、前記加熱コイルの発生する磁界が前
記被加熱物に対して働く浮力を低減する浮力低減機能を
有してなることにより、加熱コイルから発生する磁界は
電気導体の影響を受けて向き及び強度分布が変わる。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS The invention according to claim 1 is an induction heating apparatus according to the present invention, which induces an object to be heated which is made of aluminum or copper or a low magnetic permeability material having an electric conductivity substantially equal to or higher than that of aluminum or copper. A heating coil capable of heating, and an electric conductor provided between the heating coil and the object to be heated, wherein the electric conductor faces the heating coil and the heating when the object to be heated is arranged. The equivalent series resistance of the coil is increased, and the magnetic field generated by the heating coil has a buoyancy reducing function for reducing the buoyancy acting on the object to be heated. The direction and intensity distribution change under the influence of.

【0019】一方、電気導体がない場合には、加熱コイ
ルから発生する高周波磁界は、加熱コイルから発生した
磁界を相殺する様に被加熱物に誘導電流が誘起する。こ
の結果、加熱コイル電流と方向が逆で平行な誘導電流が
高電気伝導率の被加熱体に誘導され、その電流と加熱コ
イルから放射される磁界との相互作用により、被加熱体
に浮力が発生する。
On the other hand, when there is no electric conductor, the high frequency magnetic field generated from the heating coil induces an induced current in the object to be heated so as to cancel the magnetic field generated from the heating coil. As a result, an induced current whose direction is opposite to that of the heating coil current and parallel to the heating coil current is induced in the heated object having high electrical conductivity, and the interaction between the current and the magnetic field emitted from the heating coil causes buoyancy in the heated object. Occur.

【0020】しかしながら、当該電気導体が存在するこ
とにより、加熱コイルから発生する磁界は、電気導体と
被加熱物に鎖交するため、両者に誘導電流電流を発生す
ることになる。すなわち、電気導体に誘導された誘導電
流の発生する磁界と被加熱物に誘導された電流の発生す
る磁界の重畳磁界が、加熱コイルの発生する磁界の変化
を妨げるように電気導体及び被加熱物に誘導電流が流れ
ることになる。
However, due to the presence of the electric conductor, the magnetic field generated from the heating coil links the electric conductor and the object to be heated, so that an induced current is generated in both of them. That is, the superposed magnetic field of the magnetic field generated by the induced current induced in the electric conductor and the magnetic field generated by the electric current induced in the object to be heated prevents the change of the magnetic field generated by the heating coil from occurring in the electric conductor and the object to be heated. An induced current will flow to.

【0021】つまり、被加熱物に誘導される電流の分布
が、電気導体に誘導電流が発生することにより変わるこ
とになる。この電流分布の変化で、加熱コイルの等価直
列抵抗が大きくなることにより、同一出力を得る場合の
加熱コイルに流す電流値を小さくすることができ、被加
熱物に作用する浮力が低減するとともに、電気導体が被
加熱物に働くべき浮力の一部を分担することで被加熱物
に作用する浮力が低減できることになるわけである。併
せて、加熱コイル、加熱コイルを駆動する共振電流を発
生するインバータに使用されるスイッチング素子、及び
共振コンデンサ等の高周波部品のスイッチング損失を低
減することができるという作用をも有するものである。
That is, the distribution of the current induced in the object to be heated is changed by the generation of the induced current in the electric conductor. Due to this change in current distribution, the equivalent series resistance of the heating coil increases, so that the value of the current flowing in the heating coil when obtaining the same output can be reduced, and the buoyancy acting on the object to be heated is reduced, The buoyancy acting on the object to be heated can be reduced by sharing a part of the buoyancy force to be applied to the object to be heated by the electric conductor. At the same time, it also has the effect of reducing the switching loss of high-frequency components such as the heating coil, the switching element used in the inverter that generates the resonance current for driving the heating coil, and the resonance capacitor.

【0022】請求項2に記載の発明は、特に、電気導体
は加熱コイルの一部または全部と対向し略板状に形成さ
れてなることにより、加熱コイルから発生する磁界を被
加熱物に到達する前に、当該電気導体に鎖交させ、電気
導体に鎖交する磁束量を増加させて等価直列抵抗を大き
くしやすい。電気導体は被加熱物よりも、加熱コイルに
近く、加熱コイルとの磁気結合を良くできる。
According to the second aspect of the present invention, in particular, the electric conductor is formed in a substantially plate shape so as to face a part or all of the heating coil, so that the magnetic field generated from the heating coil reaches the object to be heated. Before doing so, it is easy to increase the equivalent series resistance by interlinking with the electric conductor and increasing the amount of magnetic flux interlinking with the electric conductor. The electric conductor is closer to the heating coil than the object to be heated, and magnetic coupling with the heating coil can be improved.

【0023】また、電気導体を迂回した磁束、通りぬけ
た磁束、及び電気導体の影響をあまり受けずに通過した
磁束が被加熱物に到達することにより、被加熱物におけ
る誘導電流の分布範囲が変わる。この結果、加熱コイル
の等価直列抵抗が増加し、加熱コイル電流低減作用及び
被加熱物に働く浮力低減作用を大きくすることができ
る。ここで、電気導体の板の面積は大きいほど、また電
気導体が加熱コイルに近いほど電気導体に加熱コイルの
磁束が多く通過し、等価直列抵抗増加作用を大きくする
ことができることから、当該電気導体の表面積は、必要
とする浮力低減効果を得るように、また、電気導体と加
熱コイル間の距離、電気導体の発熱等の条件を考慮して
決めれば良い。
Further, the magnetic flux that bypasses the electric conductor, the magnetic flux that has passed through, and the magnetic flux that has passed through without being affected by the electric conductor reach the object to be heated, so that the distribution range of the induced current in the object to be heated is reduced. change. As a result, the equivalent series resistance of the heating coil increases, and the effect of reducing the heating coil current and the effect of reducing the buoyancy acting on the object to be heated can be increased. Here, the larger the area of the plate of the electric conductor is, and the closer the electric conductor is to the heating coil, the more the magnetic flux of the heating coil passes through the electric conductor, and the effect of increasing the equivalent series resistance can be increased. The surface area may be determined so as to obtain the required effect of reducing buoyancy, and the conditions such as the distance between the electric conductor and the heating coil and the heat generation of the electric conductor.

【0024】請求項3に記載の発明は、特に、電気導体
は加熱コイルの中央またはその近傍を覆わないようにし
たことにより、中央部またはその近傍を、加熱コイルか
ら発生して被加熱物へ鎖交させる磁界の経路とすべく磁
界をそこに集中させ、当該電気導体を付設することに伴
う加熱効率の大幅な低下を抑制するものである。
According to the third aspect of the present invention, in particular, the electric conductor does not cover the center of the heating coil or the vicinity thereof, so that the central portion or the vicinity thereof is generated from the heating coil to the object to be heated. The magnetic field is concentrated there so as to form a path of magnetic fields to be interlinked, and a large decrease in heating efficiency due to the attachment of the electric conductor is suppressed.

【0025】請求項4に記載の発明は、特に、電気導体
内で、加熱コイル電流の流れる方向と略平行に周回して
流れる誘導電流の分布を制限する周回電流制限手段を設
けたことにより、電気導体が加熱コイル電流により誘導
加熱されて発熱する発熱量を抑制するとともに、電気導
体の等価直列抵抗の増加作用を有するようにし、加熱コ
イル電流低減作用と被加熱物に働く浮力低減作用が得ら
れるものである。
According to the fourth aspect of the present invention, in particular, by providing the revolving current limiting means for limiting the distribution of the induced current that revolves in the electric conductor in a direction substantially parallel to the flowing direction of the heating coil current, It suppresses the amount of heat generated by the induction heating of the electric conductor due to the heating coil current, and also has the effect of increasing the equivalent series resistance of the electric conductor, thus reducing the heating coil current and reducing the buoyancy acting on the object to be heated. It is what is done.

【0026】請求項5に記載の発明は、特に、周回電流
制限手段は、電気導体板の一部に切り欠き、開口、スリ
ットを設けてなることにより、加熱コイルの発生する磁
界により電気導体に誘導される電流の向き及び大きさを
変え、被加熱物に作用する浮力の低減効果をある程度保
持しながら、電気導体に発生する発熱量を低減すること
ができる。例えば電気導体に誘導される上記周回電流
は、スリットにより遮断することが可能なので発熱量を
低減できる。ただ、その場合に被加熱物への浮力低減効
果が低下する場合がある。スリットの形状、加熱コイル
が鎖交する面積、電気導体の材質などにより、等価直列
抵抗の大きさと電気導体の発熱量が異なるので、これら
の要素の組み合わせで最適なものを選択して、浮力の低
下効果をできるだけ大きく、電気導体の発熱量を許容で
きるようなレベルとする組み合わせを決定すれば良い。
さらに、この電気導体は複数の電気導体に分離されない
ので組み立て時等の場合における取り扱いが容易であ
る。
According to a fifth aspect of the present invention, in particular, the revolving current limiting means is provided with a notch, an opening and a slit in a part of the electric conductor plate so that the electric conductor is formed by the magnetic field generated by the heating coil. It is possible to reduce the amount of heat generated in the electric conductor while changing the direction and magnitude of the induced current and maintaining the effect of reducing the buoyancy acting on the object to be heated to some extent. For example, the circulating current induced in the electric conductor can be blocked by the slit, so that the heat generation amount can be reduced. However, in that case, the effect of reducing buoyancy on the object to be heated may decrease. Since the size of the equivalent series resistance and the amount of heat generated by the electric conductor differ depending on the shape of the slit, the area where the heating coils are interlinked, the material of the electric conductor, etc., select the optimum combination of these elements to improve the buoyancy. It suffices to determine a combination in which the reduction effect is as large as possible and the heat generation amount of the electric conductor is acceptable.
Furthermore, since this electric conductor is not separated into a plurality of electric conductors, it is easy to handle when assembling.

【0027】[0027]

【実施例】以下本発明の実施例について、図面を参照し
ながら説明する。
Embodiments of the present invention will be described below with reference to the drawings.

【0028】(実施例1)図1は、本発明の第1の実施
例における誘導加熱装置(誘導加熱調理器)の加熱コイ
ル21及びその周辺の構成を示す斜視図であり、図2は
誘導加熱装置本体(図示せず)に収納された加熱コイル
21と、前記本体上部に固定された天板28と、前記天
板28に載置される被加熱物29を示す断面図である。
(Embodiment 1) FIG. 1 is a perspective view showing a structure of a heating coil 21 of an induction heating apparatus (induction heating cooker) and its surroundings in a first embodiment of the present invention, and FIG. It is sectional drawing which shows the heating coil 21 accommodated in the heating device main body (not shown), the top plate 28 fixed to the said main body, and the to-be-heated material 29 mounted on the said top plate 28.

【0029】図1及び図2において、加熱コイル21は
素線を束ねた撚り線を2層にして平板状に巻回され、保
持板22上部に載置される。保持板22は耐熱樹脂製で
4本の略直方体をした棒形状の強磁性体であるファライ
トコア23b〜26bを加熱コイル21の下部に位置
し、加熱コイル21の下面に略平行に、そしてそれらと
一体的に成形されている。
In FIG. 1 and FIG. 2, the heating coil 21 is wound in a flat plate shape with a twisted wire obtained by bundling the element wires in two layers and placed on the holding plate 22. The holding plate 22 is made of a heat-resistant resin and has four substantially rectangular parallelepiped rod-shaped ferromagnetic bodies 23b to 26b, which are located below the heating coil 21 and are substantially parallel to the lower surface of the heating coil 21. It is molded integrally with them.

【0030】また、フェライトコア23b〜26bの両
端にはフェライトコア23a〜26aとフェライトコア
23c〜26cが接して設けられる。このためフェライ
トコアは全体として断面が被加熱物29に向けて開いた
コの字状に形成される。保持板22はファライトコアの
表面を覆うように(部分的に冷却のため覆っていない)
成形され加熱コイル21と電気的に絶縁される構成にな
っている。
Ferrite cores 23a to 26a and ferrite cores 23c to 26c are provided in contact with both ends of the ferrite cores 23b to 26b. Therefore, the ferrite core as a whole is formed in a U-shape whose cross section opens toward the object to be heated 29. The holding plate 22 covers the surface of the farite core (partly because of cooling, it is not covered).
It is formed and electrically insulated from the heating coil 21.

【0031】加熱コイル21上部にはカーボン材料で形
成された導電塗膜32がマイカ製の絶縁板30、31の
間に形成されている。この導電膜32は端子33と接続
され、さらにコンデンサ34を介して商用電源電位ある
いは加熱コイル21に高周波電流を供給するインバータ
の入力する商用電源を整流した電位あるいは大地に接続
される。
A conductive coating film 32 made of a carbon material is formed on the heating coil 21 between the insulating plates 30 and 31 made of mica. The conductive film 32 is connected to a terminal 33, and further connected via a capacitor 34 to a commercial power source potential or a potential obtained by rectifying a commercial power source input to an inverter that supplies a high frequency current to the heating coil 21 or the ground.

【0032】電気導体27は、厚さが略1mmの材料が
アルミニウムの板により形成され、製絶縁板31と天板
28の間に設けられており、図1に示すように、外径及
び内径が加熱コイル21のものとほぼ同じの略ドーナツ
状をして、幅約6mmのスリット27aが外周から内周
に渡って設けられている。電気導体27の位置は3箇所
ある脚部27bと保持板22により規制される。
The electric conductor 27 is made of a plate of aluminum having a thickness of about 1 mm, and is provided between the insulating plate 31 and the top plate 28. As shown in FIG. Has a substantially donut shape similar to that of the heating coil 21, and a slit 27a having a width of about 6 mm is provided from the outer circumference to the inner circumference. The position of the electric conductor 27 is regulated by the leg portions 27b and the holding plate 22 which are provided at three places.

【0033】電気導体27は中央に開口部37を設け、
上部(被加熱物29側)から見て、外側の立ち上がり部
であるフェライトコア23a〜26aの上端面は電気導
体27の外周より外側に位置し、内側の立ち上がり部で
あるフェライトコア23c〜26cの上端面は開口37
の周部より内側に位置している。サーミスタ35はホル
ダー36にはめ込まれて、天板28裏面に当接される。
絶縁体である天板28は耐熱セラミックス製で、その上
にアルミニウム製の被加熱物29が加熱コイル22に対
向する様に載置される。
The electric conductor 27 has an opening 37 at the center,
The upper end surfaces of the ferrite cores 23a to 26a, which are the rising portions on the outer side, are located outside the outer periphery of the electric conductor 27 when viewed from the top (the object 29 side to be heated), and the ferrite cores 23c to 26c that are the rising portions on the inner side are located. Opening 37 on top
It is located inside the perimeter. The thermistor 35 is fitted in the holder 36 and abuts on the back surface of the top plate 28.
A top plate 28, which is an insulator, is made of heat-resistant ceramics, and an object to be heated 29 made of aluminum is placed thereon so as to face the heating coil 22.

【0034】以下上記実施例の動作を説明する。加熱コ
イル21には約70kHzの高周波電流が供給される。
加熱コイル21は、高周波電流が供給されると磁界を発
生するが、加熱コイル21下方では高透磁率材料である
フェライトコア23b〜26bがあり磁束がフェライト
コアに集中するので、磁界が被加熱物29と反対側に膨
らむのを防止できる。
The operation of the above embodiment will be described below. A high frequency current of about 70 kHz is supplied to the heating coil 21.
The heating coil 21 generates a magnetic field when a high-frequency current is supplied, but below the heating coil 21, there are ferrite cores 23b to 26b, which are high-permeability materials, and the magnetic flux concentrates on the ferrite core. It is possible to prevent swelling on the side opposite to 29.

【0035】一方、加熱コイル21の上部に出た磁界は
電気導体27に鎖交するので電気導体27に誘導電流が
誘起される。電気導体27の厚みは約1mmで浸透深さ
以上の厚みを有するので電気導体に鎖交した磁界の大部
分はほとんど電気導体を通過せず外周側または内周側に
迂回してから被加熱物29方向に導かれる。フェライト
コア23a〜26a、23c〜26cは上方の被加熱物
の方向に磁界を効率良く導く作用する。
On the other hand, the magnetic field generated above the heating coil 21 is linked to the electric conductor 27, so that an induced current is induced in the electric conductor 27. Since the electric conductor 27 has a thickness of about 1 mm and a thickness not less than the penetration depth, most of the magnetic field interlinking with the electric conductor hardly passes through the electric conductor and is diverted to the outer peripheral side or the inner peripheral side, and then the object to be heated. Guided in 29 directions. The ferrite cores 23a to 26a and 23c to 26c effectively guide the magnetic field toward the upper object to be heated.

【0036】なお、フェライトコア23a〜23c、2
4a〜24c、またはフェライトコア25a〜25cは
それぞれ、別の3つのフェライトコアを接した状態で組
み合わせて配置しているが、それぞれ略同形状となるよ
うに一体に成形しても開磁路であるので同様の効果が得
られる。
The ferrite cores 23a-23c, 2
4a to 24c, or the ferrite cores 25a to 25c, are arranged by combining the other three ferrite cores in contact with each other, but even if they are integrally molded so as to have substantially the same shape, an open magnetic circuit is formed. Because of this, the same effect can be obtained.

【0037】被加熱物29に誘起された誘導電流は加熱
コイル21の発生する磁界分布と、電気導体27に誘起
された電流の発生する磁界分布の重畳した磁界分布が被
加熱物29に鎖交することにより発生するものである。
このように、電気導体27が介在することにより、被加
熱物29に誘導される電流分布が変化し、さらに電気導
体27に発生する電流分布が加わるということから、加
熱コイル21の等価直流抵抗が大きくなる。
The induced current induced in the object to be heated 29 has a magnetic field distribution generated by the heating coil 21 and a magnetic field distribution in which the magnetic field distribution generated by the current induced in the electric conductor 27 is superposed on the object 29 to be heated. It is caused by doing.
In this way, since the electric conductor 27 is interposed, the current distribution induced in the object to be heated 29 is changed, and further the current distribution generated in the electric conductor 27 is added. Therefore, the equivalent DC resistance of the heating coil 21 is increased. growing.

【0038】等価直列抵抗が大きくなると、同じ加熱コ
イル電流でも被加熱物29における発熱量が大きくなる
ので同一消費電力を得ようとする場合には加熱コイル電
流を小さくすることができ、それに伴い浮力も低減する
ことができる。
When the equivalent series resistance increases, the amount of heat generated in the object to be heated 29 increases even with the same heating coil current, so that the heating coil current can be reduced when the same power consumption is to be obtained, and the buoyancy accordingly. Can also be reduced.

【0039】図3に被加熱物がアルミニウム製の鍋の場
合の消費電力と浮力の関係を、アルミニウム製の電気導
体27がある場合(Bで示す)とその電気導体がない場
合(Aで示す)について、また、図4には、消費電力と
加熱コイル電流の関係を、電気導体27がある場合(B
で示す)と電気導体がない場合(Aで示す)について測
定結果の一例をしめしている。ただし、インバータの共
振周波数は約70kHzである。
FIG. 3 shows the relationship between power consumption and buoyancy when the object to be heated is an aluminum pot, with and without the aluminum electric conductor 27 (shown by B). ), And FIG. 4 shows the relationship between the power consumption and the heating coil current when there is an electric conductor 27 (B
2) and the case where there is no electric conductor (indicated by A) are shown. However, the resonance frequency of the inverter is about 70 kHz.

【0040】これらの測定結果によると、電気導体27
を挿入することにより、等価直流抵抗(Rs)は1.0
9Ωから2.3Ωに増加し、消費電力が2kWに出力を
設定した場合に、鍋に働いた浮力は約900gから約5
00gに低減するとともに、加熱コイル21の電流も約
40Armsから約33Armsに低減した。
According to these measurement results, the electric conductor 27
, The equivalent DC resistance (Rs) is 1.0
When the output power is set to 2 kW from 9 Ω to 2.3 Ω, the buoyancy acting on the pan is about 900 g to about 5
The current of the heating coil 21 was also reduced from about 40 Arms to about 33 Arms while being reduced to 00 g.

【0041】また、加熱コイル21の電流の低減に伴い
インバータを駆動するパワースイッチング素子の損失、
加熱コイル21の損失も大幅に低減する。(なお、鉄系
の被加熱物の場合には電気導体27を挿入することによ
り、加熱コイルの等価直列抵抗大きくするという作用は
ほとんど得られない)また、電気導体27を設けること
で、電気導体の損失が発生する。発明者らの実験によれ
ば、消費電力が2kWであったとき、前記電気導体の損
失は一例として約270Wと推定された。この時、加熱
コイル21を含めた誘導加熱装置内部の損失は加熱コイ
ル電流低減の作用により約210Wと推定された。この
ように、電気導体27を挿入することにより、その発熱
による損失が発生するものの、内部損失が低減すること
により、その差は約60Wと大幅な加熱効率の低下を防
止することができる。
Further, the loss of the power switching element for driving the inverter due to the reduction of the current of the heating coil 21,
The loss of the heating coil 21 is also greatly reduced. (In the case of an iron-based object to be heated, the effect of increasing the equivalent series resistance of the heating coil is hardly obtained by inserting the electric conductor 27.) Further, by providing the electric conductor 27, Will be lost. According to experiments by the inventors, when the power consumption was 2 kW, the loss of the electric conductor was estimated to be about 270 W as an example. At this time, the loss inside the induction heating device including the heating coil 21 was estimated to be about 210 W due to the action of reducing the heating coil current. In this way, by inserting the electric conductor 27, a loss due to heat generation occurs, but the internal loss is reduced, so that the difference is about 60 W, and it is possible to prevent a significant decrease in heating efficiency.

【0042】また、図2のように電気導体27を天板2
8当接させて、電気導体27の熱を、熱伝導で天板28
を介して被加熱物29に与えれば、前記の加熱効率の低
下をカバーすることが可能である。このように、電気導
体27の発熱による損失の増加は、機器全体の加熱効率
でみれば、加熱コイル21の電流が低減するので、相当
な部分が他の部分の損失低下で相殺される。
As shown in FIG. 2, the electric conductor 27 is attached to the top plate 2.
8 abutting against each other, heat of the electric conductor 27 is transferred by heat conduction to the top plate 28.
If it is applied to the object to be heated 29 via, it is possible to cover the decrease in the heating efficiency. As described above, the increase in loss due to the heat generation of the electric conductor 27 is reduced by the decrease in the loss of other portions because the current of the heating coil 21 is reduced in terms of the heating efficiency of the entire device.

【0043】また、電気導体27には、スリット27a
を設けている。このスリット27aを設け無いほうが等
価直流抵抗(Rs)を増加する作用が大きい。しかしな
がら、この場合には、電気導体27に誘導される電流量
が多いため発熱量が極めて大きく加熱効率の低下も大き
い。スリット27aを設けることで、このスリット27
aを設けない場合より等価直流抵抗は小さくなるが、電
気導体27に誘起される加熱コイル21の電流と逆方向
の略平行な加熱コイル21の中心の周りを周回するよう
に流れる周回電流が流れないようにし、分布の異なる誘
導電流を電気導体27内に分布せしめるものである。こ
れにより、電気導体27の発熱を抑制するとともに、等
価直流抵抗を増加させる作用を生じさせるものである。
The electric conductor 27 has a slit 27a.
Is provided. The effect of increasing the equivalent DC resistance (Rs) is greater when the slit 27a is not provided. However, in this case, since the amount of current induced in the electric conductor 27 is large, the amount of heat generated is extremely large and the heating efficiency is greatly reduced. By providing the slit 27a, the slit 27a
Although the equivalent DC resistance is smaller than when a is not provided, a circulating current that flows so as to circulate around the center of the heating coil 21 that is substantially parallel to the current induced in the electric conductor 27 in the opposite direction flows. This is done so that the induced currents having different distributions are distributed in the electric conductor 27. This suppresses the heat generation of the electric conductor 27 and causes the effect of increasing the equivalent DC resistance.

【0044】導電膜32は加熱コイル22の上部に近接
して設けられ、コンデンサ34を介して、商用電源電
位、インバータの入力電位となる電源電流整流器の出力
電位、またはアース電位に接続されるので加熱コイル2
1から使用者に漏洩するリーク電流を低減することがで
きる。しかしながら、この導電膜32は膜圧が薄く電気
伝導率も低いので、誘導電流の発生量が極めて少なく、
加熱コイル21から発生する磁界の分布を変える作用は
ほとんどないので、電気導体27のような等価直列抵抗
の増加作用、加熱コイル電流の低減作用、そして浮力低
減作用はほとんど得られない。
Since the conductive film 32 is provided in the vicinity of the upper part of the heating coil 22 and is connected to the commercial power supply potential, the output potential of the power supply current rectifier serving as the input potential of the inverter, or the ground potential via the capacitor 34. Heating coil 2
It is possible to reduce the leakage current leaked from the user to the user. However, since the conductive film 32 has a thin film pressure and a low electric conductivity, the amount of induced current generated is extremely small,
Since there is almost no effect of changing the distribution of the magnetic field generated from the heating coil 21, the effect of increasing the equivalent series resistance like the electric conductor 27, the effect of reducing the heating coil current, and the effect of reducing buoyancy are hardly obtained.

【0045】図5は、上記第1の実施例における電気導
体の厚みと浮力に関する傾向である。加熱コイル21か
らの磁束を遮蔽する場合に必要な厚みは浸透深さ以上必
要であり、本実施例の場合加熱コイル21に流れる電流
の周波数は70kHzであり、材質をアルミニウムとし
た場合浸透深さはδ=0.3mm程度となる。従って電
気導体27の厚み浸透深さ以上にすることにより、浮力
低減の効果を大きく得ることが可能となる。発明者らは
実験により、浸透深さよりもやや大きく約1mm程度に
すると十分な浮力低減の効果が得られることを確認して
いる。
FIG. 5 shows the tendency of the thickness and buoyancy of the electric conductor in the first embodiment. The thickness required to shield the magnetic flux from the heating coil 21 must be equal to or greater than the penetration depth. In the present embodiment, the frequency of the current flowing through the heating coil 21 is 70 kHz, and the penetration depth when the material is aluminum. Is about δ = 0.3 mm. Therefore, by setting the thickness of the electric conductor 27 to be greater than the depth of penetration, it is possible to obtain a large effect of reducing the buoyancy. The inventors have confirmed through experiments that a sufficient buoyancy reduction effect can be obtained by setting the depth slightly larger than the penetration depth to about 1 mm.

【0046】以上のように、本実施例によれば、アルミ
ニウム製の被加熱物29を誘導加熱可能な加熱コイル2
1と被加熱物29との間に設けられた電気導体27を有
し、電気導体27は加熱コイル21に対向して被加熱物
29を配置した時の加熱コイル21の等価直列抵抗を大
きくするとともに、加熱コイル21の発生する磁界が被
加熱物29に対して働く浮力を低減する浮力低減機能を
有してなるので、所定の消費電力を得ようとする場合
に、加熱コイル電流値を低減することができ、被加熱物
29に働く浮力を低減するとともに、スイッチング素子
(図示せず)や加熱コイル21に発生する損失を低減し
て冷却が容易になり、アルミニウム、銅、または黄銅な
ど高電気伝導率低透磁率の被加熱物29を加熱できる安
全かつ低価格な誘導加熱調理器を提供することができ
る。
As described above, according to this embodiment, the heating coil 2 capable of inductively heating the object 29 made of aluminum is heated.
1 has an electric conductor 27 provided between the object to be heated 29 and the electric conductor 27 increases the equivalent series resistance of the heating coil 21 when the object to be heated 29 is arranged so as to face the heating coil 21. At the same time, since the magnetic field generated by the heating coil 21 has a buoyancy reducing function for reducing the buoyancy acting on the object to be heated 29, the heating coil current value is reduced when a predetermined power consumption is to be obtained. It is possible to reduce the buoyancy acting on the object to be heated 29 and reduce the loss generated in the switching element (not shown) and the heating coil 21 to facilitate the cooling, and to improve the quality of aluminum, copper or brass. It is possible to provide a safe and low-cost induction heating cooker capable of heating an object to be heated 29 having low electric conductivity and low magnetic permeability.

【0047】また、電気導体27は、加熱コイル21を
スリット27a部以外のほぼ全部に渡って上部で覆うよ
うに、すなわち、電気導体27は加熱コイル21におけ
る被加熱物29側の面の一部または全部と対向し板状に
形成されてなることにより、加熱コイル21から発生す
る磁界の一部を被加熱物29に到達する前に、電気導体
27に効率良く鎖交させ、電気導体27の周囲から迂回
して被加熱物29に加熱コイル21に磁界を鎖交させる
ことになる。電気導体27と加熱コイル21との間隔
は、電気導体27と被加熱物29との間隔よりも小さ
く、電気導体27と加熱コイル21との磁気結合が良い
ので、電気導体27に鎖交する磁束量が大きくなり、電
気導体27に誘導電流が分布し加熱コイル21の等価直
列抵抗を大きくするという作用がある。
Further, the electric conductor 27 covers the heating coil 21 with the upper part over almost the entire portion except the slit 27a, that is, the electric conductor 27 is a part of the surface of the heating coil 21 on the side of the object to be heated 29. Alternatively, by being formed in a plate shape so as to face all of them, part of the magnetic field generated from the heating coil 21 is efficiently linked to the electric conductor 27 before reaching the object to be heated 29, and the electric conductor 27 is By detouring from the surroundings, a magnetic field is linked to the heating coil 21 in the object to be heated 29. The distance between the electric conductor 27 and the heating coil 21 is smaller than the distance between the electric conductor 27 and the object to be heated 29, and the magnetic coupling between the electric conductor 27 and the heating coil 21 is good. The amount becomes large, and the induced current is distributed in the electric conductor 27, which has the effect of increasing the equivalent series resistance of the heating coil 21.

【0048】また、加熱コイル21から出て、電気導体
27を迂回した、通り抜けた、あるいは鎖交しなかった
磁界が、被加熱物29に到達することにより、被加熱物
29を誘導加熱するので、加熱コイル21の等価直列抵
抗が増加し、加熱コイル電流低減作用と被加熱物に働く
浮力低減作用を大きくすることができる。
Further, the magnetic field, which has come out of the heating coil 21 and has bypassed, passed through, or is not linked to the electric conductor 27, reaches the object to be heated 29, thereby inductively heating the object to be heated 29. The equivalent series resistance of the heating coil 21 is increased, and the effect of reducing the heating coil current and the effect of reducing the buoyancy acting on the object to be heated can be increased.

【0049】なお、本実施例では、加熱コイル21のほ
ぼ全部と対向するように電気導体27の大きさを決めた
が、電気導体27の板の面積は大きいほど、また電気導
体27が加熱コイル21に近いほど電気導体27に加熱
コイル21の磁束が多く通過し、等価直列抵抗増加作用
を大きくすることができることから、電気導体27の表
面積は、必要とする浮力低減効果を得るように、また、
電気導体27と加熱コイル21間の距離、電気導体27
の発熱等の条件を考慮して決めれば良い。
In this embodiment, the size of the electric conductor 27 is determined so as to face almost all of the heating coil 21, but the larger the plate area of the electric conductor 27, the more the electric conductor 27 is heated. The closer to 21, the more magnetic flux of the heating coil 21 passes through the electric conductor 27, and the effect of increasing the equivalent series resistance can be increased. Therefore, the surface area of the electric conductor 27 is such that the necessary buoyancy reducing effect can be obtained. ,
The distance between the electric conductor 27 and the heating coil 21, the electric conductor 27
It may be determined in consideration of the conditions such as heat generation of.

【0050】また、電気導体27に開口37を設けて、
加熱コイル21の中央部近傍を覆わないようにしたこと
により、中央部近傍を、加熱コイル21から発生して被
加熱物29へ鎖交させる磁界の経路とするよう集中さ
せ、当該電気導体を付設することに伴う加熱効率の大幅
な低下を抑制するものである。
Further, an opening 37 is provided in the electric conductor 27,
By not covering the vicinity of the central portion of the heating coil 21, the central portion is concentrated so as to be the path of the magnetic field generated from the heating coil 21 and linked to the object to be heated 29, and the electric conductor is attached. It is intended to prevent the heating efficiency from significantly lowering.

【0051】また、電気導体板27にスリット27aを
設けてなることにより、加熱コイル21の発生する磁界
により電気導体27に誘導される電流の向き及び大きさ
を変え、被加熱物29に作用する浮力の低減効果をある
程度保持しながら、電気導体27に発生する発熱量を低
減することができる。すなわち電気導体27に誘導され
る加熱コイル21に流れる電流と逆方向に流れる周回電
流は、スリット27aにより遮断し電流分布を変えるこ
とが可能なので大電流の発生が無くなり、発熱量を低減
できる。ただ、その場合に被加熱物29への浮力低減効
果がある程度低下する。スリット27aの形状、加熱コ
イルが鎖交する面積、電気導体の材質などにより、等価
直列抵抗の大きさと電気導体27の発熱量が異なるの
で、これらの要素の組み合わせで最適なものを選択し
て、浮力の低減効果をできるだけ大きく、電気導体27
の発熱量を許容できるようなレベルとする組み合わせを
決定すれば良い。さらに、この電気導体27は複数の電
気導体に分離されないので組み立て時等の場合における
取り扱いが容易である。
Further, by providing the slit 27a in the electric conductor plate 27, the direction and magnitude of the electric current induced in the electric conductor 27 by the magnetic field generated by the heating coil 21 are changed, and act on the object to be heated 29. It is possible to reduce the amount of heat generated in the electric conductor 27 while maintaining the effect of reducing buoyancy to some extent. That is, the circulating current flowing in the opposite direction to the current flowing in the heating coil 21 induced in the electric conductor 27 can be blocked by the slit 27a and the current distribution can be changed, so that a large current is not generated and the amount of heat generation can be reduced. However, in that case, the effect of reducing the buoyancy of the object to be heated 29 is reduced to some extent. Since the size of the equivalent series resistance and the heat generation amount of the electric conductor 27 are different depending on the shape of the slit 27a, the area where the heating coils are interlinked, the material of the electric conductor, etc., the optimum one is selected by combining these elements. The electrical conductor 27
It suffices to determine a combination that has a level that allows the amount of heat generated by the above. Furthermore, since the electric conductor 27 is not separated into a plurality of electric conductors, it is easy to handle when assembling.

【0052】また、電気導体27は、その厚みを加熱コ
イル電流により誘導される高周波電流の浸透深さよりも
大としてなるので、電気導体27に誘導電流が十分多く
発生し、加熱コイル21からの磁界が通過せず磁界分布
を大きく変える作用が得られることにより、形状を工夫
することにより上記の等価直列抵抗を増加させる作用を
確実に得ることができるものである。
Further, since the thickness of the electric conductor 27 is made larger than the penetration depth of the high frequency current induced by the heating coil current, a sufficiently large induced current is generated in the electric conductor 27 and the magnetic field from the heating coil 21 is generated. The effect of significantly changing the magnetic field distribution without passing through can be obtained without fail by properly devising the shape.

【0053】また、電気導体27はアルミニウム製であ
るので、低透磁率であり磁束がその電気導体27に吸収
されにくく(被加熱物に到達しない磁束量が多くならな
い)、かつ電気導体に誘導された電流で磁界の向きが変
更されるので、電気導体27内を通過させ被加熱物29
に鎖交させるか、または電気導体27を迂回させ被加熱
物29に鎖交させるかのいずれかの経路で、磁束を効率
的に被加熱物29に鎖交させることができ、加熱効率の
低下を抑制しながら等価直列抵抗を大きくすることがで
きる。
Further, since the electric conductor 27 is made of aluminum, it has a low magnetic permeability, and the magnetic flux is not easily absorbed by the electric conductor 27 (the amount of magnetic flux that does not reach the object to be heated does not increase) and is induced in the electric conductor. Since the direction of the magnetic field is changed by the generated current, it is passed through the electric conductor 27 and the object to be heated 29
The magnetic flux can be efficiently linked to the object to be heated 29 through either the path to the object to be heated 29 or the path to the object to be heated 29 by bypassing the electric conductor 27, and the heating efficiency is lowered. It is possible to increase the equivalent series resistance while suppressing the above.

【0054】また、電気導体27はアルミニウム製であ
り、高電気伝導率の材料であるので加熱コイル21の磁
束が鎖交することにより、誘導電流で磁界の向きや分布
が変更される程度が大きくなり、被加熱物29における
誘導電流の分布の変化および、電気導体27における電
流の発生による、等価直列抵抗を増加させる効果を大き
くし、かつ電気導体27自身の誘導電流による発熱を抑
制することができる。
Further, since the electric conductor 27 is made of aluminum and is made of a material having a high electric conductivity, the magnetic flux of the heating coil 21 is interlinked, so that the direction and distribution of the magnetic field are largely changed by the induced current. Therefore, it is possible to increase the effect of increasing the equivalent series resistance due to the change of the distribution of the induced current in the object to be heated 29 and the generation of the current in the electric conductor 27, and to suppress the heat generation due to the induced current of the electric conductor 27 itself. it can.

【0055】また、加熱コイル21を収納する本体と、
加熱コイル21と被加熱物29との間に位置すべく前記
本体に固定された絶縁体28とを有し、電気導体27
は、前記絶縁体28の加熱コイル21側に設けたことに
より、電気導体27を加熱コイル21に近づけて、加熱
コイル21との磁気結合を大きくして、等価直列抵抗を
大きくし易い、動作中に加熱コイル21の磁界で電気導
体27に誘導される電流の作用により電気導体27が発
熱する場合があるが、絶縁体28表面に電気導体27が
露出せず、電気導体27に直接手が触れて火傷する恐れ
が少ない、あるいは絶縁体28の表面が凸凹しないこと
から見栄えが良いなどの効果を奏する。
Also, a main body for accommodating the heating coil 21,
An insulator 28 fixed to the main body so as to be located between the heating coil 21 and the object to be heated 29, and an electric conductor 27.
Is provided on the heating coil 21 side of the insulator 28, so that the electric conductor 27 is brought close to the heating coil 21, magnetic coupling with the heating coil 21 is increased, and the equivalent series resistance is easily increased. In some cases, the electric conductor 27 may generate heat due to the action of the current induced in the electric conductor 27 by the magnetic field of the heating coil 21, but the electric conductor 27 is not exposed on the surface of the insulator 28, and the electric conductor 27 is directly touched. It is less likely to be burnt due to burns, or the surface of the insulator 28 is not uneven, so that the appearance is good.

【0056】また、加熱コイル21下方に放射状に設け
た高透磁率の磁性体であるフェライトコアを四本備え、
これらのフェライトコアは電気導体の外周より外側に被
加熱物の方向に立ち上がる立ち上がり部を設けたことに
より、加熱コイル21から出た磁束が加熱コイル21外
側周囲に広がらないようにして効率良く被加熱物29に
磁束が鎖交するようにして加熱効率を高めるとともに、
フェライトコア23a〜26aの立ち上がり部から出る
磁束が電気導体27に突き当たらないようにして電気導
体27の発熱を抑制するものである。
Further, four ferrite cores, which are magnetic bodies of high magnetic permeability, are provided radially below the heating coil 21, and
These ferrite cores are provided with a rising portion that rises in the direction of the object to be heated outside the outer periphery of the electric conductor, so that the magnetic flux emitted from the heating coil 21 does not spread around the outside of the heating coil 21 and is efficiently heated. While increasing the heating efficiency by making the magnetic flux interlink with the object 29,
The magnetic flux generated from the rising portions of the ferrite cores 23a to 26a is prevented from hitting the electric conductor 27 to suppress heat generation of the electric conductor 27.

【0057】また、電気導体27は中央部に開口37を
設けるとともに、加熱コイル下方に設けた高透磁率の棒
状フェライトコア23b〜26bを設け、前記フェライ
トコア23b〜26bは電気導体27の開口37周部3
7aより中央側に被加熱物29の方向に立ち上がる立ち
上がり部23c〜26cを設けたことにより、フェライ
トコアの立ち上がり部23c〜26cから出る磁束が電
気導体27に突き当たらないようにして加熱コイル21
からの磁束を効率良く被加熱物29に導き加熱効率を高
めることができる。
Further, the electric conductor 27 is provided with an opening 37 in the central portion thereof, and rod-like ferrite cores 23b to 26b having a high magnetic permeability are provided below the heating coil. The ferrite cores 23b to 26b are provided with the opening 37 of the electric conductor 27. Circumference 3
By providing the rising portions 23c to 26c rising in the direction of the object to be heated 29 on the center side of 7a, the magnetic flux emitted from the rising portions 23c to 26c of the ferrite core is prevented from hitting the electric conductor 27 and the heating coil 21
It is possible to efficiently guide the magnetic flux from to the object to be heated 29 and improve the heating efficiency.

【0058】また、サーミスタ35に鎖交する磁束を抑
制してサーミスタ35の検知回路にノイズを誘導しにく
くすることもできる。
Further, it is possible to suppress the magnetic flux interlinking with the thermistor 35 and make it difficult to induce noise in the detection circuit of the thermistor 35.

【0059】なお、本実施例では、加熱コイル21下方
に設けた高透磁率の棒状フェライトコア23b〜26b
の両端をフェライトコア23a〜26a、及びフェライ
トコア23c〜26cにより略垂直に立ち上げている
が、この立ち上げ角度はこれにかぎるものではない。
In this embodiment, the rod-shaped ferrite cores 23b to 26b having a high magnetic permeability provided below the heating coil 21.
The both ends of are raised substantially vertically by the ferrite cores 23a to 26a and the ferrite cores 23c to 26c, but the raising angle is not limited to this.

【0060】また、電気導体27は、被加熱物29とセ
ラミック製天板28より電気的に絶縁されているが熱的
に接続されてなるので電気導体27が発熱する場合には
その熱の一部が天板28を介して被加熱物29に伝わり
電気導体27の発熱による加熱効率の低減を抑制するこ
とができる。
The electric conductor 27 is electrically insulated from the object to be heated 29 and the ceramic top plate 28, but is thermally connected. Therefore, when the electric conductor 27 generates heat, one of the heat is generated. It is possible to suppress a decrease in heating efficiency due to heat generation of the electric conductor 27 by transmitting the portion to the object to be heated 29 via the top plate 28.

【0061】(実施例2)図6は、本発明の第2の実施
例における誘導加熱装置の断面を模式的に示す図であ
る。
(Embodiment 2) FIG. 6 is a diagram schematically showing a cross section of an induction heating apparatus according to a second embodiment of the present invention.

【0062】図で40は電気導体、41は約70kHz
の高周波電流が供給され、高周波磁界を発生する加熱コ
イル、42は加熱コイル41下面に対向して配置され、
加熱コイル40からの高周波磁界を効率よく被加熱物4
3へ供給するための磁性体で、具体的にはフェライトを
用いている。被加熱物43は、本実施例の場合、高電気
伝導率(高導電率)かつ低透磁率のアルミニウムまたは
銅としている。
In the figure, 40 is an electric conductor and 41 is about 70 kHz.
Is supplied with a high-frequency current and generates a high-frequency magnetic field. The heating coil 42 is arranged to face the lower surface of the heating coil 41.
The high-frequency magnetic field from the heating coil 40 can be efficiently heated by the object 4
3 is a magnetic substance for supplying to No. 3, specifically, ferrite is used. In the case of the present embodiment, the object 43 to be heated is made of aluminum or copper having high electric conductivity (high electric conductivity) and low magnetic permeability.

【0063】電気導体40の形状を図7に示す。電気導
体40は、略円盤状で厚み約1mmのアルミニウム板を
ベースとし、さらに放射状に切り欠き40aを4箇所設
けている。このように電気導体40に切り欠き40aを
設けることにより、加熱コイル40の電流の流れに対し
て電気伝導率が不連続となるようにして、電気導体40
に加熱コイル41に周回するように流れる電流(図7の
破線Aで模式的に示す)の流れの向きと異なる(平行で
ない)方向に誘導電流が流れるようにしている。
The shape of the electric conductor 40 is shown in FIG. The electric conductor 40 is based on an aluminum plate having a substantially disc shape and a thickness of about 1 mm, and further has radial notches 40a at four positions. By providing the notch 40a in the electric conductor 40 in this way, the electric conductivity is discontinuous with respect to the current flow of the heating coil 40, and the electric conductor 40
In addition, the induced current is made to flow in a direction (not parallel) different from the direction of the flow of the current (schematically shown by the broken line A in FIG. 7) flowing around the heating coil 41.

【0064】加熱コイル41に高周波電流が供給された
時の電気導体40に誘導される大きな電流の流れを図7
の実線矢印Bに模式的に示す。図に示すように放射状切
り欠き40a部分に電流が誘導されないため、加熱コイ
ル41から発生する磁界が透過する。誘導された渦電流
の電流密度の大きい部分はこの部分を回避し、クローバ
ー状に蛇行したような分布(図7の実線Bで模式的に示
す)となる。
FIG. 7 shows the flow of a large current induced in the electric conductor 40 when a high frequency current is supplied to the heating coil 41.
The solid line arrow B in FIG. As shown in the figure, since no current is induced in the radial cutout 40a, the magnetic field generated from the heating coil 41 is transmitted. A portion where the induced eddy current has a large current density avoids this portion and has a clover-like meandering distribution (schematically shown by a solid line B in FIG. 7).

【0065】一方、電気導体40により、加熱コイル4
1の磁界は遮蔽され、迂回して被加熱物43に到達し、
切り欠き40aのところでは、加熱コイル41の磁界は
通過して被加熱物43に到達する。したがって、従来被
加熱物43において、加熱コイル41に流れる電流とほ
ぼ平行な向きに周回するように分布して発生し、大きな
反発力となっていた渦電流の分布と異なるものとなる。
On the other hand, by the electric conductor 40, the heating coil 4
The magnetic field of 1 is shielded, bypasses and reaches the object 43 to be heated,
At the notch 40a, the magnetic field of the heating coil 41 passes through and reaches the object 43 to be heated. Therefore, the distribution of the eddy current, which is generated in the conventional object 43 to be distributed so as to circulate in a direction substantially parallel to the current flowing through the heating coil 41 and has a large repulsive force, is different from the distribution of the eddy current.

【0066】上記のように、電気導体40に加熱コイル
41の磁界を照射し、一部の磁界を迂回させて被加熱物
43に鎖交させ、被加熱物43において加熱コイル41
電流に対向した誘導電流分布が発生することを抑制し
て、等価直流抵抗を増加させるとともに、電気導体40
においても、切り欠き40aを設けることにより発熱を
防止することができる。
As described above, the magnetic field of the heating coil 41 is radiated to the electric conductor 40 so that a part of the magnetic field is circumvented and linked to the object 43 to be heated.
The generation of an induced current distribution opposed to the current is suppressed, the equivalent DC resistance is increased, and the electric conductor 40
Also in the above, heat generation can be prevented by providing the notch 40a.

【0067】切り欠き40aのある電気導体40を設け
た場合の等価直流抵抗の大きくなる度合いは、切り欠き
40aのない電気導体40を設けた場合に比して少なく
なるが、電気導体40がない場合に対する増加効果自体
は維持される。従って、同一消費電力を得る場合におい
て、加熱コイル41に流れる電流が減少して被加熱物4
3に作用する浮力が低減できるとともに、電気導体40
の発熱を抑制することができるものである。
The degree of increase in the equivalent DC resistance in the case where the electric conductor 40 having the notch 40a is provided is smaller than that in the case where the electric conductor 40 having the notch 40a is provided, but the electric conductor 40 is not provided. The increasing effect itself against the case is maintained. Therefore, when the same power consumption is obtained, the current flowing through the heating coil 41 decreases and
The buoyancy acting on 3 can be reduced and the electric conductor 40
It is possible to suppress the heat generation.

【0068】以上のように、本実施例によれば、電気導
体40も誘導加熱され発熱するが、電気導体40の固有
抵抗や切り欠きの形状を最適化することにより、等価直
列抵抗を大きくし、電気導体40の発熱を低減しつつ、
被加熱物43への入力電力を大とすることが可能であ
る。
As described above, according to the present embodiment, the electric conductor 40 also heats due to induction heating, but by optimizing the specific resistance of the electric conductor 40 and the shape of the notch, the equivalent series resistance is increased. , While reducing the heat generation of the electrical conductor 40,
It is possible to increase the input power to the object to be heated 43.

【0069】また、電気導体40を挿入した場合、加熱
コイル41の等価直列抵抗が上昇するため、同じ入力電
力を得る場合、加熱コイル41に流す電流が少なくする
こともできるので、加熱コイル41の損失が低減し、さ
らに図示しない高周波電流を供給するインバータ回路の
損失も低減することが可能となる。
Further, when the electric conductor 40 is inserted, the equivalent series resistance of the heating coil 41 rises. Therefore, when the same input power is obtained, the current flowing through the heating coil 41 can be reduced. It is possible to reduce the loss and further reduce the loss of the inverter circuit that supplies the high frequency current (not shown).

【0070】発明者らの測定によれば、被加熱物43
が、φ240mmのアルミニウム鍋とし、加熱コイル4
1の外径φ180mm、内径φ50mm、加熱コイル4
1と被加熱物43との距離8mmの条件において、等価
直列抵抗は電気導体40がない場合約1.0Ω程度、電
気導体40がある場合、1.7Ω程度であった。これに
より加熱コイル41に流れる電流は1600W入力で3
6Armsから29Armsに低減できた。本実施例の
場合加熱コイル41の高周波抵抗は70kHz、常温
0.16Ωであるので、損失は常温で約207Wから1
35Wに低減したものと推定できる。
According to the measurement by the inventors, the object to be heated 43
Is a φ240mm aluminum pan, heating coil 4
1, outer diameter φ180 mm, inner diameter φ50 mm, heating coil 4
Under the condition that the distance between 1 and the object to be heated 43 was 8 mm, the equivalent series resistance was about 1.0 Ω without the electric conductor 40 and about 1.7 Ω with the electric conductor 40. As a result, the current flowing in the heating coil 41 is 3 at 1600 W input.
It was possible to reduce from 6 Arms to 29 Arms. In the case of this embodiment, since the high frequency resistance of the heating coil 41 is 70 kHz and the room temperature is 0.16Ω, the loss is about 207 W to 1 at room temperature.
It can be estimated that the power consumption has been reduced to 35W.

【0071】また、電気導体の切り欠き40aの形状を
放射状に電気伝導率が低くなるようなものとしたが、こ
の形状に限定されるものでなく、加熱コイルに流れる電
流に誘起して発生し周回するように流れる渦電流の分布
を阻害する作用のある形状であれば同様の効果が得られ
るものである。
Further, the shape of the notch 40a of the electric conductor is made to have a radially low electric conductivity, but the shape is not limited to this shape, and it is generated by being induced by the current flowing in the heating coil. The same effect can be obtained as long as the shape has an effect of obstructing the distribution of the eddy current that flows so as to circulate.

【0072】また、被加熱物43がアルミニウムや銅の
単一材料で形成されず、一層目が例えば0.1mm厚み
の非磁性ステンレス、2層目が1mm厚みのアルミニウ
ムといった多層構造となっている場合においても、1層
目の非磁性ステンレスは薄いために実質2層目のアルミ
ニウムを加熱することと等価となるので、上記のように
電気導体40は同様な効果を奏することができる。
Further, the object to be heated 43 is not formed of a single material such as aluminum or copper, and has a multi-layer structure in which the first layer is, for example, 0.1 mm thick non-magnetic stainless steel, and the second layer is 1 mm thick aluminum. Also in this case, since the nonmagnetic stainless steel of the first layer is thin, it is equivalent to heating the aluminum of the second layer, so that the electric conductor 40 can achieve the same effect as described above.

【0073】(実施例3)図8は、本発明の第3の実施
例における電気導体40と加熱コイル41を示す平面図
である。断面図は図6と同様である。図8で電気導体4
0は厚み約1mm、幅約10mm、長さ約70mmのア
ルミニウム板で形成され、これらを8枚、間隔を設けて
放射状に配置している。本配置により、電気導体40が
ない部分の電気伝導率は略ゼロとなるため、加熱コイル
41の電流が流れる方向に電気伝導率が不連続な状態を
簡単に実現できるものである。
(Embodiment 3) FIG. 8 is a plan view showing an electric conductor 40 and a heating coil 41 in a third embodiment of the present invention. The cross-sectional view is similar to FIG. In FIG. 8, electrical conductor 4
0 is formed of an aluminum plate having a thickness of about 1 mm, a width of about 10 mm, and a length of about 70 mm, and eight of these are arranged radially with intervals. With this arrangement, the electric conductivity of the portion without the electric conductor 40 becomes substantially zero, so that it is possible to easily realize a state in which the electric conductivity is discontinuous in the direction in which the current of the heating coil 41 flows.

【0074】図8において電気導体(アルミニウム板)
40の存在する部分では、加熱コイル41から発生する
磁界が遮蔽され一部は電気導体40に吸収され電気導体
40に電流が誘導され、他は迂回して被加熱物43(図
6)に鎖交する。
In FIG. 8, an electric conductor (aluminum plate)
In the portion where 40 exists, the magnetic field generated from the heating coil 41 is shielded, a part is absorbed by the electric conductor 40 and a current is induced in the electric conductor 40, and the other is bypassed and chained to the object to be heated 43 (FIG. 6). Cross.

【0075】以上のように本実施例においては複数の電
気導体40を配置することにより、電気導体40に誘導
電流を発生させるとともに、被加熱物43に流れる渦電
流(誘導電流)の向きや密度分布を加熱コイル41に流
れる電流と異なる形にすることが可能となる。この結
果、被加熱物43に鎖交する磁界分布を変更し加熱コイ
ルの等価直列抵抗大きくすることができるとともに、電
気導体40の温度上昇を抑制することができる。
As described above, in this embodiment, by disposing a plurality of electric conductors 40, an induced current is generated in the electric conductor 40, and the direction and density of the eddy current (induced current) flowing in the object to be heated 43 are generated. It is possible to make the distribution different from the current flowing through the heating coil 41. As a result, it is possible to change the magnetic field distribution interlinking with the object to be heated 43 to increase the equivalent series resistance of the heating coil and to suppress the temperature rise of the electric conductor 40.

【0076】尚、本実施例では放射状に電気導体40を
配置する構成としたが、これに限定されるものでなく例
えば図9に示すような電気導体である四角形状の板44
を4つ加熱コイル45上方に並べる構成などとしてもよ
い。
In this embodiment, the electric conductors 40 are arranged radially, but the present invention is not limited to this. For example, a rectangular plate 44 which is an electric conductor as shown in FIG.
It is also possible to have a configuration in which four heating coils 45 are arranged above.

【0077】また、図8で電気導体40の本数を8本と
したが、本数を少なくすれば浮力低減の効果が小とな
り、多くすれば浮力低減の効果が大となる傾向にある。
また本数を増やすと電気導体のトータルの損失が大とな
るため、最適な本数に設計する必要があり、本実施例の
場合6〜8本程度が効果的である。材質はアルミニウム
としたがこれに限定されるものでなく、例えば銅、黄銅
といった材料でも同様の効果が得られる。
Although the number of the electric conductors 40 is eight in FIG. 8, the effect of reducing the buoyancy tends to be small when the number is small, and the effect of reducing the buoyancy tends to be large when the number is large.
Moreover, since the total loss of the electric conductor becomes large when the number is increased, it is necessary to design the optimum number. In the case of this embodiment, about 6 to 8 is effective. The material is aluminum, but the material is not limited to this, and similar effects can be obtained with materials such as copper and brass.

【0078】(実施例4)図10は、本発明の第4の実
施例における誘導加熱装置の要部断面図である。図で電
気導体49は絶縁体53と被加熱物52の間に設けられ
ている。絶縁体53は誘導加熱調理器であれば、例え
ば、加熱コイル50、フェライトコア51、あるいはこ
れらを駆動するインバータ(図示せず)等を収納してい
る機器本体の上部に固定され、被加熱物52を加熱する
ために載置するために設けるセラミック製の天板に対応
する。
(Embodiment 4) FIG. 10 is a sectional view of the essential parts of an induction heating apparatus according to the fourth embodiment of the present invention. In the figure, the electric conductor 49 is provided between the insulator 53 and the object 52 to be heated. If the insulator 53 is an induction heating cooker, for example, the heating coil 50, the ferrite core 51, or an inverter (not shown) that drives these is fixed to the upper part of the main body of the device that houses the object to be heated. It corresponds to a ceramic top plate provided to mount 52 for heating.

【0079】本実施例においては、電気導体49は任意
に取り外しが可能になるため、被加熱物52が、例えば
(浮力によるずれ、浮きの問題が発生しない程度に)充
分質量が大きい場合や、原理上浮力が問題とならない鉄
などの材料の時に電気導体49の設置が不要となり、か
つ電気導体49の発熱も発生しない。また電気導体49
と被加熱物52を接触させることにより、電気導体49
の発熱を被加熱物52へ効果的に伝達することが可能と
なり、この点においても効率よい加熱が可能となるもの
である。
In the present embodiment, the electric conductor 49 can be arbitrarily removed, so that the object 52 to be heated has a sufficiently large mass (to the extent that displacement due to buoyancy or floating does not occur), or When a material such as iron whose buoyancy is not a problem in principle, it is not necessary to install the electric conductor 49, and the electric conductor 49 does not generate heat. Also the electric conductor 49
By contacting the heated object 52 with the electric conductor 49
It is possible to effectively transfer the heat generated by the above to the object 52 to be heated, and in this respect also, efficient heating is possible.

【0080】(実施例5)図11は、本発明の第5の実
施例における誘導加熱装置の断面図である。図で天板2
8上に載置される電気導体54と被加熱物55は機械的
に接続され、一体となっている。57はフェライトコア
である。
(Embodiment 5) FIG. 11 is a sectional view of an induction heating apparatus in a fifth embodiment of the present invention. Top plate 2 in the figure
The electric conductor 54 and the object to be heated 55 placed on the unit 8 are mechanically connected and integrated. 57 is a ferrite core.

【0081】以上より本実施例においては使用時に電気
導体54と被加熱物55を別々に天板28上に載置する
必要がなく、より使い勝手の向上した誘導加熱装置を実
現することができる。尚電気導体54と被加熱物55は
任意に取り付け、取り外しできる構成としてもよい。
As described above, in the present embodiment, it is not necessary to separately mount the electric conductor 54 and the object to be heated 55 on the top plate 28 at the time of use, and it is possible to realize an induction heating device with improved usability. The electric conductor 54 and the object to be heated 55 may be arbitrarily attached and detached.

【0082】また、その時電気導体54を取り外した状
態で加熱して浮かないような重量に電気導体54及びそ
れに付設したものの合計重量を浮力より重くしておけ
ば、加熱しようとした時に電気導体54が被加熱物55
を押し上げる力が働かず被加熱物54がさらに浮きにく
くなり安全である。
At that time, if the total weight of the electric conductor 54 and those attached thereto is made heavier than the buoyancy so that the electric conductor 54 does not float when heated with the electric conductor 54 removed, when the electric conductor 54 is heated, Is heated 55
Since the force for pushing up is not exerted, the object to be heated 54 becomes more difficult to float, which is safe.

【0083】(実施例6)図12は、本発明の第6の実
施例における誘導加熱装置の断面図である。図で58は
被加熱物59の温度を間接的に検出する温度検出手段
で、具体的にはサーミスタを用いている。
(Embodiment 6) FIG. 12 is a sectional view of an induction heating apparatus in a sixth embodiment of the present invention. In the figure, reference numeral 58 is a temperature detecting means for indirectly detecting the temperature of the object to be heated 59, and specifically, a thermistor is used.

【0084】温度検出手段59は、絶縁体61と電気導
体60を介して被加熱物59の温度を検出するので、電
気導体60が集熱板の役割を果たすため、例えば被加熱
物59の底面が反っていた場合においても、応答性良く
被加熱物59の温度上昇を検出することができる。ま
た、電気導体60が発熱していても精度良く検知できる
ので、電気導体60が高温である旨の表示を精度良く行
うことができる。
Since the temperature detecting means 59 detects the temperature of the object to be heated 59 via the insulator 61 and the electric conductor 60, the electric conductor 60 serves as a heat collecting plate. Even when the warp is warped, the temperature rise of the object to be heated 59 can be detected with good responsiveness. Further, even if the electric conductor 60 is generating heat, the electric conductor 60 can be detected with high accuracy, so that it can be accurately displayed that the electric conductor 60 is at a high temperature.

【0085】以上のように、本実施例によれば、絶縁体
61の加熱コイル62側に温度検出手段を有し、電気導
体60は絶縁体60を介して温度検出手段と熱的に接続
されてなることにより、被加熱物59の底が平坦でない
場合にも電気導体60が被加熱物59の裏面の熱を効率
よく集めて温度検出手段に伝えることができるので、加
熱コイル電流低減効果及び浮力低減効果を奏するととも
に被加熱物59の温度制御性能、あるいは火傷防止表示
機能が良好となるものである。
As described above, according to this embodiment, the temperature detecting means is provided on the heating coil 62 side of the insulator 61, and the electric conductor 60 is thermally connected to the temperature detecting means via the insulator 60. By doing so, even if the bottom of the object to be heated 59 is not flat, the electric conductor 60 can efficiently collect the heat of the back surface of the object to be heated 59 and transfer it to the temperature detecting means, so that the heating coil current reducing effect and In addition to the effect of reducing buoyancy, the temperature control performance of the object 59 to be heated or the burn prevention display function is improved.

【0086】[0086]

【発明の効果】以上のように、本発明によれば、アルミ
ニウムや銅など低透磁率かつ高電気伝導率の材質の被加
熱物を加熱可能で、加熱時における加熱コイル等の内部
部品損失及び被加熱物に働く浮力の低減が可能な誘導加
熱装置を実現できるものである。
As described above, according to the present invention, it is possible to heat an object to be heated made of a material having a low magnetic permeability and a high electric conductivity, such as aluminum or copper, and to prevent loss of internal parts such as a heating coil during heating. It is possible to realize an induction heating device capable of reducing the buoyancy acting on an object to be heated.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の第1の実施例における誘導加熱装置の
要部斜視図
FIG. 1 is a perspective view of an essential part of an induction heating device according to a first embodiment of the present invention.

【図2】本発明の第1の実施例における誘導加熱装置の
要部断面図
FIG. 2 is a cross-sectional view of the main parts of the induction heating device according to the first embodiment of the present invention.

【図3】本発明の第1の実施例における誘導加熱装置の
加熱コイルの等価直列抵抗と浮力の相関を示す図
FIG. 3 is a diagram showing a correlation between the equivalent series resistance of the heating coil of the induction heating device and the buoyancy in the first embodiment of the present invention.

【図4】本発明の第1の実施例における誘導加熱装置の
加熱コイルの等価直列抵抗と加熱コイル電流値の相関を
示す図
FIG. 4 is a diagram showing the correlation between the equivalent series resistance of the heating coil of the induction heating device and the heating coil current value in the first example of the present invention.

【図5】本発明の第1の実施例における誘導加熱装置の
電気導体の厚みと被加熱体に作用する浮力の相関を示す
FIG. 5 is a diagram showing the correlation between the thickness of the electric conductor of the induction heating device and the buoyancy acting on the object to be heated in the first embodiment of the present invention.

【図6】本発明の第2の実施例における誘導加熱装置の
要部断面図
FIG. 6 is a cross-sectional view of an essential part of an induction heating device according to a second embodiment of the present invention.

【図7】本発明の第2の実施例における誘導加熱装置の
電気導体に流れる電流を示す図
FIG. 7 is a diagram showing a current flowing through an electric conductor of the induction heating device according to the second embodiment of the present invention.

【図8】本発明の第3の実施例における誘導加熱装置の
電気導体を示す要部平面図
FIG. 8 is a plan view of an essential part showing an electric conductor of an induction heating device according to a third embodiment of the present invention.

【図9】本発明の第3の実施例における誘導加熱装置の
他の電気導体を示す要部平面図
FIG. 9 is a main part plan view showing another electric conductor of the induction heating apparatus in the third embodiment of the present invention.

【図10】本発明の第4の実施例における誘導加熱装置
の誘導加熱装置の要部断面図
FIG. 10 is a cross-sectional view of an essential part of the induction heating device of the induction heating device according to the fourth embodiment of the present invention.

【図11】本発明の第5の実施例における誘導加熱装置
の要部断面図
FIG. 11 is a sectional view of an essential part of an induction heating device according to a fifth embodiment of the present invention.

【図12】本発明の第6の実施例における誘導加熱装置
の要部断面図
FIG. 12 is a sectional view of an essential part of an induction heating device according to a sixth embodiment of the present invention.

【図13】従来の誘導加熱装置の要部断面図FIG. 13 is a sectional view of a main part of a conventional induction heating device.

【図14】従来の誘導加熱装置の入力電力と浮力の相関
FIG. 14 is a correlation diagram of input power and buoyancy of a conventional induction heating device.

【図15】従来の誘導加熱装置の加熱コイルと被加熱物
に流れる電流を示す図
FIG. 15 is a diagram showing a current flowing through a heating coil of a conventional induction heating device and an object to be heated.

【符号の説明】[Explanation of symbols]

29、43、52、55、59 被加熱物 21、41、45、50、56、62 加熱コイル 27、40、44、46、49、54、60 電気導体 37 開口 28、53、61 天板(絶縁体) 58 温度検知手段 29, 43, 52, 55, 59 Heated object 21, 41, 45, 50, 56, 62 heating coil 27, 40, 44, 46, 49, 54, 60 electrical conductors 37 opening 28, 53, 61 Top plate (insulator) 58 Temperature detecting means

【手続補正書】[Procedure amendment]

【提出日】平成15年6月26日(2003.6.2
6)
[Submission date] June 26, 2003 (2003.6.2
6)

【手続補正1】[Procedure Amendment 1]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】全文[Correction target item name] Full text

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【書類名】明細書[Document name] Statement

【発明の名称】 誘導加熱装置Title: Induction heating device

【特許請求の範囲】[Claims]

【請求項】 電気導体は加熱コイルの一部または全部
と対向し板状に形成されてなる請求項1または2に記載
の誘導加熱装置。
Wherein the electrical conductor is induction heating apparatus according to claim 1 or 2 opposite to the part or all of the heating coil becomes a plate shape.

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、一般家庭やオフィ
ス、レストラン、工場などで使用される誘導加熱装置に
関するものであり、さらに詳しくはアルミニウムや銅と
いった低透磁率かつ高電気伝導率なる特性の材料ででき
た被加熱物を加熱する誘導加熱調理器、誘導加熱式湯沸
かし器、誘導加熱式アイロン、またはその他の誘導加熱
式加熱装置等で、特にアルミニウムを加熱可能とする誘
導加熱装置に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an induction heating device used in general households, offices, restaurants, factories, etc. More specifically, it has a low magnetic permeability and a high electric conductivity such as aluminum and copper. The present invention relates to an induction heating cooker for heating a material to be heated, an induction heating water heater, an induction heating iron, or another induction heating device, and particularly to an induction heating device capable of heating aluminum. .

【0002】[0002]

【従来の技術】以下従来の誘導加熱装置として、誘導加
熱コイルから高周波磁界が発生し、電磁誘導による渦電
流で鍋等の被加熱物が加熱される誘導加熱調理器を図1
3を用いて説明する。
2. Description of the Related Art An induction heating cooker in which a high frequency magnetic field is generated from an induction heating coil and an object to be heated such as a pan is heated by an eddy current caused by electromagnetic induction is shown in FIG.
3 will be used for the explanation.

【0003】図13において1は鍋形状をした被加熱物
である。2は加熱コイルで、図示しない高周波インバー
タから高周波電流を供給され高周波磁界を発生し、被加
熱物1に磁界を照射する。3はフェライトなどの高透磁
率の磁性体で、加熱コイル2からの高周波磁界を効率よ
く被加熱物1に伝達するために設けている。4は絶縁体
で、具体的にはセラミック材の厚み4mmなるプレート
であり、被加熱物1が載置される。
In FIG. 13, reference numeral 1 denotes a pot-shaped object to be heated. A heating coil 2 is supplied with a high-frequency current from a high-frequency inverter (not shown), generates a high-frequency magnetic field, and irradiates the object to be heated 1 with the magnetic field. Reference numeral 3 denotes a magnetic material having a high magnetic permeability such as ferrite, which is provided for efficiently transmitting the high frequency magnetic field from the heating coil 2 to the object to be heated 1. Reference numeral 4 is an insulator, specifically, a plate made of a ceramic material having a thickness of 4 mm, on which the object to be heated 1 is placed.

【0004】また、絶縁体4の裏面には、コンデンサ7
を介してアースあるいは整流器の入力または出力電位に
接続されたカーボン製の導電性塗膜5が印刷され、さら
に、加熱コイル2の周部にはリング状に加工された磁気
シールドリング6が設けられている。
A capacitor 7 is provided on the back surface of the insulator 4.
A conductive coating film 5 made of carbon, which is connected to the ground or the input or output potential of the rectifier via the, is printed, and a magnetic shield ring 6 processed in a ring shape is provided around the heating coil 2. ing.

【0005】この構成において、加熱コイル2から高周
波磁界が発生すると、底部に誘起した電磁誘導による渦
電流のために被加熱物1が加熱される。また、導電性塗
膜5の静電シールド作用により、加熱コイル2に発生す
る高周波高電圧と浮游容量によって加熱コイル2から人
体を介して大地へと漏洩する漏れ電流が抑制される。ま
た、磁気シールドリング6には、加熱コイル2から発生
する高周波磁界により、誘導電流が発生しその誘導電流
が反磁界を発生し結果的に加熱コイル2周囲に漏洩する
磁界を抑制することができる。
In this structure, when a high frequency magnetic field is generated from the heating coil 2, the object to be heated 1 is heated by the eddy current due to the electromagnetic induction induced at the bottom. Further, due to the electrostatic shield effect of the conductive coating film 5, the leakage current leaking from the heating coil 2 to the ground through the human body due to the high frequency high voltage generated in the heating coil 2 and the floating capacity is suppressed. Further, in the magnetic shield ring 6, an induced current is generated by the high frequency magnetic field generated from the heating coil 2, and the induced current generates a demagnetizing field, and as a result, a magnetic field leaking to the periphery of the heating coil 2 can be suppressed. .

【0006】[0006]

【特許文献1】特開平7−211444号公報[Patent Document 1] Japanese Unexamined Patent Publication No. 7-212144

【特許文献2】特開平6−310675号公報[Patent Document 2] JP-A-6-310675

【0007】[0007]

【発明が解決しようとする課題】上記従来の構成におい
て、被加熱物1の底面には電流が誘起され、この電流は
加熱コイル電流との相互作用で被加熱物1の底に加熱コ
イル2から遠ざかろうとする反発力を生じる。一方被加
熱物1が鉄などの高透磁率材料で、抵抗率がある程度大
きい鉄製である場合には、所定の出力を得ようとする場
合に、誘導される電流値が少なくてよく上記の反発力が
小さいと同時に、磁束が被加熱物1に吸収されるので吸
引力が働き、被加熱物1が浮き上がったりずれたりする
恐れはなかった。
In the above conventional structure, an electric current is induced in the bottom surface of the object to be heated 1, and this current interacts with the heating coil current to cause the heating coil 2 to flow from the heating coil 2 to the bottom of the object to be heated 1. A repulsive force that tries to move away is generated. On the other hand, when the object to be heated 1 is made of a material having a high magnetic permeability such as iron and has a relatively high resistivity, the induced current value may be small and the above-mentioned repulsion may be required in order to obtain a predetermined output. At the same time as the force is small, the magnetic flux is absorbed by the object to be heated 1 so that the attraction force works, and there is no fear that the object to be heated 1 floats or shifts.

【0008】一方、特に被加熱物1がアルミニウムや銅
といった低透磁率かつ高電気伝導率なる材料製である場
合には、所定の加熱出力を得るために加熱コイル2に流
す電流を大きくして被加熱物1に電流を多く流す必要が
あり、反発力が大きくなると同時に、被加熱物1が鉄な
どの高透磁率材料である場合のような吸引力が働かな
い。従って、加熱コイル2の磁界と誘導電流の作用によ
り被加熱物1に加熱コイル2から遠ざかる方向に浮力が
強く働き、被加熱物1の重量が軽い場合には、被加熱物
1が浮力によりずれたり、被加熱物1の戴置面からの浮
きが生じるおそれがある。
On the other hand, especially when the object to be heated 1 is made of a material having a low magnetic permeability and a high electric conductivity such as aluminum or copper, the current passed through the heating coil 2 is increased in order to obtain a predetermined heating output. It is necessary to apply a large amount of current to the object to be heated 1 and the repulsive force becomes large, and at the same time, the attraction force as in the case where the object to be heated 1 is a high magnetic permeability material such as iron does not work. Therefore, due to the action of the magnetic field of the heating coil 2 and the induced current, buoyancy acts strongly on the object to be heated 1 in the direction away from the heating coil 2, and when the weight of the object to be heated 1 is light, the object to be heated 1 is displaced by the buoyancy. Or, the object to be heated 1 may float from the mounting surface.

【0009】図15にこの時の加熱コイル2の電流の流
れと被加熱物1に流れる渦電流のマクロ的な流れを示
す。図15(ア)は加熱コイル2に流れる電流の向きを
被加熱物1側からみた図である。同図(イ)は、被加熱
物1に流れる渦電流を加熱コイル2と逆側((ア)と同
方向側)から見た図である。
FIG. 15 shows a current flow in the heating coil 2 and a macroscopic flow of the eddy current flowing in the object to be heated 1 at this time. FIG. 15A shows the direction of the current flowing through the heating coil 2 as viewed from the side of the object to be heated 1. FIG. 4A is a view of the eddy current flowing in the object to be heated 1 as viewed from the side opposite to the heating coil 2 (the side in the same direction as (A)).

【0010】図に示すように被加熱物1に流れる渦電流
は加熱コイル2に流れる電流と逆向きかつ略同形状のル
ープ状で流れる。従って同じ断面積(略加熱コイル2の
面積)の永久磁石2つが異極(例えばN極とN極)で存
在することとほぼ等価になって、大きな反発力となるも
のである。
As shown in the drawing, the eddy current flowing through the object to be heated 1 flows in a loop shape having a direction opposite to that of the current flowing through the heating coil 2 and having substantially the same shape. Therefore, it is substantially equivalent to the existence of two permanent magnets having the same cross-sectional area (approximately the area of the heating coil 2) with different poles (for example, N pole and N pole), which is a large repulsive force.

【0011】この現象は、被加熱物1の材料がアルミニ
ウムや銅である場合に顕著である。すなわち同じ低透磁
率材料であっても、非磁性SUSのようなアルミニウム
や銅よりも電気伝導率が低い材料の場合は、加熱コイル
2に流す電流が少なくても十分な発熱が得られるので、
被加熱物1に誘導される電流が発生する反発磁界が小と
なるものである。図14に、アルミニウムで作られた被
加熱物1を加熱時の入力電力と浮力の相関の一例を示
す。図14のグラフにおいて、横軸は入力電力で、縦軸
は浮力で示している。この図で分かるように、入力電力
の増加に伴い、浮力も増加し、その浮力が被加熱物1の
重量を超えると、被加熱物1のずれ、浮き等が生じるこ
とになる。
This phenomenon is remarkable when the material of the article to be heated 1 is aluminum or copper. That is, even with the same low magnetic permeability material, in the case of a material having a lower electric conductivity than aluminum or copper such as non-magnetic SUS, sufficient heat generation can be obtained even with a small current flowing through the heating coil 2.
The repulsive magnetic field generated by the current induced in the object to be heated 1 is small. FIG. 14 shows an example of the correlation between the input power and the buoyancy when heating the object to be heated 1 made of aluminum. In the graph of FIG. 14, the horizontal axis represents input power and the vertical axis represents buoyancy. As can be seen from this figure, as the input power increases, the buoyancy also increases, and when the buoyancy exceeds the weight of the object to be heated 1, the object to be heated 1 is displaced or floats.

【0012】こういった背景から昨今、特開昭61−1
28492号公報や、特開昭62−276787号公報
で開示されているような重量センサを用いて被加熱物の
移動を検出する技術、特開昭61−71582号公報で
開示されているような磁気センサを用いて被加熱物1の
位置を検出する技術、さらに特開平4−765633号
公報で開示されているような共振周波数検出手段を用い
て被加熱物1が浮力により移動したことを検出する技術
等が開示されている。
Against this background, there is a recent trend in Japanese Patent Laid-Open No. 61-1.
No. 28492 and Japanese Patent Laid-Open No. 62-276787, a technique for detecting movement of an object to be heated by using a weight sensor as disclosed in Japanese Patent Laid-Open No. 61-71582. A technique for detecting the position of the object to be heated 1 using a magnetic sensor, and a resonance frequency detecting means disclosed in Japanese Patent Laid-Open No. 4-765633 are used to detect that the object to be heated 1 has moved due to buoyancy. Techniques for doing so are disclosed.

【0013】しかしながら、いずれの技術も被加熱物1
に所定以上の浮力が作用したこと、あるいは被加熱物1
が浮いたあるいは移動したことを検出した場合に、それ
以上浮かないように、あるいは移動しないように被加熱
物1を加熱するための加熱電力を抑制したりあるいは加
熱動作そのものを停止するものであり、このような場合
には、十分な火力が得られず、更には調理動作の継続が
中断されるという状況に陥ってしまうという課題があっ
た。
However, in any of the techniques, the object to be heated 1
Buoyancy above a certain level has been applied to the object, or the object to be heated 1
When it is detected that the object floats or moves, the heating power for heating the object to be heated 1 is suppressed so as not to move further or move, or the heating operation itself is stopped. In such a case, there is a problem that sufficient heating power cannot be obtained, and further, the situation in which the continuation of the cooking operation is interrupted falls into a situation.

【0014】例えば、質量300gのアルミニウム製の
雪平鍋で、200ccの水を加熱する場合、図14より
約850W以上の入力電力で浮力が鍋と調理物(水)の
合計質量を上回り、鍋が浮き上がってこの電力以上の入
力電力で加熱することが困難となる。従って上記従来の
方式においては、例えばアルミ負荷鍋と検知した場合に
鍋の浮き上がる入力電力以下、例えば800Wに入力電
力を抑制することが鍋浮きを生じない様にするための対
策手段として想定できるが、発明者らの実験によれば、
この様な入力電力で加熱しても上記の水を沸騰状態にす
ることは困難であり、アルミニウム製の鍋を加熱できる
誘導加熱調理器としては加熱性能が極めて低いものとな
る(入力1000W程度であれば200ccの水は沸騰
状態とすることは可能であるが加熱速度は遅い)。
For example, when heating 200 cc of water in an aluminum snow pan with a mass of 300 g, the buoyancy exceeds the total mass of the pan and the food (water) with an input power of about 850 W or more as shown in FIG. It floats and it becomes difficult to heat with input power higher than this power. Therefore, in the above-described conventional method, for example, suppressing the input power to less than the input power at which the pan floats when it is detected as an aluminum load pan, for example, 800 W, can be assumed as a countermeasure for preventing the pan from floating. According to the experiments by the inventors,
Even if heated with such input power, it is difficult to bring the water into a boiling state, and the heating performance is extremely low as an induction heating cooker capable of heating an aluminum pot (with an input of about 1000 W). If so, 200 cc of water can be brought to a boiling state, but the heating rate is slow).

【0015】そこで本発明は、上記従来の課題を解決す
るもので、簡単な構成で被加熱物に働く浮力を低減し、
被加熱物が軽量であっても十分な入力電力を確保でき
る、使い勝手の良い誘導加熱調理器、あるいはアルミニ
ウム製の負荷を安定的に加熱することのできる誘導加熱
装置を実現することを主たる目的とし、さらには加熱コ
イル2に高周波電流を供給する高周波回路のスイッチン
グ素子の損失を同時に低減することを目的としたもので
ある。
Therefore, the present invention solves the above-mentioned conventional problems by reducing the buoyancy acting on the object to be heated with a simple structure,
The main purpose is to realize an easy-to-use induction heating cooker that can secure sufficient input power even if the object to be heated is lightweight, or an induction heating device that can stably heat an aluminum load. Further, the purpose is to simultaneously reduce the loss of the switching element of the high frequency circuit which supplies the high frequency current to the heating coil 2.

【0016】[0016]

【課題を解決するための手段】前記従来の課題を解決す
るために、本発明の誘導加熱装置は、アルミニウム若し
くは銅又はこれらと略同等以上の電気伝導率を有する低
透磁率材料からなる被加熱物と、加熱コイルとの間に電
気導体を設け、この電気導体は、加熱コイルの等価直列
抵抗(被加熱物及び電気導体を加熱状態と同様の位置配
置で、加熱周波数近傍の周波数を使用して測定した加熱
コイルの入力インピーダンスにおける等価直列抵抗(以
下単に加熱コイルの等価直列抵抗と呼ぶ)を電気導体が
設けられていない時の加熱コイルの等価直列抵抗より
きくするものである。
In order to solve the above-mentioned conventional problems, the induction heating apparatus of the present invention comprises a heated object made of aluminum or copper or a low magnetic permeability material having an electric conductivity substantially equal to or higher than that of aluminum or copper. An electric conductor is provided between the object and the heating coil, and this electric conductor uses an equivalent series resistance of the heating coil (a position similar to that of the object to be heated and the electric conductor being in a heated state and a frequency near the heating frequency). electrical conductors equivalent series resistance (hereinafter simply referred to as equivalent series resistance of the heating coil) at the input impedance of the heating coil measured Te is
It is higher than the equivalent series resistance of the heating coil when not provided .

【0017】このような電気導体は、同一出力を得る場
合の加熱コイルに流れる電流を低減して、加熱コイルの
発生する磁界により前記被加熱鍋に対して働く浮力を低
減する浮力低減機能を有する。この結果アルミニウム若
しくは銅又はこれらと略同等以上の電気伝導率を有しか
つ低透磁率材料からなる被加熱物を加熱した時に浮き上
がったりずれたりするのを防止するとともに、加熱コイ
ルに高周波電流を供給するスイッチング素子や共振コン
デンサ等の部品の損失を低減することができる。
Such an electric conductor has a buoyancy reducing function of reducing the current flowing through the heating coil when the same output is obtained, and reducing the buoyancy acting on the heated pot by the magnetic field generated by the heating coil. . As a result, it is possible to prevent the object to be heated or lifted or displaced from being heated when the object to be heated, which has an electric conductivity of aluminum or copper or substantially the same as or higher than those, and is made of a low-permeability material is heated, and supplies a high frequency current to the heating coil. It is possible to reduce the loss of components such as switching elements and resonance capacitors that operate.

【0018】[0018]

【発明の実施の形態】請求項1に記載の発明は、アルミ
ニウム若しくは銅又はこれらと略同等以上の電気伝導率
を有する低透磁率材料からなる被加熱物を誘導加熱可能
な加熱コイルと、前記加熱コイルと前記被加熱物との間
に設けられた電気導体とを備え、前記電気導体は前記加
熱コイルに対向して前記被加熱物を配置した時の前記加
熱コイルの等価直列抵抗を前記電気導体が設けられてい
ない時の前記加熱コイルの等価直列抵抗より大きくして
なる誘導加熱装置とするものである。
BEST MODE FOR CARRYING OUT THE INVENTION The invention according to claim 1 is a heating coil capable of inductively heating an object to be heated, which is made of aluminum or copper, or a low magnetic permeability material having an electrical conductivity substantially equal to or higher than these, and the heating coil comprises an electrical conductor provided between the object to be heated, said electrical conductor wherein the electrical equivalent series resistance of the heating coil when placing the object to be heated so as to face the heating coil Conductor is provided
It is greater than the equivalent series resistance of the heating coil in the absence
This is an induction heating device.

【0019】請求項2に記載の発明は、アルミニウム若
しくは銅またはこれらと略同等以上の電気伝導率を有す
る低透磁率材料からなる被加熱物を誘導加熱可能な加熱
コイルと、前記加熱コイルと前記被加熱物との間に設け
られた電気導体とを備え、前記電気導体は前記加熱コイ
ルに対向して前記被加熱物を配置した時前記加熱コイル
の発生する磁界と前記被加熱物に誘導される誘導電流の
作用により前記被加熱物に対して働く浮力を低減する浮
力低減機能を有してなる誘導加熱装置とするものであ
る。
The invention according to claim 2 is an aluminum alloy.
In some cases, it has copper or an electrical conductivity equal to or higher than these.
Induction heating of objects to be heated made of low-permeability materials
Provided between the coil and the heating coil and the object to be heated
An electrical conductor, the electrical conductor being connected to the heating coil.
The heating coil when the object to be heated is placed facing the
Of the magnetic field generated by and the induced current induced in the object to be heated
Floating force that reduces the buoyancy acting on the heated object by the action
The induction heating device has a force reducing function.
It

【0020】上記請求項1または請求項2に記載の発明
の構成とすることにより、加熱コイルから発生する磁界
は電気導体の影響を受けて向き及び強度分布が変わる。
The invention according to claim 1 or claim 2
With this configuration, the magnetic field generated from the heating coil is influenced by the electric conductor, and its direction and intensity distribution change.

【0021】一方、電気導体がない場合には、加熱コイ
ルから発生する高周波磁界は、加熱コイルから発生した
磁界を相殺する様に被加熱物に誘導電流が誘起する。こ
の結果、加熱コイル電流と方向が逆で平行な誘導電流が
高電気伝導率の被加熱体に誘導され、その電流と加熱コ
イルから放射される磁界との相互作用により、被加熱体
に浮力が発生する。
On the other hand, when there is no electric conductor, the high frequency magnetic field generated from the heating coil induces an induced current in the object to be heated so as to cancel the magnetic field generated from the heating coil. As a result, an induced current whose direction is opposite to that of the heating coil current and parallel to the heating coil current is induced in the heated object having high electrical conductivity, and the interaction between the current and the magnetic field emitted from the heating coil causes buoyancy in the heated object. Occur.

【0022】しかしながら、当該電気導体が存在するこ
とにより、加熱コイルから発生する磁界は、電気導体と
被加熱物に鎖交するため、両者に誘導電流を発生するこ
とになる。すなわち、電気導体に誘導された誘導電流の
発生する磁界と被加熱物に誘導された電流の発生する磁
界の重畳磁界が、加熱コイルの発生する磁界の変化を妨
げるように電気導体及び被加熱物に誘導電流が流れるこ
とになる。
[0022] However, by the electrical conductor is present, the magnetic field generated from the heating coil, for interlinking the electrical conductor and the heating object, will generate induction current in both. That is, the superposed magnetic field of the magnetic field generated by the induced current induced in the electric conductor and the magnetic field generated by the electric current induced in the object to be heated prevents the change of the magnetic field generated by the heating coil from occurring in the electric conductor and the object to be heated. An induced current will flow to.

【0023】つまり、被加熱物に誘導される電流の分布
が、電気導体に誘導電流が発生することにより変わるこ
とになる。この電流分布の変化で、加熱コイルの等価直
列抵抗が大きくなることにより、同一出力を得る場合の
加熱コイルに流す電流値を小さくすることができ、被加
熱物に作用する浮力が低減するとともに、電気導体が被
加熱物に働くべき浮力の一部を分担することで被加熱物
に作用する浮力が低減できることになるわけである。併
せて、加熱コイル、加熱コイルを駆動する共振電流を発
生するインバータに使用されるスイッチング素子、及び
共振コンデンサ等の高周波部品のスイッチング損失を低
減することができるという作用をも有するものである。
That is, the distribution of the current induced in the object to be heated changes due to the generation of the induced current in the electric conductor. Due to this change in current distribution, the equivalent series resistance of the heating coil increases, so that the value of the current flowing in the heating coil when obtaining the same output can be reduced, and the buoyancy acting on the object to be heated is reduced, The buoyancy acting on the object to be heated can be reduced by sharing a part of the buoyancy force to be applied to the object to be heated by the electric conductor. At the same time, it also has the effect of reducing the switching loss of high-frequency components such as the heating coil, the switching element used in the inverter that generates the resonance current for driving the heating coil, and the resonance capacitor.

【0024】請求項に記載の発明は、特に、電気導体
は加熱コイルの一部または全部と対向し略板状に形成さ
れてなることにより、加熱コイルから発生する磁界を被
加熱物に到達する前に、当該電気導体に鎖交させ、電気
導体に鎖交する磁束量を増加させて等価直列抵抗を大き
くしやすい。電気導体は被加熱物よりも、加熱コイルに
近く、加熱コイルとの磁気結合を良くできる。
According to the third aspect of the present invention, in particular, the electric conductor is formed in a substantially plate shape so as to face part or all of the heating coil, and the magnetic field generated from the heating coil reaches the object to be heated. Before doing so, it is easy to increase the equivalent series resistance by interlinking with the electric conductor and increasing the amount of magnetic flux interlinking with the electric conductor. The electric conductor is closer to the heating coil than the object to be heated, and magnetic coupling with the heating coil can be improved.

【0025】また、電気導体を迂回した磁束、通りぬけ
た磁束、及び電気導体の影響をあまり受けずに通過した
磁束が被加熱物に到達することにより、被加熱物におけ
る誘導電流の分布範囲が変わる。この結果、加熱コイル
の等価直列抵抗が増加し、加熱コイル電流低減作用及び
被加熱物に働く浮力低減作用を大きくすることができ
る。ここで、電気導体の板の面積は大きいほど、また電
気導体が加熱コイルに近いほど電気導体に加熱コイルの
磁束が多く通過し、等価直列抵抗増加作用を大きくする
ことができることから、当該電気導体の表面積は、必要
とする浮力低減効果を得るように、また、電気導体と加
熱コイル間の距離、電気導体の発熱等の条件を考慮して
決めれば良い。
Further, the magnetic flux that bypasses the electric conductor, the magnetic flux that has passed through, and the magnetic flux that has passed through without being affected by the electric conductor reach the object to be heated, so that the distribution range of the induced current in the object to be heated is reduced. change. As a result, the equivalent series resistance of the heating coil increases, and the effect of reducing the heating coil current and the effect of reducing the buoyancy acting on the object to be heated can be increased. Here, the larger the area of the plate of the electric conductor is, and the closer the electric conductor is to the heating coil, the more the magnetic flux of the heating coil passes through the electric conductor, and the effect of increasing the equivalent series resistance can be increased. The surface area may be determined so as to obtain the required effect of reducing buoyancy, and the conditions such as the distance between the electric conductor and the heating coil and the heat generation of the electric conductor.

【0026】また、電気導体は加熱コイルの中央または
その近傍を覆わないようにすれば、中央部またはその近
傍を、加熱コイルから発生して被加熱物へ鎖交させる磁
界の経路とすべく磁界をそこに集中させ、当該電気導体
を付設することに伴う加熱効率の大幅な低下を抑制する
ものである。
Further, if the electric conductor so as not to cover the center or its vicinity of the heating coil, the central portion or the vicinity thereof, generated from the heating coil so as to the path of the magnetic field which interlinked into the heated object field Are concentrated there, and a large decrease in heating efficiency due to the attachment of the electric conductor is suppressed.

【0027】請求項4に記載の発明は、特に、電気導体
内で、加熱コイル電流の流れる方向と略平行に周回して
流れる誘導電流の分布を制限する周回電流制限手段を設
けたことにより、電気導体が加熱コイル電流により誘導
加熱されて発熱する発熱量を抑制するとともに、電気導
体の等価直列抵抗の増加作用を有するようにし、加熱コ
イル電流低減作用と被加熱物に働く浮力低減作用が得ら
れるものである。
According to the fourth aspect of the present invention, in particular, by providing the revolving current limiting means for limiting the distribution of the induced current that revolves in the electric conductor in a direction substantially parallel to the flowing direction of the heating coil current, It suppresses the amount of heat generated by the induction heating of the electric conductor due to the heating coil current, and also has the effect of increasing the equivalent series resistance of the electric conductor, thus reducing the heating coil current and reducing the buoyancy acting on the object to be heated. It is what is done.

【0028】請求項5に記載の発明は、特に、電気導体
板の一部に切り欠き、開口、スリットを設けることによ
り前記電気導体内で、加熱コイル電流の流れる方向と略
平行に周回して流れる誘導電流の分布を制限するので
加熱コイルの発生する磁界により電気導体に誘導される
電流の向き及び大きさを変え、被加熱物に作用する浮力
の低減効果をある程度保持しながら、電気導体に発生す
る発熱量を低減することができる。例えば電気導体に誘
導される上記周回電流は、スリットにより遮断すること
が可能なので発熱量を低減できる。ただ、その場合に被
加熱物への浮力低減効果が低下する場合がある。スリッ
トの形状、加熱コイルが鎖交する面積、電気導体の材質
などにより、等価直列抵抗の大きさと電気導体の発熱量
が異なるので、これらの要素の組み合わせで最適なもの
を選択して、浮力の低下効果をできるだけ大きく、電気
導体の発熱量を許容できるようなレベルとする組み合わ
せを決定すれば良い。さらに、この電気導体は複数の電
気導体に分離されないので組み立て時等の場合における
取り扱いが容易である。
[0028] The invention according to claim 5, in particular, electrical cutout in a part of the conductive plate, apertures, in Rukoto slits
In the electric conductor, the direction of the heating coil current
Since it restricts the distribution of the induced current flowing in parallel ,
By changing the direction and magnitude of the current induced in the electric conductor by the magnetic field generated by the heating coil, the amount of heat generated in the electric conductor can be reduced while maintaining the effect of reducing the buoyancy acting on the object to be heated to some extent. it can. For example, the circulating current induced in the electric conductor can be blocked by the slit, so that the heat generation amount can be reduced. However, in that case, the effect of reducing buoyancy on the object to be heated may decrease. Since the size of the equivalent series resistance and the amount of heat generated by the electric conductor differ depending on the shape of the slit, the area where the heating coils are interlinked, the material of the electric conductor, etc., select the optimum combination of these elements to improve the buoyancy. It suffices to determine a combination in which the reduction effect is as large as possible and the heat generation amount of the electric conductor is acceptable. Furthermore, since this electric conductor is not separated into a plurality of electric conductors, it is easy to handle when assembling.

【0029】[0029]

【実施例】以下本発明の実施例について、図面を参照し
ながら説明する。
Embodiments of the present invention will be described below with reference to the drawings.

【0030】(実施例1)図1は、本発明の第1の実施
例における誘導加熱装置(誘導加熱調理器)の加熱コイ
ル21及びその周辺の構成を示す斜視図であり、図2は
誘導加熱装置本体(図示せず)に収納された加熱コイル
21と、前記本体上部に固定された天板28と、前記天
板28に載置される被加熱物29を示す断面図である。
(Embodiment 1) FIG. 1 is a perspective view showing a configuration of a heating coil 21 of an induction heating apparatus (induction heating cooker) and its surroundings in a first embodiment of the present invention, and FIG. It is sectional drawing which shows the heating coil 21 accommodated in the heating device main body (not shown), the top plate 28 fixed to the said main body, and the to-be-heated material 29 mounted on the said top plate 28.

【0031】図1及び図2において、加熱コイル21は
素線を束ねた撚り線を2層にして平板状に巻回され、保
持板22上部に載置される。保持板22は耐熱樹脂製で
4本の略直方体をした棒形状の強磁性体であるファライ
トコア23b〜26bを加熱コイル21の下部に位置
し、加熱コイル21の下面に略平行に、そしてそれらと
一体的に成形されている。
In FIG. 1 and FIG. 2, the heating coil 21 is wound in a flat plate shape with two layers of twisted wires each of which is a bundle of strands, and is placed on the holding plate 22. The holding plate 22 is made of a heat-resistant resin and has four substantially rectangular parallelepiped rod-shaped ferromagnetic bodies 23b to 26b, which are located below the heating coil 21 and are substantially parallel to the lower surface of the heating coil 21. It is molded integrally with them.

【0032】また、フェライトコア23b〜26bの両
端にはフェライトコア23a〜26aとフェライトコア
23c〜26cが接して設けられる。このためフェライ
トコアは全体として断面が被加熱物29に向けて開いた
コの字状に形成される。保持板22はファライトコアの
表面を覆うように(部分的に冷却のため覆っていない)
成形され加熱コイル21と電気的に絶縁される構成にな
っている。
Ferrite cores 23a to 26a and ferrite cores 23c to 26c are provided in contact with both ends of the ferrite cores 23b to 26b. Therefore, the ferrite core as a whole is formed in a U-shape whose cross section opens toward the object to be heated 29. The holding plate 22 covers the surface of the farite core (partly because of cooling, it is not covered).
It is formed and electrically insulated from the heating coil 21.

【0033】加熱コイル21上部にはカーボン材料で形
成された導電塗膜32がマイカ製の絶縁板30、31の
間に形成されている。この導電膜32は端子33と接続
され、さらにコンデンサ34を介して商用電源電位ある
いは加熱コイル21に高周波電流を供給するインバータ
の入力する商用電源を整流した電位あるいは大地に接続
される。
A conductive coating film 32 made of a carbon material is formed between the insulating plates 30 and 31 made of mica on the heating coil 21. The conductive film 32 is connected to a terminal 33, and further connected via a capacitor 34 to a commercial power source potential or a potential obtained by rectifying a commercial power source input to an inverter that supplies a high frequency current to the heating coil 21 or the ground.

【0034】電気導体27は、厚さが略1mmの材料が
アルミニウムの板により形成され、製絶縁板31と天板
28の間に設けられており、図1に示すように、外径及
び内径が加熱コイル21のものとほぼ同じの略ドーナツ
状をして、幅約6mmのスリット27aが外周から内周
に渡って設けられている。電気導体27の位置は3箇所
ある脚部27bと保持板22により規制される。
The electric conductor 27 is made of an aluminum plate having a thickness of about 1 mm, and is provided between the insulating plate 31 and the top plate 28. As shown in FIG. Has a substantially donut shape similar to that of the heating coil 21, and a slit 27a having a width of about 6 mm is provided from the outer circumference to the inner circumference. The position of the electric conductor 27 is regulated by the leg portions 27b and the holding plate 22 which are provided at three places.

【0035】電気導体27は中央に開口部37を設け、
上部(被加熱物29側)から見て、外側の立ち上がり部
であるフェライトコア23a〜26aの上端面は電気導
体27の外周より外側に位置し、内側の立ち上がり部で
あるフェライトコア23c〜26cの上端面は開口37
の周部より内側に位置している。サーミスタ35はホル
ダー36にはめ込まれて、天板28裏面に当接される。
絶縁体である天板28は耐熱セラミックス製で、その上
にアルミニウム製の被加熱物29が加熱コイル22に対
向する様に載置される。
The electric conductor 27 has an opening 37 at the center,
The upper end surfaces of the ferrite cores 23a to 26a, which are the rising portions on the outer side, are located outside the outer periphery of the electric conductor 27 when viewed from the top (the object 29 side to be heated), and the ferrite cores 23c to 26c that are the rising portions on the inner side are located. Opening 37 on top
It is located inside the perimeter. The thermistor 35 is fitted in the holder 36 and abuts on the back surface of the top plate 28.
A top plate 28, which is an insulator, is made of heat-resistant ceramics, and an object to be heated 29 made of aluminum is placed thereon so as to face the heating coil 22.

【0036】以下上記実施例の動作を説明する。加熱コ
イル21には約70kHzの高周波電流が供給される。
加熱コイル21は、高周波電流が供給されると磁界を発
生するが、加熱コイル21下方では高透磁率材料である
フェライトコア23b〜26bがあり磁束がフェライト
コアに集中するので、磁界が被加熱物29と反対側に膨
らむのを防止できる。
The operation of the above embodiment will be described below. A high frequency current of about 70 kHz is supplied to the heating coil 21.
The heating coil 21 generates a magnetic field when a high-frequency current is supplied, but below the heating coil 21, there are ferrite cores 23b to 26b, which are high-permeability materials, and the magnetic flux concentrates on the ferrite core. It is possible to prevent swelling on the side opposite to 29.

【0037】一方、加熱コイル21の上部に出た磁界は
電気導体27に鎖交するので電気導体27に誘導電流が
誘起される。電気導体27の厚みは約1mmで浸透深さ
以上の厚みを有するので電気導体に鎖交した磁界の大部
分はほとんど電気導体を通過せず外周側または内周側に
迂回してから被加熱物29方向に導かれる。フェライト
コア23a〜26a、23c〜26cは上方の被加熱物
の方向に磁界を効率良く導く作用する。
On the other hand, the magnetic field generated above the heating coil 21 is linked to the electric conductor 27, so that an induced current is induced in the electric conductor 27. Since the electric conductor 27 has a thickness of about 1 mm and a thickness not less than the penetration depth, most of the magnetic field interlinking with the electric conductor hardly passes through the electric conductor and is diverted to the outer peripheral side or the inner peripheral side, and then the object to be heated. Guided in 29 directions. The ferrite cores 23a to 26a and 23c to 26c effectively guide the magnetic field toward the upper object to be heated.

【0038】なお、フェライトコア23a〜23c、2
4a〜24c、またはフェライトコア25a〜25cは
それぞれ、別の3つのフェライトコアを接した状態で組
み合わせて配置しているが、それぞれ略同形状となるよ
うに一体に成形しても開磁路であるので同様の効果が得
られる。
The ferrite cores 23a-23c, 2
4a to 24c, or the ferrite cores 25a to 25c, are arranged by combining the other three ferrite cores in contact with each other, but even if they are integrally molded so as to have substantially the same shape, an open magnetic circuit is formed. Because of this, the same effect can be obtained.

【0039】被加熱物29に誘起された誘導電流は加熱
コイル21の発生する磁界分布と、電気導体27に誘起
された電流の発生する磁界分布の重畳した磁界分布が被
加熱物29に鎖交することにより発生するものである。
このように、電気導体27が介在することにより、被加
熱物29に誘導される電流分布が変化し、さらに電気導
体27に発生する電流分布が加わるということから、加
熱コイル21の等価直流抵抗が大きくなる。
The induced current induced in the object to be heated 29 is linked to the object 29 to be heated by a magnetic field distribution in which the magnetic field distribution generated by the heating coil 21 and the magnetic field distribution generated by the current induced in the electric conductor 27 are superposed. It is caused by doing.
In this way, since the electric conductor 27 is interposed, the current distribution induced in the object to be heated 29 is changed, and further the current distribution generated in the electric conductor 27 is added. Therefore, the equivalent DC resistance of the heating coil 21 is increased. growing.

【0040】等価直列抵抗が大きくなると、同じ加熱コ
イル電流でも被加熱物29における発熱量が大きくなる
ので同一消費電力を得ようとする場合には加熱コイル電
流を小さくすることができ、それに伴い浮力も低減する
ことができる。
When the equivalent series resistance becomes large, the amount of heat generated in the object to be heated 29 becomes large even with the same heating coil current. Therefore, when the same power consumption is to be obtained, the heating coil current can be made smaller, and the buoyancy force accordingly increases. Can also be reduced.

【0041】図3に被加熱物がアルミニウム製の鍋の場
合の消費電力と浮力の関係を、アルミニウム製の電気導
体27がある場合(Bで示す)とその電気導体がない場
合(Aで示す)について、また、図4には、消費電力と
加熱コイル電流の関係を、電気導体27がある場合(B
で示す)と電気導体がない場合(Aで示す)について測
定結果の一例をしめしている。ただし、インバータの共
振周波数は約70kHzである。
FIG. 3 shows the relationship between power consumption and buoyancy when the object to be heated is an aluminum pot, with and without the aluminum electric conductor 27 (shown by B). ), And FIG. 4 shows the relationship between the power consumption and the heating coil current when there is an electric conductor 27 (B
2) and the case where there is no electric conductor (indicated by A) are shown. However, the resonance frequency of the inverter is about 70 kHz.

【0042】これらの測定結果によると、電気導体27
を挿入することにより、等価直流抵抗(Rs)は1.0
9Ωから2.3Ωに増加し、消費電力が2kWに出力を
設定した場合に、鍋に働いた浮力は約900gから約5
00gに低減するとともに、加熱コイル21の電流も約
40Armsから約33Armsに低減した。
According to these measurement results, the electric conductor 27
, The equivalent DC resistance (Rs) is 1.0
When the output power is set to 2 kW from 9 Ω to 2.3 Ω, the buoyancy acting on the pan is about 900 g to about 5
The current of the heating coil 21 was also reduced from about 40 Arms to about 33 Arms while being reduced to 00 g.

【0043】また、加熱コイル21の電流の低減に伴い
インバータを駆動するパワースイッチング素子の損失、
加熱コイル21の損失も大幅に低減する。(なお、鉄系
の被加熱物の場合には電気導体27を挿入することによ
り、加熱コイルの等価直列抵抗大きくするという作用は
ほとんど得られない)また、電気導体27を設けること
で、電気導体の損失が発生する。発明者らの実験によれ
ば、消費電力が2kWであったとき、前記電気導体の損
失は一例として約270Wと推定された。この時、加熱
コイル21を含めた誘導加熱装置内部の損失は加熱コイ
ル電流低減の作用により約210Wと推定された。この
ように、電気導体27を挿入することにより、その発熱
による損失が発生するものの、内部損失が低減すること
により、その差は約60Wと大幅な加熱効率の低下を防
止することができる。
Further, the loss of the power switching element for driving the inverter due to the reduction of the current of the heating coil 21,
The loss of the heating coil 21 is also greatly reduced. (In the case of an iron-based object to be heated, the effect of increasing the equivalent series resistance of the heating coil is hardly obtained by inserting the electric conductor 27.) Further, by providing the electric conductor 27, Will be lost. According to experiments by the inventors, when the power consumption was 2 kW, the loss of the electric conductor was estimated to be about 270 W as an example. At this time, the loss inside the induction heating device including the heating coil 21 was estimated to be about 210 W due to the action of reducing the heating coil current. In this way, by inserting the electric conductor 27, a loss due to heat generation occurs, but the internal loss is reduced, so that the difference is about 60 W, and it is possible to prevent a significant decrease in heating efficiency.

【0044】また、図2のように電気導体27を天板2
8当接させて、電気導体27の熱を、熱伝導で天板28
を介して被加熱物29に与えれば、前記の加熱効率の低
下をカバーすることが可能である。このように、電気導
体27の発熱による損失の増加は、機器全体の加熱効率
でみれば、加熱コイル21の電流が低減するので、相当
な部分が他の部分の損失低下で相殺される。
As shown in FIG. 2, the electric conductor 27 is attached to the top plate 2.
8 abutting against each other, heat of the electric conductor 27 is transferred by heat conduction to the top plate 28.
If it is applied to the object to be heated 29 via, it is possible to cover the decrease in the heating efficiency. As described above, the increase in loss due to the heat generation of the electric conductor 27 is reduced by the decrease in the loss of other portions because the current of the heating coil 21 is reduced in terms of the heating efficiency of the entire device.

【0045】また、電気導体27には、スリット27a
を設けている。このスリット27aを設け無いほうが等
価直流抵抗(Rs)を増加する作用が大きい。しかしな
がら、この場合には、電気導体27に誘導される電流量
が多いため発熱量が極めて大きく加熱効率の低下も大き
い。スリット27aを設けることで、このスリット27
aを設けない場合より等価直流抵抗は小さくなるが、電
気導体27に誘起される加熱コイル21の電流と逆方向
の略平行な加熱コイル21の中心の周りを周回するよう
に流れる周回電流が流れないようにし、分布の異なる誘
導電流を電気導体27内に分布せしめるものである。こ
れにより、電気導体27の発熱を抑制するとともに、等
価直流抵抗を増加させる作用を生じさせるものである。
The electric conductor 27 has a slit 27a.
Is provided. The effect of increasing the equivalent DC resistance (Rs) is greater when the slit 27a is not provided. However, in this case, since the amount of current induced in the electric conductor 27 is large, the amount of heat generated is extremely large and the heating efficiency is greatly reduced. By providing the slit 27a, the slit 27a
Although the equivalent DC resistance is smaller than when a is not provided, a circulating current that flows so as to circulate around the center of the heating coil 21 that is substantially parallel to the current induced in the electric conductor 27 in the opposite direction flows. This is done so that the induced currents having different distributions are distributed in the electric conductor 27. This suppresses the heat generation of the electric conductor 27 and causes the effect of increasing the equivalent DC resistance.

【0046】導電膜32は加熱コイル22の上部に近接
して設けられ、コンデンサ34を介して、商用電源電
位、インバータの入力電位となる電源電流整流器の出力
電位、またはアース電位に接続されるので加熱コイル2
1から使用者に漏洩するリーク電流を低減することがで
きる。しかしながら、この導電膜32は膜圧が薄く電気
伝導率も低いので、誘導電流の発生量が極めて少なく、
加熱コイル21から発生する磁界の分布を変える作用は
ほとんどないので、電気導体27のような等価直列抵抗
の増加作用、加熱コイル電流の低減作用、そして浮力低
減作用はほとんど得られない。
Since the conductive film 32 is provided in the vicinity of the upper part of the heating coil 22 and is connected to the commercial power source potential, the output potential of the power source current rectifier serving as the input potential of the inverter, or the ground potential via the capacitor 34. Heating coil 2
It is possible to reduce the leakage current leaked from the user to the user. However, since the conductive film 32 has a thin film pressure and a low electric conductivity, the amount of induced current generated is extremely small,
Since there is almost no effect of changing the distribution of the magnetic field generated from the heating coil 21, the effect of increasing the equivalent series resistance like the electric conductor 27, the effect of reducing the heating coil current, and the effect of reducing buoyancy are hardly obtained.

【0047】図5は、上記第1の実施例における電気導
体の厚みと浮力に関する傾向である。加熱コイル21か
らの磁束を遮蔽する場合に必要な厚みは浸透深さ以上必
要であり、本実施例の場合加熱コイル21に流れる電流
の周波数は70kHzであり、材質をアルミニウムとし
た場合浸透深さはδ=0.3mm程度となる。従って電
気導体27の厚み浸透深さ以上にすることにより、浮力
低減の効果を大きく得ることが可能となる。発明者らは
実験により、浸透深さよりもやや大きく約1mm程度に
すると十分な浮力低減の効果が得られることを確認して
いる。
FIG. 5 shows the tendency of the thickness and buoyancy of the electric conductor in the first embodiment. The thickness required to shield the magnetic flux from the heating coil 21 must be equal to or greater than the penetration depth. In the present embodiment, the frequency of the current flowing through the heating coil 21 is 70 kHz, and the penetration depth when the material is aluminum. Is about δ = 0.3 mm. Therefore, by setting the thickness of the electric conductor 27 to be greater than the depth of penetration, it is possible to obtain a large effect of reducing the buoyancy. The inventors have confirmed through experiments that a sufficient buoyancy reduction effect can be obtained by setting the depth slightly larger than the penetration depth to about 1 mm.

【0048】以上のように、本実施例によれば、アルミ
ニウム製の被加熱物29を誘導加熱可能な加熱コイル2
1と被加熱物29との間に設けられた電気導体27を有
し、電気導体27は加熱コイル21に対向して被加熱物
29を配置した時の加熱コイル21の等価直列抵抗を大
きくするとともに、加熱コイル21の発生する磁界が被
加熱物29に対して働く浮力を低減する浮力低減機能を
有してなるので、所定の消費電力を得ようとする場合
に、加熱コイル電流値を低減することができ、被加熱物
29に働く浮力を低減するとともに、スイッチング素子
(図示せず)や加熱コイル21に発生する損失を低減し
て冷却が容易になり、アルミニウム、銅、または黄銅な
ど高電気伝導率低透磁率の被加熱物29を加熱できる安
全かつ低価格な誘導加熱調理器を提供することができ
る。
As described above, according to this embodiment, the heating coil 2 capable of inductively heating the object 29 made of aluminum is heated.
1 has an electric conductor 27 provided between the object to be heated 29 and the electric conductor 27 increases the equivalent series resistance of the heating coil 21 when the object to be heated 29 is arranged so as to face the heating coil 21. At the same time, since the magnetic field generated by the heating coil 21 has a buoyancy reducing function for reducing the buoyancy acting on the object to be heated 29, the heating coil current value is reduced when a predetermined power consumption is to be obtained. It is possible to reduce the buoyancy acting on the object to be heated 29 and reduce the loss generated in the switching element (not shown) and the heating coil 21 to facilitate the cooling, and to improve the quality of aluminum, copper or brass. It is possible to provide a safe and low-cost induction heating cooker capable of heating an object to be heated 29 having low electric conductivity and low magnetic permeability.

【0049】また、電気導体27は、加熱コイル21を
スリット27a部以外のほぼ全部に渡って上部で覆うよ
うに、すなわち、電気導体27は加熱コイル21におけ
る被加熱物29側の面の一部または全部と対向し板状に
形成されてなることにより、加熱コイル21から発生す
る磁界の一部を被加熱物29に到達する前に、電気導体
27に効率良く鎖交させ、電気導体27の周囲から迂回
して被加熱物29に加熱コイル21に磁界を鎖交させる
ことになる。電気導体27と加熱コイル21との間隔
は、電気導体27と被加熱物29との間隔よりも小さ
く、電気導体27と加熱コイル21との磁気結合が良い
ので、電気導体27に鎖交する磁束量が大きくなり、電
気導体27に誘導電流が分布し加熱コイル21の等価直
列抵抗を大きくするという作用がある。
Further, the electric conductor 27 covers the heating coil 21 almost entirely except the slit 27a by the upper part, that is, the electric conductor 27 is a part of the surface of the heating coil 21 on the side of the object to be heated 29. Alternatively, by being formed in a plate shape so as to face all of them, part of the magnetic field generated from the heating coil 21 is efficiently linked to the electric conductor 27 before reaching the object to be heated 29, and the electric conductor 27 is By detouring from the surroundings, a magnetic field is linked to the heating coil 21 in the object to be heated 29. The distance between the electric conductor 27 and the heating coil 21 is smaller than the distance between the electric conductor 27 and the object to be heated 29, and the magnetic coupling between the electric conductor 27 and the heating coil 21 is good. The amount becomes large, and the induced current is distributed in the electric conductor 27, which has the effect of increasing the equivalent series resistance of the heating coil 21.

【0050】また、加熱コイル21から出て、電気導体
27を迂回した、通り抜けた、あるいは鎖交しなかった
磁界が、被加熱物29に到達することにより、被加熱物
29を誘導加熱するので、加熱コイル21の等価直列抵
抗が増加し、加熱コイル電流低減作用と被加熱物に働く
浮力低減作用を大きくすることができる。
Further, the magnetic field, which has exited from the heating coil 21 and has bypassed, passed through, or is not interlinked with the electric conductor 27, reaches the object to be heated 29, so that the object to be heated 29 is induction-heated. The equivalent series resistance of the heating coil 21 is increased, and the effect of reducing the heating coil current and the effect of reducing the buoyancy acting on the object to be heated can be increased.

【0051】なお、本実施例では、加熱コイル21のほ
ぼ全部と対向するように電気導体27の大きさを決めた
が、電気導体27の板の面積は大きいほど、また電気導
体27が加熱コイル21に近いほど電気導体27に加熱
コイル21の磁束が多く通過し、等価直列抵抗増加作用
を大きくすることができることから、電気導体27の表
面積は、必要とする浮力低減効果を得るように、また、
電気導体27と加熱コイル21間の距離、電気導体27
の発熱等の条件を考慮して決めれば良い。
In the present embodiment, the size of the electric conductor 27 is determined so as to face almost all of the heating coil 21, but the larger the plate area of the electric conductor 27, the more the electric conductor 27 is heated. The closer to 21, the more magnetic flux of the heating coil 21 passes through the electric conductor 27, and the effect of increasing the equivalent series resistance can be increased. ,
The distance between the electric conductor 27 and the heating coil 21, the electric conductor 27
It may be determined in consideration of the conditions such as heat generation of.

【0052】また、電気導体27に開口37を設けて、
加熱コイル21の中央部近傍を覆わないようにしたこと
により、中央部近傍を、加熱コイル21から発生して被
加熱物29へ鎖交させる磁界の経路とするよう集中さ
せ、当該電気導体を付設することに伴う加熱効率の大幅
な低下を抑制するものである。
Further, an opening 37 is provided in the electric conductor 27,
By not covering the vicinity of the central portion of the heating coil 21, the central portion is concentrated so as to be the path of the magnetic field generated from the heating coil 21 and linked to the object to be heated 29, and the electric conductor is attached. It is intended to prevent the heating efficiency from significantly lowering.

【0053】また、電気導体板27にスリット27aを
設けてなることにより、加熱コイル21の発生する磁界
により電気導体27に誘導される電流の向き及び大きさ
を変え、被加熱物29に作用する浮力の低減効果をある
程度保持しながら、電気導体27に発生する発熱量を低
減することができる。すなわち電気導体27に誘導され
る加熱コイル21に流れる電流と逆方向に流れる周回電
流は、スリット27aにより遮断し電流分布を変えるこ
とが可能なので大電流の発生が無くなり、発熱量を低減
できる。ただ、その場合に被加熱物29への浮力低減効
果がある程度低下する。スリット27aの形状、加熱コ
イルが鎖交する面積、電気導体の材質などにより、等価
直列抵抗の大きさと電気導体27の発熱量が異なるの
で、これらの要素の組み合わせで最適なものを選択し
て、浮力の低減効果をできるだけ大きく、電気導体27
の発熱量を許容できるようなレベルとする組み合わせを
決定すれば良い。さらに、この電気導体27は複数の電
気導体に分離されないので組み立て時等の場合における
取り扱いが容易である。
Further, since the slit 27a is provided in the electric conductor plate 27, the direction and magnitude of the current induced in the electric conductor 27 by the magnetic field generated by the heating coil 21 is changed, and acts on the object to be heated 29. It is possible to reduce the amount of heat generated in the electric conductor 27 while maintaining the effect of reducing buoyancy to some extent. That is, the circulating current flowing in the opposite direction to the current flowing in the heating coil 21 induced in the electric conductor 27 can be blocked by the slit 27a and the current distribution can be changed, so that a large current is not generated and the amount of heat generation can be reduced. However, in that case, the effect of reducing the buoyancy of the object to be heated 29 is reduced to some extent. Since the size of the equivalent series resistance and the heat generation amount of the electric conductor 27 are different depending on the shape of the slit 27a, the area where the heating coils are interlinked, the material of the electric conductor, etc., the optimum one is selected by combining these elements. The electrical conductor 27
It suffices to determine a combination that has a level that allows the amount of heat generated by the above. Furthermore, since the electric conductor 27 is not separated into a plurality of electric conductors, it is easy to handle when assembling.

【0054】また、電気導体27は、その厚みを加熱コ
イル電流により誘導される高周波電流の浸透深さよりも
大としてなるので、電気導体27に誘導電流が十分多く
発生し、加熱コイル21からの磁界が通過せず磁界分布
を大きく変える作用が得られることにより、形状を工夫
することにより上記の等価直列抵抗を増加させる作用を
確実に得ることができるものである。
Further, since the electric conductor 27 has a thickness larger than the penetration depth of the high frequency current induced by the heating coil current, a sufficiently large amount of induced current is generated in the electric conductor 27, and the magnetic field from the heating coil 21 is generated. The effect of significantly changing the magnetic field distribution without passing through can be obtained without fail by properly devising the shape.

【0055】また、電気導体27はアルミニウム製であ
るので、低透磁率であり磁束がその電気導体27に吸収
されにくく(被加熱物に到達しない磁束量が多くならな
い)、かつ電気導体に誘導された電流で磁界の向きが変
更されるので、電気導体27内を通過させ被加熱物29
に鎖交させるか、または電気導体27を迂回させ被加熱
物29に鎖交させるかのいずれかの経路で、磁束を効率
的に被加熱物29に鎖交させることができ、加熱効率の
低下を抑制しながら等価直列抵抗を大きくすることがで
きる。
Further, since the electric conductor 27 is made of aluminum, it has a low magnetic permeability, and it is difficult for the magnetic flux to be absorbed by the electric conductor 27 (the amount of magnetic flux that does not reach the object to be heated does not increase) and is induced in the electric conductor. Since the direction of the magnetic field is changed by the generated current, it is passed through the electric conductor 27 and the object to be heated 29
The magnetic flux can be efficiently linked to the object to be heated 29 through either the path to the object to be heated 29 or the path to the object to be heated 29 by bypassing the electric conductor 27, and the heating efficiency is lowered. It is possible to increase the equivalent series resistance while suppressing the above.

【0056】また、電気導体27はアルミニウム製であ
り、高電気伝導率の材料であるので加熱コイル21の磁
束が鎖交することにより、誘導電流で磁界の向きや分布
が変更される程度が大きくなり、被加熱物29における
誘導電流の分布の変化および、電気導体27における電
流の発生による、等価直列抵抗を増加させる効果を大き
くし、かつ電気導体27自身の誘導電流による発熱を抑
制することができる。
Further, since the electric conductor 27 is made of aluminum and is made of a material having high electric conductivity, the magnetic flux of the heating coil 21 is interlinked, so that the direction and distribution of the magnetic field are largely changed by the induced current. Therefore, it is possible to increase the effect of increasing the equivalent series resistance due to the change of the distribution of the induced current in the object to be heated 29 and the generation of the current in the electric conductor 27, and to suppress the heat generation due to the induced current of the electric conductor 27 itself. it can.

【0057】また、加熱コイル21を収納する本体と、
加熱コイル21と被加熱物29との間に位置すべく前記
本体に固定された絶縁体28とを有し、電気導体27
は、前記絶縁体28の加熱コイル21側に設けたことに
より、電気導体27を加熱コイル21に近づけて、加熱
コイル21との磁気結合を大きくして、等価直列抵抗を
大きくし易い、動作中に加熱コイル21の磁界で電気導
体27に誘導される電流の作用により電気導体27が発
熱する場合があるが、絶縁体28表面に電気導体27が
露出せず、電気導体27に直接手が触れて火傷する恐れ
が少ない、あるいは絶縁体28の表面が凸凹しないこと
から見栄えが良いなどの効果を奏する。
Also, a main body for accommodating the heating coil 21,
An insulator 28 fixed to the main body so as to be located between the heating coil 21 and the object to be heated 29, and an electric conductor 27.
Is provided on the heating coil 21 side of the insulator 28, so that the electric conductor 27 is brought close to the heating coil 21, magnetic coupling with the heating coil 21 is increased, and the equivalent series resistance is easily increased. In some cases, the electric conductor 27 may generate heat due to the action of the current induced in the electric conductor 27 by the magnetic field of the heating coil 21, but the electric conductor 27 is not exposed on the surface of the insulator 28, and the electric conductor 27 is directly touched. It is less likely to be burnt due to burns, or the surface of the insulator 28 is not uneven, so that the appearance is good.

【0058】また、加熱コイル21下方に放射状に設け
た高透磁率の磁性体であるフェライトコアを四本備え、
これらのフェライトコアは電気導体の外周より外側に被
加熱物の方向に立ち上がる立ち上がり部を設けたことに
より、加熱コイル21から出た磁束が加熱コイル21外
側周囲に広がらないようにして効率良く被加熱物29に
磁束が鎖交するようにして加熱効率を高めるとともに、
フェライトコア23a〜26aの立ち上がり部から出る
磁束が電気導体27に突き当たらないようにして電気導
体27の発熱を抑制するものである。
Further, four ferrite cores, which are magnetic bodies having a high magnetic permeability, are provided radially below the heating coil 21, and
These ferrite cores are provided with a rising portion that rises in the direction of the object to be heated outside the outer periphery of the electric conductor, so that the magnetic flux emitted from the heating coil 21 does not spread around the outside of the heating coil 21 and is efficiently heated. While increasing the heating efficiency by making the magnetic flux interlink with the object 29,
The magnetic flux generated from the rising portions of the ferrite cores 23a to 26a is prevented from hitting the electric conductor 27 to suppress heat generation of the electric conductor 27.

【0059】また、電気導体27は中央部に開口37を
設けるとともに、加熱コイル下方に設けた高透磁率の棒
状フェライトコア23b〜26bを設け、前記フェライ
トコア23b〜26bは電気導体27の開口37周部3
7aより中央側に被加熱物29の方向に立ち上がる立ち
上がり部23c〜26cを設けたことにより、フェライ
トコアの立ち上がり部23c〜26cから出る磁束が電
気導体27に突き当たらないようにして加熱コイル21
からの磁束を効率良く被加熱物29に導き加熱効率を高
めることができる。
Further, the electric conductor 27 is provided with an opening 37 in the central portion thereof, and rod-shaped ferrite cores 23b to 26b of high magnetic permeability are provided below the heating coil. The ferrite cores 23b to 26b are provided with the opening 37 of the electric conductor 27. Circumference 3
By providing the rising portions 23c to 26c rising in the direction of the object to be heated 29 on the center side of 7a, the magnetic flux emitted from the rising portions 23c to 26c of the ferrite core is prevented from hitting the electric conductor 27 and the heating coil 21
It is possible to efficiently guide the magnetic flux from to the object to be heated 29 and improve the heating efficiency.

【0060】また、サーミスタ35に鎖交する磁束を抑
制してサーミスタ35の検知回路にノイズを誘導しにく
くすることもできる。
Further, it is possible to suppress the magnetic flux interlinking with the thermistor 35 to make it difficult to induce noise in the detection circuit of the thermistor 35.

【0061】なお、本実施例では、加熱コイル21下方
に設けた高透磁率の棒状フェライトコア23b〜26b
の両端をフェライトコア23a〜26a、及びフェライ
トコア23c〜26cにより略垂直に立ち上げている
が、この立ち上げ角度はこれにかぎるものではない。
In this embodiment, the rod-shaped ferrite cores 23b to 26b having a high magnetic permeability provided below the heating coil 21.
The both ends of are raised substantially vertically by the ferrite cores 23a to 26a and the ferrite cores 23c to 26c, but the raising angle is not limited to this.

【0062】また、電気導体27は、被加熱物29とセ
ラミック製天板28より電気的に絶縁されているが熱的
に接続されてなるので電気導体27が発熱する場合には
その熱の一部が天板28を介して被加熱物29に伝わり
電気導体27の発熱による加熱効率の低減を抑制するこ
とができる。
The electric conductor 27 is electrically insulated from the object to be heated 29 and the ceramic top plate 28, but is thermally connected. Therefore, when the electric conductor 27 generates heat, one of the heat is removed. It is possible to suppress a decrease in heating efficiency due to heat generation of the electric conductor 27 by transmitting the portion to the object to be heated 29 via the top plate 28.

【0063】(実施例2)図6は、本発明の第2の実施
例における誘導加熱装置の断面を模式的に示す図であ
る。
(Embodiment 2) FIG. 6 is a diagram schematically showing a cross section of an induction heating apparatus according to a second embodiment of the present invention.

【0064】図で40は電気導体、41は約70kHz
の高周波電流が供給され、高周波磁界を発生する加熱コ
イル、42は加熱コイル41下面に対向して配置され、
加熱コイル40からの高周波磁界を効率よく被加熱物4
3へ供給するための磁性体で、具体的にはフェライトを
用いている。被加熱物43は、本実施例の場合、高電気
伝導率(高導電率)かつ低透磁率のアルミニウムまたは
銅としている。
In the figure, 40 is an electric conductor, 41 is about 70 kHz.
Is supplied with a high-frequency current and generates a high-frequency magnetic field. The heating coil 42 is arranged to face the lower surface of the heating coil 41.
The high-frequency magnetic field from the heating coil 40 can be efficiently heated by the object 4
3 is a magnetic substance for supplying to No. 3, specifically, ferrite is used. In the case of the present embodiment, the object 43 to be heated is made of aluminum or copper having high electric conductivity (high electric conductivity) and low magnetic permeability.

【0065】電気導体40の形状を図7に示す。電気導
体40は、略円盤状で厚み約1mmのアルミニウム板を
ベースとし、さらに放射状に切り欠き40aを4箇所設
けている。このように電気導体40に切り欠き40aを
設けることにより、加熱コイル40の電流の流れに対し
て電気伝導率が不連続となるようにして、電気導体40
に加熱コイル41に周回するように流れる電流(図7の
破線Aで模式的に示す)の流れの向きと異なる(平行で
ない)方向に誘導電流が流れるようにしている。
The shape of the electric conductor 40 is shown in FIG. The electric conductor 40 is based on an aluminum plate having a substantially disc shape and a thickness of about 1 mm, and further has radial notches 40a at four positions. By providing the notch 40a in the electric conductor 40 in this way, the electric conductivity is discontinuous with respect to the current flow of the heating coil 40, and the electric conductor 40
In addition, the induced current is made to flow in a direction (not parallel) different from the direction of the flow of the current (schematically shown by the broken line A in FIG. 7) flowing around the heating coil 41.

【0066】加熱コイル41に高周波電流が供給された
時の電気導体40に誘導される大きな電流の流れを図7
の実線矢印Bに模式的に示す。図に示すように放射状切
り欠き40a部分に電流が誘導されないため、加熱コイ
ル41から発生する磁界が透過する。誘導された渦電流
の電流密度の大きい部分はこの部分を回避し、クローバ
ー状に蛇行したような分布(図7の実線Bで模式的に示
す)となる。
FIG. 7 shows the flow of a large current induced in the electric conductor 40 when a high frequency current is supplied to the heating coil 41.
The solid line arrow B in FIG. As shown in the figure, since no current is induced in the radial cutout 40a, the magnetic field generated from the heating coil 41 is transmitted. A portion where the induced eddy current has a large current density avoids this portion and has a clover-like meandering distribution (schematically shown by a solid line B in FIG. 7).

【0067】一方、電気導体40により、加熱コイル4
1の磁界は遮蔽され、迂回して被加熱物43に到達し、
切り欠き40aのところでは、加熱コイル41の磁界は
通過して被加熱物43に到達する。したがって、従来被
加熱物43において、加熱コイル41に流れる電流とほ
ぼ平行な向きに周回するように分布して発生し、大きな
反発力となっていた渦電流の分布と異なるものとなる。
On the other hand, by the electric conductor 40, the heating coil 4
The magnetic field of 1 is shielded, bypasses and reaches the object 43 to be heated,
At the notch 40a, the magnetic field of the heating coil 41 passes through and reaches the object 43 to be heated. Therefore, the distribution of the eddy current, which is generated in the conventional object 43 to be distributed so as to circulate in a direction substantially parallel to the current flowing through the heating coil 41 and has a large repulsive force, is different from the distribution of the eddy current.

【0068】上記のように、電気導体40に加熱コイル
41の磁界を照射し、一部の磁界を迂回させて被加熱物
43に鎖交させ、被加熱物43において加熱コイル41
電流に対向した誘導電流分布が発生することを抑制し
て、等価直流抵抗を増加させるとともに、電気導体40
においても、切り欠き40aを設けることにより発熱を
防止することができる。
As described above, the magnetic field of the heating coil 41 is radiated to the electric conductor 40 so that a part of the magnetic field is circumvented and linked to the object 43 to be heated.
The generation of an induced current distribution opposed to the current is suppressed, the equivalent DC resistance is increased, and the electric conductor 40
Also in the above, heat generation can be prevented by providing the notch 40a.

【0069】切り欠き40aのある電気導体40を設け
た場合の等価直流抵抗の大きくなる度合いは、切り欠き
40aのない電気導体40を設けた場合に比して少なく
なるが、電気導体40がない場合に対する増加効果自体
は維持される。従って、同一消費電力を得る場合におい
て、加熱コイル41に流れる電流が減少して被加熱物4
3に作用する浮力が低減できるとともに、電気導体40
の発熱を抑制することができるものである。
The degree of increase in the equivalent DC resistance in the case where the electric conductor 40 having the notch 40a is provided is smaller than that in the case where the electric conductor 40 having the notch 40a is provided, but the electric conductor 40 is not provided. The increasing effect itself against the case is maintained. Therefore, when the same power consumption is obtained, the current flowing through the heating coil 41 decreases and
The buoyancy acting on 3 can be reduced and the electric conductor 40
It is possible to suppress the heat generation.

【0070】以上のように、本実施例によれば、電気導
体40も誘導加熱され発熱するが、電気導体40の固有
抵抗や切り欠きの形状を最適化することにより、等価直
列抵抗を大きくし、電気導体40の発熱を低減しつつ、
被加熱物43への入力電力を大とすることが可能であ
る。
As described above, according to this embodiment, the electric conductor 40 also heats due to induction heating, but by optimizing the specific resistance of the electric conductor 40 and the shape of the notch, the equivalent series resistance is increased. , While reducing the heat generation of the electrical conductor 40,
It is possible to increase the input power to the object to be heated 43.

【0071】また、電気導体40を挿入した場合、加熱
コイル41の等価直列抵抗が上昇するため、同じ入力電
力を得る場合、加熱コイル41に流す電流が少なくする
こともできるので、加熱コイル41の損失が低減し、さ
らに図示しない高周波電流を供給するインバータ回路の
損失も低減することが可能となる。
Further, when the electric conductor 40 is inserted, the equivalent series resistance of the heating coil 41 rises. Therefore, when the same input power is obtained, the current flowing through the heating coil 41 can be reduced. It is possible to reduce the loss and further reduce the loss of the inverter circuit that supplies the high frequency current (not shown).

【0072】発明者らの測定によれば、被加熱物43
が、φ240mmのアルミニウム鍋とし、加熱コイル4
1の外径φ180mm、内径φ50mm、加熱コイル4
1と被加熱物43との距離8mmの条件において、等価
直列抵抗は電気導体40がない場合約1.0Ω程度、電
気導体40がある場合、1.7Ω程度であった。これに
より加熱コイル41に流れる電流は1600W入力で3
6Armsから29Armsに低減できた。本実施例の
場合加熱コイル41の高周波抵抗は70kHz、常温
0.16Ωであるので、損失は常温で約207Wから1
35Wに低減したものと推定できる。
According to the measurement by the inventors, the object to be heated 43
Is a φ240mm aluminum pan, heating coil 4
1, outer diameter φ180 mm, inner diameter φ50 mm, heating coil 4
Under the condition that the distance between 1 and the object to be heated 43 was 8 mm, the equivalent series resistance was about 1.0 Ω without the electric conductor 40 and about 1.7 Ω with the electric conductor 40. As a result, the current flowing in the heating coil 41 is 3 at 1600 W input.
It was possible to reduce from 6 Arms to 29 Arms. In the case of this embodiment, since the high frequency resistance of the heating coil 41 is 70 kHz and the room temperature is 0.16Ω, the loss is about 207 W to 1 at room temperature.
It can be estimated that the power consumption has been reduced to 35W.

【0073】また、電気導体の切り欠き40aの形状を
放射状に電気伝導率が低くなるようなものとしたが、こ
の形状に限定されるものでなく、加熱コイルに流れる電
流に誘起して発生し周回するように流れる渦電流の分布
を阻害する作用のある形状であれば同様の効果が得られ
るものである。
Further, the shape of the cutout 40a of the electric conductor is such that the electric conductivity is radially reduced, but the shape is not limited to this shape, and it is generated by being induced by the current flowing in the heating coil. The same effect can be obtained as long as the shape has an effect of obstructing the distribution of the eddy current that flows so as to circulate.

【0074】また、被加熱物43がアルミニウムや銅の
単一材料で形成されず、一層目が例えば0.1mm厚み
の非磁性ステンレス、2層目が1mm厚みのアルミニウ
ムといった多層構造となっている場合においても、1層
目の非磁性ステンレスは薄いために実質2層目のアルミ
ニウムを加熱することと等価となるので、上記のように
電気導体40は同様な効果を奏することができる。
The object 43 to be heated is not formed of a single material such as aluminum or copper, and has a multi-layer structure in which the first layer is, for example, 0.1 mm thick non-magnetic stainless steel, and the second layer is 1 mm thick aluminum. Also in this case, since the nonmagnetic stainless steel of the first layer is thin, it is equivalent to heating the aluminum of the second layer, so that the electric conductor 40 can achieve the same effect as described above.

【0075】(実施例3)図8は、本発明の第3の実施
例における電気導体40と加熱コイル41を示す平面図
である。断面図は図6と同様である。図8で電気導体4
0は厚み約1mm、幅約10mm、長さ約70mmのア
ルミニウム板で形成され、これらを8枚、間隔を設けて
放射状に配置している。本配置により、電気導体40が
ない部分の電気伝導率は略ゼロとなるため、加熱コイル
41の電流が流れる方向に電気伝導率が不連続な状態を
簡単に実現できるものである。
(Embodiment 3) FIG. 8 is a plan view showing an electric conductor 40 and a heating coil 41 in a third embodiment of the present invention. The cross-sectional view is similar to FIG. In FIG. 8, electrical conductor 4
0 is formed of an aluminum plate having a thickness of about 1 mm, a width of about 10 mm, and a length of about 70 mm, and eight of these are arranged radially with intervals. With this arrangement, the electric conductivity of the portion without the electric conductor 40 becomes substantially zero, so that it is possible to easily realize a state in which the electric conductivity is discontinuous in the direction in which the current of the heating coil 41 flows.

【0076】図8において電気導体(アルミニウム板)
40の存在する部分では、加熱コイル41から発生する
磁界が遮蔽され一部は電気導体40に吸収され電気導体
40に電流が誘導され、他は迂回して被加熱物43(図
6)に鎖交する。
In FIG. 8, an electric conductor (aluminum plate)
In the portion where 40 exists, the magnetic field generated from the heating coil 41 is shielded, a part is absorbed by the electric conductor 40 and a current is induced in the electric conductor 40, and the other is bypassed and chained to the object to be heated 43 (FIG. 6). Cross.

【0077】以上のように本実施例においては複数の電
気導体40を配置することにより、電気導体40に誘導
電流を発生させるとともに、被加熱物43に流れる渦電
流(誘導電流)の向きや密度分布を加熱コイル41に流
れる電流と異なる形にすることが可能となる。この結
果、被加熱物43に鎖交する磁界分布を変更し加熱コイ
ルの等価直列抵抗大きくすることができるとともに、電
気導体40の温度上昇を抑制することができる。
As described above, in the present embodiment, by disposing a plurality of electric conductors 40, an induced current is generated in the electric conductor 40, and the direction and density of the eddy current (induced current) flowing in the object to be heated 43 are generated. It is possible to make the distribution different from the current flowing through the heating coil 41. As a result, it is possible to change the magnetic field distribution interlinking with the object to be heated 43 to increase the equivalent series resistance of the heating coil and to suppress the temperature rise of the electric conductor 40.

【0078】尚、本実施例では放射状に電気導体40を
配置する構成としたが、これに限定されるものでなく例
えば図9に示すような電気導体である四角形状の板44
を4つ加熱コイル45上方に並べる構成などとしてもよ
い。
Although the electric conductors 40 are arranged radially in this embodiment, the present invention is not limited to this, and the rectangular plate 44 is an electric conductor as shown in FIG. 9, for example.
It is also possible to have a configuration in which four heating coils 45 are arranged above.

【0079】また、図8で電気導体40の本数を8本と
したが、本数を少なくすれば浮力低減の効果が小とな
り、多くすれば浮力低減の効果が大となる傾向にある。
また本数を増やすと電気導体のトータルの損失が大とな
るため、最適な本数に設計する必要があり、本実施例の
場合6〜8本程度が効果的である。材質はアルミニウム
としたがこれに限定されるものでなく、例えば銅、黄銅
といった材料でも同様の効果が得られる。
Although the number of the electric conductors 40 is eight in FIG. 8, the effect of reducing the buoyancy tends to be small when the number is small, and the effect of reducing the buoyancy tends to be large when the number is large.
Moreover, since the total loss of the electric conductor becomes large when the number is increased, it is necessary to design the optimum number. In the case of this embodiment, about 6 to 8 is effective. The material is aluminum, but the material is not limited to this, and similar effects can be obtained with materials such as copper and brass.

【0080】(実施例4)図10は、本発明の第4の実
施例における誘導加熱装置の要部断面図である。図で電
気導体49は絶縁体53と被加熱物52の間に設けられ
ている。絶縁体53は誘導加熱調理器であれば、例え
ば、加熱コイル50、フェライトコア51、あるいはこ
れらを駆動するインバータ(図示せず)等を収納してい
る機器本体の上部に固定され、被加熱物52を加熱する
ために載置するために設けるセラミック製の天板に対応
する。
(Embodiment 4) FIG. 10 is a sectional view of the essential parts of an induction heating apparatus according to the fourth embodiment of the present invention. In the figure, the electric conductor 49 is provided between the insulator 53 and the object 52 to be heated. If the insulator 53 is an induction heating cooker, for example, the heating coil 50, the ferrite core 51, or an inverter (not shown) that drives these is fixed to the upper part of the main body of the device that houses the object to be heated. It corresponds to a ceramic top plate provided to mount 52 for heating.

【0081】本実施例においては、電気導体49は任意
に取り外しが可能になるため、被加熱物52が、例えば
(浮力によるずれ、浮きの問題が発生しない程度に)充
分質量が大きい場合や、原理上浮力が問題とならない鉄
などの材料の時に電気導体49の設置が不要となり、か
つ電気導体49の発熱も発生しない。また電気導体49
と被加熱物52を接触させることにより、電気導体49
の発熱を被加熱物52へ効果的に伝達することが可能と
なり、この点においても効率よい加熱が可能となるもの
である。
In this embodiment, the electric conductor 49 can be arbitrarily removed, so that the object 52 to be heated has a sufficiently large mass (to the extent that displacement due to buoyancy or floating does not occur), or When a material such as iron whose buoyancy is not a problem in principle, it is not necessary to install the electric conductor 49, and the electric conductor 49 does not generate heat. Also the electric conductor 49
By contacting the heated object 52 with the electric conductor 49
It is possible to effectively transfer the heat generated by the above to the object 52 to be heated, and in this respect also, efficient heating is possible.

【0082】(実施例5)図11は、本発明の第5の実
施例における誘導加熱装置の断面図である。図で天板2
8上に載置される電気導体54と被加熱物55は機械的
に接続され、一体となっている。57はフェライトコア
である。
(Embodiment 5) FIG. 11 is a sectional view of an induction heating apparatus in a fifth embodiment of the present invention. Top plate 2 in the figure
The electric conductor 54 and the object to be heated 55 placed on the unit 8 are mechanically connected and integrated. 57 is a ferrite core.

【0083】以上より本実施例においては使用時に電気
導体54と被加熱物55を別々に天板28上に載置する
必要がなく、より使い勝手の向上した誘導加熱装置を実
現することができる。尚電気導体54と被加熱物55は
任意に取り付け、取り外しできる構成としてもよい。
As described above, in the present embodiment, it is not necessary to separately mount the electric conductor 54 and the object to be heated 55 on the top plate 28 at the time of use, and an induction heating device with improved usability can be realized. The electric conductor 54 and the object to be heated 55 may be arbitrarily attached and detached.

【0084】また、その時電気導体54を取り外した状
態で加熱して浮かないような重量に電気導体54及びそ
れに付設したものの合計重量を浮力より重くしておけ
ば、加熱しようとした時に電気導体54が被加熱物55
を押し上げる力が働かず被加熱物54がさらに浮きにく
くなり安全である。
At that time, if the total weight of the electric conductor 54 and those attached thereto is made heavier than the buoyancy so that the electric conductor 54 does not float when heated with the electric conductor 54 removed, when the electric conductor 54 is heated, Is heated 55
Since the force for pushing up is not exerted, the object to be heated 54 becomes more difficult to float, which is safe.

【0085】(実施例6)図12は、本発明の第6の実
施例における誘導加熱装置の断面図である。図で58は
被加熱物59の温度を間接的に検出する温度検出手段
で、具体的にはサーミスタを用いている。
(Embodiment 6) FIG. 12 is a sectional view of an induction heating apparatus in a sixth embodiment of the present invention. In the figure, reference numeral 58 is a temperature detecting means for indirectly detecting the temperature of the object to be heated 59, and specifically, a thermistor is used.

【0086】温度検出手段59は、絶縁体61と電気導
体60を介して被加熱物59の温度を検出するので、電
気導体60が集熱板の役割を果たすため、例えば被加熱
物59の底面が反っていた場合においても、応答性良く
被加熱物59の温度上昇を検出することができる。ま
た、電気導体60が発熱していても精度良く検知できる
ので、電気導体60が高温である旨の表示を精度良く行
うことができる。
Since the temperature detecting means 59 detects the temperature of the object 59 to be heated through the insulator 61 and the electric conductor 60, the electric conductor 60 plays the role of a heat collecting plate. Even when the warp is warped, the temperature rise of the object to be heated 59 can be detected with good responsiveness. Further, even if the electric conductor 60 is generating heat, the electric conductor 60 can be detected with high accuracy, so that it can be accurately displayed that the electric conductor 60 is at a high temperature.

【0087】以上のように、本実施例によれば、絶縁体
61の加熱コイル62側に温度検出手段を有し、電気導
体60は絶縁体60を介して温度検出手段と熱的に接続
されてなることにより、被加熱物59の底が平坦でない
場合にも電気導体60が被加熱物59の裏面の熱を効率
よく集めて温度検出手段に伝えることができるので、加
熱コイル電流低減効果及び浮力低減効果を奏するととも
に被加熱物59の温度制御性能、あるいは火傷防止表示
機能が良好となるものである。
As described above, according to this embodiment, the temperature detecting means is provided on the heating coil 62 side of the insulator 61, and the electric conductor 60 is thermally connected to the temperature detecting means via the insulator 60. By doing so, even if the bottom of the object to be heated 59 is not flat, the electric conductor 60 can efficiently collect the heat of the back surface of the object to be heated 59 and transfer it to the temperature detecting means, so that the heating coil current reducing effect and In addition to the effect of reducing buoyancy, the temperature control performance of the object 59 to be heated or the burn prevention display function is improved.

【0088】[0088]

【発明の効果】以上のように、本発明によれば、アルミ
ニウムや銅など低透磁率かつ高電気伝導率の材質の被加
熱物を加熱可能で、加熱時における加熱コイル等の内部
部品損失及び被加熱物に働く浮力の低減が可能な誘導加
熱装置を実現できるものである。
As described above, according to the present invention, it is possible to heat an object to be heated made of a material having a low magnetic permeability and a high electric conductivity, such as aluminum or copper, and to prevent loss of internal parts such as a heating coil during heating. It is possible to realize an induction heating device capable of reducing the buoyancy acting on an object to be heated.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の第1の実施例における誘導加熱装置の
要部斜視図
FIG. 1 is a perspective view of an essential part of an induction heating device according to a first embodiment of the present invention.

【図2】本発明の第1の実施例における誘導加熱装置の
要部断面図
FIG. 2 is a cross-sectional view of the main parts of the induction heating device according to the first embodiment of the present invention.

【図3】本発明の第1の実施例における誘導加熱装置の
加熱コイルの等価直列抵抗と浮力の相関を示す図
FIG. 3 is a diagram showing a correlation between the equivalent series resistance of the heating coil of the induction heating device and the buoyancy in the first embodiment of the present invention.

【図4】本発明の第1の実施例における誘導加熱装置の
加熱コイルの等価直列抵抗と加熱コイル電流値の相関を
示す図
FIG. 4 is a diagram showing the correlation between the equivalent series resistance of the heating coil of the induction heating device and the heating coil current value in the first example of the present invention.

【図5】本発明の第1の実施例における誘導加熱装置の
電気導体の厚みと被加熱体に作用する浮力の相関を示す
FIG. 5 is a diagram showing the correlation between the thickness of the electric conductor of the induction heating device and the buoyancy acting on the object to be heated in the first embodiment of the present invention.

【図6】本発明の第2の実施例における誘導加熱装置の
要部断面図
FIG. 6 is a cross-sectional view of an essential part of an induction heating device according to a second embodiment of the present invention.

【図7】本発明の第2の実施例における誘導加熱装置の
電気導体に流れる電流を示す図
FIG. 7 is a diagram showing a current flowing through an electric conductor of the induction heating device according to the second embodiment of the present invention.

【図8】本発明の第3の実施例における誘導加熱装置の
電気導体を示す要部平面図
FIG. 8 is a plan view of an essential part showing an electric conductor of an induction heating device according to a third embodiment of the present invention.

【図9】本発明の第3の実施例における誘導加熱装置の
他の電気導体を示す要部平面図
FIG. 9 is a main part plan view showing another electric conductor of the induction heating apparatus in the third embodiment of the present invention.

【図10】本発明の第4の実施例における誘導加熱装置
の誘導加熱装置の要部断面図
FIG. 10 is a cross-sectional view of an essential part of the induction heating device of the induction heating device according to the fourth embodiment of the present invention.

【図11】本発明の第5の実施例における誘導加熱装置
の要部断面図
FIG. 11 is a sectional view of an essential part of an induction heating device according to a fifth embodiment of the present invention.

【図12】本発明の第6の実施例における誘導加熱装置
の要部断面図
FIG. 12 is a sectional view of an essential part of an induction heating device according to a sixth embodiment of the present invention.

【図13】従来の誘導加熱装置の要部断面図FIG. 13 is a sectional view of a main part of a conventional induction heating device.

【図14】従来の誘導加熱装置の入力電力と浮力の相関
FIG. 14 is a correlation diagram of input power and buoyancy of a conventional induction heating device.

【図15】従来の誘導加熱装置の加熱コイルと被加熱物
に流れる電流を示す図
FIG. 15 is a diagram showing a current flowing through a heating coil of a conventional induction heating device and an object to be heated.

【符号の説明】 29、43、52、55、59 被加熱物 21、41、45、50、56、62 加熱コイル 27、40、44、46、49、54、60 電気導体 37 開口 28、53、61 天板(絶縁体) 58 温度検知手段[Explanation of symbols] 29, 43, 52, 55, 59 Heated object 21, 41, 45, 50, 56, 62 heating coil 27, 40, 44, 46, 49, 54, 60 electrical conductors 37 opening 28, 53, 61 Top plate (insulator) 58 Temperature detecting means

───────────────────────────────────────────────────── フロントページの続き (72)発明者 宮内 貴宏 大阪府門真市大字門真1006番地 松下電器 産業株式会社内 (72)発明者 藤井 裕二 大阪府門真市大字門真1006番地 松下電器 産業株式会社内 (72)発明者 片岡 章 大阪府門真市大字門真1006番地 松下電器 産業株式会社内 (72)発明者 相原 勝行 大阪府門真市大字門真1006番地 松下電器 産業株式会社内 Fターム(参考) 3K051 AA00 AB06 AD05 AD09 AD39 CD43 CD44    ─────────────────────────────────────────────────── ─── Continued front page    (72) Inventor Takahiro Miyauchi             1006 Kadoma, Kadoma-shi, Osaka Matsushita Electric             Sangyo Co., Ltd. (72) Inventor Yuji Fujii             1006 Kadoma, Kadoma-shi, Osaka Matsushita Electric             Sangyo Co., Ltd. (72) Inventor Akira Kataoka             1006 Kadoma, Kadoma-shi, Osaka Matsushita Electric             Sangyo Co., Ltd. (72) Inventor Katsuyuki Aihara             1006 Kadoma, Kadoma-shi, Osaka Matsushita Electric             Sangyo Co., Ltd. F term (reference) 3K051 AA00 AB06 AD05 AD09 AD39                       CD43 CD44

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 アルミニウム若しくは銅またはこれらと
略同等以上の電気伝導率を有する低透磁率材料からなる
被加熱物を誘導加熱可能な加熱コイルと、前記加熱コイ
ルと前記被加熱物との間に設けられた電気導体とを備
え、前記電気導体は前記加熱コイルに対向して前記被加
熱物を配置した時の前記加熱コイルの等価直列抵抗を大
きくするとともに、前記加熱コイルの発生する磁界が前
記被加熱物に対して働く浮力を低減する浮力低減機能を
有してなる誘導加熱装置。
1. A heating coil capable of inductively heating an object to be heated, which is made of aluminum or copper, or a low magnetic permeability material having an electric conductivity substantially equal to or higher than those, and between the heating coil and the object to be heated. An electric conductor provided, wherein the electric conductor increases the equivalent series resistance of the heating coil when the object to be heated is arranged facing the heating coil, and the magnetic field generated by the heating coil is An induction heating device having a buoyancy reducing function for reducing buoyancy acting on an object to be heated.
【請求項2】 電気導体は加熱コイルの一部または全部
と対向し板状に形成されてなる請求項1に記載の誘導加
熱装置。
2. The induction heating device according to claim 1, wherein the electric conductor faces a part or all of the heating coil and is formed in a plate shape.
【請求項3】 電気導体は加熱コイルの中央部またはそ
の近傍を覆わないようにした請求項2に記載の誘導加熱
装置。
3. The induction heating device according to claim 2, wherein the electric conductor does not cover the central portion of the heating coil or the vicinity thereof.
【請求項4】 電気導体内で、加熱コイル電流の流れる
方向と略平行に周回して流れる誘導電流の分布を制限す
る周回電流制限手段を設けた請求項2または3に記載の
誘導加熱装置。
4. The induction heating device according to claim 2, further comprising a circulating current limiting means for limiting a distribution of an induced current flowing in the electric conductor in a direction substantially parallel to a flowing direction of the heating coil current.
【請求項5】 周回電流制限手段は、電気導体に切り欠
き、開口またはスリットを設けてなる請求項4に記載の
誘導加熱装置。
5. The induction heating device according to claim 4, wherein the circulating current limiting means is provided with a notch, an opening or a slit in the electric conductor.
JP2002298793A 2002-10-11 2002-10-11 Induction heating device Expired - Lifetime JP3465711B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002298793A JP3465711B2 (en) 2002-10-11 2002-10-11 Induction heating device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002298793A JP3465711B2 (en) 2002-10-11 2002-10-11 Induction heating device

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2002066553A Division JP3888190B2 (en) 2002-03-12 2002-03-12 Induction heating device

Publications (2)

Publication Number Publication Date
JP2003272812A true JP2003272812A (en) 2003-09-26
JP3465711B2 JP3465711B2 (en) 2003-11-10

Family

ID=29208268

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002298793A Expired - Lifetime JP3465711B2 (en) 2002-10-11 2002-10-11 Induction heating device

Country Status (1)

Country Link
JP (1) JP3465711B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1811812A1 (en) * 2005-02-04 2007-07-25 Matsushita Electric Industrial Co., Ltd. Induction heater

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7049563B2 (en) * 2003-07-15 2006-05-23 Matsushita Electric Industrial Co., Ltd. Induction cooker with heating coil and electrical conductor

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1811812A1 (en) * 2005-02-04 2007-07-25 Matsushita Electric Industrial Co., Ltd. Induction heater
EP1811812A4 (en) * 2005-02-04 2007-10-24 Matsushita Electric Ind Co Ltd Induction heater
US8129664B2 (en) 2005-02-04 2012-03-06 Panasonic Corporation Induction heater

Also Published As

Publication number Publication date
JP3465711B2 (en) 2003-11-10

Similar Documents

Publication Publication Date Title
US7057144B2 (en) Induction heating device
JP3938197B2 (en) Induction heating device
JP3888190B2 (en) Induction heating device
JP3465712B2 (en) Induction heating device
JP3888290B2 (en) Induction heating device
JP3465711B2 (en) Induction heating device
JP3883478B2 (en) Induction heating device
EP0748577B1 (en) Induction heating element
JP2010129175A (en) Induction heating device
JP3925388B2 (en) Induction heating device
JP3861731B2 (en) Induction heating device
JP4173825B2 (en) Induction heating device
JP4654701B2 (en) Induction heating device
JP4151608B2 (en) Induction heating device
JP4693846B2 (en) Induction heating device
JP4345491B2 (en) Induction heating device
JP2006120336A (en) Induction heating device
JP2004273301A (en) Induction heating device
JP4444068B2 (en) Induction heating device
KR200208038Y1 (en) INDUCTION HEATING &amp; iron system
JP2005149976A (en) Induction heating cooker
JP2006120495A (en) Induction heating cooker
JPH11121156A (en) Attachment for induction, heating cooking device
JP2006164722A (en) Induction heating device
JP2007035473A (en) Induction heating device

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
R151 Written notification of patent or utility model registration

Ref document number: 3465711

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070829

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080829

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080829

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090829

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090829

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100829

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110829

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110829

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120829

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130829

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130829

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140829

Year of fee payment: 11

EXPY Cancellation because of completion of term