JP2005149976A - Induction heating cooker - Google Patents

Induction heating cooker Download PDF

Info

Publication number
JP2005149976A
JP2005149976A JP2003387894A JP2003387894A JP2005149976A JP 2005149976 A JP2005149976 A JP 2005149976A JP 2003387894 A JP2003387894 A JP 2003387894A JP 2003387894 A JP2003387894 A JP 2003387894A JP 2005149976 A JP2005149976 A JP 2005149976A
Authority
JP
Japan
Prior art keywords
heated
electric conductor
top plate
induction heating
heating coil
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003387894A
Other languages
Japanese (ja)
Inventor
Toshihiro Yoshijima
敏弘 慶島
Akira Kataoka
章 片岡
Motonari Hirota
泉生 弘田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2003387894A priority Critical patent/JP2005149976A/en
Publication of JP2005149976A publication Critical patent/JP2005149976A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide an induction heating cooker easy to use for an object to be heated of which the pan bottom like a recessed warpage pan is recessed and high in convenience as well as high in thermal efficiency and reduced in buoyancy even if the object to be heated is one like aluminum having high conductivity and low magnetic permeability. <P>SOLUTION: The cooker is structured to provide a thermal connecting means 23 to increase thermal connection between an electric conductor 17 and a top plate 12, so that the heat generated from the conductor 17 is effectively transferred to an object to be heated 13 and an adverse effect of generated heat onto a heating coil 14 can be reduced, then the thermal efficiency can be enhanced. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は被加熱物としてアルミニウムや銅などの低透磁率かつ高電気伝導率の材料からなる鍋を用いて調理する誘導加熱装置に関し、特に、被加熱物である鍋が高周波磁束により浮き上がるのを防止したものに関する。   The present invention relates to an induction heating apparatus that cooks using a pan made of a material having a low magnetic permeability and high electrical conductivity such as aluminum or copper as an object to be heated. In particular, the pot that is an object to be heated is lifted by a high-frequency magnetic flux. It relates to what was prevented.

誘導加熱コイルで高周波磁界を発生させ、電磁誘導による渦電流で鍋等の被加熱物を加熱する誘導加熱調理器において、アルミニウム製の被加熱物を加熱できるものが提案されている(例えば、特許文献1参照)。   An induction heating cooker that generates a high-frequency magnetic field with an induction heating coil and heats an object to be heated such as a pan with eddy current due to electromagnetic induction has been proposed (for example, a patent) Reference 1).

図4は従来の誘導加熱調理器の断面図である。図のように、誘導加熱装置の外郭を構成する本体1と、本体1の上部に設けた例えば厚み4mmのセラミック材または結晶ガラス等のような絶縁体でできたトッププレート2と、トッププレート2に載置される鍋等の被加熱物3と、トッププレート2の下部に設けた加熱コイル4を有する誘導加熱部5から構成されている。加熱コイル4はインバータを有した駆動回路6から高周波電流が供給されて高周波磁界を発生し、被加熱物3に高周波磁界を与え誘導加熱する。   FIG. 4 is a cross-sectional view of a conventional induction heating cooker. As shown in the figure, a main body 1 constituting the outer shell of the induction heating apparatus, a top plate 2 made of an insulator such as a ceramic material or crystal glass having a thickness of 4 mm provided on the upper portion of the main body 1, and a top plate 2 And an induction heating unit 5 having a heating coil 4 provided in the lower part of the top plate 2. The heating coil 4 is supplied with a high-frequency current from a drive circuit 6 having an inverter to generate a high-frequency magnetic field, and applies a high-frequency magnetic field to the article 3 to be heated to induce heating.

このような従来の誘導加熱調理器では、被加熱物3の底部に誘起される電流と加熱コイル4の電流との相互作用で、被加熱物3の底部に加熱コイル4から遠ざかろうとする反発力が生じる。被加熱物3が鉄などの抵抗率がある程度大きい高透磁率材料で作られている場合には、所望の加熱出力を得るために必要な電流値が少なくてよいのでこの反発力は比較的小さい。また鉄などでは磁束が被加熱物3に吸収されるので、磁気的引力が働き、被加熱物3が浮き上がったりずれたりするおそれはない。   In such a conventional induction heating cooker, the repulsive force that tries to move away from the heating coil 4 to the bottom of the heated object 3 due to the interaction between the current induced in the bottom of the heated object 3 and the current of the heating coil 4. Occurs. When the object to be heated 3 is made of a high magnetic permeability material such as iron having a certain degree of resistivity, the repulsive force is relatively small because the current value required to obtain a desired heating output may be small. . In addition, since the magnetic flux is absorbed by the object to be heated 3 in iron or the like, there is no possibility that the object to be heated 3 will be lifted or displaced due to the magnetic attraction.

一方、被加熱物3がアルミニウムや銅といった低透磁率かつ高電気伝導率の材料で作られている場合には、所望の加熱出力を得るために加熱コイル4に流す電流を大きくして被加熱物3に大電流を誘起させる必要がある。その結果反発力が大きくなる。また、アルミニウムの被加熱物3には鉄などの高透磁率材料の場合のような磁気的引力が働かないので、加熱コイル4の磁界と誘起電流の磁界との作用により被加熱物3を加熱コイル4から遠ざける方向に大きな力が働く。この力は被加熱物3に浮力として働く。被加熱物3の重量が軽い場合には、被加熱物3がこの浮力によりトッププレート2の載置面から浮き上がって移動するおそれがある。この傾向は銅よりも比重の小さいアルミニウムを使用した被加熱物の場合に顕著にあらわれる。   On the other hand, when the object to be heated 3 is made of a material having a low magnetic permeability and high electrical conductivity such as aluminum or copper, the current to be supplied to the heating coil 4 is increased to obtain a desired heating output. It is necessary to induce a large current in the object 3. As a result, the resilience increases. Further, since the magnetic attraction force does not act on the aluminum heated object 3 as in the case of a high permeability material such as iron, the heated object 3 is heated by the action of the magnetic field of the heating coil 4 and the magnetic field of the induced current. A large force works in the direction away from the coil 4. This force acts as buoyancy on the article 3 to be heated. When the weight of the object to be heated 3 is light, the object to be heated 3 may be lifted and moved from the mounting surface of the top plate 2 due to this buoyancy. This tendency is conspicuous in the case of an object to be heated using aluminum having a specific gravity smaller than that of copper.

図5(a)は加熱コイル4に流れる電流の向きを被加熱物3の側からみた図であり、図5(b)は、加熱コイル4に流れる電流にもとづいて被加熱物3に誘導により生じて流れる渦電流を図5(a)と同じ方向から見た図である。図5に示すように被加熱物3を流れる渦電流は加熱コイル4に流れる電流と逆向きでかつ略同形状のループ状である。従って、この2つの環状の電流は加熱コイル4の面積と実質的に同じ断面積の2つの永久磁石が同種の極同士、例えばN極とN極とを対向して置いたのと同じ状態になる。その結果被加熱物3と加熱コイル4の間には大きな反発力が生じる。   FIG. 5A is a view of the direction of the current flowing through the heating coil 4 as viewed from the heated object 3 side, and FIG. 5B is a diagram illustrating the induction of the heated object 3 based on the current flowing through the heating coil 4. It is the figure which looked at the eddy current which arises and flows from the same direction as Fig.5 (a). As shown in FIG. 5, the eddy current flowing through the article to be heated 3 has a loop shape which is opposite to the current flowing through the heating coil 4 and has substantially the same shape. Therefore, the two annular currents are in the same state as two permanent magnets having substantially the same cross-sectional area as the area of the heating coil 4 placed with the same type of poles, for example, N and N poles facing each other. Become. As a result, a large repulsive force is generated between the object to be heated 3 and the heating coil 4.

この現象は、被加熱物3の材料がアルミニウムや銅という電気伝導率が高い物質である場合に顕著である。これに対して同じ低透磁率材料であっても、非磁性SUSはアルミニウムや銅よりも電気伝導率が低い材料であるから、加熱コイル4に流す電流が少なくても十分な発熱が得られる。したがって被加熱物3に流れる渦電流も小さく、それ故被加熱物3に誘導される磁界は小さい。   This phenomenon is remarkable when the material of the article to be heated 3 is a substance having high electrical conductivity such as aluminum or copper. On the other hand, even with the same low magnetic permeability material, nonmagnetic SUS is a material having a lower electrical conductivity than aluminum or copper, so that sufficient heat generation can be obtained even with a small current flowing through the heating coil 4. Therefore, the eddy current flowing through the object to be heated 3 is also small, and therefore the magnetic field induced in the object to be heated 3 is small.

このように、誘導加熱調理器においてアルミニウム製の被加熱物3を加熱すると被加熱物3に浮力が働き、被加熱物3が浮き上がり、調理が十分にできないことがあった。そのため、浮きを検出する方法が考えられた。例えば、重量センサを用いて被加熱物3の浮きや移動を検出したり(例えば、特許文献2または3参照)、磁気センサを用いて被加熱物3の位置を検出したりしていた(例えば、特許文献4参照)。そして、被加熱物3に所定以上の浮力が作用したとき、あるいは被加熱物が浮いたり移動したことを検出した場合に、それ以上浮かないように、あるいは移動しないように加熱電力を抑制したり、あるいは加熱動作そのものを停止したりして、調理を行う方法が行われていた。
特開2002−75620号公報 特開昭61−128492号公報 特開昭62−276787号公報 特開昭61−71582号公報
As described above, when the aluminum object to be heated 3 is heated in the induction heating cooker, buoyancy is exerted on the object to be heated 3, and the object to be heated 3 is lifted, and cooking may not be sufficiently performed. Therefore, a method for detecting floating was considered. For example, the weight sensor is used to detect the floating or movement of the article to be heated 3 (see, for example, Patent Document 2 or 3), or the magnetic sensor is used to detect the position of the article to be heated 3 (for example, , See Patent Document 4). And when buoyancy more than predetermined acts on the to-be-heated object 3, or when it detects that the to-be-heated object floated or moved, heating power is suppressed so that it may not float more or may not move. Alternatively, a method of cooking by stopping the heating operation itself has been performed.
JP 2002-75620 A JP 61-128492 A JP-A-62-276787 JP-A-61-71582

しかしながら、前記従来の構成では、アルミニウム製の被加熱物3に被調理物を収容し加熱調理を行っているとき、被加熱物の浮きを検出し加熱電力を抑制したのでは十分な火力が得られず、時には調理動作の継続が中断される状況に陥ってしまうという問題があった。   However, in the conventional configuration, when the object to be cooked is accommodated in the aluminum object to be heated 3 and cooking is performed, it is possible to obtain sufficient thermal power by detecting the floating of the object to be heated and suppressing the heating power. In some cases, the cooking operation is sometimes interrupted.

例えば、重量300gのアルミニウム製の雪平鍋に200ccの水を入れた合計重量500gの被加熱物を加熱する場合、図6によると、約850Wの入力電力で浮力が鍋と調理物(水)の合計重量500gを上回る。そのため鍋が浮き上がってこれ以上の入力電力で加熱することが困難となる。上記の先行技術においては、例えばアルミ鍋を検知した場合に鍋の浮き上がる入力電力以下の、例えば800Wに入力電力を抑制して鍋浮きが生じない様にする。しかし発明者らの実験によれば、800Wの入力電力で加熱しても上記の300ccの水を沸騰状態にすることは困難であった。従って、アルミニウム製の鍋を加熱できる誘導加熱調理器としては加熱性能が極めて低いものとなってしまうという問題があった。   For example, when heating an object to be heated with a total weight of 500 g in an aluminum snow pan with a weight of 300 g, according to FIG. 6, the buoyancy of the pot and the cooked item (water) is about 850 W. The total weight exceeds 500g. Therefore, it becomes difficult for the pot to float and to be heated with more input power. In the above prior art, for example, when an aluminum pan is detected, the input power is suppressed to, for example, 800 W, which is equal to or lower than the input power that the pan floats, so that the pan does not float. However, according to experiments by the inventors, it was difficult to bring the above 300 cc of water into a boiling state even when heated with an input power of 800 W. Therefore, the induction heating cooker that can heat the aluminum pan has a problem that the heating performance is extremely low.

前記問題を解決するために、本発明に先立って、加熱コイルとトッププレートとの間にトッププレートに密着して電気導体を設ける構成を検討した。この構成では、加熱コイルから発生する磁界は電気導体と被加熱物とに鎖交するため両者に誘導電流が発生する。電気導体に誘導された誘導電流の発生する磁界と被加熱物に誘導された誘導電流の発生する磁界の作用により、加熱コイルの等価直列抵抗が大きくなる。等価直列抵抗が大きくなると少ない電流で同じ電力を被加熱物に供給することが可能となり、その結果浮力が低減する。この浮力低減効果は、電気導体の面積や厚さを大きくし、加熱コイルの等価直列抵抗を大きくすればするほど大きくなる。ここで等価直列抵抗とは、被加熱物および電気導体を加熱状態と同様の配置で、加熱周波数近傍の周波数を使用して測定した加熱コイルの入力インピーダンスを意味する。   In order to solve the above problem, prior to the present invention, a configuration in which an electrical conductor is provided in close contact with the top plate between the heating coil and the top plate was examined. In this configuration, since the magnetic field generated from the heating coil is linked to the electric conductor and the object to be heated, an induced current is generated in both. The equivalent series resistance of the heating coil is increased by the action of the magnetic field generated by the induced current induced in the electric conductor and the magnetic field generated by the induced current induced in the object to be heated. When the equivalent series resistance is increased, the same power can be supplied to the object to be heated with a small current, and as a result, buoyancy is reduced. The effect of reducing the buoyancy increases as the area or thickness of the electric conductor is increased and the equivalent series resistance of the heating coil is increased. Here, the equivalent series resistance means the input impedance of the heating coil measured using a frequency in the vicinity of the heating frequency in the same arrangement as the heated object and the electric conductor in the heated state.

以上述べたように、電気導体を用いた構成にすることにより、アルミニウムなどの高電気伝導率を有しかつ低透磁率材料からなる被加熱物を誘導加熱することが実用的に可能となった。   As described above, by using an electric conductor, it is practically possible to induction-heat an object to be heated that has a high electrical conductivity such as aluminum and is made of a low magnetic permeability material. .

しかしながら、鉄製の被加熱物を加熱する場合に比べると加熱効率すなわち火力感が若干劣るという課題があった。   However, there is a problem that the heating efficiency, that is, the thermal feeling is slightly inferior to the case of heating an iron object.

また、実際の使用にあたっては、被加熱物の浮きを全く無視することができず、被加熱物である鍋と調理物との合計重量が一定の重量より重くなるように制限していた。また、鍋は実際には底面が平面である場合は少なく、わずかな反りを有するのが普通である(鍋底が凹になっている、すなわち内側に対して凸になっているような凹反り鍋が用いられている)。反りが大きくなると、熱効率が低下し、調理性能が良くないため、反りの程度を制限するのが一般的であった。   In actual use, the floating of the object to be heated cannot be ignored at all, and the total weight of the pot to be heated and the cooked object is limited to be heavier than a certain weight. In addition, the pan is rarely flat in the bottom surface, and usually has a slight warp (a concave warped pan having a concave bottom, that is, convex toward the inside). Is used). When the warpage becomes large, the thermal efficiency is lowered and the cooking performance is not good, so it is common to limit the degree of warpage.

加熱効率を向上し、さらに、浮力による重量制限を緩和するために、浮力低減作用を有する種々の構成のうち、電気導体の面積を大きくする、すなわち、トッププレートへの伝熱面積を増加させ鍋への入熱を増やし、加熱コイルの等価直列抵抗を大きくすることが実用的であると考えられた。そのため、加熱コイルに対応する電気導体の中央部における開口部の大きさをトッププレートに当接してその温度を検知する温度検知手段に必要な空間だけにすることが考えられた。これにより、電気導体の面積を増やし浮力を低減することができた。しかしながら、この構成において、反りのある鍋を用いた場合、電気導体は加熱コイル中心付近において磁束は鍋に入りにくく、電気導体に優先的に入りやすくなるため、電気導体の加熱コイル中心付近の発熱が異常に早くなる。また、凹そりのある部分は鍋底とトッププレートとの間に空間があるため、電気導体の熱がトッププレートを介して鍋底に伝熱され難いため温度上昇が速くなる。電気導体が高温になると加熱コイルの出力を低減し、電気導体の発熱を抑えたり、電気導体の高温の熱が加熱コイルなどに悪影響を及ぼさないようにしている。したがって、温度上昇速度が速いと早い時機から加熱コイルの出力が制御されてしまい調理に時間がかかりすぎたり、あるいは調理ができなかったりするという問題が生じる。そのため、電気導体の中心部から所定の距離の間は電気導体を設けることができず、その分伝熱面積の増加や浮力の低減ができないという問題があった。   Among various configurations having a buoyancy reduction effect, in order to improve the heating efficiency and further relax the weight limit due to buoyancy, the area of the electric conductor is increased, that is, the heat transfer area to the top plate is increased. It was considered practical to increase the heat input to the coil and increase the equivalent series resistance of the heating coil. Therefore, it has been considered that the size of the opening in the central portion of the electric conductor corresponding to the heating coil is limited to the space necessary for the temperature detecting means for contacting the top plate and detecting the temperature. Thereby, the area of the electrical conductor was increased and the buoyancy could be reduced. However, in this configuration, when a warped pan is used, the electric conductor is less likely to enter the pan near the center of the heating coil and preferentially enters the electric conductor. Becomes abnormally fast. In addition, since there is a space between the pan bottom and the top plate in the concave portion, the heat of the electric conductor is not easily transferred to the pan bottom via the top plate, so that the temperature rises quickly. When the temperature of the electric conductor becomes high, the output of the heating coil is reduced to suppress the heat generation of the electric conductor, and the high temperature heat of the electric conductor does not adversely affect the heating coil. Therefore, when the temperature rise rate is fast, the output of the heating coil is controlled from the early stage, and there is a problem that cooking takes too much time or cooking cannot be performed. Therefore, the electric conductor cannot be provided for a predetermined distance from the center of the electric conductor, and there is a problem that the heat transfer area cannot be increased and the buoyancy cannot be reduced accordingly.

本発明は、前記従来の課題を解決するもので、アルミニウムのような高電気伝導率で低透磁率からなる被加熱物の場合でも、熱効率をより高く、浮力をさらに低減するとともに、凹反り鍋のような鍋底が凹となっているような被加熱物でも使用しやすくした、利便性の高い誘導加熱調理器を提供することを目的とする。   The present invention solves the above-mentioned conventional problems, and even in the case of a heated object having a high electrical conductivity and a low magnetic permeability such as aluminum, the thermal efficiency is further increased, the buoyancy is further reduced, and the concave warpage pan An object of the present invention is to provide a highly convenient induction heating cooker that is easy to use even for a heated object having a concave pot bottom.

前記従来の課題を解決するために、本発明の誘導加熱装置は、外郭を構成する本体と、被加熱物を載置する前記本体の上部に設けたトッププレートと、アルミニウムなどの高電気伝導率でかつ低透磁率材料からなる前記被加熱物を前記トッププレートの下方より誘導加熱する加熱コイルと、前記加熱コイルと前記トッププレートとの間に設け前記加熱コイルの発生する磁界により前記被加熱物に発生する浮力を低減する電気導体とを備え、前記電気導体の熱が前記トッププレートに伝わりやすくする熱的接続手段を備えた構成としたものである。   In order to solve the above-described conventional problems, an induction heating apparatus according to the present invention includes a main body constituting an outer shell, a top plate provided on an upper portion of the main body on which an object to be heated is placed, and high electrical conductivity such as aluminum. And a heating coil for induction heating the object to be heated made of a low magnetic permeability material from below the top plate, and the object to be heated by a magnetic field generated between the heating coil and the top plate. And an electrical conductor that reduces the buoyancy that is generated, and includes a thermal connection means that facilitates the heat of the electrical conductor to be transmitted to the top plate.

これによって、電気導体で発生した熱を有効に被加熱物に伝えると共に、発生熱の加熱コイルへの悪影響も低減でき、熱効率を向上することができる。   Thereby, the heat generated in the electric conductor is effectively transmitted to the object to be heated, and the adverse effect of the generated heat on the heating coil can be reduced, and the thermal efficiency can be improved.

また、本発明の誘導加熱装置は、複数の電気導体を重ねて設け、前記複数の電気導体のトッププレート側に熱的接続手段の投影面積を電気導体の投影面積より大きくすると共に、トッププレートに直接または間接的に当接させる構成としたものである。   In addition, the induction heating device of the present invention is provided with a plurality of electric conductors stacked so that the projected area of the thermal connection means is larger than the projected area of the electric conductors on the top plate side of the plurality of electric conductors, It is configured to contact directly or indirectly.

これによって、電気導体に磁界の作用が働きやすいため、熱的接続手段を導体で構成しても熱的接続手段への磁界の作用は低減されるので、熱的接続手段が急激に温度上昇をするのを防ぐと共に、伝熱面積増加により電気導体で発生した熱を有効に被加熱物に伝え、発生熱の加熱コイルへの悪影響も低減でき、熱効率を向上することができる。また、熱的接続手段と電気導体の有効な面積や厚さが大きくなり、すなわち、等価直列抵抗が大きくなるので浮力もさらに低減することができる。   This makes it easier for the electric conductor to act on the magnetic field, so that even if the thermal connecting means is made of a conductor, the effect of the magnetic field on the thermal connecting means is reduced. In addition to preventing heat generation, the heat generated by the electric conductor due to the increase in the heat transfer area is effectively transmitted to the object to be heated, and the adverse effect of the generated heat on the heating coil can be reduced, and the thermal efficiency can be improved. Further, the effective area and thickness of the thermal connection means and the electric conductor are increased, that is, the equivalent series resistance is increased, so that buoyancy can be further reduced.

本発明の誘導加熱装置は、さらなる熱効率の向上、浮力の低減を図ることができる。   The induction heating device of the present invention can further improve thermal efficiency and reduce buoyancy.

第1の発明は、外郭を構成する本体と、被加熱物を載置する前記本体の上部に設けたトッププレートと、アルミニウムなどの高電気伝導率でかつ低透磁率材料からなる前記被加熱物を前記トッププレートの下方より誘導加熱する加熱コイルと、前記加熱コイルと前記トッププレートとの間に設け前記加熱コイルの発生する磁界により前記被加熱物に発生する浮力を低減する電気導体とを備え、前記電気導体の熱が前記トッププレートに伝わりやすくする熱的接続手段を備えたことにより、電気導体で発生した熱を有効に被加熱物に伝えると共に、発生熱の加熱コイルへの悪影響も低減でき、熱効率を向上することができる。   1st invention is the said to-be-heated object which consists of the main body which comprises an outer shell, the top plate provided in the upper part of the said main body which mounts to-be-heated material, and high electrical conductivity and low magnetic permeability materials, such as aluminum A heating coil for induction heating from below the top plate, and an electric conductor provided between the heating coil and the top plate for reducing buoyancy generated in the heated object by a magnetic field generated by the heating coil. By providing a thermal connection means that makes it easy for the heat of the electric conductor to be transferred to the top plate, the heat generated by the electric conductor is effectively transferred to the object to be heated and the adverse effect of the generated heat on the heating coil is also reduced. And thermal efficiency can be improved.

第2の発明は、特に、第1の発明の熱的接続手段は、電気導体のトッププレート側に重ねて設け、前記熱的接続手段の投影面積より前記電気導体の投影面積を大きくすると共に、トッププレートに直接または間接的に当接させた構成のため、電気導体に磁界の作用が働きやすく、熱的接続手段への磁界の作用は低減されるので、熱的接続手段が導電性を有しても急激に温度上昇するのを防ぐと共に、熱的接続手段による伝熱面積増加により電気導体で発生した熱を有効に被加熱物に伝え、発生熱の加熱コイルへの悪影響も低減でき、熱効率を向上することができる。また、熱的接続手段と電気導体の総合の有効面積や有効厚さが大きくなり、すなわち、等価直列抵抗が大きくなるので浮力もさらに低減することができる。   In the second invention, in particular, the thermal connection means of the first invention is provided on the top plate side of the electrical conductor, and the projected area of the electrical conductor is made larger than the projected area of the thermal connection means. Due to the configuration in which the top plate is in direct or indirect contact with each other, the magnetic field easily acts on the electric conductor and the magnetic field on the thermal connecting means is reduced, so that the thermal connecting means has conductivity. However, while preventing the temperature from rising suddenly, the heat generated by the electrical conductor is effectively transferred to the object to be heated by increasing the heat transfer area by the thermal connection means, and the adverse effect of the generated heat on the heating coil can be reduced, Thermal efficiency can be improved. Further, the total effective area and effective thickness of the thermal connecting means and the electric conductor are increased, that is, the equivalent series resistance is increased, so that buoyancy can be further reduced.

第3の発明は、特に、熱的接続手段および電気導体は中央部に開口部を有すると共に、前記熱的接続手段は、前記電気導体の開口部よりも内側に張り出した部分を有することにより、熱的接続手段は、中央開口部で面積を増加させることで最も効率よく熱効率の向上や浮力の低減を図ることができる。   According to a third aspect of the invention, in particular, the thermal connecting means and the electrical conductor have an opening at the center, and the thermal connecting means has a portion protruding inward from the opening of the electrical conductor. The thermal connection means can improve the thermal efficiency and reduce the buoyancy most efficiently by increasing the area at the central opening.

第4の発明は、特に、熱的接続手段は、厚みを電気導体の厚み寸法より薄くしたことにより、熱的接続手段は、電気導体に比べさらに誘導加熱されにくくなり、熱的接続手段が急激に温度上昇するのを効果的に防ぐことができる。   According to the fourth aspect of the invention, in particular, the thermal connection means is made thinner than the thickness dimension of the electric conductor, so that the thermal connection means is more difficult to be induction-heated than the electric conductor, and the thermal connection means is abrupt. It is possible to effectively prevent the temperature from rising.

第5の発明は、特に、第2〜第4のいずれか1つの発明で、熱的接続手段はアルミ以上の高熱伝導率を有する材料とすることにより、電気導体から被加熱物までの熱移動の効率が向上し、熱効率をさらに向上することができる。   The fifth aspect of the invention is particularly any one of the second to fourth aspects of the invention, wherein the thermal connection means is made of a material having a high thermal conductivity equal to or higher than that of aluminum, so that the heat transfer from the electric conductor to the object to be heated. Efficiency can be improved and thermal efficiency can be further improved.

第6の発明は、熱的接続手段は、電気導体を材料とし、被加熱物に発生する浮力を低減する機能を備えたことで、熱的接続手段と電気導体の総合の有効面積や有効厚さが大きくなり、すなわち、等価直列抵抗が大きくなるので浮力もさらに低減することができる。   According to a sixth aspect of the present invention, the thermal connection means is made of an electric conductor and has a function of reducing buoyancy generated in an object to be heated, so that the total effective area and effective thickness of the thermal connection means and the electric conductor are reduced. The buoyancy can be further reduced since the equivalent series resistance is increased.

以下、本発明の実施の形態について、図面を参照しながら説明する。なお、この実施の形態によって本発明が限定されるものではない。   Hereinafter, embodiments of the present invention will be described with reference to the drawings. Note that the present invention is not limited to the embodiments.

(実施の形態1)
図1、図2(a)(b)は、本発明の第1の実施の形態における誘導加熱装置の断面図と平面図を示すものである。図1のように、誘導加熱装置の外郭を構成する本体11と、本体11の上部に設けた例えば厚み4mmのセラミック材または結晶ガラス等のような絶縁体でできたトッププレート12と、トッププレート12に載置される鍋等の被加熱物13とトッププレート12の下部に設けた加熱コイル14を有する誘導加熱部15から構成されている。加熱コイル14はインバータを有した駆動回路16から高周波電流が供給されて高周波磁界を発生し、被加熱物13に高周波磁界を与え誘導加熱する。この被加熱物はアルミニウム、アルミニウム合金、銅、銅合金など高電気伝導率で、低透磁率の材質である。電気導体17は支持体18の上に固定され、支持体18は誘導加熱部15に固定されている。電気導体17は中央部に開口部19を有する円環状の形状をしており、加熱コイル14に対向してトッププレート12の下面に配置される。また、電気導体17は被加熱物13と同様にアルミニウム、アルミニウム合金、銅、銅合金またはカーボンなどのような高電気伝導率で、低透磁率の材料から構成している。本実施例では厚みが1mmのアルミニウムを用いている。これは、以下の理由からである。すなわち、加熱コイル14からの磁束を遮蔽する場合に必要な厚みは浸透深さ以上必要であり、本実施の形態の場合加熱コイル14に流れる電流の周波数は70kHzであり、材質をアルミニウムとした場合浸透深さはδ=0.3mm程度となる。従って、電気導体17の厚みを浸透深さ以上にすることにより、浮力低減の効果を大きくすることが可能となる。本発明者らは実験により、浸透深さよりもやや大きく約1mm程度にすると十分な浮力低減の効果が得られることを確認したからである。
(Embodiment 1)
FIG. 1, FIG. 2 (a) (b) shows sectional drawing and a top view of the induction heating apparatus in the 1st Embodiment of this invention. As shown in FIG. 1, a main body 11 that forms an outline of the induction heating device, a top plate 12 made of an insulator such as a ceramic material or crystal glass having a thickness of 4 mm, for example, provided on the top of the main body 11, and the top plate 12 includes an object to be heated 13 such as a pan placed on 12 and an induction heating unit 15 having a heating coil 14 provided below the top plate 12. The heating coil 14 is supplied with a high-frequency current from a drive circuit 16 having an inverter to generate a high-frequency magnetic field, and applies a high-frequency magnetic field to the article 13 to be heated to induce heating. This object to be heated is a material having high electrical conductivity and low magnetic permeability such as aluminum, aluminum alloy, copper, and copper alloy. The electric conductor 17 is fixed on the support 18, and the support 18 is fixed to the induction heating unit 15. The electric conductor 17 has an annular shape having an opening 19 at the center, and is disposed on the lower surface of the top plate 12 so as to face the heating coil 14. Similarly to the object to be heated 13, the electric conductor 17 is made of a material having high electrical conductivity and low magnetic permeability such as aluminum, aluminum alloy, copper, copper alloy or carbon. In this embodiment, aluminum having a thickness of 1 mm is used. This is for the following reason. That is, the thickness necessary for shielding the magnetic flux from the heating coil 14 is required to be greater than the penetration depth. In this embodiment, the frequency of the current flowing through the heating coil 14 is 70 kHz, and the material is aluminum. The penetration depth is about δ = 0.3 mm. Therefore, the effect of reducing buoyancy can be increased by making the thickness of the electric conductor 17 equal to or greater than the penetration depth. This is because the present inventors have confirmed through experiments that a sufficient buoyancy reduction effect can be obtained when the depth is slightly larger than the penetration depth and about 1 mm.

図2(a)は円環状の電気導体17の開口部19、すなわち円環の内周部20と円環の外周部21にわたるスリット22を対称に2個所設けた場合、すなわち円環を等分に2分割した電気導体17a、17bを対向させて1つの円環状の電気導体とした場合を示している。そして、この円環の中心Oと加熱コイルの中心がほぼ一致するように配置する。   FIG. 2A shows an opening 19 of an annular electric conductor 17, that is, a case where two slits 22 extending symmetrically between the inner periphery 20 of the ring and the outer periphery 21 of the ring are provided symmetrically. The case where the electric conductors 17a and 17b divided into two are opposed to each other to form one annular electric conductor is shown. And it arrange | positions so that the center O of this annular ring and the center of a heating coil may correspond substantially.

また、支持体18の上部かつ電気導体17の開口部19の位置と、電気導体17の上部に熱的接続手段23を設けている。熱的接続手段23は耐熱性熱拡散コンパウンドで、特にトッププレート12と電気導体17の間については各々の凸凹を埋めたり、接触状態を改善できるレベルで薄めに塗布してある(図1、図2(b)参照)。   Further, a thermal connection means 23 is provided above the support 18 and at the position of the opening 19 of the electric conductor 17 and above the electric conductor 17. The thermal connection means 23 is a heat-resistant thermal diffusion compound, and particularly between the top plate 12 and the electrical conductor 17, it is applied thinly at a level that can fill each unevenness or improve the contact state (FIG. 1, FIG. 2 (b)).

以上のように構成された誘導加熱装置について、以下その動作、作用を説明する。   About the induction heating apparatus comprised as mentioned above, the operation | movement and an effect | action are demonstrated below.

トッププレート12上に被加熱物13を載置し、電源を投入すると加熱コイル14からの磁束により被加熱物13が誘導加熱される。このとき加熱コイル14からの磁束は電気導体17と鎖交し、電気導体17にも誘導電流が発生する。   When the object to be heated 13 is placed on the top plate 12 and the power is turned on, the object to be heated 13 is induction-heated by the magnetic flux from the heating coil 14. At this time, the magnetic flux from the heating coil 14 is linked to the electric conductor 17, and an induced current is also generated in the electric conductor 17.

被加熱物13に誘起された誘導電流は加熱コイル14の発生する磁界分布と、電気導体17に誘起された電流の発生する磁界分布の重畳した磁界分布が被加熱物13に鎖交することにより発生するものである。このように、電気導体17が介在することにより、被加熱物13に誘導される電流分布が変化し、さらに電気導体17に発生する電流分布が加わるということから、加熱コイル14の等価直流抵抗が大きくなる。   The induced current induced in the object to be heated 13 is linked to the object to be heated 13 by the magnetic field distribution generated by superimposing the magnetic field distribution generated by the heating coil 14 and the magnetic field distribution generated by the current induced in the electric conductor 17. It is what happens. As described above, the current distribution induced in the object to be heated 13 is changed by the presence of the electric conductor 17 and the current distribution generated in the electric conductor 17 is further added. Therefore, the equivalent DC resistance of the heating coil 14 is reduced. growing.

等価直列抵抗が大きくなると、同じ加熱コイル電流でも被加熱物13における発熱量が大きくなるので同一消費電力を得ようとする場合には加熱コイル電流を小さくすることができ、それに伴い浮力も低減することができる。   When the equivalent series resistance is increased, the amount of heat generated in the article to be heated 13 is increased even with the same heating coil current, so that the heating coil current can be reduced when the same power consumption is to be obtained, and the buoyancy is also reduced accordingly. be able to.

以上のように、本実施の形態においては、熱拡散コンパウンドによる熱的接続手段23が設けられていることにより、電気導体17〜トッププレート12〜被加熱物13への放熱経路の拡大と、電気導体17とトッププレート12の接触改善効果が発揮され、被加熱物13への入熱は向上し、加熱コイル14への電気導体17の発熱の悪影響が低減し、加熱コイル14のロスワットも低減できる。その結果、熱効率の向上が可能になる。   As described above, in the present embodiment, by providing the thermal connection means 23 by the thermal diffusion compound, the expansion of the heat radiation path from the electric conductor 17 to the top plate 12 to the object to be heated 13, The effect of improving the contact between the conductor 17 and the top plate 12 is exhibited, the heat input to the object to be heated 13 is improved, the adverse effect of the heat generated by the electric conductor 17 on the heating coil 14 is reduced, and the loss wattage of the heating coil 14 can also be reduced. . As a result, the thermal efficiency can be improved.

なお、熱拡散コンパウンドの塗布位置はこれに限るものではなく、作業性、コスト、性能等のバランスで、塗布位置を増やしたり、減らしたりすることは任意である。また、熱拡散コンパウンドでなくても、これに類するものであれば、同様であることはいうまでもない。   Note that the application position of the thermal diffusion compound is not limited to this, and it is arbitrary to increase or decrease the application position in balance of workability, cost, performance, and the like. It goes without saying that even if it is not a thermal diffusion compound, it is the same as long as it is similar to this.

また、熱的接続手段23は電気導体17の特に側方への伝熱面積増大の意味では、例えば、マイカやセラミック、耐熱樹脂、金属などを用いてもよい。少なくとも、空気より伝熱性が向上すれば、その効果はある。更に、固体に限定されることもなく、例えば液体金属でもよい。ただし、この場合は液体金属を収容する耐熱性の容器が必要になる。   Further, the thermal connection means 23 may be made of, for example, mica, ceramic, heat-resistant resin, metal, etc. in the sense of increasing the heat transfer area especially to the side of the electric conductor 17. At least, if the heat transfer property is improved over air, the effect is obtained. Furthermore, it is not limited to solid, For example, a liquid metal may be sufficient. In this case, however, a heat-resistant container for storing the liquid metal is required.

(実施の形態2)
図3は、本発明の第2の実施の形態における誘導加熱装置の断面図を示すものである。図3のように、開口部19を有する熱的接続手段23と電気導体17は重ねて設けられており、熱的接続手段23は導電材料で形成される電気導体(上)24として、また電気導体17は電気導体(下)25で構成されている(請求項の中では、電気導体(上)24は最もトッププレート側の電気導体、電気導体(下)25は最もトッププレート側以外の電気導体となるが、以降便宜上、電気導体(上)、(下)と表現する)。開口部19において電気導体(上)24は電気導体(下)25より投影面積を大きくしてあり、トッププレート12と電気導体(下)25の間に挟まれ、熱的接続手段23の役割を担っている。
(Embodiment 2)
FIG. 3 shows a cross-sectional view of the induction heating apparatus in the second embodiment of the present invention. As shown in FIG. 3, the thermal connecting means 23 having the opening 19 and the electric conductor 17 are provided so as to overlap each other, and the thermal connecting means 23 is used as an electric conductor (upper) 24 made of a conductive material, The conductor 17 is composed of an electric conductor (lower) 25 (in the claims, the electric conductor (upper) 24 is the electric conductor on the most top plate side, and the electric conductor (lower) 25 is the electric other than the most on the top plate side. It will be a conductor, but for the sake of convenience, it will be expressed as an electrical conductor (upper) and (lower)). In the opening 19, the electric conductor (upper) 24 has a larger projected area than the electric conductor (lower) 25, and is sandwiched between the top plate 12 and the electric conductor (lower) 25, and serves as a thermal connecting means 23. I'm in charge.

電気導体(下)25は実施の形態1と同様、厚さが約1mmのアルミである。電気導体(上)24はアルミ以上の高熱伝導率を有する厚さが約0.1mmのカーボンシートである。計算上浸透深さが約0.4mmであるので、厚さはそれより十分小さく、加熱コイル14からの距離も電気導体(下)25より離れており、まず優先的に電気導体(下)25が誘導加熱されることもあって、電気導体(上)24はほとんど誘導加熱されない。設計的には電気導体(下)25は浸透深さ以上の厚さ(本実施例では約1mm)にするが、電気導体(上)24は浸透厚さ以下に設定することが好ましい。電気導体(上)24の垂れ下がり防止とトッププレート12への確実な付勢のため、電気導体(上)24と支持体18の間に支持体26が設けられている。電気導体(上)24の剛性が十分ある場合は、支持体26は必要ない。   As in the first embodiment, the electric conductor (lower) 25 is aluminum having a thickness of about 1 mm. The electric conductor (top) 24 is a carbon sheet having a high thermal conductivity equal to or higher than that of aluminum and a thickness of about 0.1 mm. Since the penetration depth is about 0.4 mm in calculation, the thickness is sufficiently smaller than that, and the distance from the heating coil 14 is further away from the electric conductor (lower) 25. First, the electric conductor (lower) 25 is preferentially used. The electric conductor (upper) 24 is hardly induction-heated. In terms of design, the electric conductor (lower) 25 has a thickness greater than or equal to the penetration depth (about 1 mm in this embodiment), but the electric conductor (upper) 24 is preferably set to a thickness less than or equal to the penetration depth. A support body 26 is provided between the electrical conductor (upper) 24 and the support body 18 in order to prevent the electrical conductor (upper) 24 from drooping and to positively bias the top plate 12. If the electrical conductor (top) 24 is sufficiently rigid, the support 26 is not necessary.

以上のように、本実施の形態においては、2個の電気導体17を重ねて設け、電気導体(上)24の電気導体(下)25の投影面積より大きくすると共に、加熱コイル14側からトッププレート12に当接させた構成のため、加熱コイル14に近い電気導体(下)25に磁界の作用が働きやすいため、電気導体(上)24への磁界の作用は低減されるので、例え凹反り鍋を使用されたとしても電気導体(上)24が急激に温度上昇するのを防ぐと共に、伝熱面積増加により電気導体17で発生した熱を有効に被加熱物13に伝え、発生熱の加熱コイル14への悪影響も低減でき、熱効率を向上することができる。また、全電気導体の面積や厚さが大きくなり、すなわち、等価直列抵抗が大きくなるので浮力もさらに低減することができる。   As described above, in the present embodiment, the two electric conductors 17 are provided so as to overlap each other so as to be larger than the projected area of the electric conductor (lower) 25 of the electric conductor (upper) 24 and the top from the heating coil 14 side. Because of the configuration in contact with the plate 12, the action of the magnetic field is likely to act on the electric conductor (lower) 25 close to the heating coil 14, and therefore the action of the magnetic field on the electric conductor (upper) 24 is reduced. Even if a warp pan is used, the temperature of the electric conductor (upper) 24 is prevented from rising rapidly, and the heat generated in the electric conductor 17 due to the increase in the heat transfer area is effectively transmitted to the object 13 to be heated. The adverse effect on the heating coil 14 can also be reduced, and the thermal efficiency can be improved. Further, the area and thickness of all electrical conductors are increased, that is, the equivalent series resistance is increased, so that buoyancy can be further reduced.

ただし、電気導体17を2個に分けているとはいえ、全電気導体の面積や厚さを大きくしすぎると、電気導体17自身の発熱が増えて、機器内部の熱ロスが増え、加熱効率が良くならない場合もあるので、最も全体のバランスがよくなるように設計の配慮が必要である。   However, although the electric conductor 17 is divided into two parts, if the area and thickness of all the electric conductors are too large, the electric conductor 17 itself generates more heat, increasing the heat loss inside the device and increasing the heating efficiency. In some cases, the design may need to be considered so that the overall balance is improved.

また、中央開口部19で電気導体(上)24の面積を増加させているので、被加熱物13への熱移動の無駄が少ないため、最も効率よく熱効率の向上や浮力の低減を図ることができる。   In addition, since the area of the electric conductor (upper) 24 is increased at the central opening 19, there is little waste of heat transfer to the article 13 to be heated, so that the most efficient improvement in thermal efficiency and reduction in buoyancy can be achieved. it can.

また、電気導体(上)24は電気導体(下)25より薄いため、電気導体(下)25に比べさらに誘導加熱されにくくなり、電気導体(上)24が急激に温度上昇するのを効果的に防ぐことができる。   Further, since the electric conductor (upper) 24 is thinner than the electric conductor (lower) 25, it is more difficult to be induction-heated than the electric conductor (lower) 25, and it is effective that the temperature of the electric conductor (upper) 24 rapidly increases. Can be prevented.

また、電気導体(上)24はアルミ以上の高熱伝導率を有する材料とすることにより、電気導体17から被加熱物13までの熱移動の効率が向上し、熱効率をさらに向上することができる。   Moreover, the electric conductor (upper) 24 is made of a material having a high thermal conductivity equal to or higher than that of aluminum, so that the efficiency of heat transfer from the electric conductor 17 to the object to be heated 13 is improved, and the thermal efficiency can be further improved.

なお、電気導体(上)24と電気導体(下)25は各々1個に限るものではなく、各々複数個であってもよい。また、電気導体(上)24は実施の形態の材料・厚さに限らず、材質的にはアルミや銅、厚みとしても電気導体(下)25の形状や厚みによって、それ以下の適切な厚みに設定すればよいことはいうまでもない。   The number of electrical conductors (upper) 24 and electrical conductors (lower) 25 is not limited to one each, and may be plural. The electric conductor (upper) 24 is not limited to the material / thickness of the embodiment, but the material is aluminum or copper, and the thickness is an appropriate thickness depending on the shape and thickness of the electric conductor (lower) 25. Needless to say, it should be set to.

以上のように、本発明にかかる誘導加熱装置は、熱効率の向上や浮力の低減が可能になるので、アルミニウムなどの高電気伝導率かつ低透磁率の材料からなる被加熱物を誘導加熱する全ての用途に適用できる。   As described above, since the induction heating device according to the present invention can improve thermal efficiency and reduce buoyancy, all induction heating is performed on an object to be heated made of a material having high electrical conductivity and low permeability such as aluminum. It can be applied to any use.

本発明の実施の形態1における誘導加熱装置の断面図Sectional drawing of the induction heating apparatus in Embodiment 1 of this invention (a)本発明の実施の形態1におけるの電気導体の平面図(b)本発明の実施の形態1における電気導体と熱的接続手段の平面図(A) Plan view of electric conductor in embodiment 1 of the present invention (b) Plan view of electric conductor and thermal connection means in embodiment 1 of the present invention 本発明の実施の形態2における誘導加熱装置の断面図Sectional drawing of the induction heating apparatus in Embodiment 2 of this invention 従来例の誘導加熱装置の断面図Sectional view of a conventional induction heating device (a)加熱コイルに流れる電流の向きを示す図(b)被加熱物に流れる電流の向きを示す図(A) The figure which shows the direction of the electric current which flows into a heating coil (b) The figure which shows the direction of the electric current which flows into a to-be-heated material 電流と浮力の関係を示すグラフGraph showing the relationship between current and buoyancy

符号の説明Explanation of symbols

11 本体
12 トッププレート
13 被加熱物
14 加熱コイル
17 電気導体
23 熱的接続手段
24 電気導体(上)
25 電気導体(下)
DESCRIPTION OF SYMBOLS 11 Main body 12 Top plate 13 Object to be heated 14 Heating coil 17 Electrical conductor 23 Thermal connection means 24 Electrical conductor (top)
25 Electrical conductor (bottom)

Claims (6)

外郭を構成する本体と、被加熱物を載置する前記本体の上部に設けたトッププレートと、アルミニウムなどの高電気伝導率でかつ低透磁率材料からなる前記被加熱物を前記トッププレートの下方より誘導加熱する加熱コイルと、前記加熱コイルと前記トッププレートとの間に設け前記加熱コイルの発生する磁界により前記被加熱物に発生する浮力を低減する電気導体とを備え、前記電気導体の熱が前記トッププレートに伝わりやすくする熱的接続手段を備えた誘導加熱装置。 A main body constituting an outer shell, a top plate provided on an upper portion of the main body on which the object to be heated is placed, and the object to be heated made of a material having a high electric conductivity and a low magnetic permeability such as aluminum is disposed below the top plate. A heating coil for further induction heating, and an electric conductor provided between the heating coil and the top plate for reducing buoyancy generated in the object to be heated by a magnetic field generated by the heating coil. An induction heating device provided with a thermal connection means that facilitates transmission to the top plate. 熱的接続手段は、電気導体のトッププレート側に重ねて設け、前記熱的接続手段の投影面積より前記電気導体の投影面積を大きくすると共に、トッププレートに直接または間接的に当接させた請求項1に記載の誘導加熱装置。 The thermal connection means is provided so as to overlap the top plate side of the electrical conductor, and the projected area of the electrical conductor is made larger than the projected area of the thermal connection means, and is brought into direct or indirect contact with the top plate. Item 2. The induction heating device according to Item 1. 熱的接続手段および電気導体は中央部に開口部を有すると共に、前記熱的接続手段は、前記電気導体の開口部よりも内側に張り出した部分を有する請求項2に記載の誘導加熱装置。 The induction heating device according to claim 2, wherein the thermal connection means and the electrical conductor have an opening at a central portion, and the thermal connection means has a portion protruding inward from the opening of the electrical conductor. 熱的接続手段は、厚みを電気導体の厚み寸法より薄くした請求項2または3に記載の誘導加熱装置。 The induction heating device according to claim 2 or 3, wherein the thermal connecting means has a thickness smaller than a thickness dimension of the electric conductor. 熱的接続手段は、アルミ以上の高熱伝導率を有する材料とした請求項2〜4のいずれか1項に記載の誘導加熱装置。 The induction heating device according to any one of claims 2 to 4, wherein the thermal connection means is made of a material having a high thermal conductivity equal to or higher than that of aluminum. 熱的接続手段は、電気導体を材料とし、被加熱物に発生する浮力を低減する機能を備えた請求項1〜5のいずれか1項に記載の誘導加熱装置。 The induction heating device according to any one of claims 1 to 5, wherein the thermal connection means is made of an electrical conductor and has a function of reducing buoyancy generated in an object to be heated.
JP2003387894A 2003-11-18 2003-11-18 Induction heating cooker Pending JP2005149976A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003387894A JP2005149976A (en) 2003-11-18 2003-11-18 Induction heating cooker

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003387894A JP2005149976A (en) 2003-11-18 2003-11-18 Induction heating cooker

Publications (1)

Publication Number Publication Date
JP2005149976A true JP2005149976A (en) 2005-06-09

Family

ID=34695121

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003387894A Pending JP2005149976A (en) 2003-11-18 2003-11-18 Induction heating cooker

Country Status (1)

Country Link
JP (1) JP2005149976A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104470013A (en) * 2014-11-18 2015-03-25 杨毅坚 Energy-efficient electro-magnetic induction sensor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104470013A (en) * 2014-11-18 2015-03-25 杨毅坚 Energy-efficient electro-magnetic induction sensor

Similar Documents

Publication Publication Date Title
JP3938197B2 (en) Induction heating device
US7057144B2 (en) Induction heating device
KR101307594B1 (en) Electric range having induction heater
JP2008293888A (en) Induction-heating cooker
JP2010108796A (en) Induction heating cooker
JP4151608B2 (en) Induction heating device
JP2003264054A (en) Induction heater device
JP3888290B2 (en) Induction heating device
JP2005149976A (en) Induction heating cooker
JP4722020B2 (en) Electromagnetic induction heating cooker
JP3925388B2 (en) Induction heating device
JP3861731B2 (en) Induction heating device
JP2006012862A (en) Induction heating cooker
JP2010129175A (en) Induction heating device
JP3883478B2 (en) Induction heating device
JP2006216430A (en) Induction heating device
JP3465712B2 (en) Induction heating device
JP2005222822A (en) Induction heating device
JP3465711B2 (en) Induction heating device
JP2006120495A (en) Induction heating cooker
KR101813279B1 (en) Electric Hob
JP2004273301A (en) Induction heating device
JP2008055013A (en) Heated vessel
JP2006120336A (en) Induction heating device
JP2008103356A (en) Induction heating apparatus