JP2006120336A - Induction heating device - Google Patents

Induction heating device Download PDF

Info

Publication number
JP2006120336A
JP2006120336A JP2004304085A JP2004304085A JP2006120336A JP 2006120336 A JP2006120336 A JP 2006120336A JP 2004304085 A JP2004304085 A JP 2004304085A JP 2004304085 A JP2004304085 A JP 2004304085A JP 2006120336 A JP2006120336 A JP 2006120336A
Authority
JP
Japan
Prior art keywords
electric conductor
heating coil
heated
heating
induced
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004304085A
Other languages
Japanese (ja)
Inventor
Atsushi Fujita
篤志 藤田
Motonari Hirota
泉生 弘田
Hideki Sadakata
秀樹 定方
Katsuyuki Aihara
勝行 相原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2004304085A priority Critical patent/JP2006120336A/en
Publication of JP2006120336A publication Critical patent/JP2006120336A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Induction Heating Cooking Devices (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an induction heating device that reduces buoyancy exerted on an object to be heated and causes a low loss. <P>SOLUTION: The induction heating device comprises: a heating coil 3 for induction-heating an object to be heated (not shown) that is made of a low permeability material and that has a high electrical conductivity; and an electrical conductor 7 provided between the object to be heated and the heating coil 3. Because of the effect of an induction current induced by the heating coil 3, the electrical conductor 7 has a function of reducing buoyancy exerted on the object to be heated due to a repulsive force between a magnetic field generated by the heating coil 3 and a magnetic field generated by an induction current induced in the object to be heated. The electrical conductor 7 is provided with a slit 9 for limiting the distribution of the induction current that flows circularly in the electrical conductor 7 nearly in parallel with the direction in which the current of the heating coil 3 flows. The slit 9 is formed to extend from an innermost part of the conductor 7 opposed to the heating coil 3 to an outermost part thereof. Since the induction current is thereby limited at a portion of the conductor 7 where a large amount of induction current is induced directly above the coil 3, it is possible to greatly reduce heat generation in the conductor 7 and to increase heating efficiency for the object to be heated. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、一般家庭やオフィス、レストラン、工場などで使用される誘導加熱調理器、誘導加熱式湯沸かし器、誘導加熱式アイロン等誘導加熱装置に関するものであり、特に、アルミニウムや銅などの低透磁率かつ高電気伝導率の材料からなる被加熱物を加熱する誘導加熱装置に関するものである。   The present invention relates to induction heating devices such as induction heating cookers, induction heating water heaters, induction heating irons used in general homes, offices, restaurants, factories, etc., and in particular, low magnetic permeability such as aluminum and copper. The present invention also relates to an induction heating apparatus for heating an object to be heated made of a material having high electrical conductivity.

従来、この種の誘導加熱装置の例として、誘導加熱調理器があるが、その誘導加熱調理器は、加熱コイルと複数のスイッチング素子を有し、一方のスイッチング素子のオン期間中に周期の短い共振電流を加熱コイルに発生し、かつ平滑コンデンサから加熱コイルに電力を供給することにより、入力電圧の脈流による鍋鳴り音が生じず、騒音の少ないアルミ鍋などを加熱する技術が知られている(例えば、特許文献1参照)。   Conventionally, there is an induction heating cooker as an example of this type of induction heating device. The induction heating cooker has a heating coil and a plurality of switching elements, and the cycle is short during the ON period of one of the switching elements. A technology is known that heats an aluminum pan with low noise by generating resonance current in the heating coil and supplying power from the smoothing capacitor to the heating coil, so that no squealing noise occurs due to the pulsating flow of the input voltage. (For example, refer to Patent Document 1).

また、加熱コイルの入力インピーダンスにおける等価直列抵抗(被加熱物及び電気導体を加熱状態と同様の位置配置で、加熱コイル近傍の周波数を使用して測定した加熱コイルの入力インピーダンスにおける等価直列抵抗(以下単に加熱コイルの等価直列抵抗と呼ぶ))を大きくする機能を有する電気導体を、加熱コイルとアルミニウムなどの低透磁率かつ高電気伝導率の材料でなる被加熱物の間に設けることにより、加熱コイルに流れる電流を小さくして被加熱物に作用する浮力を低減し、入力電力が大でも浮力による被加熱物のずれや浮きを少なくする技術が知られている(例えば、特許文献2参照)。   In addition, equivalent series resistance in the input impedance of the heating coil (equivalent series resistance in the input impedance of the heating coil measured below using the frequency near the heating coil at the same position as the heated object and the electric conductor in the heated state) By simply providing an electric conductor having the function of increasing the equivalent series resistance of the heating coil) between the heating coil and an object to be heated made of a material having low magnetic permeability and high electrical conductivity such as aluminum. A technique is known in which the current flowing through the coil is reduced to reduce the buoyancy acting on the object to be heated, and even if the input power is large, the deviation or lift of the object to be heated due to buoyancy is reduced (see, for example, Patent Document 2) .

以下、従来の誘導加熱装置として、上記特許文献2における誘導加熱調理器について、図5〜10を用いて説明する。   Hereinafter, the induction heating cooker in the said patent document 2 is demonstrated using FIGS. 5-10 as a conventional induction heating apparatus.

図5は、誘導加熱調理器に内蔵された加熱コイル及びその周辺の構成を示す斜視図であり、図6は、同誘導加熱装置の要部断面図である。   FIG. 5 is a perspective view showing a configuration of a heating coil built in the induction heating cooker and its surroundings, and FIG. 6 is a cross-sectional view of a main part of the induction heating device.

図5及び図6において、加熱コイル21は、インバータ(図示せず)から供給された約70kHzの高周波電流により磁界を発生し、天板28上に戴置された被加熱物29を誘導加熱する。電気導体27は、厚さが略1mmのアルミニウムの板により形成され、絶縁板31と天板28の間に設けられている。   5 and 6, the heating coil 21 generates a magnetic field by a high-frequency current of about 70 kHz supplied from an inverter (not shown), and induction-heats an object 29 to be heated placed on the top plate 28. . The electric conductor 27 is formed of an aluminum plate having a thickness of about 1 mm, and is provided between the insulating plate 31 and the top plate 28.

加熱コイル21の上部に出た磁界は、電気導体27に鎖交するので、電気導体27には誘導電流が誘起される。電気導体27の厚みは、加熱コイル21の電流により誘導される高周波電流の浸透深さ(以下単に誘導電流の浸透深さと呼ぶ)以上なので、電気導体27に鎖交した磁界の大部分はほとんど電気導体27を通過せず、外周側または内周側に迂回してから被加熱物29に到達する。   Since the magnetic field emitted from the upper part of the heating coil 21 is linked to the electric conductor 27, an induced current is induced in the electric conductor 27. Since the thickness of the electric conductor 27 is equal to or greater than the penetration depth of the high-frequency current induced by the current of the heating coil 21 (hereinafter simply referred to as the penetration depth of the induced current), most of the magnetic field linked to the electric conductor 27 is almost electric. It does not pass through the conductor 27 but reaches the object to be heated 29 after detouring to the outer peripheral side or inner peripheral side.

電気導体27がない場合には、加熱コイル21から発生した高周波磁界に対して、アルミニウム若しくは銅又はこれらと同等以上の電気伝導率を有し、かつ低透磁率材料からなる被加熱物29の内部には、反発する方向に磁界を発生すべく、誘導電流が誘起される。この結果、被加熱物29内部の誘導電流から誘起される磁界と、加熱コイル21から発生する磁界との交互作用により、被加熱物29に浮力が生じる。   When there is no electric conductor 27, the inside of the object 29 to be heated is made of aluminum, copper, or an electric conductivity equal to or higher than that of the high frequency magnetic field generated from the heating coil 21 and made of a low magnetic permeability material. An induced current is induced to generate a magnetic field in the repulsive direction. As a result, buoyancy is generated in the heated object 29 due to the interaction between the magnetic field induced from the induced current in the heated object 29 and the magnetic field generated from the heating coil 21.

しかしながら、上記従来の技術では、加熱コイル21と被加熱物29との間に電気導体27が設けられており、さらにその厚みを誘導電流の浸透深さよりも大としている。加熱コイル21から発生する磁界は、電気導体27と被加熱物29に鎖交し、両者に誘導電流を発生することになる。これにより電気導体27に誘導された誘導電流で発生する磁界と、被加熱物29に誘導された電流の発生する磁界の重畳磁界が、加熱コイル21の発生する磁界の変化を妨げるように電気導体27及び被加熱物29に誘導電流が流れる。   However, in the above conventional technique, the electric conductor 27 is provided between the heating coil 21 and the object to be heated 29, and the thickness thereof is larger than the penetration depth of the induced current. The magnetic field generated from the heating coil 21 is linked to the electric conductor 27 and the object to be heated 29 and generates an induced current in both. Thus, the electric conductor is generated so that the superposed magnetic field of the magnetic field generated by the induced current induced in the electric conductor 27 and the magnetic field generated by the current induced in the object to be heated 29 prevents a change in the magnetic field generated by the heating coil 21. An induced current flows through 27 and the object 29 to be heated.

つまり、被加熱物29に誘導される電流分布が、電気導体27に誘導電流が発生することにより変わることになる。この電流分布の変化で、加熱コイル21の等価直列抵抗が大きくなり、同一出力を得る場合の加熱コイル21に流す電流を小さくすることができ、被加熱物29に作用する浮力が低減するとともに、電気導体27が被加熱物29に働くべき浮力の一部を分担することで、被加熱物29に作用する浮力が低減できる。   That is, the current distribution induced in the object to be heated 29 is changed by generating an induced current in the electric conductor 27. With this change in current distribution, the equivalent series resistance of the heating coil 21 is increased, the current flowing through the heating coil 21 when obtaining the same output can be reduced, the buoyancy acting on the object 29 to be heated is reduced, and By sharing a part of the buoyancy that the electric conductor 27 should act on the object 29 to be heated, the buoyancy acting on the object 29 can be reduced.

図7は、被加熱物29がアルミニウム製の鍋の場合の消費電力と浮力の関係を、アルミニウム製の電気導体27がある場合(Bで示す)と電気導体27がない場合(Aで示す)について、また図8は消費電力と加熱コイル電流の関係を、電気導体27がある場合(Bで示す)と電気導体27がない場合(Aで示す)について測定結果の一例を示している。ただし、インバータの共振周波数は約70kHzである。   FIG. 7 shows the relationship between power consumption and buoyancy when the object to be heated 29 is an aluminum pan. When there is an electric conductor 27 made of aluminum (shown by B) and when there is no electric conductor 27 (shown by A). FIG. 8 shows an example of the measurement result of the relationship between the power consumption and the heating coil current when the electric conductor 27 is present (indicated by B) and when the electric conductor 27 is absent (indicated by A). However, the resonance frequency of the inverter is about 70 kHz.

これらの測定結果によると、電気導体27を挿入することにより、加熱コイル21の等価直列抵抗が増加し、被加熱物29に働く浮力が低減するとともに、加熱コイル21電流も低減されている。   According to these measurement results, by inserting the electric conductor 27, the equivalent series resistance of the heating coil 21 is increased, the buoyancy acting on the object to be heated 29 is reduced, and the current of the heating coil 21 is also reduced.

図9は、電気導体27の厚みと浮力に関する傾向である。電気導体27の厚みを浸透深さ以上にすることにより、浮力低減効果を得ることが可能としている。   FIG. 9 shows the tendency regarding the thickness and buoyancy of the electric conductor 27. By making the thickness of the electrical conductor 27 equal to or greater than the penetration depth, it is possible to obtain a buoyancy reduction effect.

さらに、上記従来の技術では、電気導体27内で、加熱コイル21の電流の流れる方向と略平行に周回して流れる誘導電流の分布を制限する周回電流制限手段27aを設けることにより、電気導体27が、加熱コイル21に流れる電流により誘導加熱されて発熱する発熱量を抑制するとともに、電気導体27の等価直列抵抗の増加作用を有するようにし、加熱コイル21電流低減作用と被加熱物29に働く浮力低減作用を得るものとしている。   Further, in the above conventional technique, the electric conductor 27 is provided with the circulating current limiting means 27a for limiting the distribution of the induced current flowing around the heating coil 21 in a direction substantially parallel to the current flowing direction of the heating coil 21. However, the amount of heat generated by induction heating by the current flowing through the heating coil 21 is suppressed, and the equivalent series resistance of the electric conductor 27 is increased, which acts on the heating coil 21 and the object 29 to be heated. The buoyancy reduction effect is obtained.

図10は、電気導体27の形状を示す図である。電気導体27は、略円盤状で厚み約1mmのアルミニウム板をベースとし、さらに放射状に切り欠き40aを4ヶ所設けている。同図10において、加熱コイル21に高周波電流が破線の矢印A方向に流れるように供給されると、電気導体27に誘導される大きな電流の流れは、模式的に示すと実線矢印Bの方向になる。   FIG. 10 is a diagram showing the shape of the electric conductor 27. The electric conductor 27 is based on a substantially disk-shaped aluminum plate having a thickness of about 1 mm, and is further provided with four radial cutouts 40a. In FIG. 10, when a high-frequency current is supplied to the heating coil 21 so as to flow in the direction of the broken line arrow A, a large current flow induced in the electric conductor 27 is schematically illustrated in the direction of the solid line arrow B. Become.

これにより、切り欠き40aを通過して加熱コイル21の磁界を直接照射し、一部の磁界を迂回させて被加熱物29に鎖交させ、被加熱物29において加熱コイル21電流に対向した誘導電流分布が発生することを抑制して、等価直列抵抗を増加させるとともに、電気導体27においても、切り欠き40aを設けることにより発熱を防止することができる。   Thereby, the magnetic field of the heating coil 21 is directly irradiated through the notch 40a, and a part of the magnetic field is bypassed and linked to the object 29 to be heated. It is possible to suppress the occurrence of current distribution and increase the equivalent series resistance, and also to prevent heat generation in the electrical conductor 27 by providing the notch 40a.

以上述べたように、電気導体27を用いることにより、アルミニウムなどの高電気伝導率を有しかつ低透磁率材料からなる被加熱物29を、誘導加熱することが実用的に可能となった。
特開2003−257609号公報 特開2003−264054号公報
As described above, by using the electric conductor 27, it is practically possible to inductively heat the heated object 29 having a high electric conductivity such as aluminum and made of a low magnetic permeability material.
Japanese Patent Laid-Open No. 2003-257609 JP 2003-264054 A

しかしながら上記従来の誘導加熱装置の構成によれば、実際の使用にあたっては、被加熱物29に働く浮力を全く無視することができず、被加熱物29である鍋と調理物との合計重量が一定の重量より重くなるように制限していた。また、鍋は実際には底面が平面である場合は少なく、わずかな反りを有するのが普通である(鍋底が凹になっている、すなわち内側に凸になっているような凹反り鍋が用いられている)。反りが大きくなると、熱効率が低下し、調理性能が良くないため、反りの程度を制限するのが一般的であった。   However, according to the configuration of the above-described conventional induction heating apparatus, in actual use, the buoyancy acting on the heated object 29 cannot be ignored at all, and the total weight of the pot that is the heated object 29 and the cooked food is It was limited to be heavier than a certain weight. In addition, the pan is rare in the case where the bottom surface is actually flat, and usually has a slight warp (the use of a concave warp pan in which the bottom of the pan is concave, that is, convex on the inside is used. Is). When the warpage becomes large, the thermal efficiency is lowered and the cooking performance is not good, so it is common to limit the degree of warpage.

前記浮力による重量制限を緩和し、さらに使いやすくするために、浮力低減作用を有する種々の構成のうち、電気導体27の面積を大きくする、すなわち、加熱コイル21の等価直列抵抗を大きくすることが実用的であると考えられる。   In order to alleviate the weight limitation due to the buoyancy and make it easier to use, the area of the electric conductor 27 is increased, that is, the equivalent series resistance of the heating coil 21 is increased, among various configurations having a buoyancy reduction effect. It is considered practical.

つまり、加熱コイル21に対応する電気導体27の中央部における開口部の大きさを、天板28に当接してその温度を検知する温度検知手段35を配置するのに必要な空間だけにし、可能な限り電気導体27の面積を大きく設計することで、浮力のさらなる低減は可能であると考えられる。   In other words, the size of the opening in the central portion of the electric conductor 27 corresponding to the heating coil 21 is limited to a space necessary for placing the temperature detecting means 35 that abuts the top plate 28 and detects its temperature. It is considered that buoyancy can be further reduced by designing the area of the electric conductor 27 as large as possible.

しかしながら、この構成において、反りのある鍋を用いた場合、加熱コイル21から見て被加熱物29が遠くなるために、加熱コイル21中心付近では、被加熱物29に磁束が到達しにくく、一方で、距離が近い電気導体27の内周部分には変わらず磁束が到達するため、結果として、電気導体27の内周部分の発熱が異常に早くなる。   However, in this configuration, when a pan with a warp is used, the object 29 to be heated is far from the heating coil 21, so that the magnetic flux hardly reaches the object 29 near the center of the heating coil 21. Thus, the magnetic flux reaches the inner peripheral portion of the electric conductor 27 that is close to the distance, and as a result, the heat generation in the inner peripheral portion of the electric conductor 27 is abnormally accelerated.

さらに、凹反りのある部分は、鍋底と天板28との間に空間があるため、電気導体27の熱が天板28を介して鍋底に伝熱され難いため温度上昇が速くなる。   Furthermore, since there is a space between the bottom of the pan and the top plate 28 in the portion with the concave warp, the temperature rises faster because the heat of the electric conductor 27 is not easily transferred to the bottom of the pan through the top plate 28.

電気導体27が高温になった場合、電気導体27の発熱を抑えたり、電気導体27の熱が加熱コイル21などに悪影響を及ぼさないよう、加熱コイル21の出力を低減する制御を行う。そのため、電気導体27の温度上昇速度が速いと、早い時点から加熱コイル21の出力を下げるように制御することになり、調理に時間がかかりすぎたり、あるいは調理ができなかったりするという課題があった。   When the temperature of the electric conductor 27 becomes high, control is performed to reduce the output of the heating coil 21 so that the heat generation of the electric conductor 27 is suppressed and the heat of the electric conductor 27 does not adversely affect the heating coil 21 and the like. Therefore, if the temperature rise rate of the electric conductor 27 is fast, control is performed so that the output of the heating coil 21 is lowered from an early point in time, and there is a problem that cooking takes too much time or cooking cannot be performed. It was.

以上の理由により、電気導体27の内周部分から所定の距離の間は、電気導体27を設けることができず、その分浮力を低減できないという課題があった。   For the above reasons, there is a problem that the electric conductor 27 cannot be provided for a predetermined distance from the inner peripheral portion of the electric conductor 27, and buoyancy cannot be reduced accordingly.

本発明は、前記従来の課題を解決するもので、アルミニウムのような高電気伝導率で低透磁率からなる被加熱物に働く浮力をさらに低減するとともに、凹反り鍋のような鍋底が凹となっているような被加熱物29でも使用しやすくした、利便性の高い誘導加熱装置を提供することを目的としている。   The present invention solves the above-mentioned conventional problems, further reducing the buoyancy acting on the heated object having high electrical conductivity and low permeability such as aluminum, and the bottom of the pan like a concave warp pan is concave. An object of the present invention is to provide a highly convenient induction heating apparatus that can be easily used even with an object 29 to be heated.

前記従来の課題を解決するために、本発明の誘導加熱装置は、アルミニウム若しくは銅またはこれらと略同等以上の電気伝導率を有する低透磁率材料からなる被加熱物が戴置されるトッププレートと、前記トッププレートの下方に設けられ前記被加熱物を誘導加熱する加熱コイルと、前記加熱コイルと前記被加熱物との間に設けられた電気導体とを備え、前記電気導体は、前記加熱コイルによって前記電気導体内部に誘起される誘導電流の作用により、前記加熱コイルの発生する磁界と前記被加熱物に誘導される誘導電流から発生する磁界の反発力に起因して前記被加熱物に対して働く浮力を低減する浮力低減機能を有すると共に、前記電気導体内で前記加熱コイルの電流の流れる方向と略平行に周回して流れる誘導電流の分布を制限する周回電流制限手段を備え、前記周回電流制限手段を、前記電気導体の前記加熱コイルに対向する最内部から最外部に渡って形成したもので、電気導体の、加熱コイルの直上で誘導電流が多く誘起される部分での誘導電流が制限されるので、電気導体内での発熱が大幅に低減され、被加熱物の加熱効率を向上させることができる。また、電気導体の発熱が許容できる範囲で、電気導体の面積が拡大できるので、加熱コイルの等価直列抵抗を増加させ、被加熱物に働く浮力をさらに低減することができる。   In order to solve the above-described conventional problems, an induction heating apparatus according to the present invention includes a top plate on which an object to be heated made of aluminum, copper, or a low-permeability material having an electric conductivity substantially equal to or higher than these is placed. A heating coil provided below the top plate for induction heating the object to be heated, and an electric conductor provided between the heating coil and the object to be heated, wherein the electric conductor is the heating coil. Due to the action of the induced current induced inside the electric conductor, the magnetic field generated by the heating coil and the repulsive force of the magnetic field generated from the induced current induced in the heated object Has a buoyancy reduction function that reduces the buoyancy that works, and restricts the distribution of the induced current that flows around and parallel to the current flow direction of the heating coil in the electric conductor. A current limiting means, wherein the circulating current limiting means is formed from the innermost part of the electric conductor facing the heating coil to the outermost part, and induces a large amount of induced current immediately above the heating coil of the electric conductor. Since the induced current in the portion to be applied is limited, heat generation in the electric conductor is greatly reduced, and the heating efficiency of the object to be heated can be improved. In addition, since the area of the electric conductor can be expanded within a range where the heat generation of the electric conductor can be allowed, the equivalent series resistance of the heating coil can be increased and the buoyancy acting on the object to be heated can be further reduced.

また本発明の誘導加熱装置は、アルミニウム若しくは銅またはこれらと略同等以上の電気伝導率を有する低透磁率材料からなる被加熱物が戴置されるトッププレートと、前記トッププレートの下方に設けられ前記被加熱物を誘導加熱する加熱コイルと、前記加熱コイルと前記被加熱物との間に設けられた電気導体とを備え、前記電気導体は、前記加熱コイルに対向して前記被加熱物を配置した時の前記加熱コイルの等価直列抵抗を、前記電気導体が設けられていない時のそれより大きくすると共に、前記電気導体内で前記加熱コイルの電流の流れる方向と略平行に周回して流れる誘導電流の分布を制限する周回電流制限手段を備え、前記周回電流制限手段を、前記電気導体の前記加熱コイルに対向する最内部から最外部に渡って形成したもので、電気導体の、加熱コイルの直上で誘導電流が多く誘起される部分での誘導電流が制限されるので、電気導体内での発熱が大幅に低減され、被加熱物の加熱効率を向上させることができる。また、電気導体の発熱が許容できる範囲で、電気導体の面積が拡大できるので、加熱コイルの等価直列抵抗を増加させ、被加熱物に働く浮力をさらに低減することができる。   The induction heating device of the present invention is provided with a top plate on which an object to be heated made of aluminum, copper, or a low permeability material having an electric conductivity substantially equal to or higher than these is placed, and below the top plate. A heating coil for induction heating the object to be heated; and an electric conductor provided between the heating coil and the object to be heated, the electric conductor facing the heating coil to The equivalent series resistance of the heating coil when arranged is larger than that when the electric conductor is not provided, and flows around the electric conductor in a direction substantially parallel to the current flow direction of the heating coil. Circulating current limiting means for limiting the distribution of the induced current is provided, and the circulating current limiting means is formed from the innermost part facing the heating coil of the electric conductor to the outermost part. Because the induced current is limited in the part of the electrical conductor where the induced current is induced directly above the heating coil, heat generation in the electrical conductor is greatly reduced, and the heating efficiency of the object to be heated is improved. Can do. In addition, since the area of the electric conductor can be expanded within a range where the heat generation of the electric conductor can be allowed, the equivalent series resistance of the heating coil can be increased and the buoyancy acting on the object to be heated can be further reduced.

本発明の誘導加熱装置は、低透磁率かつ高電気伝導率の材料で形成された被加熱物を加熱することができるとともに、被加熱物に働く浮力を低減し、かつ損失の少ない誘導加熱装置を提供することができる。   The induction heating apparatus of the present invention can heat an object to be heated formed of a material having low magnetic permeability and high electrical conductivity, reduces buoyancy acting on the object to be heated, and has little loss. Can be provided.

第1の発明は、アルミニウム若しくは銅またはこれらと略同等以上の電気伝導率を有する低透磁率材料からなる被加熱物が戴置されるトッププレートと、前記トッププレートの下方に設けられ前記被加熱物を誘導加熱する加熱コイルと、前記加熱コイルと前記被加熱物との間に設けられた電気導体とを備え、前記電気導体は、前記加熱コイルによって前記電気導体内部に誘起される誘導電流の作用により、前記加熱コイルの発生する磁界と前記被加熱物に誘導される誘導電流から発生する磁界の反発力に起因して前記被加熱物に対して働く浮力を低減する浮力低減機能を有すると共に、前記電気導体内で前記加熱コイルの電流の流れる方向と略平行に周回して流れる誘導電流の分布を制限する周回電流制限手段を備え、前記周回電流制限手段を、前記電気導体の前記加熱コイルに対向する最内部から最外部に渡って形成したもので、電気導体の、加熱コイルの直上で誘導電流が多く誘起される部分での誘導電流が制限されるので、電気導体内での発熱が大幅に低減され、被加熱物の加熱効率を向上させることができる。また、電気導体の発熱が許容できる範囲で、電気導体の面積が拡大できるので、加熱コイルの等価直列抵抗を増加させ、被加熱物に働く浮力をさらに低減することができる。   According to a first aspect of the present invention, there is provided a top plate on which a heated object made of aluminum, copper, or a low magnetic permeability material having an electric conductivity substantially equal to or higher than these is placed, and the heated object provided below the top plate. A heating coil for inductively heating an object, and an electric conductor provided between the heating coil and the object to be heated, the electric conductor having an induced current induced inside the electric conductor by the heating coil. And a buoyancy reduction function for reducing buoyancy acting on the heated object due to the repulsive force of the magnetic field generated from the magnetic field generated by the heating coil and the induced current induced in the heated object. A circulating current limiting means for limiting the distribution of the induced current flowing around and in parallel with the current flow direction of the heating coil in the electric conductor; The electric conductor is formed from the innermost part facing the heating coil to the outermost part, and the induced current is limited in the part of the electric conductor where the induced current is induced directly above the heating coil. The heat generation in the electric conductor is greatly reduced, and the heating efficiency of the object to be heated can be improved. In addition, since the area of the electric conductor can be expanded within a range where the heat generation of the electric conductor can be allowed, the equivalent series resistance of the heating coil can be increased and the buoyancy acting on the object to be heated can be further reduced.

第2の発明は、アルミニウム若しくは銅またはこれらと略同等以上の電気伝導率を有する低透磁率材料からなる被加熱物が戴置されるトッププレートと、前記トッププレートの下方に設けられ前記被加熱物を誘導加熱する加熱コイルと、前記加熱コイルと前記被加熱物との間に設けられた電気導体とを備え、前記電気導体は、前記加熱コイルに対向して前記被加熱物を配置した時の前記加熱コイルの等価直列抵抗を、前記電気導体が設けられていない時のそれより大きくすると共に、前記電気導体内で前記加熱コイルの電流の流れる方向と略平行に周回して流れる誘導電流の分布を制限する周回電流制限手段を備え、前記周回電流制限手段を、前記電気導体の前記加熱コイルに対向する最内部から最外部に渡って形成したもので、電気導体の、加熱コイルの直上で誘導電流が多く誘起される部分での誘導電流が制限されるので、電気導体内での発熱が大幅に低減され、被加熱物の加熱効率を向上させることができる。また、電気導体の発熱が許容できる範囲で、電気導体の面積が拡大できるので、加熱コイルの等価直列抵抗を増加させ、被加熱物に働く浮力をさらに低減することができる。   According to a second aspect of the present invention, there is provided a top plate on which a heated object made of aluminum, copper, or a low permeability material having an electric conductivity substantially equal to or higher than these is placed, and the heated object provided below the top plate. A heating coil for inductively heating an object, and an electric conductor provided between the heating coil and the object to be heated, and the electric conductor is disposed when the object to be heated is disposed opposite the heating coil. The equivalent series resistance of the heating coil is made larger than that when the electric conductor is not provided, and the induction current flowing around the parallel to the current flow direction of the heating coil in the electric conductor A circulation current limiting means for limiting the distribution, wherein the circulation current limiting means is formed from the innermost part facing the heating coil of the electric conductor to the outermost part, Since the induced current in a portion where the induction current is often induced directly above the heating coil is limited, heat generated in the electric conductor is greatly reduced, thereby improving the heating efficiency of the object to be heated. In addition, since the area of the electric conductor can be expanded within a range where the heat generation of the electric conductor can be allowed, the equivalent series resistance of the heating coil can be increased and the buoyancy acting on the object to be heated can be further reduced.

第3の発明は、特に、第1又は第2の発明の電気導体の最外部を、加熱コイルの外径より外方に位置させたもので、電気導体の最外部が加熱コイルを覆うように略リング形状となり、その略リング形状部分に、被加熱物の誘導加熱に寄与しない磁界を打ち消す方向に誘導電流が流れ、打ち消し磁界が発生するため、被加熱物の誘導加熱に寄与せず、又他機器に影響を与える漏洩磁界を低減することができる。   In the third invention, in particular, the outermost part of the electric conductor of the first or second invention is positioned outward from the outer diameter of the heating coil so that the outermost part of the electric conductor covers the heating coil. It has a substantially ring shape, and an induction current flows in the direction of canceling out the magnetic field that does not contribute to induction heating of the object to be heated, and a canceling magnetic field is generated, so that it does not contribute to induction heating of the object to be heated. The leakage magnetic field that affects other devices can be reduced.

第4の発明は、特に第1〜3のいずれか一つの発明の周回電流制限手段を、電気導体の中心より放射状に設けたもので、電気導体内に加熱コイルと同心円を描くように誘導電流が流れようとするが、周回電流制限手段が、電気導体の中心より放射状に設けられているため、それが加熱コイルにより誘導される誘導電流の大きな流れと略直角方向に配置されていることになり、誘導電流の流れを阻害し、制限しやすく、電気導体の発熱を低減することができる。   In the fourth invention, in particular, the circulating current limiting means of any one of the first to third inventions is provided radially from the center of the electric conductor, and the induced current is drawn in a concentric circle with the heating coil in the electric conductor. However, since the circulating current limiting means is provided radially from the center of the electric conductor, it is arranged in a direction substantially perpendicular to the large flow of induced current induced by the heating coil. Thus, the flow of the induced current can be hindered and easily restricted, and the heat generation of the electric conductor can be reduced.

第5の発明は、特に、第4の発明の周回電流制限手段を、少なくとも12方向以上に設けたもので、電気導体の発熱を大幅に低減することができる。   In the fifth aspect of the invention, in particular, the circulating current limiting means of the fourth aspect of the invention is provided in at least 12 directions, and the heat generation of the electric conductor can be greatly reduced.

第6の発明は、特に第1〜5のいずれか一つの発明の周回電流制限手段を、切り欠き又は、開口又は、スリット又は、それらを任意に組み合わせて形成したもので、加熱コイルから発生する磁界により電気導体に誘起される誘導電流の向き及び大きさが強制的に変更され、電気導体内に加熱コイル電流と略平行に周回して流れる誘導電流を、簡易な構成で制限することができ、それにより電気導体内で発生する発熱を低減することができる。   In the sixth invention, the circulating current limiting means according to any one of the first to fifth inventions is formed by a notch, an opening, a slit, or any combination thereof, and is generated from a heating coil. The direction and magnitude of the induced current induced in the electrical conductor by the magnetic field is forcibly changed, and the induced current flowing around the parallel to the heating coil current in the electrical conductor can be limited with a simple configuration. Thereby, the heat generated in the electric conductor can be reduced.

第7の発明は、特に、第1〜6のいずれか一つの発明の加熱コイル近傍に高透磁率の磁性体を配し、電気導体の前記磁性体に対向する部分近傍に、誘導電流の分布を局部的に制限する局部誘導電流制限手段を配置したもので、高透磁率の磁性体により、その近傍や上方に局部的に集中する高周波磁界により、その近傍の電気導体及び被加熱物に局部的に誘導電流を流す作用を持つが、局部誘導電流制限手段によって局部的に流れる誘導電流を効果的に抑制し、電気導体の発熱を抑えることができる。   In the seventh invention, in particular, a magnetic material having a high magnetic permeability is arranged in the vicinity of the heating coil according to any one of the first to sixth inventions, and the distribution of the induced current in the vicinity of the portion of the electric conductor facing the magnetic material. The local induction current limiting means for locally limiting is arranged, and the high magnetic permeability magnetic material causes the high-frequency magnetic field to concentrate locally in the vicinity or above the local electric conductor and the object to be heated. However, the induced current flowing locally can be effectively suppressed by the locally induced current limiting means, and the heat generation of the electric conductor can be suppressed.

第8の発明は、特に、第1〜7のいずれか一つの発明の電気導体の内側を分断するように複数の周回電流制限手段を設け、前記周回電流制限手段で分断された電気導体の幅を0.5乃至10mmとしたもので、電気導体内に誘起される誘導電流を十分抑制し、電気導体の発熱が十分低減され、また、電気導体の加工も容易で、安定して製造する事ができる。   In an eighth aspect of the invention, in particular, a plurality of circulating current limiting means are provided so as to divide the inside of the electrical conductor of any one of the first to seventh aspects, and the width of the electrical conductor divided by the circulating current limiting means 0.5 to 10 mm, the induced current induced in the electric conductor is sufficiently suppressed, the heat generation of the electric conductor is sufficiently reduced, and the electric conductor is easy to process and can be manufactured stably. Can do.

第9の発明は、特に、第1〜8のいずれか一つの発明の電気導体の中心近傍での周回電流制限手段の幅を0.2乃至3mmとしたもので、周回電流制限手段の幅が大きくなれば、電気導体の面積が小さくなり、加熱コイルの等価直列抵抗が低下し、被加熱物に働く浮力が増加するが、周回電流制限手段の幅を0.2乃至3mmとすることで、被加熱物に働く浮力の増加を抑制しながら、誘導電流を抑制する電気導体を安定して、製造することができる。   In the ninth aspect of the invention, in particular, the width of the circulating current limiting means in the vicinity of the center of the electric conductor of any one of the first to eighth aspects is 0.2 to 3 mm. If it becomes larger, the area of the electric conductor becomes smaller, the equivalent series resistance of the heating coil decreases, and the buoyancy acting on the object to be heated increases, but by setting the width of the circulating current limiting means to 0.2 to 3 mm, It is possible to stably manufacture an electric conductor that suppresses an induced current while suppressing an increase in buoyancy acting on an object to be heated.

以下、本発明の実施の形態について、図面を参照しながら説明する。なお、この実施の形態によって本発明が限定されるものではない。   Hereinafter, embodiments of the present invention will be described with reference to the drawings. Note that the present invention is not limited to the embodiments.

(実施の形態1)
図1は、本発明の第1の実施の形態における誘導加熱装置の要部概略断面図、図2は、同誘導加熱装置に設けられた電気導体の形状図である。
(Embodiment 1)
FIG. 1 is a schematic cross-sectional view of a main part of the induction heating apparatus according to the first embodiment of the present invention, and FIG. 2 is a shape diagram of an electric conductor provided in the induction heating apparatus.

図1において、誘導加熱装置の外郭を構成する本体1の上部に、絶縁体であり、耐熱セラミックス製のトッププレート2が設けられている。トッププレート2の下方には、素線を束ねた撚り線を多層にして平板上に巻回されて構成された加熱コイル3が備えられている。加熱コイル3の概略寸法は、内径がφ80mm、外径がφ170mmとなっている。   In FIG. 1, a top plate 2 made of a heat-resistant ceramic, which is an insulator, is provided on an upper portion of a main body 1 constituting an outline of the induction heating device. Below the top plate 2, there is provided a heating coil 3 that is formed by winding a plurality of strands of bundled strands on a flat plate. The approximate dimensions of the heating coil 3 are an inner diameter of φ80 mm and an outer diameter of φ170 mm.

加熱コイル3近傍には、高透磁率の磁性体で棒状のフェライト4が12本放射状に設けられている。フェライト4は、加熱コイル3の面と略並行に配置されており、特にその両端を、図1に示すようにトッププレート2側に向けて上方垂直に折り曲げた形状となっている。   In the vicinity of the heating coil 3, twelve rod-like ferrites 4 made of a highly magnetic material are provided radially. The ferrite 4 is disposed substantially in parallel with the surface of the heating coil 3, and in particular, both ends thereof are bent vertically upward toward the top plate 2 as shown in FIG.

5は、アルミニウム若しくは銅又はこれらと略同等以上の高電気伝導率を有する低透磁率材料からなり、加熱コイル3で誘導加熱される被加熱物で、使用時にトッププレート2を挟んで加熱コイル3と対向するように、トッププレート2上に戴置される。   Reference numeral 5 denotes an object to be heated, which is made of aluminum, copper, or a low magnetic permeability material having a high electric conductivity substantially equal to or higher than these, and is induction-heated by the heating coil 3. The heating coil 3 sandwiches the top plate 2 in use. Is placed on the top plate 2 so as to oppose.

6は、トッププレート2の温度を検知する温度検知手段となるサーミスタで、トッププレート2の加熱コイル3側の面に当接されており、加熱コイル3のほぼ中心に位置するよう設けられている。サーミスタ6が当接するトッププレート2の裏面は、後述する電気導体7に設けた開口部8に面している。   6 is a thermistor serving as a temperature detecting means for detecting the temperature of the top plate 2, is in contact with the surface of the top plate 2 on the side of the heating coil 3, and is provided so as to be positioned substantially at the center of the heating coil 3. . The back surface of the top plate 2 with which the thermistor 6 abuts faces an opening 8 provided in an electric conductor 7 described later.

電気導体7は、厚さが約15μmのアルミニウム塗膜で形成され、トッププレート2の加熱コイル3側の面へ転写により、接合されている。図2は、加熱コイル3側から見た電気導体7の形状図で、電気導体7は、略ドーナツ状に形成され、その最外部が加熱コイル3の外径より大きく、即ち外方に位置し、又、最内部も加熱コイル3の内径より小さく設定されており、具体的にはそれぞれ約φ220mm、約φ50mmとなっている。また、周回電流制限手段となる幅1mmのスリット9が電気導体7の中心より放射状に少なくとも12本以上、本実施の形態では24本設けられている。   The electric conductor 7 is formed of an aluminum coating film having a thickness of about 15 μm, and is joined to the surface of the top plate 2 on the heating coil 3 side by transfer. FIG. 2 is a diagram of the shape of the electric conductor 7 viewed from the heating coil 3 side. The electric conductor 7 is formed in a substantially donut shape, and the outermost part is larger than the outer diameter of the heating coil 3, that is, located outside. Further, the innermost part is also set smaller than the inner diameter of the heating coil 3, and specifically, it is about φ220 mm and about φ50 mm, respectively. Further, at least twelve slits 9 having a width of 1 mm, which serve as a circulating current limiting means, are provided radially from the center of the electric conductor 7 and 24 in the present embodiment.

スリット9は、電気導体7が加熱コイル3に対向する最内部となるφ80mmより小さく、電気導体7最内部φ50mmに一方の端部を持っている。つまり、スリット9によって、電気導体7最内部が分断されているような形状をしている。   The slit 9 is smaller than φ80 mm, which is the innermost portion where the electric conductor 7 faces the heating coil 3, and has one end at the innermost φ50 mm of the electric conductor 7. That is, the slit 9 has a shape in which the innermost part of the electric conductor 7 is divided.

またスリット9は、電気導体7が加熱コイル3に対向する最外部となるφ170mmより大きいφ200mmにもう一方の端部を持っている。つまり、スリット9は、電気導体7が加熱コイル3に対向する最内部から最外部に渡って構成されている。   The slit 9 has the other end at φ200 mm, which is larger than φ170 mm, which is the outermost portion where the electric conductor 7 faces the heating coil 3. That is, the slit 9 is configured from the innermost side where the electric conductor 7 faces the heating coil 3 to the outermost side.

電気導体7は中央部に開口部8が設けられており、その開口縁はフェライト4の内端より内方に位置している。   The electric conductor 7 is provided with an opening 8 at the center, and the opening edge is located inward from the inner end of the ferrite 4.

電気導体7の中心近傍の周回電流制限手段となるスリット9によって分断された電気導体7の幅は、電気導体7最内部において、約7mmとなっている。また、電気導体7中心近傍の周回電流制限手段となるスリット9の幅は前記の通り1mmとなっている。   The width of the electric conductor 7 divided by the slit 9 serving as the circulating current limiting means in the vicinity of the center of the electric conductor 7 is about 7 mm in the innermost part of the electric conductor 7. Further, the width of the slit 9 serving as the circulating current limiting means near the center of the electric conductor 7 is 1 mm as described above.

電気導体7には、電気導体7から見て、加熱コイル3近傍に設けられた高透磁率のフェライト4に対向する部分近傍に、局部誘導電流制限手段となるスリット10が配置されている。スリット10は、加熱コイル3中心からφ150mm−φ190mmの位置にあり、長さ20mm、幅1mmとなっている。   In the electric conductor 7, a slit 10 serving as a local induction current limiting means is disposed in the vicinity of a portion facing the high permeability ferrite 4 provided in the vicinity of the heating coil 3 when viewed from the electric conductor 7. The slit 10 is located at φ150 mm-φ190 mm from the center of the heating coil 3 and has a length of 20 mm and a width of 1 mm.

電気導体7の一部からは、幅2mm程度と細く、他の部分に比べ熱抵抗大となる部分11が延びており、導電性のシールなどでリード線12と電気的に接続されている。さらにリード線12は、コンデンサ13を介して商用電源電位あるいは加熱コイル3に高周波電流を供給するインバータ(図示せず)の入力する商用電源を整流した電位あるいは大地に接続される。   A part 11 of the electric conductor 7 is as thin as about 2 mm in width and has a portion 11 having a larger thermal resistance than the other parts, and is electrically connected to the lead wire 12 by a conductive seal or the like. Furthermore, the lead wire 12 is connected to a commercial power source potential or a potential obtained by rectifying a commercial power source input by an inverter (not shown) that supplies a high-frequency current to the heating coil 3 via the capacitor 13 or the ground.

上記構成における誘導加熱装置の動作について説明する。   The operation of the induction heating apparatus having the above configuration will be described.

加熱コイル3には、約70kHzの高周波電流が供給される。加熱コイル3は、高周波電流が供給されると磁界を発生するが、加熱コイル3の下方では高透磁率材料であるフェライト4があり、磁界がフェライト4に集中するために、磁界が被加熱物5と反対側に膨らむのを防止できる。フェライト4は、複数のフェライトコアを組み合わせて構成しても同様の効果が得られる。   The heating coil 3 is supplied with a high-frequency current of about 70 kHz. The heating coil 3 generates a magnetic field when a high-frequency current is supplied, but there is a ferrite 4 which is a high permeability material below the heating coil 3, and the magnetic field concentrates on the ferrite 4, so that the magnetic field is heated. 5 can be prevented from bulging to the opposite side. Even if the ferrite 4 is constituted by combining a plurality of ferrite cores, the same effect can be obtained.

一方、加熱コイル3の上方へ出た磁界は、電気導体7に鎖交するため、電気導体7内部には誘導電流が誘起される。この時、誘導電流の周波数は約70kHzであり、電気導体7がアルミニウム製である場合の誘導電流の浸透深さδ=約300μmである。本実施の形態では、電気導体7は、誘導電流の浸透深さよりも十分薄い約15μmであるため、加熱コイル3からの磁界を遮蔽することができず、電気導体7内部を磁界が浸透、通過して、被加熱物5方向へ導かれる。フェライト4の両端部分は、上方垂直に折り曲げられているため、上方の被加熱物5方向へ磁界を効率よく誘導する作用をもつ。   On the other hand, since the magnetic field emitted upward from the heating coil 3 is linked to the electric conductor 7, an induced current is induced in the electric conductor 7. At this time, the frequency of the induced current is about 70 kHz, and the penetration depth δ of the induced current when the electric conductor 7 is made of aluminum is about 300 μm. In the present embodiment, since the electric conductor 7 is about 15 μm, which is sufficiently thinner than the penetration depth of the induced current, the magnetic field from the heating coil 3 cannot be shielded, and the magnetic field penetrates and passes through the electric conductor 7. And it is guide | induced to the to-be-heated material 5 direction. Since both end portions of the ferrite 4 are bent vertically upward, the ferrite 4 has an effect of efficiently inducing a magnetic field in the direction of the object 5 to be heated.

加熱コイル3の上方へ出た磁界は、電気導体7を浸透、通過した磁界と、スリット9、10や開口部8を通過した磁界との合成磁界となって、被加熱物5に到達する。被加熱物5に誘起される誘導電流は、この合成磁界により発生するものである。そのため、電気導体7が介在することにより、電気導体7がない場合と比較し、誘導電流分布は変化する。   The magnetic field emitted upward from the heating coil 3 reaches the object to be heated 5 as a combined magnetic field of the magnetic field that has permeated and passed through the electric conductor 7 and the magnetic field that has passed through the slits 9, 10 and the opening 8. The induced current induced in the object to be heated 5 is generated by this combined magnetic field. Therefore, the presence of the electric conductor 7 changes the induced current distribution as compared with the case where the electric conductor 7 is not provided.

また、加熱コイル3から見て誘導加熱する総加熱面積は、電気導体7の面積及び加熱コイル3から見て電気導体7に覆われていない、スリット9、10や開口部8上部の被加熱物5面積に、さらに加熱コイル3から見て電気導体7に覆われている部分の被加熱物5面積が加わることになる。電気導体7は、加熱コイル3と被加熱物5との磁気結合を強める作用を有しているわけである。この加熱コイル3から見た総加熱面積の増加で、加熱コイル3の等価直列抵抗が大きくなり、同一出力を得る場合の加熱コイル3に流す電流を小さくすることができ、さらに被加熱物5に作用する浮力が低減する。   Further, the total heating area to be induction-heated as viewed from the heating coil 3 is the area to be heated on the slits 9 and 10 and the opening 8 that are not covered by the electric conductor 7 as viewed from the heating coil 3. The area to be heated 5 of the portion covered with the electric conductor 7 when viewed from the heating coil 3 is further added to the five areas. The electric conductor 7 has an action of strengthening the magnetic coupling between the heating coil 3 and the article 5 to be heated. By increasing the total heating area viewed from the heating coil 3, the equivalent series resistance of the heating coil 3 is increased, and the current flowing through the heating coil 3 when obtaining the same output can be reduced. The acting buoyancy is reduced.

図3に電気導体7の厚みと、加熱コイル3の等価直列抵抗の関係を、アルミニウム製の鍋を被加熱物5として加熱状態と同様の位置配置で測定した場合(図3(a)で示す)と、被加熱物5がない場合(図3(b)で示す)について、測定結果の一例を示している。ただし、加熱コイル3の高周波電流周波数は約70kHzである。   FIG. 3 shows the relationship between the thickness of the electrical conductor 7 and the equivalent series resistance of the heating coil 3 when the aluminum pan is the object to be heated 5 and measured in the same position arrangement as in the heated state (shown in FIG. 3A). ) And the case where there is no object to be heated 5 (shown in FIG. 3B), an example of the measurement result is shown. However, the high frequency current frequency of the heating coil 3 is about 70 kHz.

図3(b)に示すように、被加熱物5がない場合、電気導体7の厚みが0(ない状態)から10μmまでは等価直列抵抗は単調増加し、電気導体7厚みが10μm以上では単調減少している。アルミニウムにおける誘導電流の浸透深さδ=約300μmを越える領域では、等価直列抵抗はほぼ一定の値となっている。   As shown in FIG. 3B, when there is no object to be heated 5, the equivalent series resistance increases monotonously from 0 (no state) to 10 μm in the thickness of the electric conductor 7 and monotonous when the thickness of the electric conductor 7 is 10 μm or more. is decreasing. In the region where the penetration depth δ of the induced current in aluminum exceeds about 300 μm, the equivalent series resistance has a substantially constant value.

これは、被加熱物5の代わりに電気導体7が加熱対象となっているためと考えられる。アルミニウム製の電気導体7の電気伝導率をσ、厚みをt、電気導体7における誘導電流の浸透深さをδとしたとき、電気導体7の厚みがδよりも小さい場合には、電気導体7の表皮に流れる誘導電流から見た高周波抵抗Rs(以下単に表皮抵抗と呼ぶ)は、Rs=1/(t・σ)で定義される。つまり厚みtに対して表皮抵抗は反比例の関係にある。また電気導体7の厚みがδよりも大きい場合には、Rs=1/(δ・σ)で定義され、表皮抵抗は一定値となる。   This is presumably because the electric conductor 7 is the object to be heated instead of the article 5 to be heated. When the electrical conductivity of the electrical conductor 7 made of aluminum is σ, the thickness is t, and the penetration depth of the induced current in the electrical conductor 7 is δ, when the thickness of the electrical conductor 7 is smaller than δ, the electrical conductor 7 The high-frequency resistance Rs (hereinafter simply referred to as skin resistance) viewed from the induced current flowing through the skin is defined as Rs = 1 / (t · σ). That is, the skin resistance is inversely proportional to the thickness t. When the thickness of the electric conductor 7 is larger than δ, it is defined by Rs = 1 / (δ · σ), and the skin resistance is a constant value.

電気導体7の厚みが0(ない状態)から10μmまでは、電気導体7の厚みが十分小さく、表皮抵抗が理論上非常に大きくなる。つまり、絶縁体に近い状態となり、加熱コイル3から発生する磁界も容易に通過するため、電気導体7がないのとほぼ同じ状態となる。加熱コイル3の等価直列抵抗は、被加熱物5及び電気導体7がない状態の加熱コイル3自身の高周波抵抗と、近傍のフェライト4の高周波抵抗などの合成抵抗とほぼ同じとなって小さい値となるが、電気導体7の厚みが増すにつれ、単調増加する。電気導体7の厚みが10μm以上300μm以下の領域では、電気導体7の表皮抵抗減少の影響により、加熱コイル3の等価直列抵抗も電気導体7厚みとほぼ反比例の関係で単調減少する。電気導体7の厚みが300μm以上の領域では、電気導体7表皮抵抗が一定となるため、加熱コイル3の等価直列抵抗もほぼ一定値となる。   When the thickness of the electric conductor 7 is 0 (no state) to 10 μm, the thickness of the electric conductor 7 is sufficiently small, and the skin resistance is theoretically very large. That is, it becomes a state close to an insulator, and the magnetic field generated from the heating coil 3 easily passes through, so that the state is almost the same as when there is no electric conductor 7. The equivalent series resistance of the heating coil 3 is substantially the same as the high-frequency resistance of the heating coil 3 without the object to be heated 5 and the electric conductor 7 and the combined resistance such as the high-frequency resistance of the nearby ferrite 4 and is a small value. However, it increases monotonically as the thickness of the electrical conductor 7 increases. In the region where the thickness of the electric conductor 7 is not less than 10 μm and not more than 300 μm, the equivalent series resistance of the heating coil 3 also monotonously decreases in an inversely proportional relationship with the thickness of the electric conductor 7 due to the influence of the skin resistance reduction of the electric conductor 7. In the region where the thickness of the electric conductor 7 is 300 μm or more, the skin resistance of the electric conductor 7 is constant, so that the equivalent series resistance of the heating coil 3 is also substantially constant.

一方、図3(a)に示すように被加熱物5がある場合には、電気導体7の厚みが0から15μmまでは等価直列抵抗は単調増加し、ピークをもつ。電気導体7厚みが200μmになるまで等価直列抵抗は単調減少し、最小となる。電気導体7厚みが1200μmまで等価直列抵抗は再度単調増加する。   On the other hand, when the object to be heated 5 is present as shown in FIG. 3A, the equivalent series resistance increases monotonously and has a peak when the thickness of the electric conductor 7 is 0 to 15 μm. The equivalent series resistance monotonously decreases and becomes the minimum until the thickness of the electric conductor 7 reaches 200 μm. The equivalent series resistance again monotonously increases until the thickness of the electric conductor 7 is 1200 μm.

電気導体7の厚みが15μmで加熱コイル3の等価直列抵抗が持つピークは、被加熱物5がない場合の図3(b)と同様に、電気導体7の厚みが十分小さく、電気導体7の表皮抵抗が大きい状態となってほぼ絶縁体と見なされる領域と、ある程度厚みが増加して電気抵抗表皮抵抗が減少する領域とのバランスによって生じると考えられる。   The peak of the equivalent series resistance of the heating coil 3 when the thickness of the electric conductor 7 is 15 μm is the same as in FIG. 3B when the object to be heated 5 is not present, and the thickness of the electric conductor 7 is sufficiently small. This is considered to be caused by a balance between a region in which the skin resistance is high and the region regarded as an insulator, and a region in which the thickness increases to some extent and the electrical resistance skin resistance decreases.

また視点を変えると、先に述べたように、電気導体7を浸透、通過した磁界による、見かけの総誘導加熱面積の増加作用は、電気導体7の厚みが15μmの時に最大になっていると言える。   From another viewpoint, as described above, the effect of increasing the apparent total induction heating area due to the magnetic field penetrating and passing through the electric conductor 7 is maximized when the thickness of the electric conductor 7 is 15 μm. I can say that.

また、電気導体7の厚みが15μm以上での領域については、電気導体7の厚みが増加するために、電気導体7表皮抵抗が単調減少していく。さらに、電気導体7内部に誘導電流が流れやすくなるため、加熱コイル3から発生する磁界をある程度遮蔽し、加熱コイル3から見た総加熱面積が減少する。つまり、加熱コイル3の等価直列抵抗が減少する。   Further, in the region where the thickness of the electric conductor 7 is 15 μm or more, the thickness of the electric conductor 7 increases, so that the skin resistance of the electric conductor 7 decreases monotonously. Furthermore, since the induced current easily flows inside the electric conductor 7, the magnetic field generated from the heating coil 3 is shielded to some extent, and the total heating area viewed from the heating coil 3 is reduced. That is, the equivalent series resistance of the heating coil 3 is reduced.

その一方で、小さい表皮抵抗で誘導電流を流しやすい状態となる電気導体7が、加熱コイル3から見て近い位置に配置されているため、加熱コイル3と電気導体7の磁気結合は強く、加熱コイル3の等価直列抵抗を増加させる作用もあわせて生じる。   On the other hand, since the electric conductor 7 that is in a state in which the induced current easily flows with a small skin resistance is disposed at a position close to the heating coil 3, the magnetic coupling between the heating coil 3 and the electric conductor 7 is strong, An effect of increasing the equivalent series resistance of the coil 3 also occurs.

十分厚い電気導体7は、加熱コイル3から発生する磁界を遮蔽するが、一部の磁界は、電気導体7を迂回して電気導体7の加熱コイル3と反対側面を誘導加熱するため、電気導体7の表皮深さ約300μmを越えても、加熱コイル3の等価直列抵抗は増加する。したがって、電気導体7の厚みが200μmで、加熱コイル3の等価直列抵抗は最小点を持つと推定される。ただし、電気導体7の厚みが一定以上となれば、加熱コイル3の等価直列抵抗はほぼ一定値となる。   The sufficiently thick electric conductor 7 shields the magnetic field generated from the heating coil 3, but a part of the magnetic field bypasses the electric conductor 7 and induction heats the side opposite to the heating coil 3 of the electric conductor 7. Even if the skin depth of 7 exceeds about 300 μm, the equivalent series resistance of the heating coil 3 increases. Therefore, it is estimated that the thickness of the electric conductor 7 is 200 μm and the equivalent series resistance of the heating coil 3 has a minimum point. However, if the thickness of the electric conductor 7 is equal to or greater than a certain value, the equivalent series resistance of the heating coil 3 becomes a substantially constant value.

発明者らは、詳細な検討を行った結果、電気導体7の厚みが約15μmで、加熱コイル3の等価直列抵抗が最大となるポイントを見出した。そのため、同一出力を得る場合の加熱コイル3に流す電流を小さくすることができ、被加熱物5に作用する浮力も低減する。なお、発明者らの実験により、電気導体7が、誘導電流の浸透深さより薄くても厚くても、加熱コイル3の等価直列抵抗が同じであれば、同様の加熱コイル3の電流低減効果及び浮力低減効果が得られることが確認された。   As a result of detailed studies, the inventors have found a point where the thickness of the electric conductor 7 is about 15 μm and the equivalent series resistance of the heating coil 3 is maximized. Therefore, the current flowing through the heating coil 3 when obtaining the same output can be reduced, and the buoyancy acting on the article to be heated 5 is also reduced. According to the experiments by the inventors, if the equivalent series resistance of the heating coil 3 is the same regardless of whether the electric conductor 7 is thinner or thicker than the penetration depth of the induction current, It was confirmed that a buoyancy reduction effect was obtained.

また、誘導加熱装置として目標とする浮力に対して、加熱コイル3の等価直列抵抗はほぼ一意に決定されるため、電気導体7の厚みを所定の加熱コイル3等価直列抵抗を得るべく、変更することが可能である。従って、ある程度、被加熱物5に対して働く浮力が容認される場合には、本実施の形態の加熱構成では、電気導体7厚みを15μmより小さくまたは大きく設定することで、所定の浮力となる誘導加熱装置が得られる。   Moreover, since the equivalent series resistance of the heating coil 3 is almost uniquely determined with respect to the target buoyancy as the induction heating device, the thickness of the electric conductor 7 is changed to obtain a predetermined heating coil 3 equivalent series resistance. It is possible. Accordingly, when buoyancy acting on the object to be heated 5 is accepted to some extent, in the heating configuration of the present embodiment, a predetermined buoyancy is obtained by setting the thickness of the electric conductor 7 to be smaller or larger than 15 μm. An induction heating device is obtained.

また、従来、誘導加熱を行う際に、被加熱物5と加熱コイル3間に誘導電流が流れ得る非常に薄い電気導体7を設けるという発想はなかった。   Conventionally, there has been no idea of providing a very thin electric conductor 7 through which an induction current can flow between the object to be heated 5 and the heating coil 3 when performing induction heating.

従来の発想では、漏れ電流を抑制するために、非常に薄い電気導体7を設けて定電位に接続する例がある。しかしながらそのような場合、電気導体7に誘導電流を流すと発熱が発生することが分かっていたため、電気導体7内の誘導電流及び発熱を抑制すべく、加熱コイル3の等価直列抵抗を変化させないよう、電気導体7の材質、形状などを設計していた。従って従来の発想の延長では、非常に薄く構成した電気導体7内に誘導電流を誘起させて、被加熱物5に流れる誘導電流分布を変える効果、または加熱コイル3の等価直列抵抗の増加効果、または被加熱物5に働く浮力の低減効果は得られなかった。   In the conventional idea, there is an example in which a very thin electric conductor 7 is provided and connected to a constant potential in order to suppress a leakage current. However, in such a case, since it has been known that heat is generated when an induced current is passed through the electric conductor 7, the equivalent series resistance of the heating coil 3 is not changed so as to suppress the induced current and the heat generated in the electric conductor 7. The material and shape of the electric conductor 7 were designed. Accordingly, in the extension of the conventional idea, an effect of inducing an induced current in the very thin electric conductor 7 to change the distribution of the induced current flowing in the object to be heated 5, or an effect of increasing the equivalent series resistance of the heating coil 3, Or the effect of reducing the buoyancy acting on the article 5 to be heated was not obtained.

さらに、電気導体7が薄いため、加熱コイル3から発生した高周波磁界は電気導体7を浸透、通過する。つまり、加熱コイル3からの磁界を通過させないほどの反発磁界を発生させる大きなエネルギー、すなわち大きな誘導電流は、電気導体7内部には発生しないということであり、電気導体7の厚みが大きい場合に比べて、電気導体7の発熱による損失を低減し、加熱コイル3近傍の冷却を容易にすることができる。また、被加熱物5に伝達する電力を大きくし、加熱効率を向上させることが可能である。   Furthermore, since the electric conductor 7 is thin, the high-frequency magnetic field generated from the heating coil 3 penetrates and passes through the electric conductor 7. That is, a large energy that generates a repulsive magnetic field that does not allow the magnetic field from the heating coil 3 to pass through, that is, a large induced current is not generated inside the electric conductor 7, compared with a case where the thickness of the electric conductor 7 is large. Thus, loss due to heat generation of the electric conductor 7 can be reduced, and cooling in the vicinity of the heating coil 3 can be facilitated. Moreover, it is possible to increase the electric power transmitted to the article to be heated 5 and improve the heating efficiency.

また、電気導体7に設けたスリット9は、加熱コイル3から発生する磁界によって誘起され、加熱コイル3の周回方向に流れる電気導体7内部の誘導電流を抑制する、周回電流制限手段である。図4は電気導体7内部に流れる誘導電流を示す図であり、スリット9がない場合(図4(a)に示す)、スリット9が1ヶ所ある場合(図4(b)に示す)、スリット9が電気導体7の最内部から最外部に渡って1ヶ所のみ構成されている場合(図4(c)に示す)、スリット9が電気導体7のφ90mmからφ160mmに渡って24ヶ所構成されている場合(図4(d)に示す)、スリット9が、電気導体7の最内部からφ130mmに渡って24ヶ所構成されている場合(図4(e)に示す)、スリット9が本実施の形態のように、電気導体7の最内部からφ200mmに渡って24ヶ所構成されている場合(図4(f)に示す)を表したものである。   The slit 9 provided in the electric conductor 7 is a circulating current limiting unit that suppresses an induced current in the electric conductor 7 that is induced by the magnetic field generated from the heating coil 3 and flows in the rotating direction of the heating coil 3. FIG. 4 is a diagram showing the induced current flowing inside the electric conductor 7, when there is no slit 9 (shown in FIG. 4 (a)), when there is one slit 9 (shown in FIG. 4 (b)), the slit When 9 is configured at only one location from the innermost side to the outermost side of the electrical conductor 7 (shown in FIG. 4C), the slit 9 is configured at 24 locations from φ90 mm to φ160 mm of the electrical conductor 7. In the case where the slit 9 is composed of 24 locations extending from the innermost part of the electric conductor 7 to φ130 mm (shown in FIG. 4 (e)), the slit 9 is formed in the present embodiment. As in the embodiment, the case where 24 locations are formed from the innermost part of the electric conductor 7 over φ200 mm (shown in FIG. 4 (f)) is shown.

図4では、説明を簡略化するために、電気導体7を、スリット10がない形状で示している。図中、点線は加熱コイル3の位置を示している。   In FIG. 4, in order to simplify the description, the electric conductor 7 is shown in a shape without the slit 10. In the figure, the dotted line indicates the position of the heating coil 3.

図4(a)のように、スリット9がない場合、加熱コイル3から発生する磁界によって、電気導体7内部に大きなループで、同心円状となる誘導電流が発生する。この誘導電流は、特に加熱コイル3の内周部と外周部との中間部分に大きく流れるよう分布し、大きな発熱を生じさせる。   As shown in FIG. 4A, when there is no slit 9, the magnetic field generated from the heating coil 3 generates a concentric induction current in a large loop inside the electric conductor 7. This induced current is distributed so as to flow largely in an intermediate portion between the inner peripheral portion and the outer peripheral portion of the heating coil 3, and generates large heat.

また、図4(b)の場合、1ヶ所のみ存在するスリット9によって電気導体7が一部狭まっているような形状をしている。図4(a)と同様に、電気導体7内部の加熱コイル3直上に対向する部分では、細線矢印向きに大きな誘導電流が誘起される。加熱コイル3直上を流れようとする誘導電流は、スリット9によって制限されるが、流れの向きを変え、スリット9に沿うよう外周方向に流れる。流れの向きを変えた誘導電流は、スリット9によって狭められた電気導体7の一部分に集中する。従って、電気導体7のスリット9によって狭められた部分の発熱が増加し、局部的に温度上昇が大きくなる。   In the case of FIG. 4B, the electric conductor 7 is partially narrowed by the slit 9 that exists only at one place. As in FIG. 4A, a large induced current is induced in the direction of the thin line arrow in the portion facing the heating coil 3 directly above the electric conductor 7. The induced current that is about to flow directly above the heating coil 3 is limited by the slit 9, but the direction of flow is changed and flows in the outer circumferential direction along the slit 9. The induced current whose direction of flow is changed is concentrated on a part of the electric conductor 7 narrowed by the slit 9. Accordingly, heat generation in the portion narrowed by the slit 9 of the electric conductor 7 increases, and the temperature rise locally increases.

図4(c)の場合、加熱コイル3直上で誘起される大きな誘導電流は、スリット9に沿うよう向きを変え、電気導体7内周及び外周部分を細線矢印方向に流れる。結果として、電気導体7の内周及び外周部分に集中して誘導電流が流れるため、発熱が大きくなる。   In the case of FIG. 4C, the large induced current induced immediately above the heating coil 3 changes its direction along the slit 9 and flows in the direction of the thin line arrow along the inner and outer peripheral portions of the electric conductor 7. As a result, the induced current flows in a concentrated manner on the inner and outer peripheral portions of the electric conductor 7, so that heat generation increases.

また、電気導体7形状が、加熱コイル3よりも小さい、つまり電気導体7の内径が加熱コイル3内径より大きい、または電気導体7の外径が加熱コイル3外径より小さくても、電気導体7内周と外周で誘起される誘導電流の差によって、誘導電流の大きい方から小さい方へ流れるため、発熱は低減されない。また、電気導体7面積も小さくなり、加熱コイル3の等価直列抵抗が低下し、被加熱物5に働く浮力が増加する。   Even if the shape of the electric conductor 7 is smaller than that of the heating coil 3, that is, the inner diameter of the electric conductor 7 is larger than the inner diameter of the heating coil 3, or the outer diameter of the electric conductor 7 is smaller than the outer diameter of the heating coil 3. Due to the difference between the induced currents induced at the inner periphery and the outer periphery, heat flows from the larger induced current to the smaller induced current. In addition, the area of the electric conductor 7 is reduced, the equivalent series resistance of the heating coil 3 is reduced, and the buoyancy acting on the article to be heated 5 is increased.

図4(d)の場合、スリット9は複数配置されているため、誘起される誘導電流は小さくなるが、加熱コイル3の直上で電気導体7は一部連続したリング形状をしているため、リング部分に誘導電流が集中して流れる。従って、この場合も発熱が大きい。   In the case of FIG. 4 (d), since the plurality of slits 9 are arranged, the induced current induced is small, but the electric conductor 7 has a partially continuous ring shape directly above the heating coil 3, The induced current flows through the ring part. Accordingly, the heat generation is also large in this case.

図4(e)の場合も、図4(d)と同様である。   The case of FIG. 4E is the same as that of FIG.

しかしながら、図4(f)の本実施の形態のような場合は、加熱コイル3の直上の電気導体7が複数に分断されており、誘起される誘導電流量が少ない。そのため、スリット9によって向きを変えた誘導電流が、図4(b)のように電気導体7外周部分に流れようとしても発熱は少ない。また、加熱コイル3直上で連続したリングは形成されていないため、誘導電流の集中も生じない。   However, in the case of the present embodiment of FIG. 4F, the electrical conductor 7 immediately above the heating coil 3 is divided into a plurality of parts, and the induced current amount is small. Therefore, even if the induced current whose direction is changed by the slit 9 tries to flow to the outer peripheral portion of the electric conductor 7 as shown in FIG. Further, since no continuous ring is formed immediately above the heating coil 3, the concentration of induced current does not occur.

大きな誘導電流が誘起される加熱コイル3の直上で、対向する電気導体7部分に渡って、複数の周回電流制限手段となるスリット9を形成し、誘導電流を抑制することで大きな発熱低減効果が得られる。   A slit 9 serving as a plurality of circulating current limiting means is formed over the opposing electrical conductors 7 immediately above the heating coil 3 where a large induced current is induced, and a large heat generation reduction effect is achieved by suppressing the induced current. can get.

また、スリット9が、周回する誘導電流に対して略直角となるよう、電気導体7中心から放射状に設けられているため、誘導電流の流れを阻害し、制限しやすく、電気導体7の発熱を低減することが可能となる。   In addition, since the slits 9 are provided radially from the center of the electric conductor 7 so as to be substantially perpendicular to the circulating induced current, the flow of the induced current is obstructed and easily restricted, and the electric conductor 7 generates heat. It becomes possible to reduce.

電気導体7の中心近傍でスリット9によって形成される幅、及びスリット9自身の幅は、本実施の形態では、それぞれ約7mm、1mmとなっている。電気導体7幅が大きくなれば、周回方向に誘起される誘導電流量が大きくなり、発熱が大きくなる。また、スリット9自体の幅が大きくなれば、電気導体7の面積が小さくなり、加熱コイル3等価直列抵抗の低下、被加熱物5に働く浮力の増加となる。   In the present embodiment, the width formed by the slit 9 near the center of the electric conductor 7 and the width of the slit 9 itself are about 7 mm and 1 mm, respectively. If the width of the electric conductor 7 is increased, the amount of induced current induced in the circumferential direction is increased and heat generation is increased. Further, if the width of the slit 9 itself is increased, the area of the electric conductor 7 is reduced, the heating coil 3 equivalent series resistance is lowered, and the buoyancy acting on the object to be heated 5 is increased.

発明者らは、実験により実用的には、電気導体7の幅及びスリット9の幅を所定値に制限することで、発熱と浮力のバランスを取り、さらには安定したものづくりを実現できる条件としている。   Inventors have practically determined that the width of the electric conductor 7 and the width of the slit 9 are practically limited to a predetermined value to balance heat generation and buoyancy, and to realize stable manufacturing. .

また、本実施の形態では、電気導体の7中央部の開口部8からφ200mmに渡るスリット9を設けたが、電気導体7の最外部にはスリット9が設けられておらず、大きな略リング形状となっている。   In the present embodiment, the slit 9 extending from the opening 8 in the central portion of the electric conductor 7 to φ200 mm is provided, but the slit 9 is not provided on the outermost part of the electric conductor 7, and a large substantially ring shape is provided. It has become.

加熱コイル3から発生する磁界は、被加熱物5に向かう成分もあれば、被加熱物5の誘導加熱に寄与せず、それ以外の空中に放射される成分もある。被加熱物5の誘導加熱に寄与しない成分の磁界は、他機器への影響を与えるものとして、電波法などにより放射レベルが制限されている。   The magnetic field generated from the heating coil 3 includes a component directed to the object to be heated 5 and a component that does not contribute to induction heating of the object to be heated 5 and is radiated to the other air. A magnetic field of a component that does not contribute to induction heating of the object to be heated 5 has an influence on other devices, and its radiation level is limited by the radio wave method or the like.

本実施の形態では、電気導体7最外部の略リング形状部分に、被加熱物5の誘導加熱に寄与しない磁界を打ち消す方向に誘導電流が流れ、打ち消し磁界を発生するため、放射される磁界を低減することができる。   In the present embodiment, the induced current flows in the direction of canceling out the magnetic field that does not contribute to induction heating of the object to be heated 5 in the substantially ring-shaped portion at the outermost part of the electric conductor 7, and generates a canceling magnetic field. Can be reduced.

また、電気導体7が、連続したリング形状をしていて、かつリング形状部分が加熱コイル3と対向していた場合、被加熱物5の大きさによって大きく特性が変化する。例えば、被加熱物5を含む加熱コイル3のインダクタンスが、リング形状の電気導体7の影響を受けるため、被加熱物5の大きさによっては大きく変化し、インバータ設計が困難となる。   Further, when the electric conductor 7 has a continuous ring shape and the ring-shaped portion faces the heating coil 3, the characteristics greatly change depending on the size of the object to be heated 5. For example, since the inductance of the heating coil 3 including the object to be heated 5 is affected by the ring-shaped electric conductor 7, the inductance varies greatly depending on the size of the object to be heated 5, making inverter design difficult.

しかしながら、本実施の形態では、電気導体7最外部の略リング形状部分が、スリット9により、加熱コイル3の外径の外側になるために、被加熱物5を含む加熱コイル3のインダクタンスなどの特性に大きな影響を与えることはなく、防磁効果がほとんどで、インバータ設計への影響が少なく、設計が容易になる。   However, in the present embodiment, the outermost substantially ring-shaped portion of the electric conductor 7 is outside the outer diameter of the heating coil 3 due to the slit 9, so that the inductance of the heating coil 3 including the article to be heated 5 and the like The characteristics are not greatly affected, the magnetic-shielding effect is almost, the influence on the inverter design is small, and the design becomes easy.

フェライト4直上に相当する部分は、フェライト4の磁界集中効果によって、特に局部的に誘導加熱されやすい部分である。しかしながら、図2に示すように、電気導体7の外周部に局部誘導電流制限手段となるスリット10が設けられているので、効果的に誘導電流の抑制がなされ、電気導体7の発熱が抑えられることになる。結果として、損失を少なく加熱効率を高めることが可能となる。   The portion corresponding to the portion directly above the ferrite 4 is a portion that is particularly easily locally heated by the magnetic field concentration effect of the ferrite 4. However, as shown in FIG. 2, since the slit 10 serving as the local induced current limiting means is provided on the outer peripheral portion of the electric conductor 7, the induced current is effectively suppressed, and the heat generation of the electric conductor 7 is suppressed. It will be. As a result, it is possible to increase the heating efficiency with less loss.

また、局部誘導電流制限手段となるスリット10を、電気導体7の限られた部分に設けているので、加熱コイル3の等価直列抵抗の変化及び被加熱物5に働く浮力の増加を抑制することができる。   Further, since the slit 10 serving as the local induction current limiting means is provided in a limited portion of the electric conductor 7, the change in the equivalent series resistance of the heating coil 3 and the increase in buoyancy acting on the object to be heated 5 are suppressed. Can do.

また、電気導体7の一部からは、幅2mm程度と細く、他の部分に比べ熱抵抗大となる部分11が延びており、導電性のシールなどでリード線12と電気的に接続され、さらにリード線12は、コンデンサ13を介して商用電源電位あるいは加熱コイル3に高周波電流を供給するインバータ(図示せず)の入力する商用電源を整流した電位あるいは大地に接続されているので、加熱コイル3から使用者に漏洩する漏れ電流を低減することができる。   Further, a part 11 of the electric conductor 7 is as thin as about 2 mm in width, and a part 11 having a larger thermal resistance than the other part extends, and is electrically connected to the lead wire 12 with a conductive seal or the like. Further, since the lead wire 12 is connected to the commercial power supply potential or the ground obtained by rectifying the commercial power supply input to the commercial power supply potential or an inverter (not shown) for supplying a high frequency current to the heating coil 3 via the capacitor 13, the heating coil The leakage current leaking from 3 to the user can be reduced.

浮力抑制の役割を持つ電気導体7を定電位に電気的に接続しているため、漏れ電流の抑制も同時に行うことが可能となる。また、漏れ電流抑制構成を、加熱コイル3−被加熱物5間に別途設ける必要がないために、加熱コイル3と被加熱物5との間の距離を縮めることができ、加熱効率向上も可能になる。さらに電気導体7と定電位部分との接続は、熱抵抗が大なる部分11を介して行われるため、電気導体7の発熱が他の部分へ与える影響を抑えることができる。   Since the electric conductor 7 having a role of suppressing buoyancy is electrically connected to a constant potential, it is possible to suppress leakage current at the same time. In addition, since it is not necessary to separately provide a leakage current suppressing configuration between the heating coil 3 and the object to be heated 5, the distance between the heating coil 3 and the object to be heated 5 can be reduced, and heating efficiency can be improved. become. Furthermore, since the connection between the electric conductor 7 and the constant potential portion is performed through the portion 11 having a large thermal resistance, the influence of the heat generated by the electric conductor 7 on other portions can be suppressed.

また、電気導体7は、トッププレート2の加熱コイル3側の面へ転写により、接合されているので、電気導体7の発熱を熱伝導でトッププレート2に伝えるのが容易であるし、トッププレート2上部に戴置された被加熱物5に対しても同様である。このように、電気導体7の発熱による損失の増加は、結果として被加熱物5に伝達され、電気導体7温度を抑制し、被加熱物5の加熱効率を高めることができる。   Further, since the electric conductor 7 is joined to the surface of the top plate 2 on the heating coil 3 side by transfer, it is easy to transmit the heat generated by the electric conductor 7 to the top plate 2 by heat conduction. The same applies to the object to be heated 5 placed on the upper part. Thus, an increase in loss due to heat generation of the electric conductor 7 is transmitted to the object to be heated 5 as a result, and the temperature of the electric conductor 7 can be suppressed and the heating efficiency of the object to be heated 5 can be increased.

なお、本実施の形態では、電気導体7をトッププレート2に転写して形成したが、これに限るものではなく、厚み1mm程度の薄い非磁性板で電気導体7を構成しても良い。また、例えば溶射や蒸着によって電気導体7とトッププレート2を接合させても良い。また電気導体7をアルミニウム製でなく銅製にして、トッププレート2にメッキ処理しても良い。さらにトッププレート2の表面加工により微少な凹凸を構成し、電気導体7とトッププレート2との接合性を高めても良い。物作りが容易で、低コストとなる材料を電気導体7に採用すると共に、必要な厚みとすべく、適切な接合手段を選択すればよい。   In the present embodiment, the electric conductor 7 is formed by transferring it to the top plate 2, but the present invention is not limited to this, and the electric conductor 7 may be formed of a thin nonmagnetic plate having a thickness of about 1 mm. Moreover, you may join the electrical conductor 7 and the top plate 2 by spraying or vapor deposition, for example. Further, the electric conductor 7 may be made of copper instead of aluminum, and the top plate 2 may be plated. Further, fine irregularities may be formed by surface processing of the top plate 2 to enhance the bonding property between the electric conductor 7 and the top plate 2. What is necessary is just to select the suitable joining means so that it may become the required thickness while employ | adopting the material which becomes easy to make a thing and becomes low cost for the electrical conductor 7. FIG.

また、電気導体7は、予めトッププレート2に接合することにより、工場などでの組立時の取り扱いも容易である。   Moreover, the electrical conductor 7 is easily joined to the top plate 2 in advance, so that it can be easily handled at the time of assembly in a factory or the like.

以上のように、本発明にかかる誘導加熱装置は、低透磁率かつ高電気伝導率の材料で形成された被加熱物を加熱することができるとともに、被加熱物に働く浮力を低減し、かつ損失の少ないもので、誘導加熱調理器は勿論、アルミニウムや銅などの高電気伝導率かつ低透磁率材料を加熱する誘導加熱式湯沸かし器、誘導加熱式アイロン等各種誘導加熱装置に適用できる。   As described above, the induction heating device according to the present invention can heat an object to be heated formed of a material having low magnetic permeability and high electrical conductivity, reduce buoyancy acting on the object to be heated, and It can be applied to various induction heating devices such as induction heating water heaters and induction heating irons that heat high electrical conductivity and low magnetic permeability materials such as aluminum and copper, as well as induction heating cookers.

本発明の実施の形態1における誘導加熱装置の要部概略断面図Main part schematic sectional drawing of the induction heating apparatus in Embodiment 1 of this invention 同誘導加熱装置の加熱コイル側から見た電気導体の形状図Shape of electrical conductor as seen from the heating coil side of the induction heating device (a)同誘導加熱装置の被加熱物が有る場合における電気導体厚みと加熱コイルの等価直列抵抗の相関を示す図(b)同被加熱物が無い場合における電気導体厚みと加熱コイルの等価直列抵抗の相関を示す図(A) The figure which shows the correlation of the electrical conductor thickness when the to-be-heated object of the same induction heating apparatus exists, and the equivalent series resistance of a heating coil (b) The electrical conductor thickness when there is no to-be-heated object, and the equivalent series of a heating coil Diagram showing resistance correlation (a)〜(f)同誘導加熱装置に使用される電気導体を含む各種電気導体の内部に流れる誘導電流を示す図(A)-(f) The figure which shows the induction electric current which flows through the inside of various electric conductors including the electric conductor used for the induction heating apparatus. 従来の誘導加熱装置の加熱コイル及びその周辺を構成を示す斜視図The perspective view which shows the structure of the heating coil of the conventional induction heating apparatus, and its periphery 同誘導加熱装置の要部断面図Cross section of the main part of the induction heating device 同誘導加熱装置の加熱コイルの等価直列抵抗と浮力の相関を示す図The figure which shows the correlation of the equivalent series resistance and buoyancy of the heating coil of the same induction heating device 同誘導加熱装置の加熱コイルの等価直列抵抗と加熱コイル電流値の相関を示す図The figure which shows the correlation of the equivalent series resistance of the heating coil of the same induction heating apparatus, and a heating coil electric current value 同誘導加熱装置の電気導体の厚みと被加熱物に作用する浮力の相関を示す図The figure which shows the correlation of the thickness of the electric conductor of the same induction heating apparatus, and the buoyancy which acts on a to-be-heated material 同誘導加熱装置の電気導体の平面図Plan view of the electrical conductor of the induction heating device

符号の説明Explanation of symbols

1 本体
2 トッププレート
3 加熱コイル
4 フェライト(磁性体)
5 被加熱物
6 サーミスタ(温度検知手段)
7 電気導体
8 開口部
9 スリット(周回電流制限手段)
10 スリット(局部誘導電流制限手段)
1 Body 2 Top plate 3 Heating coil 4 Ferrite (magnetic material)
5 Object to be heated 6 Thermistor (temperature detection means)
7 Electrical conductor 8 Opening 9 Slit (Circular current limiting means)
10 Slit (Locally induced current limiting means)

Claims (9)

アルミニウム若しくは銅またはこれらと略同等以上の電気伝導率を有する低透磁率材料からなる被加熱物が戴置されるトッププレートと、前記トッププレートの下方に設けられ前記被加熱物を誘導加熱する加熱コイルと、前記加熱コイルと前記被加熱物との間に設けられた電気導体とを備え、前記電気導体は、前記加熱コイルによって前記電気導体内部に誘起される誘導電流の作用により、前記加熱コイルの発生する磁界と前記被加熱物に誘導される誘導電流から発生する磁界の反発力に起因して前記被加熱物に対して働く浮力を低減する浮力低減機能を有すると共に、前記電気導体内で前記加熱コイルの電流の流れる方向と略平行に周回して流れる誘導電流の分布を制限する周回電流制限手段を備え、前記周回電流制限手段を、前記電気導体の前記加熱コイルに対向する最内部から最外部に渡って形成した誘導加熱装置。 A top plate on which an object to be heated made of aluminum, copper, or a low magnetic permeability material having an electric conductivity substantially equal to or higher than these is placed, and heating for inductively heating the object to be heated provided below the top plate A coil, and an electric conductor provided between the heating coil and the object to be heated, and the electric conductor is caused by the action of an induced current induced in the electric conductor by the heating coil. And a buoyancy reduction function for reducing the buoyancy acting on the heated object due to the repulsive force of the magnetic field generated from the magnetic field generated by the induced current induced in the heated object, and in the electric conductor Circulating current limiting means for limiting the distribution of induced current flowing around and parallel to the current flow direction of the heating coil is provided, and the circulating current limiting means is Induction heating apparatus from the most inner facing of the heating coil is formed over the outermost portion. アルミニウム若しくは銅またはこれらと略同等以上の電気伝導率を有する低透磁率材料からなる被加熱物が戴置されるトッププレートと、前記トッププレートの下方に設けられ前記被加熱物を誘導加熱する加熱コイルと、前記加熱コイルと前記被加熱物との間に設けられた電気導体とを備え、前記電気導体は、前記加熱コイルに対向して前記被加熱物を配置した時の前記加熱コイルの等価直列抵抗を、前記電気導体が設けられていない時のそれより大きくすると共に、前記電気導体内で前記加熱コイルの電流の流れる方向と略平行に周回して流れる誘導電流の分布を制限する周回電流制限手段を備え、前記周回電流制限手段を、前記電気導体の前記加熱コイルに対向する最内部から最外部に渡って形成した誘導加熱装置。 A top plate on which an object to be heated made of aluminum, copper, or a low magnetic permeability material having an electric conductivity substantially equal to or higher than these is placed, and heating for inductively heating the object to be heated provided below the top plate A coil, and an electric conductor provided between the heating coil and the object to be heated, and the electric conductor is equivalent to the heating coil when the object to be heated is disposed facing the heating coil. A series resistance is made larger than that when the electric conductor is not provided, and a circulating current that restricts the distribution of the induced current flowing around the parallel direction of the electric current flowing through the heating coil in the electric conductor. An induction heating apparatus comprising a limiting means, wherein the circulating current limiting means is formed from the innermost portion facing the heating coil of the electric conductor to the outermost portion. 電気導体の最外部を、加熱コイルの外径より外方に位置させた請求項1又は2に記載の誘導加熱装置。 The induction heating apparatus according to claim 1 or 2, wherein the outermost part of the electric conductor is positioned outward from the outer diameter of the heating coil. 周回電流制限手段を、電気導体の中心より放射状に設けた請求項1〜3のいずれか1項に記載の誘導加熱装置。 The induction heating device according to any one of claims 1 to 3, wherein the circulating current limiting means is provided radially from the center of the electric conductor. 周回電流制限手段を、少なくとも12方向以上に設けた請求項4に記載の誘導加熱装置。 The induction heating apparatus according to claim 4, wherein the circulating current limiting means is provided in at least 12 directions. 周回電流制限手段を、切り欠き又は、開口又は、スリット又は、それらを任意に組み合わせて形成した請求項1〜5のいずれか1項に記載の誘導加熱装置。 The induction heating device according to any one of claims 1 to 5, wherein the circulating current limiting means is formed by a notch, an opening, a slit, or any combination thereof. 加熱コイル近傍に高透磁率の磁性体を配し、電気導体の前記磁性体に対向する部分近傍に、誘導電流の分布を局部的に制限する局部誘導電流制限手段を配置した請求項1〜6のいずれか1項に記載の誘導加熱装置。 7. A magnetic material having high permeability is arranged in the vicinity of the heating coil, and local induction current limiting means for locally limiting the distribution of induced current is arranged in the vicinity of the portion of the electric conductor facing the magnetic material. The induction heating device according to any one of the above. 電気導体の内側を分断するように複数の周回電流制限手段を設け、前記周回電流制限手段で分断された電気導体の幅を0.5乃至10mmとした請求項1〜7のいずれか1項に記載の誘導加熱装置。 A plurality of circulating current limiting means is provided so as to divide the inside of the electric conductor, and the width of the electric conductor divided by the circulating current limiting means is 0.5 to 10 mm. The induction heating apparatus described. 電気導体の中心近傍での周回電流制限手段の幅を0.2乃至3mmとした請求項項1〜8のいずれか1項に記載の誘導加熱装置。 The induction heating apparatus according to any one of claims 1 to 8, wherein a width of the circulating current limiting means in the vicinity of the center of the electric conductor is 0.2 to 3 mm.
JP2004304085A 2004-10-19 2004-10-19 Induction heating device Pending JP2006120336A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004304085A JP2006120336A (en) 2004-10-19 2004-10-19 Induction heating device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004304085A JP2006120336A (en) 2004-10-19 2004-10-19 Induction heating device

Publications (1)

Publication Number Publication Date
JP2006120336A true JP2006120336A (en) 2006-05-11

Family

ID=36538053

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004304085A Pending JP2006120336A (en) 2004-10-19 2004-10-19 Induction heating device

Country Status (1)

Country Link
JP (1) JP2006120336A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090065496A1 (en) * 2007-09-07 2009-03-12 Bose Corporation Induction cookware
US8602248B2 (en) 2011-03-02 2013-12-10 Bose Corporation Cooking utensil
US8796598B2 (en) * 2007-09-07 2014-08-05 Bose Corporation Induction cookware

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090065496A1 (en) * 2007-09-07 2009-03-12 Bose Corporation Induction cookware
JP2010537789A (en) * 2007-09-07 2010-12-09 ボーズ・コーポレーション Induction cookware
JP2010537786A (en) * 2007-09-07 2010-12-09 ボーズ・コーポレーション Induction cooker
US8796598B2 (en) * 2007-09-07 2014-08-05 Bose Corporation Induction cookware
US20140291316A1 (en) * 2007-09-07 2014-10-02 Bose Corporation Induction Cookware
US10104721B2 (en) * 2007-09-07 2018-10-16 Bose Corporation Induction cookware
US8602248B2 (en) 2011-03-02 2013-12-10 Bose Corporation Cooking utensil

Similar Documents

Publication Publication Date Title
JP3938197B2 (en) Induction heating device
US7057144B2 (en) Induction heating device
JP2006066258A (en) Heating cooker
JP2012110636A (en) Cooking container for induction-heating cooker
JP2006120336A (en) Induction heating device
JP2003264054A (en) Induction heater device
EP0748577B1 (en) Induction heating element
JP4345491B2 (en) Induction heating device
JP3861731B2 (en) Induction heating device
JP4173825B2 (en) Induction heating device
JP3925388B2 (en) Induction heating device
JP2010257891A (en) Induction heating cooker
JP2006164722A (en) Induction heating device
WO2017113922A1 (en) Inner pot suitable for electromagnetic heating, and cooking utensil having same
JP4444068B2 (en) Induction heating device
JP2010129175A (en) Induction heating device
JP3883478B2 (en) Induction heating device
JP2011003490A (en) Induction heating device
JP3465712B2 (en) Induction heating device
JP4693846B2 (en) Induction heating device
JP3465711B2 (en) Induction heating device
JP2006059626A (en) Induction heating device
JP4528824B2 (en) Induction heating cooker
JP2626034B2 (en) Induction heating device
JP2010267423A (en) Induction heating device