JP2004273301A - Induction heating device - Google Patents

Induction heating device Download PDF

Info

Publication number
JP2004273301A
JP2004273301A JP2003063296A JP2003063296A JP2004273301A JP 2004273301 A JP2004273301 A JP 2004273301A JP 2003063296 A JP2003063296 A JP 2003063296A JP 2003063296 A JP2003063296 A JP 2003063296A JP 2004273301 A JP2004273301 A JP 2004273301A
Authority
JP
Japan
Prior art keywords
heated
heating coil
electric conductor
heating
magnetic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003063296A
Other languages
Japanese (ja)
Inventor
Toshihiro Yoshijima
敏弘 慶島
Akira Kataoka
章 片岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2003063296A priority Critical patent/JP2004273301A/en
Publication of JP2004273301A publication Critical patent/JP2004273301A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide an induction heating device in which an article to be heated does not float, even if the article is light-weight, can secure the heating with sufficient input power and has an improved heating efficiency. <P>SOLUTION: The induction heating device is provided with a heating coil 21 and an electric conductor 27 which is provided between the heating coil 21 and an article 29 to be heated, of which main component is a metal with a low magnetic permeability and having a magnetic substance 38 dispersed therein. The electric conductor 27 increases the equivalent series resistance of the heating coil 21 when the article 29 to be heated is opposite to the heating coil 21, absorbs a leak magnetic flux and generates heat so that the magnetic field generated by the heating coil 21 has the buoyancy reduction ability of reducing the buoyancy acting on the article 29 to be heated, and transfers the generated heat to the article 29 to be heated via a plate 28. In this way, the heating efficiency can be increased. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、一般家庭やオフィス、レストラン、工場などで使用される誘導加熱装置に関するものであり、さらに詳しくはアルミニウムや銅といった低透磁率かつ高電気伝導率なる特性の材料でできた被加熱物を加熱する誘導加熱調理器、誘導加熱式湯沸かし器、誘導加熱式アイロン、またはその他の誘導加熱式加熱装置等で、特にアルミニウムを加熱可能とする誘導加熱装置に関するものである。
【0002】
【従来の技術】
誘導加熱コイルで高周波磁界を発生させ、電磁誘導による渦電流で鍋等の被加熱物を加熱する誘導加熱調理器において、アルミニウム製の被加熱物を加熱できるものが提案されている(例えば、特許文献1参照)。
【0003】
このような、誘導加熱調理器においてアルミニウム製の被加熱物を加熱すると被加熱物に浮力が働き浮き上がるという課題があった。本願発明はこの課題を解決する手段に関するものであり、以下まず、従来の誘導加熱調理器を図6と図7を用いて説明する。
【0004】
図6は従来の誘導加熱調理器の断面図である。図6において、鍋の形状をした被加熱物1が、加熱コイル2を有する誘導加熱部3の上方に設けられたプレート4の上に載置されている。プレート4は例えば厚み4mmのセラミック材等の絶縁板である。加熱コイル2はインバータを有した駆動回路5から高周波電流が供給されて高周波磁界を発生し、被加熱物1に高周波磁界を与える。
【0005】
【特許文献1】
特開2002−75620号公報
【0006】
【発明が解決しようとする課題】
上記の従来の誘導加熱調理器では、被加熱物1の底部に誘起される電流と加熱コイル2の電流との相互作用で、被加熱物1の底部に加熱コイル2から遠ざかろうとする反発力が生じる。被加熱物1が鉄などの抵抗率がある程度大きい高透磁率材料で作られている場合には、所望の加熱出力を得るために必要な電流値が少なくてよいのでこの反発力は比較的小さい。また鉄などでは磁束が被加熱物1を流れるので磁気的引力が働き、被加熱物1が浮き上がったりずれたりする恐れはない。
【0007】
被加熱物1がアルミニウムや銅といった低透磁率かつ高電気伝導率の材料で作られている場合には、所望の加熱出力を得るために加熱コイル2に流す電流を大きくして被加熱物1に大電流を誘起させる必要がある。その結果反発力が大きくなる。
【0008】
また、アルミニウムの被加熱物1には鉄などの高透磁率材料の場合のような磁気的引力が働かないので、加熱コイル2の磁界と誘起電流の磁界の作用により被加熱物1を加熱コイル2から遠ざける方向に大きな力が働く。この力は被加熱物1に浮力として働く。被加熱物1の重量が軽い場合には、被加熱物1がこの浮力によりプレート4の載置面から浮き上がって移動するおそれがある。
【0009】
図7の(a)は加熱コイル2に流される電流の向きを被加熱物1の側からみた図であり、同(b)は、加熱コイル2に流される電流にもとづいて被加熱物1に誘導により生じて流される渦電流を図7の(a)と同じ方向から見た図である。図7の(a)及び(b)に示すように被加熱物1を流れる渦電流は加熱コイル2に流れる電流と逆向きでかつ略同形状のループ状である。従ってこの2つの環状の電流は加熱コイル2の面積と実質的に同じ断面積の2つの永久磁石が同種の極同士(例えばN極とN極)を対向して置いたことと同じ状態になる。その結果被加熱物1と加熱コイル2との間には大きな反発力が生じる。
【0010】
この現象は、被加熱物1の材料がアルミニウムや銅という電気的伝導率が小さい物質である場合に顕著である。これに対して同じ低透磁率材料であっても、非磁性SUSはアルミニウムや銅よりも電気伝導率が低い材料であるから、加熱コイル2に流す電流が少なくても充分な発熱が得られる。したがって被加熱物1に流れる渦電流も小さく、それ故被加熱物1に誘導される磁界は小さい。
【0011】
発明者は、前記したアルミニウム製の被加熱物に働く浮力を低減する研究開発を行い、特願2002−235970号の特許出願を行った。この誘導加熱装置の構成は、被加熱物を誘導加熱するための加熱コイル、前記被加熱物を載置するための電気絶縁性を有する非磁性物のプレート、及び、前記加熱コイルと前記プレートとの間に設けられ、少なくとも一部が前記プレートに直接または熱伝導性を有する部材を介して接し、前記加熱コイルに対向して前記被加熱物を配置した時、前記加熱コイルの等価直列抵抗を増加させかつ、前記加熱コイルの発生する磁界が前記被加熱物に与える浮力を低減させる作用を与える電気導体を備えたものである。
【0012】
この構成で、アルミニウム製の被加熱物が軽量であっても浮き上がることなく充分な入力電力による加熱を確保できるようになったが、鉄製の被加熱物を加熱する場合に比べると加熱効率すなわち火力感が若干劣るという課題があった。
【0013】
本発明は、前記従来の課題を解決するもので、アルミニウム製の被加熱物が軽量であっても浮き上がることなく、充分な入力電力による加熱を確保でき、加熱効率を高めた誘導加熱装置を提供することを目的とする。
【0014】
【課題を解決するための手段】
前記従来の課題を解決するために、本発明の誘導加熱装置は、アルミニウム若しくは銅またはこれらと略同等以上の電気伝導率を有する低透磁率材料からなる被加熱物を誘導加熱可能な加熱コイルと、前記加熱コイルと前記被加熱物との間に設けられかつその主成分は低透磁率の金属としその中に磁性体を分散させた電気導体とを備え、前記電気導体は前記加熱コイルに対向して前記被加熱物を配置した時の前記加熱コイルの等価直列抵抗を大きくするとともに、前記加熱コイルの発生する磁界が前記被加熱物に対して働く浮力を低減する浮力低減機能を有するようにしている。
【0015】
この構成により、アルミニウム製の被加熱物が軽量であっても浮き上がることなく、充分な入力電力による加熱を確保できる。また、電気導体の主成分を低透磁率の金属としその中に磁性体を分散させることによって、漏れ磁束(被加熱物や電気導体に到達する磁束以外の磁束)を電気導体に吸収・発熱させることができる。その結果、その発生熱をプレートを介して被加熱物に伝えることで加熱効率を高めることができる。
【0016】
【発明の実施の形態】
請求項1に記載の発明は、本発明の誘導加熱装置は、アルミニウム若しくは銅またはこれらと略同等以上の電気伝導率を有する低透磁率材料からなる被加熱物を誘導加熱可能な加熱コイルと、前記加熱コイルと前記被加熱物との間に設けられかつその主成分は低透磁率の金属としその中に磁性体を分散させた電気導体とを備え、前記電気導体は前記加熱コイルに対向して前記被加熱物を配置した時の前記加熱コイルの等価直列抵抗を大きくするとともに、前記加熱コイルの発生する磁界が前記被加熱物に対して働く浮力を低減する浮力低減機能を有してなることにより、加熱コイルから発生する磁界は電気導体の影響を受けて向き及び強度分布が変わる。
【0017】
一方、電気導体がない場合には、加熱コイルから発生する高周波磁界は、加熱コイルから発生した磁界を相殺する様に被加熱物に誘導電流が誘起する。この結果、加熱コイル電流と方向が逆で平行な誘導電流が高電気伝導率の被加熱体に誘導され、その電流と加熱コイルから放射される磁界との相互作用により、被加熱体に浮力が発生する。
【0018】
しかしながら、当該電気導体が存在することにより、加熱コイルから発生する磁界は、電気導体と被加熱物に鎖交するため、両者に誘導電流電流を発生することになる。すなわち、電気導体に誘導された誘導電流の発生する磁界と被加熱物に誘導された電流の発生する磁界の重畳磁界が、加熱コイルの発生する磁界の変化を妨げるように電気導体及び被加熱物に誘導電流が流れることになる。
【0019】
つまり、被加熱物に誘導される電流の分布が、電気導体に誘導電流が発生することにより変わることになる。この電流分布の変化で、加熱コイルの等価直列抵抗が大きくなることにより、同一出力を得る場合の加熱コイルに流す電流値を小さくすることができ、被加熱物に作用する浮力が低減するとともに、電気導体が被加熱物に働くべき浮力の一部を分担することで被加熱物に作用する浮力が低減できることになるわけである。併せて、加熱コイル、加熱コイルを駆動する共振電流を発生するインバータに使用されるスイッチング素子、及び共振コンデンサ等の高周波部品のスイッチング損失を低減することができるという作用をも有するものである。
【0020】
ここで、電気導体の主成分を低透磁率の金属としその中に磁性体を分散させることによって、漏れ磁束(被加熱物や電気導体に到達する磁束以外の磁束)を電気導体に吸収・発熱させ、その発生熱をプレートを介して被加熱物に伝えることで加熱効率を高めるものである。
【0021】
請求項2に記載の発明は、特に電気導体の表面に磁性体を形成させるものであり、表面に磁性体を形成させるこの方法は、比較的簡単、安価で方法も多種存在し、自由度が大きいという利点がある。
【0022】
請求項3に記載の発明は、特に電気導体の被加熱体側の表面に磁性体を形成させるものであり、漏れ磁束による発熱は被加熱体側に集中し、効率よく被加熱物に熱移動できるとともに、加熱コイルは電気導体から熱を受けにくくなるので、加熱コイルのロスを低減することも可能になる。
【0023】
請求項4に記載の発明は、特に電気導体の外周側に磁性体を形成させるものであり、外周側は内周側に比べて磁束の密度が疎であるため、電気導体の発熱が少なくて済み、また、外周側は比較的低い温度の雰囲気と広範囲に隣接しているので冷却性が向上する。
【0024】
請求項5に記載の発明は、特に電気導体は物理的な処理によって表面に磁性体を形成させるものであり、例えば塗装、溶着、溶射、接合等によるものである。この方法は、基材に用いる電気導体は一定で各種方法の取捨選択が自由であるという利点と、比較的安価において処理が可能であり量産性が高い。
【0025】
請求項6に記載の発明は、特に、電気導体は化学的な処理によって表面に磁性体を形成させるものであり、例えば基材自体を酸化あるいは腐食等を施すことによって磁性体を形成させるものである。この方法は、基材自体に処理するため機械的な強度が高いとともに、物理的な処理のように付着物を伴わないため層間伝熱による損失が少なく電気導体の放熱効率が高い。
【0026】
【実施例】
以下本発明の誘導加熱装置の好適な実施例について、図1から図7を参照しながら説明する。
【0027】
図1は、本発明の実施例における誘導加熱装置(例えば誘導加熱調理器)の加熱コイル21を含む誘導加熱部42の構成を示す分解斜視図であり、図2は誘導加熱部42の組立斜視図である。図3は誘導加熱部42と誘導加熱調理器の本体の上部に固定されたプレート28及びプレート28に載置された被加熱物29を示す断面図である。
【0028】
図1、図2及び図3において、耐熱樹脂製のコイルベース22の上面に4つのコの字型の強磁性体である、第1の磁性体のフェライトコア23、24、25、26が放射状に配置され、前記コイルベース22に一体成型で取り付けられている。各フェライトコアは全体として加熱コイル21に向って開いたコの字状に形成されている。コイルベース22はフェライトコア23〜26の表面を覆うように成形され、加熱コイル21とフェライトコア23〜26とを電気的に絶縁する構成になっている。なおフェライトコア23〜26の放熱のため一部を露出させてもよい。加熱コイル21は細い素線を束ねた撚り線を平板状に巻回したコイルである。加熱コイル21の両端末はコイルベース22に設けられた端子板61、62にそれぞれ接続されている。端子板61、62は図示していない高周波電源に接続されている。
【0029】
加熱コイル21を保持するために、加熱コイル21の上には、耐熱プラスチックの成形品によるコイルホルダ37が設けられている。コイルホルダ37の上にはカーボン等の材料で形成された導電膜32が集積マイカ製の熱遮蔽板30、31の間に挟まれて設けられている。導電膜32は英文字のCの形をしている。導電膜32に接続されている2個の端子33A、33Bは、コネクタ34Aに接続されている。端子33A、33Bはコネクタ34Aを経て切り換え装置34Bに接続される。切り替え装置34Bは端子33A、33B間の導通をチェックする機能と端子33A、33Bをコンデンサ34に接続する機能を有する。切り換え装置34Bは加熱コイル動作時は端子33A、33Bをコンデンサ34に接続する。コンデンサ34は一端を商用電源の電位、あるいは加熱コイル21に高周波電流を供給するインバータに入力される商用電源を整流した出力の電位あるいは大地電位あるいはその他の低電位部に接続される。
【0030】
熱遮蔽板30の上にマイカ製の耐熱シート63が設けられている。耐熱シート63の上に電気導体27が設けられている。電気導体27は2つの所定の幅を有する円弧状の電気導体半体27a、27bから構成されている。電気導体27はその上部にある被加熱物29を載せるためのプレート28の下面に当接しまたは接着されている。電気導体27は必ずしも接着されている必要はなく直接又は熱を伝導する電気絶縁性を有する部材や導電性部材を介してプレート28に押し当てるようにしてもよい。プレート28の材料は好ましくは耐熱セラミックであり高い電気絶縁性と金属より小さな所定の熱伝導性を有する。電気導体半体の数は2つに限定されるものではなく、更に分割して多くの数にしてもよい。多くの数(複数)に分割した電気導体はそれぞれほぼ均等な大きさにし、相互の間隔をほぼ均等にするのが被加熱物への浮上がり力の中心周りでの均等な配分と加熱力の均等な配分の上で望ましい。
【0031】
たとえば本願発明者の先出願である特願2002−066553の実施例のように単数のC字状の電気導体を用いたものでは浮上抑制力が中心周りに均等でないから被加熱部の一隅が浮き上がろうとしたり、被加熱物がある方向に横すべりしやすい点があった。電気導体を複数にすることにより、加熱コイルの磁界により電気導体に発生する誘導電流が分断される。その結果誘導加熱による電気導体の発熱を抑制することができる。
【0032】
また加熱コイルの磁界により誘導される被加熱物の誘導電流の分布が変わるので、加熱コイルの等価直列抵抗が大きくなる。その結果加熱コイルの電流が低減し、被加熱体に与える浮力も低減する。また、電気導体が所定の幅を有し、加熱コイルの巻き線の巻き方向に沿った形状で相互に間隔を設けて配置されているので、効率よく電気導体に電流が誘導されて等価直列抵抗を大きくするので浮力低減効果が増す。
【0033】
複数の電気導体の大きさと相互の間隔をほぼ均等にすることにより、加熱コイルから出て被加熱物に鎖交する磁束の分布が実質的に回転対称になる。その結果、被加熱物に働く浮力が中心の周りにバランス(平衡)をもって配分される。またフェライトコア23〜26が、複数に分割された電気導体27の隙間の部分に対向しないようにするのが望ましい。これにより、隙間の部分で強くなる磁界を他の方向に分散させて磁界を均一にすることができる。
【0034】
電気導体半体27a、27bはそれぞれ厚さが約1mm、幅が約35mmの板により形成され、半円の円弧状に形成されている。電気導体半体27aと27bとの間隙27cは約10mmである。電気導体半体27a、27bは、それぞれの脚部27e、27fによりコイルホルダー37を挟んでコイルーベース22にねじ止めされる。電気導体27の具体的寸法の実施例は、外径が180mm、内径が約110mm(加熱コイル21の外径が約180mm、内径が約165mmの場合)である。
【0035】
ここで、電気導体27は、図4(a)のようにアルミニウム(またはアルミニウム合金)を主成分とし、それに磁性体38を加えたものであり、磁性体38を加える方法としては特に限定されるものではない。磁性体38の加え方としては、例えば粉末冶金技術のような方法により、アルミニウム中に磁性ステンレス、ニッケル等の磁性体38を分散させる方法がある。
【0036】
あるいは、物理的な処理として塗装、溶射、溶接、接合等によって磁性体38を加える方法があり、具体的には磁性粉入りの塗装、PVD、粉体溶射、クラッド材等がある。
【0037】
また、化学的な処理としてめっき、陽極酸化等によって磁性体38を加える方法があり、具体的にはニッケルめっきや磁性アルマイト処理等がある。これらの処理によるといずれも図4(b)のように電気導体27の表面に磁性体38が形成されることになる。また、マスキング等を施せば、磁性体38のつけかたは多種多様で、例えば片面のみ磁性体38を形成したり、外周側のみ磁性体38を形成したりすることが可能であり、その時々において設計の最適化を図ればよい。
【0038】
電気導体27の中央の開口部39において、図5に示すフェライトコア23〜26の外側の立ち上がり部であるフェライトコア23b〜26bの上端面は電気導体27の外周より外側に位置している。また内側の立ち上がり部であるフェライトコア23c〜26cの上端面は開口部39の内周より内側に位置するようにしてある。図3において、誘導加熱部42の下方に第2の磁性体3845が設けられている。磁性体3845は、例えば透磁率の高い厚さ0.15mmの珪素鋼板等を縦横が15mm及び20mm程度のほぼ扇形に形成した部材である。磁性体3845は、加熱コイル21により被加熱物29周囲に漏洩する磁界が不均一である場合に、その磁界分布を均一に調整して低減するために用いる。サーミスタ35がホルダー36にはめ込まれて、プレート28の裏面に当接されプレート28の温度を検出する。プレート28は絶縁物である耐熱セラミックス製で、その上にアルミニウム製の被加熱物29が加熱コイル22に対向する様に載置される。
【0039】
以下に本実施例の誘導加熱装置の動作を説明する。加熱コイル21に図示を省略した高周波電源から約70kHzの高周波電流を流すと、加熱コイル21は、高周波磁界を発生する。加熱コイル21の下方には、高透磁率材料であるフェライトコア23〜26があるので下方へ向かう磁束はフェライトコア23〜26によって集束され、磁界が加熱コイル21の下方に拡がるのを防止できる。すなわちフェライトコア23〜26は加熱コイル下方及び側方での損失を抑制し加熱効率を高める作用をする。
【0040】
加熱コイル21の上方に出た磁束は電気導体27に鎖交し、電気導体27に誘導電流が誘起される。電気導体27の厚みは前記のとおり約1mmで磁束の浸透深さ以上の厚みを有するので、電気導体27に鎖交する磁束の大部分はほとんど電気導体27を貫通せず外周側または内周側に迂回してから被加熱物29の方向に導かれる。
【0041】
被加熱物29に誘起される誘導電流は、加熱コイル21の発生する磁界と、電気導体27に誘起される電流により発生する磁界とが重畳した磁界が被加熱物29に鎖交することにより発生する。従って電気導体27が存在することにより、被加熱物29に誘導される電流分布が変化する。さらに電気導体27に発生する電流の分布の影響が加わることにより、加熱コイル21の等価直列抵抗が大きくなる。
【0042】
加熱コイル21の等価直列抵抗が大きくなると、同じ加熱コイル電流において被加熱物29の発熱量が大きくなる。その結果同一の熱出力を得ようとする場合の加熱コイル電流を小さくすることができ、それに伴い浮力も低減する。
【0043】
また、図3に示すように電気導体27をプレート28当接させて、電気導体27の熱を熱伝導でプレート28に逃がし一部の熱を被加熱物29に与ることにより電気導体27の温度上昇を抑制することができ、周囲の部品に対する温度による悪影響を与えるのを防止できる。それとともに、前記の加熱効率の低下をカバーすることが可能である。
【0044】
またプレート28の下面に電気導体27を当接させることにより、その下側に耐熱シート63、熱遮蔽板30、31、導電膜32、コイルホルダ37などを積層して位置決めされる加熱コイル21と前記プレート28間の距離を正確に設定できる。
【0045】
この構成により、電気導体27の発熱は効率よくプレート28に伝導させて放散させることができる。それ故電気導体27の発熱が加熱コイル21や周囲の部品に温度上昇による悪影響を及ぼすのを抑制する。また伝導熱で被加熱物29の温度を上げ、加熱効率を高めることもできる。
【0046】
電気導体27をプレート28に耐熱接着剤を用いて接着してもよい。その構造によると、接着により電気導体27がプレートに密着するので、電気導体27の熱がプレートに熱伝導で伝わって放熱され電気導体の放熱性が向上する。また、接着後の電気導体の取り扱いに手間がかからない。なお電気導体27は導電膜32を介在させてプレート28の下面に当接させたりまたは接着しても良い。
【0047】
電気導体27は、2つの電気導体半体27a、27bの間に被加熱物29の底面に対向するよう面内において約10mmの間隙27c(図1,図2)を設けて配設している。この間隙27cを設けないほうが等価直列抵抗(Rs)の増加効果は大きい。しかし、間隙27cを設けない場合には、電気導体半体27a、27bの誘導電流が多いため発熱量が極めて大きく加熱効率の低下も大きい。間隙27cを設けると、間隙27cを設けない場合より等価直列抵抗の増加は少なくなる。しかし間隙27cを設けることにより、電気導体27に誘起される電流と逆方向でかつ略平行に加熱コイル21の中心の回りを流れる周回電流が流れないようになる。これにより結果的に分布の異なる誘導電流が電気導体27内に流れることになる。それ故、電気導体27の発熱が抑制されるとともに等価直列抵抗を増加させる作用を生じる。
【0048】
加熱コイル22の上部に熱遮蔽板30と31に挟んで設けた導電膜32は、コンデンサ34(図1、図2)を介して商用電源電位、インバータの入力電位となる電源電流整流器の出力電位、またはアース電位に接続される。これにより加熱コイル21から漏洩するリーク電流を低減することができる。この導電膜32は膜厚が約30ミクロン程度と薄く選ばれる。したがって電気伝導率も小さいので誘導電流も極めて少ない。そのため加熱コイル21から発生する磁界の分布を変える作用はほとんどない。また導電膜32は電気導体27のような等価直列抵抗の増加作用、加熱コイル電流の低減作用及び浮力低減作用もほとんどない。
【0049】
また、電気導体27に磁性体38を分散させることにより、漏れ磁束(被加熱物29や電気導体27に到達する磁束以外の磁束)を電気導体27に吸収・発熱させ、その発生熱をプレート28を介して被加熱物29に伝えることで加熱効率をより高めることが可能になる。
【0050】
また、電気導体27の表面に磁性体38を形成させることによっても同様の効果が得られ、この方法は、比較的簡単、安価で方法も多種存在し、自由度が大きいという利点がある。
【0051】
特に電気導体27の被加熱体29側の表面に磁性体38を形成させれば、漏れ磁束による発熱は被加熱体29側に集中し、効率よく被加熱物29に熱移動できるとともに、加熱コイル21は電気導体27から熱を受けにくくなるので、加熱コイル21のロスを低減することも可能になる。
【0052】
また、電気導体27の外周側に磁性体を形成させれば、外周側は内周側に比べて磁束の密度が疎であるため、電気導体27の発熱が少なくて済み、また、外周側は比較的低い温度の雰囲気と広範囲に隣接しているので冷却性が向上する。
【0053】
物理的な処理によって表面に磁性体38を形成させるのは、基材に用いる電気導体27は一定で各種方法の取捨選択が自由で、また、比較的安価において処理が可能であり量産性が高いという利点がある。
【0054】
化学的な処理によって表面に磁性体38を形成させるのは、基材自体に処理するため機械的な強度が高いとともに、物理的な処理のように付着物を伴わないため層間伝熱による損失が少なく電気導体27の放熱効率が高いという利点がある。
【0055】
なお、電気導体27に磁性体38を加えることで、加熱コイル21の等価直列抵抗を大きくして、浮力を低減することも可能である。しかしながら、電気導体27が必要以上に発熱しないよう磁性体38の含有量に注意し、浮力低減と発熱の設計バランスをとることが肝要である。但し、本実施例のように、磁性体38を分散させたり、表面に薄く処理することにより、磁性体38が発熱しにくい構成をとっているので、この面からも有利である。
【0056】
【発明の効果】
以上のように、本発明によれば、アルミニウム製の被加熱物が軽量であっても浮き上がることなく、充分な入力電力による加熱を確保でき、加熱効率を向上した誘導加熱装置を実現できるものである。
【図面の簡単な説明】
【図1】本発明の第1の実施例における誘導加熱装置の要部斜視図
【図2】本発明の第1の実施例における誘導加熱装置の要部断面図
【図3】図2の誘導加熱部のIII−III断面図
【図4】(a)磁性体を加えた電気導体の断面図
(b)表面に磁性体を形成させた電気導体の断面図
【図5】フェライトコア23、24、25、及び26の斜視図
【図6】従来の誘導加熱装置の断面図
【図7】(a)従来の誘導加熱装置の加熱コイルに流れる電流を示す図
(b)従来の誘導加熱装置の被加熱物に流れる電流を示す図
【符号の説明】
21 加熱コイル
27 電気導体
29 被加熱物
38 磁性体
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to an induction heating device used in general homes, offices, restaurants, factories, and the like, and more particularly, to an object to be heated made of a material having low magnetic permeability and high electric conductivity such as aluminum and copper. TECHNICAL FIELD The present invention relates to an induction heating device that can heat aluminum, particularly an induction heating cooker, an induction heating water heater, an induction heating iron, or another induction heating type heating device.
[0002]
[Prior art]
An induction heating cooker in which an induction heating coil generates a high-frequency magnetic field and heats an object to be heated such as a pan with an eddy current caused by electromagnetic induction, which can heat an aluminum object to be heated has been proposed (for example, Patent Reference 1).
[0003]
When an aluminum object to be heated is heated in such an induction heating cooker, there is a problem that buoyancy acts on the object to be heated and the object is lifted. The present invention relates to means for solving this problem. First, a conventional induction heating cooker will be described below with reference to FIGS. 6 and 7. FIG.
[0004]
FIG. 6 is a cross-sectional view of a conventional induction heating cooker. In FIG. 6, an object to be heated 1 in the shape of a pot is placed on a plate 4 provided above an induction heating unit 3 having a heating coil 2. The plate 4 is an insulating plate made of, for example, a ceramic material having a thickness of 4 mm. The heating coil 2 is supplied with a high-frequency current from a drive circuit 5 having an inverter, generates a high-frequency magnetic field, and applies the high-frequency magnetic field to the object 1 to be heated.
[0005]
[Patent Document 1]
JP-A-2002-75620
[0006]
[Problems to be solved by the invention]
In the above-described conventional induction heating cooker, a repulsive force that tends to move away from the heating coil 2 at the bottom of the heated object 1 is generated by the interaction between the current induced at the bottom of the heated object 1 and the current of the heating coil 2. Occurs. When the object to be heated 1 is made of a high magnetic permeability material such as iron having a relatively large resistivity, the current value required to obtain a desired heating output is small, so that the repulsive force is relatively small. . Further, in the case of iron or the like, since magnetic flux flows through the object to be heated 1, magnetic attraction acts, and there is no fear that the object to be heated 1 is lifted or shifted.
[0007]
When the object to be heated 1 is made of a material having low magnetic permeability and high electrical conductivity such as aluminum or copper, the current flowing through the heating coil 2 is increased to obtain a desired heating output. A large current must be induced. As a result, the resilience increases.
[0008]
Further, since the magnetic attraction unlike the case of a high magnetic permeability material such as iron does not act on the aluminum object 1 to be heated, the object 1 is heated by the action of the magnetic field of the heating coil 2 and the magnetic field of the induced current. A large force acts in the direction away from 2. This force acts on the object 1 as buoyancy. When the weight of the heated object 1 is light, the heated object 1 may be lifted from the mounting surface of the plate 4 and moved by the buoyancy.
[0009]
FIG. 7A is a diagram of the direction of the current flowing through the heating coil 2 as viewed from the side of the object to be heated 1, and FIG. 7B is a diagram illustrating the direction of the current flowing through the heating coil 2. FIG. 8 is a diagram of the eddy current generated and induced by the induction as viewed from the same direction as FIG. As shown in FIGS. 7A and 7B, the eddy current flowing through the object to be heated 1 has a loop shape which is opposite to the current flowing through the heating coil 2 and has substantially the same shape. Therefore, these two annular currents are in the same state as two permanent magnets having substantially the same cross-sectional area as the area of the heating coil 2 having the same type of poles (for example, N pole and N pole) placed opposite each other. . As a result, a large repulsive force is generated between the object to be heated 1 and the heating coil 2.
[0010]
This phenomenon is remarkable when the material of the object 1 to be heated is aluminum or copper having a low electrical conductivity. On the other hand, even with the same low magnetic permeability material, non-magnetic SUS is a material having lower electric conductivity than aluminum or copper, so that sufficient heat generation can be obtained even when the current flowing through the heating coil 2 is small. Therefore, the eddy current flowing through the object to be heated 1 is small, and the magnetic field induced in the object to be heated 1 is small.
[0011]
The inventor has conducted research and development for reducing the buoyancy acting on the aluminum object to be heated, and filed a patent application for Japanese Patent Application No. 2002-235970. The configuration of the induction heating device includes a heating coil for induction heating the object to be heated, a non-magnetic plate having electrical insulation for mounting the object to be heated, and the heating coil and the plate. Is provided between at least a part of the plate directly or via a member having thermal conductivity, when the object to be heated is disposed opposite to the heating coil, the equivalent series resistance of the heating coil An electric conductor is provided which increases the magnetic field generated by the heating coil and reduces the buoyancy exerted on the object to be heated.
[0012]
With this configuration, even if the object to be heated made of aluminum is lightweight, heating with sufficient input power can be ensured without being lifted, but the heating efficiency, that is, thermal power, is higher than when heating the object to be heated made of iron. There was a problem that the feeling was slightly inferior.
[0013]
The present invention solves the above-mentioned conventional problems, and provides an induction heating device that can secure heating with sufficient input power without increasing the weight of an aluminum object to be heated even if the object is lightweight, and that increases the heating efficiency. The purpose is to do.
[0014]
[Means for Solving the Problems]
In order to solve the above-mentioned conventional problems, an induction heating device of the present invention includes a heating coil capable of induction heating an object to be heated made of aluminum or copper or a low magnetic permeability material having an electric conductivity substantially equal to or higher than these. An electric conductor provided between the heating coil and the object to be heated, the main component of which is a metal having a low magnetic permeability and a magnetic substance dispersed therein, and the electric conductor faces the heating coil. In addition to increasing the equivalent series resistance of the heating coil when the object to be heated is arranged, the magnetic field generated by the heating coil has a buoyancy reducing function of reducing the buoyancy acting on the object to be heated. ing.
[0015]
With this configuration, even if the object to be heated made of aluminum is lightweight, it is possible to secure heating with sufficient input power without floating. In addition, the main component of the electric conductor is made of a metal having a low magnetic permeability and a magnetic substance is dispersed in the metal, so that the electric flux absorbs and generates heat from the leakage magnetic flux (magnetic flux other than the magnetic flux reaching the object to be heated and the electric conductor). be able to. As a result, the generated heat is transmitted to the object to be heated via the plate, so that the heating efficiency can be increased.
[0016]
BEST MODE FOR CARRYING OUT THE INVENTION
The invention according to claim 1 is a heating coil capable of inductively heating an object to be heated made of aluminum or copper or a low magnetic permeability material having substantially the same or higher electric conductivity, An electric conductor provided between the heating coil and the object to be heated, the main component of which is a low-permeability metal and a magnetic substance dispersed therein; and the electric conductor faces the heating coil. And a buoyancy reducing function for increasing the equivalent series resistance of the heating coil when disposing the object to be heated and reducing the buoyancy acting on the object by the magnetic field generated by the heating coil. Accordingly, the direction and intensity distribution of the magnetic field generated from the heating coil changes due to the influence of the electric conductor.
[0017]
On the other hand, when there is no electric conductor, an induction current is induced in the object to be heated such that the high-frequency magnetic field generated from the heating coil cancels the magnetic field generated from the heating coil. As a result, an induced current in a direction opposite to the direction of the heating coil current is induced in the object to be heated having a high electrical conductivity, and the interaction between the current and the magnetic field radiated from the heating coil causes a buoyancy in the object to be heated. appear.
[0018]
However, the presence of the electric conductor causes the magnetic field generated from the heating coil to interlink with the electric conductor and the object to be heated, so that an induced current is generated in both. In other words, the electric conductor and the object to be heated such that the superposed magnetic field of the magnetic field generated by the induced current induced in the electric conductor and the magnetic field generated by the current induced in the object to be heated prevent a change in the magnetic field generated by the heating coil. An induced current will flow through the device.
[0019]
That is, the distribution of the current induced in the object to be heated changes due to the generation of the induced current in the electric conductor. By this change in current distribution, the equivalent series resistance of the heating coil increases, so that the current value flowing through the heating coil when obtaining the same output can be reduced, and the buoyancy acting on the object to be heated is reduced, The buoyancy acting on the object to be heated can be reduced by the electric conductor sharing a part of the buoyancy to be exerted on the object to be heated. In addition, the present invention has an effect that the switching loss of a high-frequency component such as a heating coil, a switching element used for an inverter that generates a resonance current for driving the heating coil, and a resonance capacitor can be reduced.
[0020]
Here, the main component of the electric conductor is made of a metal having low magnetic permeability, and a magnetic substance is dispersed therein, so that the leakage magnetic flux (magnetic flux other than the magnetic flux reaching the object to be heated and the electric conductor) is absorbed and generated by the electric conductor. The generated heat is transmitted to the object to be heated via the plate to increase the heating efficiency.
[0021]
The invention according to claim 2 particularly forms a magnetic material on the surface of an electric conductor, and this method of forming a magnetic material on the surface is relatively simple, inexpensive, and various methods are available. It has the advantage of being large.
[0022]
According to the third aspect of the present invention, a magnetic body is formed on the surface of the electric conductor on the side of the object to be heated, and heat generated by leakage magnetic flux is concentrated on the side of the object to be heated, and heat can be efficiently transferred to the object to be heated. Since the heating coil is less likely to receive heat from the electric conductor, the loss of the heating coil can be reduced.
[0023]
The invention according to claim 4 is to form a magnetic body particularly on the outer peripheral side of the electric conductor, and the outer peripheral side has a lower magnetic flux density than the inner peripheral side, so that the electric conductor generates less heat. In addition, since the outer peripheral side is adjacent to a relatively low temperature atmosphere in a wide range, the cooling performance is improved.
[0024]
In the invention according to claim 5, the electric conductor forms a magnetic material on the surface by physical treatment, for example, by coating, welding, spraying, joining, or the like. This method has the advantages that the electric conductor used for the base material is constant and that various methods can be freely selected, and that it can be processed at relatively low cost and has high productivity.
[0025]
In the invention according to claim 6, the electric conductor forms a magnetic body on the surface by a chemical treatment, for example, the base body itself is oxidized or corroded to form the magnetic body. is there. This method has a high mechanical strength because it is applied to the base material itself, and has no loss due to interlayer heat transfer because it does not involve deposits unlike a physical treatment.
[0026]
【Example】
Hereinafter, a preferred embodiment of the induction heating apparatus of the present invention will be described with reference to FIGS.
[0027]
FIG. 1 is an exploded perspective view showing a configuration of an induction heating unit 42 including a heating coil 21 of an induction heating device (for example, an induction heating cooker) according to an embodiment of the present invention, and FIG. FIG. FIG. 3 is a cross-sectional view showing the induction heating section 42, the plate 28 fixed to the upper portion of the main body of the induction heating cooker, and the object 29 to be heated placed on the plate 28.
[0028]
1, 2, and 3, first U-shaped ferrite cores 23, 24, 25, and 26, which are four U-shaped ferromagnetic bodies, are radially formed on the upper surface of a coil base 22 made of a heat-resistant resin. And attached to the coil base 22 by integral molding. Each ferrite core is formed in a U-shape that opens toward the heating coil 21 as a whole. The coil base 22 is formed so as to cover the surfaces of the ferrite cores 23 to 26, and is configured to electrically insulate the heating coil 21 from the ferrite cores 23 to 26. A part of the ferrite cores 23 to 26 may be exposed for heat radiation. The heating coil 21 is a coil formed by winding a stranded wire obtained by bundling thin wires into a flat plate shape. Both ends of the heating coil 21 are connected to terminal plates 61 and 62 provided on the coil base 22, respectively. The terminal plates 61 and 62 are connected to a high-frequency power supply (not shown).
[0029]
In order to hold the heating coil 21, a coil holder 37 made of a heat-resistant plastic molded product is provided on the heating coil 21. A conductive film 32 made of a material such as carbon is provided on the coil holder 37 so as to be sandwiched between the heat shielding plates 30 and 31 made of integrated mica. The conductive film 32 has an English letter C shape. The two terminals 33A and 33B connected to the conductive film 32 are connected to a connector 34A. The terminals 33A and 33B are connected to a switching device 34B via a connector 34A. The switching device 34B has a function of checking conduction between the terminals 33A and 33B and a function of connecting the terminals 33A and 33B to the capacitor 34. The switching device 34B connects the terminals 33A and 33B to the capacitor 34 during the operation of the heating coil. One end of the capacitor 34 is connected to the potential of a commercial power supply, or the potential of an output obtained by rectifying the commercial power supplied to an inverter that supplies a high-frequency current to the heating coil 21, the ground potential, or another low potential portion.
[0030]
A heat-resistant sheet 63 made of mica is provided on the heat shielding plate 30. The electric conductor 27 is provided on the heat-resistant sheet 63. The electric conductor 27 includes two arc-shaped electric conductor halves 27a and 27b each having a predetermined width. The electric conductor 27 is in contact with or adhered to the lower surface of a plate 28 on which an object 29 to be heated is placed. The electric conductor 27 does not necessarily need to be adhered, and may be pressed directly or via a conductive member having an electrically insulating property or a conductive member to the plate 28. The material of the plate 28 is preferably a refractory ceramic, having high electrical insulation and a predetermined thermal conductivity lower than that of metal. The number of the electric conductor halves is not limited to two, and may be further divided into a large number. The electrical conductors divided into a large number (plural) should be approximately equal in size, and the spacing between them should be approximately equal. Desirable on even distribution.
[0031]
For example, in the case of using a single C-shaped electric conductor as in the embodiment of Japanese Patent Application No. 2002-066553, which is the prior application of the inventor of the present invention, one corner of the heated portion floats because the floating suppression force is not uniform around the center. There was a point that it was easy to go up or to slide sideways in the direction of the object to be heated. By providing a plurality of electric conductors, an induced current generated in the electric conductor by the magnetic field of the heating coil is divided. As a result, heat generation of the electric conductor due to induction heating can be suppressed.
[0032]
Further, since the distribution of the induced current of the object to be heated induced by the magnetic field of the heating coil changes, the equivalent series resistance of the heating coil increases. As a result, the current of the heating coil is reduced, and the buoyancy applied to the object to be heated is also reduced. In addition, since the electric conductor has a predetermined width and is arranged at a distance from each other in a shape along the winding direction of the winding of the heating coil, current is efficiently induced in the electric conductor and the equivalent series resistance is reduced. , The buoyancy reduction effect increases.
[0033]
By making the sizes of the plurality of electric conductors substantially equal to each other, the distribution of the magnetic flux exiting the heating coil and linking the object to be heated becomes substantially rotationally symmetric. As a result, the buoyancy acting on the object to be heated is distributed around the center in a balanced manner. Further, it is desirable that the ferrite cores 23 to 26 do not face the gap portion of the electric conductor 27 divided into a plurality. As a result, the magnetic field that becomes stronger in the gap can be dispersed in other directions to make the magnetic field uniform.
[0034]
The electric conductor halves 27a and 27b are each formed of a plate having a thickness of about 1 mm and a width of about 35 mm, and are formed in a semicircular arc shape. The gap 27c between the electric conductor halves 27a and 27b is about 10 mm. The electric conductor halves 27a and 27b are screwed to the coil-base 22 with the coil holder 37 interposed therebetween by the legs 27e and 27f. An example of specific dimensions of the electric conductor 27 is an outer diameter of 180 mm and an inner diameter of about 110 mm (when the outer diameter of the heating coil 21 is about 180 mm and the inner diameter is about 165 mm).
[0035]
Here, the electric conductor 27 has aluminum (or aluminum alloy) as a main component and a magnetic material 38 added thereto as shown in FIG. 4A, and the method of adding the magnetic material 38 is not particularly limited. Not something. As a method of adding the magnetic body 38, there is a method of dispersing the magnetic body 38 such as magnetic stainless steel or nickel in aluminum by a method such as a powder metallurgy technique.
[0036]
Alternatively, as a physical treatment, there is a method of adding the magnetic body 38 by painting, thermal spraying, welding, joining, or the like. Specific examples include painting with magnetic powder, PVD, powder thermal spraying, clad material, and the like.
[0037]
In addition, as a chemical treatment, there is a method of adding the magnetic body 38 by plating, anodic oxidation, or the like, and specifically, nickel plating, magnetic alumite treatment, or the like. According to these processes, the magnetic body 38 is formed on the surface of the electric conductor 27 as shown in FIG. Also, by applying masking or the like, the magnetic body 38 can be attached in various ways. For example, it is possible to form the magnetic body 38 only on one side or to form the magnetic body 38 only on the outer peripheral side. May be optimized.
[0038]
In the central opening 39 of the electric conductor 27, the upper end surfaces of the ferrite cores 23 b to 26 b which are the rising portions outside the ferrite cores 23 to 26 shown in FIG. 5 are located outside the outer periphery of the electric conductor 27. The upper end surfaces of the ferrite cores 23c to 26c, which are the inner rising portions, are located inside the inner periphery of the opening 39. In FIG. 3, a second magnetic body 3845 is provided below the induction heating unit 42. The magnetic body 3845 is a member formed by forming, for example, a silicon steel plate having a high magnetic permeability and a thickness of 0.15 mm or the like in a substantially sector shape with a length and width of about 15 mm and 20 mm. The magnetic material 3845 is used for uniformly adjusting and reducing the magnetic field distribution when the magnetic field leaking around the object 29 to be heated by the heating coil 21 is not uniform. The thermistor 35 is fitted into the holder 36 and is brought into contact with the back surface of the plate 28 to detect the temperature of the plate 28. The plate 28 is made of a heat-resistant ceramic which is an insulator, and an object to be heated 29 made of aluminum is placed thereon so as to face the heating coil 22.
[0039]
Hereinafter, the operation of the induction heating device of the present embodiment will be described. When a high-frequency current of about 70 kHz flows from a high-frequency power supply (not shown) to the heating coil 21, the heating coil 21 generates a high-frequency magnetic field. Since the ferrite cores 23 to 26, which are high magnetic permeability materials, are provided below the heating coil 21, the downward magnetic flux is converged by the ferrite cores 23 to 26, and the magnetic field can be prevented from spreading below the heating coil 21. That is, the ferrite cores 23 to 26 function to suppress the loss below and on the side of the heating coil and increase the heating efficiency.
[0040]
The magnetic flux emitted above the heating coil 21 is linked to the electric conductor 27, and an induced current is induced in the electric conductor 27. Since the thickness of the electric conductor 27 is about 1 mm as described above and is greater than the penetration depth of the magnetic flux, most of the magnetic flux linked to the electric conductor 27 hardly penetrates the electric conductor 27 and the outer side or the inner side. And is guided in the direction of the object to be heated 29.
[0041]
The induction current induced in the object to be heated 29 is generated by a magnetic field in which the magnetic field generated by the heating coil 21 and the magnetic field generated by the current induced in the electric conductor 27 are linked to the object to be heated 29. I do. Therefore, the presence of the electric conductor 27 changes the current distribution induced in the object 29 to be heated. Further, due to the influence of the distribution of the current generated in the electric conductor 27, the equivalent series resistance of the heating coil 21 increases.
[0042]
When the equivalent series resistance of the heating coil 21 increases, the calorific value of the article 29 to be heated increases at the same heating coil current. As a result, when the same heat output is to be obtained, the heating coil current can be reduced, and the buoyancy is reduced accordingly.
[0043]
As shown in FIG. 3, the electric conductor 27 is brought into contact with the plate 28, the heat of the electric conductor 27 is released to the plate 28 by heat conduction, and a part of the heat is given to the object 29 to be heated. It is possible to suppress a rise in temperature, and to prevent adverse effects on surrounding components due to temperature. At the same time, it is possible to cover the decrease in the heating efficiency.
[0044]
Further, by contacting the electric conductor 27 with the lower surface of the plate 28, the heating coil 21 which is positioned by laminating the heat-resistant sheet 63, the heat shielding plates 30, 31, the conductive film 32, the coil holder 37 and the like on the lower side. The distance between the plates 28 can be set accurately.
[0045]
With this configuration, heat generated by the electric conductor 27 can be efficiently transmitted to the plate 28 and dissipated. Therefore, the heat generated by the electric conductor 27 is prevented from adversely affecting the heating coil 21 and surrounding components due to a rise in temperature. In addition, the temperature of the object 29 to be heated can be increased by the conduction heat to increase the heating efficiency.
[0046]
The electric conductor 27 may be bonded to the plate 28 using a heat-resistant adhesive. According to this structure, the electric conductor 27 adheres to the plate by bonding, so that the heat of the electric conductor 27 is transmitted to the plate by heat conduction and radiated, so that the heat dissipation of the electric conductor is improved. In addition, the handling of the electric conductor after bonding is not troublesome. The electric conductor 27 may be in contact with or adhere to the lower surface of the plate 28 with the conductive film 32 interposed.
[0047]
The electric conductor 27 is provided with a gap 27c (FIGS. 1 and 2) of about 10 mm in the plane between the two electric conductor halves 27a and 27b so as to face the bottom surface of the object 29 to be heated. . The effect of increasing the equivalent series resistance (Rs) is greater when the gap 27c is not provided. However, when the gap 27c is not provided, the amount of heat generated in the electric conductor halves 27a and 27b is large, so that the amount of generated heat is extremely large and the heating efficiency is greatly reduced. When the gap 27c is provided, the increase in the equivalent series resistance is smaller than when the gap 27c is not provided. However, the provision of the gap 27c prevents a circulating current flowing around the center of the heating coil 21 in a direction opposite to and substantially parallel to the current induced in the electric conductor 27. As a result, induced currents having different distributions flow in the electric conductor 27. Therefore, the effect of suppressing the heat generation of the electric conductor 27 and increasing the equivalent series resistance is produced.
[0048]
A conductive film 32 provided above the heating coil 22 between the heat shield plates 30 and 31 is connected to a commercial power supply potential via a capacitor 34 (FIGS. 1 and 2) and an output potential of a power supply current rectifier which is an input potential of an inverter. , Or ground potential. Thereby, the leak current leaking from the heating coil 21 can be reduced. This conductive film 32 is selected to be as thin as about 30 microns. Therefore, since the electric conductivity is small, the induced current is very small. Therefore, there is almost no effect of changing the distribution of the magnetic field generated from the heating coil 21. Further, the conductive film 32 has almost no effect of increasing the equivalent series resistance, a function of reducing the heating coil current and a function of reducing the buoyancy like the electric conductor 27.
[0049]
Further, by dispersing the magnetic material 38 in the electric conductor 27, leakage magnetic flux (magnetic flux other than the magnetic flux reaching the object to be heated 29 and the electric conductor 27) is absorbed and generated by the electric conductor 27, and the generated heat is transmitted to the plate 28. The heating efficiency can be further increased by transmitting the heat to the object to be heated 29 via the.
[0050]
The same effect can also be obtained by forming the magnetic body 38 on the surface of the electric conductor 27. This method has the advantage of being relatively simple, inexpensive, has various methods, and has a high degree of freedom.
[0051]
In particular, if the magnetic body 38 is formed on the surface of the electric conductor 27 on the side of the object 29 to be heated, heat generated by the leakage magnetic flux is concentrated on the side of the object 29 to be heated, and heat can be efficiently transferred to the object 29 to be heated. Since the heat receiving member 21 is less likely to receive heat from the electric conductor 27, the loss of the heating coil 21 can be reduced.
[0052]
Further, if a magnetic material is formed on the outer peripheral side of the electric conductor 27, heat generation of the electric conductor 27 can be reduced because the magnetic flux density is lower on the outer peripheral side than on the inner peripheral side. Since it is adjacent to a relatively low temperature atmosphere in a wide range, cooling performance is improved.
[0053]
The magnetic substance 38 is formed on the surface by physical treatment because the electric conductor 27 used for the base material is constant and various methods can be freely selected. In addition, the treatment can be performed at relatively low cost and the mass productivity is high. There is an advantage that.
[0054]
Forming the magnetic material 38 on the surface by chemical treatment is high in mechanical strength because it is applied to the substrate itself, and loss due to interlayer heat transfer is not caused because there is no attached substance as in physical treatment. There is an advantage that the heat radiation efficiency of the electric conductor 27 is small.
[0055]
By adding the magnetic body 38 to the electric conductor 27, it is possible to increase the equivalent series resistance of the heating coil 21 and reduce the buoyancy. However, it is important to pay attention to the content of the magnetic body 38 so that the electric conductor 27 does not generate heat more than necessary, and to balance the design of the reduction of buoyancy and the heat generation. However, since the magnetic body 38 is hardly heated by dispersing the magnetic body 38 or thinly treating the surface as in the present embodiment, it is also advantageous from this aspect.
[0056]
【The invention's effect】
As described above, according to the present invention, even if the object to be heated made of aluminum is lightweight, it does not float, it can secure heating with sufficient input power, and an induction heating device with improved heating efficiency can be realized. is there.
[Brief description of the drawings]
FIG. 1 is a perspective view of a main part of an induction heating device according to a first embodiment of the present invention.
FIG. 2 is a sectional view of a main part of the induction heating device according to the first embodiment of the present invention.
FIG. 3 is a cross-sectional view of the induction heating unit of FIG. 2 taken along the line III-III.
FIG. 4A is a sectional view of an electric conductor to which a magnetic substance is added.
(B) Cross section of an electric conductor having a magnetic material formed on the surface
FIG. 5 is a perspective view of ferrite cores 23, 24, 25, and 26.
FIG. 6 is a sectional view of a conventional induction heating device.
FIG. 7A is a diagram showing a current flowing through a heating coil of a conventional induction heating device.
(B) A diagram showing a current flowing through an object to be heated in a conventional induction heating device.
[Explanation of symbols]
21 heating coil
27 Electric conductor
29 Heated object
38 Magnetic material

Claims (6)

アルミニウム若しくは銅またはこれらと略同等以上の電気伝導率を有する低透磁率材料からなる被加熱物を誘導加熱可能な加熱コイルと、前記加熱コイルと前記被加熱物との間に設けられかつその主成分は低透磁率の金属としその中に磁性体を分散させた電気導体とを備え、前記電気導体は前記加熱コイルに対向して前記被加熱物を配置した時の前記加熱コイルの等価直列抵抗を大きくするとともに、前記加熱コイルの発生する磁界が前記被加熱物に対して働く浮力を低減する浮力低減機能を有してなる誘導加熱装置。A heating coil capable of inductively heating an object to be heated, which is made of aluminum or copper or a low magnetic permeability material having substantially the same or higher electrical conductivity, and a heating coil provided between the heating coil and the object to be heated, The component comprises a low magnetic permeability metal and an electric conductor in which a magnetic substance is dispersed. The electric conductor has an equivalent series resistance of the heating coil when the object to be heated is arranged opposite to the heating coil. And a buoyancy reducing function for reducing buoyancy acting on the object to be heated by the magnetic field generated by the heating coil. アルミニウム若しくは銅またはこれらと略同等以上の電気伝導率を有する低透磁率材料からなる被加熱物を誘導加熱可能な加熱コイルと、前記加熱コイルと前記被加熱物との間に設けられかつその主成分は低透磁率の金属としその表面に磁性体を形成させた電気導体とを備え、前記電気導体は前記加熱コイルに対向して前記被加熱物を配置した時の前記加熱コイルの等価直列抵抗を大きくするとともに、前記加熱コイルの発生する磁界が前記被加熱物に対して働く浮力を低減する浮力低減機能を有してなる誘導加熱装置。A heating coil capable of inductively heating an object to be heated, which is made of aluminum or copper or a low magnetic permeability material having substantially the same or higher electrical conductivity, and a heating coil provided between the heating coil and the object to be heated, A component having a low magnetic permeability metal and an electric conductor having a magnetic material formed on a surface thereof, wherein the electric conductor has an equivalent series resistance of the heating coil when the object to be heated is arranged opposite to the heating coil. And a buoyancy reducing function for reducing buoyancy acting on the object to be heated by the magnetic field generated by the heating coil. 電気導体の被加熱体側の表面に磁性体を形成させた請求項2に記載の誘導加熱装置。3. The induction heating apparatus according to claim 2, wherein a magnetic body is formed on a surface of the electric conductor on the side of the body to be heated. 電気導体の外周側に磁性体を形成させた請求項2または3に記載の誘導加熱装置。4. The induction heating device according to claim 2, wherein a magnetic material is formed on an outer peripheral side of the electric conductor. 物理的な処理によって電気導体の表面に磁性体を形成させた請求項2〜4のいずれか1項に記載の誘導加熱装置。The induction heating device according to any one of claims 2 to 4, wherein a magnetic material is formed on the surface of the electric conductor by physical treatment. 化学的な処理によって電気導体の表面に磁性体を形成させた請求項2〜4にいずれか1項に誘導加熱装置。The induction heating device according to any one of claims 2 to 4, wherein a magnetic material is formed on a surface of the electric conductor by a chemical treatment.
JP2003063296A 2003-03-10 2003-03-10 Induction heating device Pending JP2004273301A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003063296A JP2004273301A (en) 2003-03-10 2003-03-10 Induction heating device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003063296A JP2004273301A (en) 2003-03-10 2003-03-10 Induction heating device

Publications (1)

Publication Number Publication Date
JP2004273301A true JP2004273301A (en) 2004-09-30

Family

ID=33124909

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003063296A Pending JP2004273301A (en) 2003-03-10 2003-03-10 Induction heating device

Country Status (1)

Country Link
JP (1) JP2004273301A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007087795A (en) * 2005-09-22 2007-04-05 Matsushita Electric Ind Co Ltd Induction heating device
JP2010010038A (en) * 2008-06-30 2010-01-14 Mitsubishi Electric Corp Induction heating cooker
EP2170010A2 (en) 2008-09-29 2010-03-31 Hitachi Ltd. Electromagnetic induction heating device
JP2012069289A (en) * 2010-09-21 2012-04-05 Pola Chem Ind Inc Induction heating apparatus
CN103791531A (en) * 2014-02-28 2014-05-14 张继云 Multipurpose hotpot induction cooker

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007087795A (en) * 2005-09-22 2007-04-05 Matsushita Electric Ind Co Ltd Induction heating device
JP2010010038A (en) * 2008-06-30 2010-01-14 Mitsubishi Electric Corp Induction heating cooker
EP2170010A2 (en) 2008-09-29 2010-03-31 Hitachi Ltd. Electromagnetic induction heating device
JP2012069289A (en) * 2010-09-21 2012-04-05 Pola Chem Ind Inc Induction heating apparatus
CN103791531A (en) * 2014-02-28 2014-05-14 张继云 Multipurpose hotpot induction cooker

Similar Documents

Publication Publication Date Title
EP1437920B1 (en) Induction heating device
KR102021332B1 (en) Heating Module for induction range and induction range including the same
JPWO2012073517A1 (en) Induction heating coil and induction heating device
JP2004273301A (en) Induction heating device
JP3888190B2 (en) Induction heating device
JP3861731B2 (en) Induction heating device
JP3888290B2 (en) Induction heating device
JP3883478B2 (en) Induction heating device
JP2011124115A (en) Heating coil for induction heating device
JP4173825B2 (en) Induction heating device
JP4151608B2 (en) Induction heating device
JP2010129175A (en) Induction heating device
JP2006216430A (en) Induction heating device
JP3465712B2 (en) Induction heating device
JP4345491B2 (en) Induction heating device
JP4784130B2 (en) Induction heating device
JP4693846B2 (en) Induction heating device
JP2004146149A (en) Induction heating device
JP2002075613A (en) Heating coil for induction heating device
JP2003318034A (en) Heat radiator and magnetic-field generating device using the same
JP2002043044A (en) Heating coil for induction heating device
JP3465711B2 (en) Induction heating device
JP4654734B2 (en) Induction heating equipment
JP4444068B2 (en) Induction heating device
JP2012152024A (en) Cooling method of electromagnetic induction circuit and electromagnetic induction circuit of improved cooling function