JP2003272614A - Negative electrode active material for nonaqueous electrolyte solution secondary battery - Google Patents

Negative electrode active material for nonaqueous electrolyte solution secondary battery

Info

Publication number
JP2003272614A
JP2003272614A JP2002076476A JP2002076476A JP2003272614A JP 2003272614 A JP2003272614 A JP 2003272614A JP 2002076476 A JP2002076476 A JP 2002076476A JP 2002076476 A JP2002076476 A JP 2002076476A JP 2003272614 A JP2003272614 A JP 2003272614A
Authority
JP
Japan
Prior art keywords
secondary battery
negative electrode
active material
electrode active
aqueous electrolyte
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002076476A
Other languages
Japanese (ja)
Other versions
JP4136407B2 (en
Inventor
Yukio Ezaka
享男 江坂
Hiroki Sakaguchi
裕樹 坂口
Kiyotaka Yasuda
清隆 安田
Koichi Numata
幸一 沼田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Mining and Smelting Co Ltd
Original Assignee
Mitsui Mining and Smelting Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Mining and Smelting Co Ltd filed Critical Mitsui Mining and Smelting Co Ltd
Priority to JP2002076476A priority Critical patent/JP4136407B2/en
Publication of JP2003272614A publication Critical patent/JP2003272614A/en
Application granted granted Critical
Publication of JP4136407B2 publication Critical patent/JP4136407B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a negative electrode active material for a nonaqueous electrolyte solution secondary battery capable of obtaining a nonaqueous electrolyte solution secondary battery having high capacity, and excellent charge/ discharge characteristics and cycle life characteristics, and a nonaqueous electrolyte solution secondary battery using the negative electrode active material. <P>SOLUTION: The negative electrode active material for the nonaqueous electrolyte solution secondary battery consists either of an intermetallic compound with a constituent ratio expressed in Li<SB>a</SB>X<SB>b</SB>Sn (provided; X is a rare-earth element, 0.2≤a≤3.5, 0.1≤b≤0.5) or an intermetallic compound with a constituent ratio expressed in Li<SB>a</SB>Y<SB>b</SB>Sn (provided; Y is an alkaline-earth metal, 0.2≤a≤3.5, 0.1≤b≤0.5). <P>COPYRIGHT: (C)2003,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、リチウム等のアル
カリ金属を多量に吸蔵・排出することができる非水電解
液二次電池用負極活物質に関し、詳しくは特定の金属間
化合物を用いることによって、高容量で、充放電特性及
びサイクル寿命特性に優れた非水電解液二次電池を製造
することができる非水電解液二次電池用負極活物質及び
該負極活物質を用いた非水電解液二次電池に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a negative electrode active material for a non-aqueous electrolyte secondary battery capable of inserting and extracting a large amount of an alkali metal such as lithium, and more specifically, by using a specific intermetallic compound. , A high capacity, negative electrode active material for a non-aqueous electrolyte secondary battery capable of producing a non-aqueous electrolyte secondary battery excellent in charge / discharge characteristics and cycle life characteristics, and non-aqueous electrolysis using the negative electrode active material A liquid secondary battery.

【0002】[0002]

【従来の技術及び発明が解決しようとする課題】携帯用
の小型電気・電子機器の普及に伴い、小型で高容量の非
水電解液(電解質)二次電池の開発が盛んに行われてい
る。この非水電解液二次電池は、炭素質材料、リチウム
金属、リチウム合金、リチウム化合物を負極活物質とし
て用いるものである。
2. Description of the Related Art With the spread of small portable electric and electronic devices, a small-sized and high-capacity non-aqueous electrolyte (electrolyte) secondary battery has been actively developed. . This non-aqueous electrolyte secondary battery uses a carbonaceous material, lithium metal, a lithium alloy, and a lithium compound as a negative electrode active material.

【0003】従来、このような非水電解液二次電池とし
ては、マンガン酸リチウム、コバルト酸リチウム、ニッ
ケル酸リチウム等を正極活物質とし、負極活物質として
リチウムを可逆的に吸蔵、排出する炭素質材料を用いた
リチウムイオン二次電池が用いられている。
Conventionally, such a non-aqueous electrolyte secondary battery has a positive electrode active material such as lithium manganate, lithium cobalt oxide, and lithium nickel oxide, and carbon that reversibly absorbs and discharges lithium as a negative electrode active material. A lithium ion secondary battery using a high quality material is used.

【0004】一方、リチウム金属を負極活物質として用
いた場合には、炭素質材料を用いた場合に比べて高容量
となることが期待される。しかし、リチウム金属を用い
ると、非水電解液とリチウム金属との反応によるリチウ
ムの劣化や充放電の繰り返しにより負極からリチウム金
属がデンドライト状に成長し、絶縁体であるセパレータ
ーを貫通して正極と短絡が生じたり、サイクル寿命特性
が短いという問題があった。このことが負極活物質とし
てのリチウム金属の実用化を阻んでいた。
On the other hand, when lithium metal is used as the negative electrode active material, it is expected that the capacity will be higher than when a carbonaceous material is used. However, when lithium metal is used, lithium metal grows in a dendrite form from the negative electrode due to repeated deterioration and charging / discharging of lithium due to the reaction between the non-aqueous electrolyte and the lithium metal, and penetrates the separator that is the insulator to form the positive electrode. There are problems that short circuit occurs and cycle life characteristics are short. This has prevented the practical use of lithium metal as a negative electrode active material.

【0005】このような問題を解決するために、金属間
化合物の形成を利用してLiを可逆的に吸蔵・放出でき
る、Siや他の金属間化合物の格子空間にLiを吸蔵・
放出させる提案が種々なされているが(特開平7−24
0201号公報、特開平9−63651号公報)、サイ
クル寿命特性については十分ではなかった。Siからな
る負極材料は、9800mAh/ccと高い理論容量を
持つが、その化合物は多くの場合、金属化合物と固溶体
の共晶組織となるため、充放電時にLi吸蔵相は体積膨
張し、未反応相は変化しないため、相粒界間で大きな応
力歪みを生じ微粉化が起こり好適でない。
In order to solve such a problem, it is possible to store and release Li reversibly by utilizing the formation of an intermetallic compound, and to store and release Li in the lattice space of Si or another intermetallic compound.
Various proposals have been made for releasing (Japanese Patent Laid-Open No. 7-24
No. 0201 and Japanese Patent Application Laid-Open No. 9-63651), the cycle life characteristics were not sufficient. The negative electrode material made of Si has a high theoretical capacity of 9800 mAh / cc, but in most cases, the compound has a eutectic structure of a metal compound and a solid solution, so that the Li occlusion phase expands in volume during charging and discharging, and unreacted. Since the phase does not change, a large stress strain is generated between the phase grain boundaries, resulting in pulverization, which is not preferable.

【0006】また、特開2001−297757号に
は、Li吸蔵能力のあるSiにLiの吸蔵能力のない元
素を同時に合金化させ、割れや微粉化を抑制してサイク
ル寿命特性を向上させる提案がなされている。これはS
i相に接してLiの吸蔵能力のない第2相を配置し、L
iの吸蔵放出の際の体積変化を拘束して、割れや微粉化
を抑制してサイクル寿命を向上させるものであるが、実
施例では、充放電効率については言及していない。ま
た、Li吸蔵能力のない第2相の存在は、単位体積ある
いは単位重量当たりの容積が損なわれるため好適でな
い。
Further, Japanese Patent Application Laid-Open No. 2001-297757 proposes that Si having Li storage capacity is simultaneously alloyed with an element having no Li storage capacity to suppress cracking and pulverization and improve cycle life characteristics. Has been done. This is S
A second phase having no Li storage capacity is arranged in contact with the i phase, and L
Although it is intended to restrain the volume change at the time of occlusion and release of i to suppress cracking and pulverization to improve the cycle life, the examples do not mention the charge / discharge efficiency. Further, the presence of the second phase having no Li storage capacity is not preferable because the unit volume or the volume per unit weight is impaired.

【0007】このように、従来においては、初回に充電
した電気量が放電時にでてこないという不可逆容量の問
題があり、さらにはサイクル毎の充放電効率が低いた
め、高容量で、優れた充放電特性及びサイクル寿命特性
を有する非水電解液二次電池を得ることのできる非水電
解液二次電池用負極活物質は未だ得られていない。
As described above, in the prior art, there is a problem of irreversible capacity in that the amount of electricity charged for the first time does not come out at the time of discharging, and furthermore, since the charge / discharge efficiency for each cycle is low, it has a high capacity and excellent charge. A negative electrode active material for a non-aqueous electrolyte secondary battery capable of obtaining a non-aqueous electrolyte secondary battery having discharge characteristics and cycle life characteristics has not yet been obtained.

【0008】従って、本発明の目的は、高容量で、充放
電特性及びサイクル寿命特性を有する非水電解液二次電
池を得ることができる非水電解液二次電池用負極活物質
及び該負極活物質を用いた非水電解液二次電池を提供す
ることにある。
Therefore, an object of the present invention is to provide a negative electrode active material for a non-aqueous electrolyte secondary battery, which is capable of obtaining a non-aqueous electrolyte secondary battery having high capacity, charge / discharge characteristics and cycle life characteristics, and the negative electrode. It is to provide a non-aqueous electrolyte secondary battery using an active material.

【0009】[0009]

【課題を解決するための手段】本発明者らは、スズの5
700mAh/ccという持つ高い容量と金属元素であ
るという点に着目し、その不可逆容量の低減とサイクル
寿命特性の向上を図るべく検討を重ねた結果、スズと希
土類元素あるいはアルカリ土類金属元素の合金組織にリ
チウムを予め固溶させると、リチウムは合金中に存在す
る微量の酸素にトラップされず、不可逆容量を殆どなく
すことができ、またそれに併せて、原子半径の大きな希
土類元素やアルカリ土類金属元素が充放電時の体積膨張
収縮を抑制するために、サイクル寿命特性が向上するこ
とを見出した。さらに、本発明の組織は、単相であって
も多相であってもよいが各相それぞれがリチウム吸蔵放
出に寄与することにより、単位体積あるいは単位質量当
たりの容量が従来の材料よりも大きいことを知見した。
The present inventors have found that tin 5
Focusing on the fact that it has a high capacity of 700 mAh / cc and is a metal element, and as a result of repeated studies aimed at reducing its irreversible capacity and improving cycle life characteristics, an alloy of tin and a rare earth element or an alkaline earth metal element. When lithium is previously solid-dissolved in the structure, lithium is not trapped by the trace amount of oxygen present in the alloy, and the irreversible capacity can be almost eliminated. It was found that the cycle life characteristics are improved because the element suppresses volume expansion and contraction during charge and discharge. Further, the structure of the present invention may be a single phase or a multiphase, but each phase contributes to lithium occlusion / release, so that the capacity per unit volume or unit mass is larger than that of the conventional material. I found out that.

【0010】本発明は、これらの知見に基づきなされた
もので、組成比がLiabSn(但し、Xは希土類元
素、0.2≦a≦3.5、0.1≦b≦0.5)で示さ
れる金属間化合物又は組成比がLiabSn(但し、Y
はアルカリ土類金属元素、0.2≦a≦3.5、0.1
≦b≦0.5)で示される金属間化合物からなる非水電
解液二次電池用負極活物質を提供するものである。
The present invention has been made on the basis of these findings and has a composition ratio of Li a X b Sn (where X is a rare earth element, 0.2 ≦ a ≦ 3.5, 0.1 ≦ b ≦ 0). .5) or an intermetallic compound having a composition ratio of Li a Y b Sn (provided that Y
Is an alkaline earth metal element, 0.2 ≦ a ≦ 3.5, 0.1
The present invention provides a negative electrode active material for a non-aqueous electrolyte secondary battery, which comprises an intermetallic compound represented by ≦ b ≦ 0.5).

【0011】また、本発明は、上記負極活物質を用いた
非水電解液二次電池を提供するものである。
The present invention also provides a non-aqueous electrolyte secondary battery using the above negative electrode active material.

【0012】[0012]

【発明の実施の形態】以下、本発明の実施の形態につい
て詳述する。
BEST MODE FOR CARRYING OUT THE INVENTION Embodiments of the present invention will be described in detail below.

【0013】本発明では、非水電解液二次電池用負極活
物質として、組成比がLiabSnで示される金属間化
合物を用いる。ここでXは、希土類元素であり、Mm
(ミッシュメタル:希土類混合金属)、スカンジウム、
イットリウム、ランタン、セリウム、プラセオジム、ネ
オジム等が挙げられるが、ランタン、セリウムが特に好
ましく用いられる。また、aは0.2〜3.5、bは
0.1〜0.5をそれぞれ示す。aが0.2未満あるい
は3.5を超えるとサイクル寿命特性が損なわれ、bが
0.1未満ではサイクル寿命特性の向上効果がなく、
0.5を超えると容量が損なわれるため好ましくない。
In the present invention, an intermetallic compound having a composition ratio of Li a X b Sn is used as the negative electrode active material for a non-aqueous electrolyte secondary battery. Here, X is a rare earth element, and Mm
(Misch metal: rare earth mixed metal), scandium,
Examples thereof include yttrium, lanthanum, cerium, praseodymium, neodymium, and lanthanum and cerium are particularly preferable. Moreover, a shows 0.2-3.5 and b shows 0.1-0.5, respectively. If a is less than 0.2 or exceeds 3.5, cycle life characteristics are impaired, and if b is less than 0.1, there is no effect of improving cycle life characteristics.
When it exceeds 0.5, the capacity is impaired, which is not preferable.

【0014】また、本発明では、非水電解液二次電池用
負極活物質として、組成比がLi abSnで示される金
属間化合物を用いる。ここでYは、アルカリ土類金属元
素であり、ベリリウム、マグネシウム、カルシウム、ス
トロンチウム等が挙げられるが、マグネシウム、カルシ
ウムが特に好ましく用いられる。また、aは0.2〜
3.5、bは0.1〜0.5をそれぞれ示す。aが0.
2未満あるいは3.5を超えるとサイクル寿命特性が損
なわれ、bが0.1未満ではサイクル寿命特性の向上効
果がなく、0.5を超えると容量が損なわれるため好ま
しくない。
Further, according to the present invention, a non-aqueous electrolyte secondary battery is used.
As the negative electrode active material, the composition ratio is Li aYbGold represented by Sn
Use intergeneric compounds. Where Y is an alkaline earth metal element
Elementary, beryllium, magnesium, calcium, su
Examples include trontium, magnesium, calci
Um is particularly preferably used. Also, a is 0.2 to
3.5 and b represent 0.1 to 0.5, respectively. a is 0.
If it is less than 2 or exceeds 3.5, the cycle life characteristics are impaired.
When b is less than 0.1, the cycle life characteristics are improved.
There is no end, and if it exceeds 0.5, the capacity will be lost.
Not good.

【0015】このような金属間化合物の製造方法の一例
を、具体的な組成式Li1.25Ce0. 33Snを挙げて説明
する。先ず、組成比がCe0.33Snとなるように秤量し
たセリウムチップとスズ粉末をメカニカルアロイングす
ることとによって、Ce0.33Snを調製する。次いで、
調製されたCe0.33Snとリチウムチップを所定組成と
なるように秤量し、メカニカルアロイングすることによ
って組成比がLi1.25Ce0.33Snを調製する。また、
メカニカルアロイングに代えて、ロール急冷やアトマイ
ズ等の鋳造によって調製してもよい。
An example of a method for producing such an intermetallic compound
Is a specific composition formula Li1.25Ce0. 33Explanation with Sn
To do. First, the composition ratio is Ce0.33Weigh it to be Sn
Mechanical alloying of cerium chips and tin powder
By doing Ce0.33Prepare Sn. Then
Prepared Ce0.33Sn and lithium chips with a specified composition
And mechanical alloying
The composition ratio is Li1.25Ce0.33Prepare Sn. Also,
Roll quenching or atomization instead of mechanical alloying
It may be prepared by casting such as shavings.

【0016】次に、本発明の非水電解液二次電池につい
て説明する。本発明の非水電解液二次電池は、基本構造
として、負極、正極、セパレータ、非水系電解液を含ん
でおり、負極は上記のように本発明の負極活物質を使用
するが、他の正極、セパレータ、非水電解液については
特に制限されず、従来よりリチウム二次電池等の非水電
解液二次電池に公知のものが使用される。
Next, the non-aqueous electrolyte secondary battery of the present invention will be described. The non-aqueous electrolyte secondary battery of the present invention has, as a basic structure, a negative electrode, a positive electrode, a separator, and a non-aqueous electrolyte, and the negative electrode uses the negative electrode active material of the present invention as described above, but other The positive electrode, the separator, and the nonaqueous electrolytic solution are not particularly limited, and conventionally known materials for nonaqueous electrolytic solution secondary batteries such as lithium secondary batteries are used.

【0017】負極は、本発明の負極活物質、必要により
導電剤及び結着剤を適当な溶媒に懸濁し、負極合剤を作
製し、これを集電体に塗布、乾燥した後、ロール圧延、
プレスし、さらに裁断、打ち抜きすることにより得られ
る。
The negative electrode is prepared by suspending the negative electrode active material of the present invention and, if necessary, a conductive agent and a binder in a suitable solvent to prepare a negative electrode mixture, coating this on a current collector, drying and rolling. ,
It is obtained by pressing, cutting and punching.

【0018】この材料の場合は、導電剤は必ずしも必要
としないがカーボンブラック等を用いてもよい。
In the case of this material, a conductive agent is not always necessary, but carbon black or the like may be used.

【0019】集電体は、銅、ステンレス鋼、ニッケル、
チタン等や銅、ステンレス鋼の表面にニッケル、カーボ
ン、チタン等を被覆したもの等が挙げられる。また、集
電体の形態は、任意であり、箔、網状、フィルム又はシ
ート状等が例示される。
Current collectors include copper, stainless steel, nickel,
Examples thereof include titanium, copper, stainless steel whose surface is coated with nickel, carbon, titanium and the like. The form of the current collector is arbitrary, and examples thereof include foil, mesh, film or sheet.

【0020】正極は、正極活物質、必要により導電剤及
び結着剤を適当な溶媒に懸濁し、正極合剤を作製し、こ
れを集電体に塗布、乾燥した後、ロール圧延、プレス
し、さらに裁断、打ち抜きすることにより得られる。
The positive electrode is prepared by suspending a positive electrode active material, and if necessary, a conductive agent and a binder in a suitable solvent to prepare a positive electrode mixture, applying this to a current collector, drying it, rolling it and pressing it. It is obtained by further cutting and punching.

【0021】正極活物質としては、リチウムニッケル複
合酸化物、リチウムマンガン複合酸化物、リチウムコバ
ルト複合酸化物等の従来公知の正極活物質が用いられ
る。
As the positive electrode active material, conventionally known positive electrode active materials such as lithium nickel composite oxide, lithium manganese composite oxide and lithium cobalt composite oxide are used.

【0022】また、正極に用いられる導電剤としては、
カーボンブラック、アセチレンブラック、グラファイト
等が用いられる。結着剤としては、スチレンブタジエン
ゴム、ポリテトラフルオロエチレン、ポリフッ化ビニリ
デン、フッ素系ポリマー、カルボキシメチルセルロー
ス、ポリビニルアルコール等が用いられる。また、溶媒
としてはN−メチルピロリドン、ジメチルホルムアミド
等が使用される。また、集電体としてはアルミニウム又
はアルミニウム合金が好ましく用いられる。
Further, as the conductive agent used for the positive electrode,
Carbon black, acetylene black, graphite and the like are used. As the binder, styrene-butadiene rubber, polytetrafluoroethylene, polyvinylidene fluoride, fluoropolymer, carboxymethyl cellulose, polyvinyl alcohol, etc. are used. Moreover, N-methylpyrrolidone, dimethylformamide, etc. are used as a solvent. Aluminum or aluminum alloy is preferably used as the current collector.

【0023】セパレーターとしては、合成樹脂製不織
布、ポリエチレン又はポリプロピレン多孔質フイルム等
が好ましく用いられる。
As the separator, a synthetic resin non-woven fabric, polyethylene or polypropylene porous film is preferably used.

【0024】非水電解液は、リチウム二次電池の場合、
一般的な非水電解液は、支持電解質であるリチウム塩を
有機溶媒に溶解した溶液からなる。リチウム塩として
は、例えば、LiC1O4、LiA1Cl4、LiP
6、LiAsF6、LiSbF6、LiSCN、LiC
1、LiBr、LiI、LiCF3SO3、LiC49
3等が例示され、特にLiPF6を含む電解質が好まし
い。
In the case of a lithium secondary battery, the non-aqueous electrolyte is
A general non-aqueous electrolytic solution is a solution in which a lithium salt, which is a supporting electrolyte, is dissolved in an organic solvent. Examples of the lithium salt include LiC1O 4 , LiA1Cl 4 , and LiP.
F 6, LiAsF 6, LiSbF 6 , LiSCN, LiC
1, LiBr, LiI, LiCF 3 SO 3 , LiC 4 F 9 S
O 3 and the like are exemplified, and an electrolyte containing LiPF 6 is particularly preferable.

【0025】有機溶媒としては、エチレンカーボネー
ト、プロピレンカーボネート、ビニレンカーボネート等
の環状カーボネート類;ジメチルカーボネート、ジエチ
ルカーボネート、エチルメチルカーボネート等の鎖状カ
ーボネート類;ギ酸メチル、酢酸エチル、プロピオン酸
メチル等の脂肪族カルボン酸エステル類;γ−ブチロラ
クトン等のγ−ラクトン類;1,2−ジメトキシエタン
等の鎖状エーテル類;テトラヒドロフラン等の環状エー
テル類;その他ジメチルスルホキシド、ジオキソラン
類、アミド類、ニトリル類、スルホラン類等の各種の非
プロトン性溶媒を使用することが好ましい。特に、環状
カーボネートと鎖状カーボネートとの混合系、及びこれ
にさらに脂肪族カルボン酸エステルを混合した系が好ま
しく用いられ、とりわけエチレンカーボネートとエチル
メチルカーボネートとの混合溶媒が好ましい。
Examples of the organic solvent include cyclic carbonates such as ethylene carbonate, propylene carbonate and vinylene carbonate; chain carbonates such as dimethyl carbonate, diethyl carbonate and ethyl methyl carbonate; fats such as methyl formate, ethyl acetate and methyl propionate. Group carboxylic acid esters; γ-lactones such as γ-butyrolactone; chain ethers such as 1,2-dimethoxyethane; cyclic ethers such as tetrahydrofuran; other dimethyl sulfoxides, dioxolanes, amides, nitriles, sulfolane It is preferable to use various aprotic solvents such as the class. In particular, a mixed system of cyclic carbonate and chain carbonate, and a system in which an aliphatic carboxylic acid ester is further mixed are preferably used, and a mixed solvent of ethylene carbonate and ethylmethyl carbonate is particularly preferable.

【0026】非水電解液二次電池の形状は特に制限され
ず、円筒型、角形、コイン型、ボタン型等のいずれでも
よい。本発明の非水電解液二次電池は、例えば携帯情報
端末、携帯電子機器、自動車の用途に好適に用いること
ができる。
The shape of the non-aqueous electrolyte secondary battery is not particularly limited, and may be any of a cylindrical type, a prismatic type, a coin type, a button type and the like. INDUSTRIAL APPLICABILITY The non-aqueous electrolyte secondary battery of the present invention can be suitably used in applications such as mobile information terminals, mobile electronic devices, and automobiles.

【0027】[0027]

【実施例】以下、実施例等に基づき本発明を具体的に説
明する。
EXAMPLES The present invention will be specifically described below based on Examples and the like.

【0028】〔比較例1〕組成比がCe0.33Snとなる
ように秤量、混合したセリウムチップ(約1mm)とス
ズ粉末(約50μm)とを、アルゴン雰囲気下で20時
間メカニカルアロイングをすることにより組成比がCe
0.33Snからなる金属間化合物を調製した。メカニカル
アロイング条件は、試料とボールの重量比1:15、回
転数300rpm、室温である。得られた試料の結晶相
の同定はX線回折を用いて行った。
Comparative Example 1 A cerium chip (about 1 mm) and tin powder (about 50 μm), which were weighed and mixed so that the composition ratio was Ce 0.33 Sn, and mechanically alloyed with tin powder (about 50 μm) for 20 hours in an argon atmosphere. Due to the composition ratio Ce
An intermetallic compound consisting of 0.33 Sn was prepared. The mechanical alloying conditions are a weight ratio of the sample to the ball of 1:15, a rotation speed of 300 rpm, and room temperature. The crystal phase of the obtained sample was identified by X-ray diffraction.

【0029】〔比較例2〕メカニカルアロイングの時間
を80時間とした以外は、比較例1と同様にして組成比
がCe0.33Snからなる金属間化合物を調製した。得ら
れた試料の結晶相の同定はX線回折を用いて行った。
Comparative Example 2 An intermetallic compound having a composition ratio of Ce 0.33 Sn was prepared in the same manner as in Comparative Example 1 except that the mechanical alloying time was 80 hours. The crystal phase of the obtained sample was identified by X-ray diffraction.

【0030】〔比較例3及び4〕セリウムチップに代え
て、ランタンチップ、カルシウムチップを用いた以外
は、比較例1と同様にして組成比がそれぞれLa0.33
n、Ca0.33Snからなる金属間化合物を調製した。得
られた試料の結晶相の同定はX線回折を用いて行った。
[Comparative Examples 3 and 4] In the same manner as in Comparative Example 1 except that lanthanum chips and calcium chips were used in place of the cerium chips, the composition ratios were respectively La 0.33 S.
An intermetallic compound consisting of n and Ca 0.33 Sn was prepared. The crystal phase of the obtained sample was identified by X-ray diffraction.

【0031】〔実施例1〜5〕組成比が表1となるよう
に、組成比がCe0.33Sn、Ce0.5Snからなる金属
間化合物とリチウムチップ(約1mm)とを、アルゴン
雰囲気下で20時間メカニカルアロイングをすることに
より、表1に示す組成比からなる金属間化合物を調製し
た。メカニカルアロイング条件は、比較例1と同様であ
る。得られた試料の結晶相の同定はX線回折を用いて行
った。
[Examples 1 to 5] As shown in Table 1, an intermetallic compound having a composition ratio of Ce 0.33 Sn and Ce 0.5 Sn and a lithium chip (about 1 mm) were placed under an argon atmosphere for 20 minutes. By mechanical mechanical alloying for a time, an intermetallic compound having the composition ratio shown in Table 1 was prepared. The mechanical alloying conditions are the same as in Comparative Example 1. The crystal phase of the obtained sample was identified by X-ray diffraction.

【0032】〔実施例6〜17〕セリウムチップに代え
て、ミッシュメタルチップ、ランタンチップ、カルシウ
ムチップを用いた以外は、実施例1〜5と同様にして表
1に示す組成比からなる金属間化合物を調製した。得ら
れた試料の結晶相の同定はX線回折を用いて行った。
Examples 6 to 17 In the same manner as in Examples 1 to 5 except that a misch metal chip, a lanthanum chip, and a calcium chip were used in place of the cerium chip, the intermetallic compounds having the composition ratios shown in Table 1 were used. The compound was prepared. The crystal phase of the obtained sample was identified by X-ray diffraction.

【0033】〔実験例1〕負極(試験極)1は、実施例
1〜17及び比較例1〜4で得られた試料粉末(金属間
化合物)を銅網(0.25m2)に塗布し、それを加圧
することにより作成した。充放電試験は、上記試験極
1、対極2及び参照極3にリチウム板、非水電解液4に
1モルLiClO4/PC(ポリカーボネート)を用い
た図1に示される三極式セルを使用した。測定温度は3
0℃、測定電流密度は0.4mAcm -2、リチウム参照
電極電位は0.0〜2.0Vとした。なお、上記試料粉
末の調製から充放電試験までの一連の操作はすべてアル
ゴン雰囲気で行った。
[Experimental Example 1] The negative electrode (test electrode) 1 is an example.
1 to 17 and sample powders obtained in Comparative Examples 1 to 4 (intermetallic
Compound) copper mesh (0.25m2) And press it
It was created by doing. The charge / discharge test is the above test pole
1. Lithium plate for counter electrode 2 and reference electrode 3 and non-aqueous electrolyte 4
1 mol LiClOFour/ PC (polycarbonate) is used
The triode cell shown in FIG. 1 was used. Measurement temperature is 3
0 ° C, measured current density is 0.4 mAcm -2, Lithium reference
The electrode potential was 0.0 to 2.0V. The above sample powder
All the series of operations from powder preparation to charge / discharge test
I went in a gon atmosphere.

【0034】表1に、実施例1〜17及び比較例1〜4
の試料粉末を電極に用いた三極式セルにおける初回(1
サイクル目)充電効率及び放電容量を示す。表1に示さ
れるように、実施例1〜17の試料粉末を電極に用いた
場合には、比較例1〜4の試料粉末を電極に用いた場合
に比べて初回充電効率が高い。
Table 1 shows Examples 1 to 17 and Comparative Examples 1 to 4.
The first time in a triode cell using the sample powder of
Cycle number) shows charging efficiency and discharge capacity. As shown in Table 1, when the sample powders of Examples 1 to 17 are used for the electrodes, the initial charging efficiency is higher than when the sample powders of Comparative Examples 1 to 4 are used for the electrodes.

【0035】また、図2に、実施例2及び比較例1〜2
の試料粉末を電極に用いた三極式セルにおける1サイク
ル目の充放電曲線を示す。図2に示されるように、実施
例2及び比較例1〜2の試料粉末を電極に用いた場合に
は、電極性能の違いは殆どなかった。しかし、体積当た
りの放電容量はいずれも約2000mAhcm-3であ
り、炭素電極(約800mAhcm-3)の値を大きく凌
いでいた。
Further, FIG. 2 shows Example 2 and Comparative Examples 1-2.
3 shows a charge / discharge curve at the first cycle in a three-electrode cell using the sample powder of 1. as an electrode. As shown in FIG. 2, when the sample powders of Example 2 and Comparative Examples 1 and 2 were used for the electrodes, there was almost no difference in the electrode performance. However, the discharge capacity per volume was about 2000 mAhcm -3 , which greatly exceeded the value of the carbon electrode (about 800 mAhcm -3 ).

【0036】表1に、実施例1〜17及び比較例1〜4
の試料粉末を電極に用いた三極式セルにおける100サ
イクル目の容量維持率を示す。表1から明らかなよう
に、実施例1〜15の試料粉末を電極に用いた場合に
は、比較例1〜4の試料粉末を電極に用いた場合に比べ
て100サイクル目の容量維持率が大幅に優れている。
Table 1 shows Examples 1 to 17 and Comparative Examples 1 to 4.
2 shows the capacity retention ratio at the 100th cycle in a three-electrode cell using the sample powder of No. 3 as an electrode. As is clear from Table 1, when the sample powders of Examples 1 to 15 were used for the electrodes, the capacity retention ratio at the 100th cycle was higher than that when the sample powders of Comparative Examples 1 to 4 were used for the electrodes. Greatly superior.

【0037】また、図3に、実施例2及び比較例1〜2
の試料粉末を電極に用いた三極式セルにおけるサイクル
寿命特性を示す。図3に示されるように、比較例1〜2
の試料粉末を電極に用いた場合には、サイクル寿命特性
は極めて劣るものであった。これはリチウム挿入−脱離
に伴う激しい体積変化とサイクル毎の不可逆容量が存在
するためである。
Further, FIG. 3 shows Example 2 and Comparative Examples 1-2.
3 shows the cycle life characteristics of a triode type cell using the sample powder of 1. As shown in FIG. 3, Comparative Examples 1-2
When the sample powder of 1. was used for the electrode, the cycle life characteristics were extremely inferior. This is because there is a drastic volume change accompanying lithium insertion-desorption and an irreversible capacity for each cycle.

【0038】これに対し、実施例2の試料粉末を電極に
用いた場合には、サイクル寿命特性は著しく向上した。
これは、合金中に存在する希土類元素が、合金中あるい
は合金表面に存在する僅かな酸素が充電されたリチウム
と反応してLi2Oを生じることを抑制して充放電の効
率を事実上100%にできたこと、それに併せて、原子
半径の大きな希土類元素の存在が充放電時の体積膨張収
縮を抑制したことによる。この電極は、サイクル寿命特
性のみならず、1サイクル目の容量可逆性の上でも優れ
た性能を示した。これは、リチウムが既にCeSn3.0
中に挿入されていることで、さらなるリチウム化による
体積膨張が緩和されたためと考えられる。
On the other hand, when the sample powder of Example 2 was used for the electrode, the cycle life characteristics were remarkably improved.
This is because the rare earth element existing in the alloy is suppressed from reacting with the charged lithium with a small amount of oxygen existing in the alloy or on the surface of the alloy to generate Li 2 O, and the charging / discharging efficiency is practically 100%. %, And at the same time, the presence of a rare earth element having a large atomic radius suppressed the volume expansion / contraction during charge / discharge. This electrode showed excellent performance not only in cycle life characteristics but also in capacity reversibility in the first cycle. This is because lithium is already CeSn 3.0
It is considered that the volume expansion due to further lithiation was alleviated due to the insertion inside.

【0039】[0039]

【表1】 [Table 1]

【0040】[0040]

【発明の効果】本発明の非水電解液二次電池用負極活物
質によって、高容量で、優れた充放電特性及びサイクル
寿命特性を有する非水電解液二次電池を得ることができ
る。
EFFECTS OF THE INVENTION The negative electrode active material for a non-aqueous electrolyte secondary battery of the present invention can provide a non-aqueous electrolyte secondary battery having high capacity and excellent charge / discharge characteristics and cycle life characteristics.

【図面の簡単な説明】[Brief description of drawings]

【図1】図1は、実験例1で用いられた三極式セルの概
略図である。
FIG. 1 is a schematic diagram of a triode cell used in Experimental Example 1.

【図2】図2は、実施例2及び比較例1〜2の試料粉末
を電極に用いた三極式セルにおける1サイクル目の充放
電曲線を示すグラフである。
FIG. 2 is a graph showing a charge / discharge curve at the first cycle in a three-electrode cell using the sample powders of Example 2 and Comparative Examples 1 and 2 as electrodes.

【図3】図3は、実施例2及び比較例1〜2の試料粉末
を電極に用いた三極式セルにおけるサイクル寿命特性を
示すグラフである。
FIG. 3 is a graph showing cycle life characteristics in a triode cell using the sample powders of Example 2 and Comparative Examples 1 and 2 as electrodes.

【符号の説明】[Explanation of symbols]

1:試験極 2:対極 3:参照極 4:非水電解液 1: test pole 2: Counter electrode 3: Reference pole 4: Non-aqueous electrolyte

───────────────────────────────────────────────────── フロントページの続き (72)発明者 沼田 幸一 広島県竹原市塩町1−5−1 三井金属鉱 業株式会社電池材料事業部内 Fターム(参考) 5H029 AJ02 AJ03 AJ05 AK03 AL12 AM03 AM04 AM05 AM07 CJ08 HJ02 5H050 AA02 AA07 AA08 BA17 CA08 CA09 CB12 GA10 HA02    ─────────────────────────────────────────────────── ─── Continued front page    (72) Inventor Koichi Numata             1-5-1 Shiomachi, Takehara City, Hiroshima Prefecture Mitsui Metal Ore             Industry Co., Ltd. Battery Materials Division F-term (reference) 5H029 AJ02 AJ03 AJ05 AK03 AL12                       AM03 AM04 AM05 AM07 CJ08                       HJ02                 5H050 AA02 AA07 AA08 BA17 CA08                       CA09 CB12 GA10 HA02

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 組成比がLiabSn(但し、Xは希土
類元素、0.2≦a≦3.5、0.1≦b≦0.5)で
示される金属間化合物からなる非水電解液二次電池用負
極活物質。
1. A non-metallic compound having a composition ratio of Li a X b Sn (where X is a rare earth element, 0.2 ≦ a ≦ 3.5, and 0.1 ≦ b ≦ 0.5). Aqueous electrolyte negative electrode active material for secondary batteries.
【請求項2】 組成比がLiabSn(但し、Yはアル
カリ土類金属元素、0.2≦a≦3.5、0.1≦b≦
0.5)で示される金属間化合物からなる非水電解液二
次電池用負極活物質。
2. A composition ratio of Li a Y b Sn (where Y is an alkaline earth metal element, 0.2 ≦ a ≦ 3.5, 0.1 ≦ b ≦
0.5) A negative electrode active material for a non-aqueous electrolyte secondary battery, which comprises an intermetallic compound represented by 0.5).
【請求項3】 請求項1又は2記載の負極活物質を用い
た非水電解液二次電池。
3. A non-aqueous electrolyte secondary battery using the negative electrode active material according to claim 1.
JP2002076476A 2002-03-19 2002-03-19 Anode active material for non-aqueous electrolyte secondary battery Expired - Lifetime JP4136407B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002076476A JP4136407B2 (en) 2002-03-19 2002-03-19 Anode active material for non-aqueous electrolyte secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002076476A JP4136407B2 (en) 2002-03-19 2002-03-19 Anode active material for non-aqueous electrolyte secondary battery

Publications (2)

Publication Number Publication Date
JP2003272614A true JP2003272614A (en) 2003-09-26
JP4136407B2 JP4136407B2 (en) 2008-08-20

Family

ID=29205235

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002076476A Expired - Lifetime JP4136407B2 (en) 2002-03-19 2002-03-19 Anode active material for non-aqueous electrolyte secondary battery

Country Status (1)

Country Link
JP (1) JP4136407B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006351468A (en) * 2005-06-20 2006-12-28 Toyota Motor Corp Manufacturing method of lithium secondary battery
US7548387B2 (en) 2005-04-06 2009-06-16 Carl Zeiss Smt Ag Optical imaging device
JP2012521074A (en) * 2009-03-18 2012-09-10 イーグルピッチャー テクノロジーズ,エルエルシー Non-aqueous electrochemical cell having a mixture of at least three cathode materials
WO2024049253A1 (en) * 2022-08-31 2024-03-07 주식회사 엘지에너지솔루션 Anode comprising lithium-alkaline earth metal alloy, and lithium-ion secondary battery comprising same

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7548387B2 (en) 2005-04-06 2009-06-16 Carl Zeiss Smt Ag Optical imaging device
JP2006351468A (en) * 2005-06-20 2006-12-28 Toyota Motor Corp Manufacturing method of lithium secondary battery
JP2012521074A (en) * 2009-03-18 2012-09-10 イーグルピッチャー テクノロジーズ,エルエルシー Non-aqueous electrochemical cell having a mixture of at least three cathode materials
WO2024049253A1 (en) * 2022-08-31 2024-03-07 주식회사 엘지에너지솔루션 Anode comprising lithium-alkaline earth metal alloy, and lithium-ion secondary battery comprising same

Also Published As

Publication number Publication date
JP4136407B2 (en) 2008-08-20

Similar Documents

Publication Publication Date Title
JP4963330B2 (en) Lithium iron composite oxide for positive electrode active material of lithium secondary battery, method for producing the same, and lithium secondary battery using the same
JP4465968B2 (en) Secondary battery electrolyte and secondary battery using the same
JP2010129471A (en) Cathode active material and nonaqueous electrolyte battery
JP2007200862A (en) Nonaqueous electrolyte secondary battery
JP2006344509A (en) Lithium secondary battery
CN102754250A (en) Coin-shaped lithium secondary battery
JP4328915B2 (en) Non-aqueous electrolyte for secondary battery and secondary battery using the same
JP3199426B2 (en) Non-aqueous electrolyte secondary battery
JP2005011650A (en) Negative electrode material and battery using the same
JP2002251992A (en) Electrode material for nonaqueous solvent secondary battery, electrode and secondary battery
JP5089028B2 (en) Sodium secondary battery
JP2012174535A (en) Electrode active material, and metal secondary battery comprising negative electrode containing the electrode active material
JP4984402B2 (en) Nonaqueous electrolyte secondary battery
JPH06302320A (en) Nonaqueous electrolyte secondary battery
JP2009187807A (en) Cathode for secondary battery and lithium secondary battery using it
JP2002289177A (en) Lithium secondary battery and electrode for it
JP2001052699A (en) Lithium secondary battery
EP1271676A1 (en) Negative electrode material and battery using the same
JP7122653B2 (en) Non-aqueous electrolyte secondary battery
JP5217083B2 (en) Negative electrode mixture for lithium ion secondary battery, negative electrode for lithium ion secondary battery, and lithium ion secondary battery
JP2004362934A (en) Positive electrode material and battery
JP4136407B2 (en) Anode active material for non-aqueous electrolyte secondary battery
JP2002100344A (en) Positive electrode and battery
JP2003157896A (en) Nonaqueous electrolyte secondary battery
WO2007040114A1 (en) Electrode for nonaqueous electrolyte secondary battery and nonaqueous electrolyte secondary battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041001

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20061113

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071030

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071227

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080212

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080314

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080520

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080603

R150 Certificate of patent or registration of utility model

Ref document number: 4136407

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110613

Year of fee payment: 3

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080314

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120613

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120613

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130613

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140613

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term