JP2003268599A - Method and equipment for electroplating - Google Patents

Method and equipment for electroplating

Info

Publication number
JP2003268599A
JP2003268599A JP2002070161A JP2002070161A JP2003268599A JP 2003268599 A JP2003268599 A JP 2003268599A JP 2002070161 A JP2002070161 A JP 2002070161A JP 2002070161 A JP2002070161 A JP 2002070161A JP 2003268599 A JP2003268599 A JP 2003268599A
Authority
JP
Japan
Prior art keywords
electrode
potential
plating film
film
microelectrodes
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002070161A
Other languages
Japanese (ja)
Other versions
JP3661657B2 (en
Inventor
Noriaki Sugamoto
憲明 菅本
Koichiro Maki
孝一郎 槙
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Mining Co Ltd
Original Assignee
Sumitomo Metal Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Mining Co Ltd filed Critical Sumitomo Metal Mining Co Ltd
Priority to JP2002070161A priority Critical patent/JP3661657B2/en
Publication of JP2003268599A publication Critical patent/JP2003268599A/en
Application granted granted Critical
Publication of JP3661657B2 publication Critical patent/JP3661657B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Electroplating Methods And Accessories (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for electroplating by which film composition and film thickness can be held constant nearly perfectly and equipment therefor. <P>SOLUTION: In the electroplating method, an anode electrode is constituted of an array of a plurality of two-dimensional microelectrodes; a potential measuring electrode is moved on the surface of a plating film during energization to measure potential distribution on the film surface, and an electrode current is individually controlled on the basis of the results to control the surface potential of the plating film of a cathode electrode to an arbitrary value constantly. The electroplating equipment is provided with the anode electrode in which the plurality of microelectrodes are two-dimensionally arranged and an electric current is supplied independently to the respective microelectrodes; a reference electrode for measuring the potential distribution on the surface of the plating film of the cathode electrode during energization; and a control means for exerting control in such a way that the electric current can be supplied independently to the respective microelectrodes of the anode electrode on the basis of the potential distribution obtained by the reference electrode so that the surface potential of the plating film of the cathode electrode can be held constant. <P>COPYRIGHT: (C)2003,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、2次元微小電極を
用いた電気めっき方法および電気めっき装置に関する。
TECHNICAL FIELD The present invention relates to an electroplating method and an electroplating apparatus using a two-dimensional microelectrode.

【0002】[0002]

【従来の技術】電気めっき法による金属の析出には、カ
ソード電極すなわちめっき領域の表面電位が大きく影響
する。たとえば、電気めっきでは、めっき領域の中心部
と端部では竃流密度が異なるが、このとき電流密度が高
くなるめっき領域端部では、めっき領域中心部に比べて
表面電位が低くなっている。合金めっきでは、表面電位
の違いによりめっき皮膜組成が影響されるため、めっき
領域中心部と端部とで皮膜組成に違いが生じるといった
問題があった。
2. Description of the Related Art The deposition of metal by electroplating is greatly affected by the surface potential of the cathode electrode, that is, the plating region. For example, in electroplating, the flow density differs between the center and the end of the plating region, but the surface potential is lower at the end of the plating region where the current density is higher than at the center of the plating region. In alloy plating, the plating film composition is affected by the difference in surface potential, so there is a problem that the film composition differs between the center and the end of the plating region.

【0003】[0003]

【発明が解決しようとする課題】これまで、めっき領域
表面での電流密度の大きさをコントロールする方法とし
て、アノード電極とカソード電極の問に遮蔽板を設置す
る方法が用いられてきた。しかし、この方法では、局所
的な表面電位をコントロールすることができないため、
皮膜組成を完全に一定にすることができないとともに膜
厚を一定にすることができないという問題があった。
As a method for controlling the current density on the surface of the plating region, a method of installing a shield plate between the anode electrode and the cathode electrode has been used so far. However, this method cannot control the local surface potential, so
There is a problem that the film composition cannot be made completely constant and the film thickness cannot be made constant.

【0004】したがって、本発明の目的は、皮膜組成お
よび膜厚をほぼ完全に一定にできる電気めっき方法およ
び電気めっき装置を提供することにある。
Therefore, an object of the present invention is to provide an electroplating method and an electroplating apparatus which can make the film composition and film thickness almost completely constant.

【0005】[0005]

【課題を解決するための手段】上記課題を解決する本発
明の電気めっき方法は、アノード電極が複数の微小電極
の配列で構成されており、めっき皮膜表面で電位測定電
極(参照電極)を動かすことで皮膜表面全体の電位分布
を測定し、その結果をもとに微小電極電流を個別に制御
することで、カソード電極の表面電位を任意の値に一定
にコントロールすることを特徴とする。
In the electroplating method of the present invention for solving the above problems, the anode electrode is composed of an array of a plurality of minute electrodes, and the potential measuring electrode (reference electrode) is moved on the surface of the plating film. Therefore, the potential distribution on the entire surface of the film is measured, and the microelectrode currents are individually controlled based on the result, so that the surface potential of the cathode electrode is controlled to a constant value.

【0006】本発明によれば、めっき中連続して表面電
位を測定することで各微小電極に流す電流値をコントロ
ールするため、常にめっき皮膜の表面電位を−定に保つ
ことができる。これにより、めっき皮膜の組成を均一に
保つことができる。また、表面電位を一定にすることで
電流密度も−定になるため、膜厚も均一にコントロール
することが可能となる。
According to the present invention, since the surface potential is continuously measured during plating to control the value of the current flowing through each microelectrode, the surface potential of the plating film can always be kept constant. Thereby, the composition of the plating film can be kept uniform. Further, since the current density becomes constant when the surface potential is constant, the film thickness can be controlled uniformly.

【0007】また、上記課題を解決する本発明の電気め
っき装置は、複数の微小電極を2次元配列され、微小電
極の各々に独立して電流が供給されるアノード電極と、
通電中カソード電極のめっき皮膜表面の電位分布を測定
をする参照電極と、該参照電極で得られた電位分布に基
づいてカソード電極のめっき皮膜の表面電位を一定にす
るように前記アノード電極の微小電極の各々に独立して
電流を供給するように制御する制御手段と、を有するこ
とを特徴とする。
Further, the electroplating apparatus of the present invention which solves the above-mentioned problems, has an anode electrode in which a plurality of microelectrodes are two-dimensionally arranged and an electric current is independently supplied to each of the microelectrodes.
A reference electrode for measuring the potential distribution on the surface of the plating film of the cathode electrode during energization, and a small amount of the anode electrode so as to make the surface potential of the plating film of the cathode electrode constant based on the potential distribution obtained on the reference electrode. And a control unit that controls so that an electric current is independently supplied to each of the electrodes.

【0008】本発明によれば、アノード電極は複数の2
次元配列の微小電極に独立して電流が供給されるように
構成されており、本発明で設けられた参照電極がカソー
ド電極の皮膜表面の電位分布を測定し、制御手段が測定
結果に基づいてカソード電極のめっき皮膜の表面電位を
一定にするようにアノード電極の微小電極の各々に独立
して電流を供給する。これにより、めっき皮膜の組成を
均一に保つことができる。また、表面電位を一定にする
ことで電流密度も−定になるため、膜厚も均一にコント
ロールすることが可能となる。
According to the present invention, the anode electrode comprises a plurality of anode electrodes.
It is configured such that the current is independently supplied to the microelectrodes of the dimensional array, the reference electrode provided in the present invention measures the potential distribution on the coating surface of the cathode electrode, and the control means is based on the measurement result. An electric current is independently supplied to each of the minute electrodes of the anode electrode so that the surface potential of the plating film of the cathode electrode is kept constant. Thereby, the composition of the plating film can be kept uniform. Further, since the current density becomes constant when the surface potential is constant, the film thickness can be controlled uniformly.

【0009】[0009]

【発明の実施の形態】本発明で用いられるめっき液は、
電気めっきできる金属元素の組み合わせであれば、特に
限定されない。本発明で用いられるアノード電極も特に
限定されないが、可溶性アノード電極では電極材料の取
替えが必要となるので、不溶性アノードの方が望まし
い。
BEST MODE FOR CARRYING OUT THE INVENTION The plating solution used in the present invention is
The combination of metal elements that can be electroplated is not particularly limited. The anode electrode used in the present invention is also not particularly limited, but a soluble anode electrode requires replacement of the electrode material, so an insoluble anode is preferable.

【0010】[0010]

【実施例】5×5cmの銅箔の表面を電解研磨で平滑に
し、めっきサンプルとした。この銅箔に、下記の表1に
記載しためっき液を用いて下記の表2のめっき条件で厚
さ20μmのFe−Ni合金めっき皮膜を形成した。
Example The surface of a 5 × 5 cm copper foil was smoothed by electrolytic polishing to obtain a plated sample. On this copper foil, a plating solution described in Table 1 below was used to form a 20 μm thick Fe—Ni alloy plating film under the plating conditions shown in Table 2 below.

【0011】[0011]

【表1】 [Table 1]

【表2】 [Table 2]

【0012】図1に使用したアノード電極の概略図を示
し、図2にめっき装置全体の概略図を示す。図1におい
て、アノード電極10は、直径500μmの点電極10
aを100×100個配列し、各点電極10a間を絶縁
材料10bで絶縁し、各点電極10aで電流値を個別に
(独立して)制御できるように構成した。また、図2のよ
うな、縦方向に10本並べた参照電極12をめっきサン
プル14の表面で左右に移動させながら(図2の右図の
矢印参照)通電を行い、測定した表面電位を元に、各点
電極への電流量をコントロールして、めっきサンプル表
面電位を−0.5Vに固定した。具体的には、左右方向
の所定間隔で上下の電位値をサンプリングし、これらの
値とめっきサンプル14における電位との差をそれぞれ
電位差計16で検出して(A/D変換後)コンピュータ1
8に入力した。その後、整流器22を用い、例えば、抵
抗器(図示せず)によって電流を分配することによっ
て、アノード電極10の各微小電極10aに個別に電流
を供給して、めっきサンプル表面電位を−0.5Vに固
定した。この実施例では、10本の参照電極を用いた
が、電極本数はこれに限定されず、表面全体の電位を測
定できる構造であれば1本でもかまわない。
FIG. 1 shows a schematic view of the anode electrode used, and FIG. 2 shows a schematic view of the entire plating apparatus. In FIG. 1, an anode electrode 10 is a point electrode 10 having a diameter of 500 μm.
100a of 100a are arranged, the point electrodes 10a are insulated from each other by the insulating material 10b, and the current value is individually applied to each point electrode 10a.
Configured to be (independently) controllable. Further, as shown in FIG. 2, ten reference electrodes 12 arranged in the vertical direction are moved left and right on the surface of the plated sample 14 (see the arrow in the right diagram of FIG. 2) to conduct electricity, and the measured surface potential is used as the basis. In addition, the surface potential of the plated sample was fixed at -0.5 V by controlling the amount of current to each point electrode. Specifically, the upper and lower potential values are sampled at predetermined intervals in the left-right direction, and the difference between these values and the potential of the plating sample 14 is detected by the potentiometer 16 (after A / D conversion).
Typed in 8. After that, by using the rectifier 22 and distributing the current by, for example, a resistor (not shown), the current is individually supplied to each microelectrode 10a of the anode electrode 10 to set the plating sample surface potential to −0.5V. Fixed to. In this embodiment, ten reference electrodes were used, but the number of electrodes is not limited to this, and may be one as long as the structure can measure the potential of the entire surface.

【0013】得られたFe−Niめっき皮膜に対して皮
膜中の組成比率を測定したところ、めっき皮膜の中心
部、端部に関係なく、鉄含有量が61±0.3wt%と
なっており、均一組成のめっき皮膜を得ることができ
た。また、膜厚も20±μmと均一なめっき皮膜を得る
ことができた。
When the composition ratio in the obtained Fe-Ni plating film was measured, the iron content was 61 ± 0.3 wt% regardless of the center and end of the plating film. It was possible to obtain a plating film having a uniform composition. Further, it was possible to obtain a uniform plating film having a film thickness of 20 ± μm.

【0014】一方、表1に記載のめっき液組成、表2に
記載のめっき条件を用い、表面電位測定なしでめっきを
行ったところ、皮膜組成が、中心部では55.3wt
%、端部では70.1wt%と大きく異なっており、膜
厚も、皮膜中心部で15μm、端部で30μmと大きな
ばらつきが生じていた。
On the other hand, when plating was performed using the plating solution composition shown in Table 1 and the plating conditions shown in Table 2 without measuring the surface potential, the film composition was 55.3 wt at the center.
%, The edge portion was 70.1 wt%, and the film thickness was 15 μm at the center portion of the film and 30 μm at the edge portion.

【0015】[0015]

【発明の効果】本発明を用いることで、めっき面の表面
電位を一定に保つことができるので、合金めっき時の皮
膜組成を均一にコントロールできる。また、めっき面の
電流分布も一定になるため、膜厚を均−に制御すること
も可能となる。
By using the present invention, the surface potential of the plated surface can be kept constant, so that the film composition during alloy plating can be controlled uniformly. Further, since the current distribution on the plated surface becomes constant, it becomes possible to control the film thickness evenly.

【図面の簡単な説明】[Brief description of drawings]

【図1】図1は本発明で用いるアノード電極の微小電極
の配列を説明するための図である。
FIG. 1 is a diagram for explaining an array of microelectrodes of an anode electrode used in the present invention.

【図2】図2は本発明のめっき槽全体の概略図である。FIG. 2 is a schematic view of the entire plating tank of the present invention.

【符号の説明】[Explanation of symbols]

10 アノード電極 12 参照電極 14 カソード電極 10 Anode electrode 12 Reference electrode 14 Cathode electrode

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) C25D 17/12 C25D 17/12 Z ─────────────────────────────────────────────────── ─── Continuation of front page (51) Int.Cl. 7 Identification code FI theme code (reference) C25D 17/12 C25D 17/12 Z

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】アノード電極が複数の2次元微小電極の配
列で構成されており、通電中めっき皮膜表面で電位測定
電極を動かすことで皮膜表面の電位分布を測定し、その
結果をもとに電極電流を個別に制御することで、カソー
ド電極のめっき皮膜の表面電位を任意の値に一定に制御
すること特徴とする電気めっき方法。
1. An anode electrode is composed of an array of a plurality of two-dimensional micro electrodes, and the potential distribution electrode on the coating surface is measured by moving the potential measuring electrode on the surface of the coating film during energization, and based on the result. An electroplating method characterized in that the surface potential of the plating film of the cathode electrode is controlled to an arbitrary value by controlling the electrode current individually.
【請求項2】複数の微小電極を2次元配列され、微小電
極の各々に独立して電流が供給されるアノード電極と、
通電中カソード電極のめっき皮膜表面の電位分布を測定
をする参照電極と、該参照電極で得られた電位分布に基
づいてカソード電極のめっき皮膜の表面電位を一定にす
るように前記アノード電極の微小電極の各々に独立して
電流を供給するように制御する制御手段と、を有するこ
とを特徴とする電気めっき装置。
2. An anode electrode in which a plurality of microelectrodes are two-dimensionally arranged, and an electric current is independently supplied to each of the microelectrodes,
A reference electrode for measuring the potential distribution on the surface of the plating film of the cathode electrode during energization, and a small amount of the anode electrode so as to make the surface potential of the plating film of the cathode electrode constant based on the potential distribution obtained on the reference electrode. An electroplating apparatus comprising: a control unit that controls so that an electric current is independently supplied to each of the electrodes.
JP2002070161A 2002-03-14 2002-03-14 Electroplating method and electroplating apparatus Expired - Fee Related JP3661657B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002070161A JP3661657B2 (en) 2002-03-14 2002-03-14 Electroplating method and electroplating apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002070161A JP3661657B2 (en) 2002-03-14 2002-03-14 Electroplating method and electroplating apparatus

Publications (2)

Publication Number Publication Date
JP2003268599A true JP2003268599A (en) 2003-09-25
JP3661657B2 JP3661657B2 (en) 2005-06-15

Family

ID=29200810

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002070161A Expired - Fee Related JP3661657B2 (en) 2002-03-14 2002-03-14 Electroplating method and electroplating apparatus

Country Status (1)

Country Link
JP (1) JP3661657B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006342403A (en) * 2005-06-09 2006-12-21 Sharp Corp Plating device, plating treatment controller, plating method, and plating treatment control method
US7914657B2 (en) 2005-12-01 2011-03-29 Hitachi Global Storage Technologies, Netherlands B.V. Controlling the thickness of wafers during the electroplating process
CN106868574A (en) * 2015-12-14 2017-06-20 台湾先进系统股份有限公司 Adjustable insoluble anode plate and method for applying adjustable insoluble anode plate to copper column electroplating
JP7074937B1 (en) * 2021-06-04 2022-05-24 株式会社荏原製作所 Plating equipment
WO2022267873A1 (en) * 2021-06-21 2022-12-29 盛美半导体设备(上海)股份有限公司 Electroplating device and electroplating method for non-circular substrate
JP7233588B1 (en) 2022-05-10 2023-03-06 株式会社荏原製作所 Plating equipment

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006342403A (en) * 2005-06-09 2006-12-21 Sharp Corp Plating device, plating treatment controller, plating method, and plating treatment control method
JP4667968B2 (en) * 2005-06-09 2011-04-13 シャープ株式会社 Plating apparatus, plating process management apparatus, plating method, and plating process management method
US7914657B2 (en) 2005-12-01 2011-03-29 Hitachi Global Storage Technologies, Netherlands B.V. Controlling the thickness of wafers during the electroplating process
CN106868574A (en) * 2015-12-14 2017-06-20 台湾先进系统股份有限公司 Adjustable insoluble anode plate and method for applying adjustable insoluble anode plate to copper column electroplating
JP7074937B1 (en) * 2021-06-04 2022-05-24 株式会社荏原製作所 Plating equipment
WO2022254690A1 (en) * 2021-06-04 2022-12-08 株式会社荏原製作所 Plating device
WO2022267873A1 (en) * 2021-06-21 2022-12-29 盛美半导体设备(上海)股份有限公司 Electroplating device and electroplating method for non-circular substrate
JP7233588B1 (en) 2022-05-10 2023-03-06 株式会社荏原製作所 Plating equipment
JP2023166684A (en) * 2022-05-10 2023-11-22 株式会社荏原製作所 Plating apparatus
TWI828580B (en) * 2022-05-10 2024-01-01 日商荏原製作所股份有限公司 plating device

Also Published As

Publication number Publication date
JP3661657B2 (en) 2005-06-15

Similar Documents

Publication Publication Date Title
US5744019A (en) Method for electroplating metal films including use a cathode ring insulator ring and thief ring
JPH07252700A (en) Apparatus and process for electropolishing
US11492717B2 (en) Manufacturing apparatus of electrolytic copper foil
JPH0693490A (en) Manufacture of electrolytic metallic foil
US20070175762A1 (en) Thickness distribution control for electroplating
JP3661657B2 (en) Electroplating method and electroplating apparatus
IE913616A1 (en) Apparatus for electrodepositing metal
KR100787279B1 (en) Apparatus for metal coating and method thereof
EP1391540A3 (en) Methods and apparatus for improved current density and feature fill control in ECD reactors
US20080202936A1 (en) Electrode Arrangement and Method for Electrochemical Coating of a Workpiece Surface
JPS60169592A (en) Lining metal layer electrodeposition device
US3729389A (en) Method of electroplating discrete conductive regions
JPH04504444A (en) Equipment for electrodepositing metal on one or both sides of a strip
JP3416620B2 (en) Electrolytic copper foil manufacturing apparatus and electrolytic copper foil manufacturing method
JP2012527524A (en) Method and apparatus for controlled electrolysis of thin layers
JP2001303299A (en) Continuous plating method using power feeding roller having split electrode part and device therefor
KR100748787B1 (en) Apparatus for metal coating and method thereof
JP3740677B2 (en) Gas diffusion electrode and manufacturing method thereof
JPH03120395A (en) Coating method with bismuth oxide
CN109518260A (en) Accessory plate and the electroplating system using it is electroplated
JP2004190112A (en) Method for manufacturing electrolytic copper foil, and apparatus used therefor
Monev et al. In situ stress measurements during electrodeposition of Ag-Sb and Pt-Co alloy multilayers
JPH06109611A (en) Uniform electrodeposition electrode of rotary cylinder
KR20120079414A (en) Method of plating for pcb
JP6893849B2 (en) Plating equipment for printed wiring boards and metal jigs

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20040607

Free format text: JAPANESE INTERMEDIATE CODE: A621

A977 Report on retrieval

Effective date: 20050222

Free format text: JAPANESE INTERMEDIATE CODE: A971007

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050301

A61 First payment of annual fees (during grant procedure)

Effective date: 20050314

Free format text: JAPANESE INTERMEDIATE CODE: A61

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080401

Year of fee payment: 3

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 4

Free format text: PAYMENT UNTIL: 20090401

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090401

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100401

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100401

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110401

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees