JP2003267922A - Method for producing unsaturated carboxylic acid ester - Google Patents

Method for producing unsaturated carboxylic acid ester

Info

Publication number
JP2003267922A
JP2003267922A JP2002067179A JP2002067179A JP2003267922A JP 2003267922 A JP2003267922 A JP 2003267922A JP 2002067179 A JP2002067179 A JP 2002067179A JP 2002067179 A JP2002067179 A JP 2002067179A JP 2003267922 A JP2003267922 A JP 2003267922A
Authority
JP
Japan
Prior art keywords
catalyst
reactor
reaction
carboxylic acid
acid ester
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002067179A
Other languages
Japanese (ja)
Other versions
JP4115719B2 (en
Inventor
Koushirou Yokota
耕史郎 横田
Tatsuo Yamaguchi
辰男 山口
Toru Watabe
徹 渡部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Kasei Corp
Original Assignee
Asahi Kasei Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Kasei Corp filed Critical Asahi Kasei Corp
Priority to JP2002067179A priority Critical patent/JP4115719B2/en
Publication of JP2003267922A publication Critical patent/JP2003267922A/en
Application granted granted Critical
Publication of JP4115719B2 publication Critical patent/JP4115719B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for producing an unsaturated carboxylic acid ester by performing a reaction of an unsaturated aldehyde with an alcohol in the presence of oxygen, stably maintaining a high unsaturated carboxylic acid ester production rate and a high unsaturated aldehyde conversion rate, and eliminating a risk of the damage of a reactor or the ignition of a catalyst. <P>SOLUTION: This method for producing the unsaturated carboxylic ester by performing the reaction of the unsaturated aldehyde with the alcohol in the presence of oxygen is characterized by discharging the catalyst so that the remaining catalyst in the reactor becomes ≤3 wt.% based on the weight of the inputted catalyst. <P>COPYRIGHT: (C)2003,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、酸素の存在下で不
飽和アルデヒドとアルコールを反応させて不飽和カルボ
ン酸エステルを製造する方法に関し、高い不飽和カルボ
ン酸エステル生産速度と高い不飽和アルデヒド転化率を
安定して維持し、反応器の損傷や触媒の発火の危険性を
排除した不飽和カルボン酸エステルの製造方法を提供す
る。
TECHNICAL FIELD The present invention relates to a method for producing an unsaturated carboxylic acid ester by reacting an unsaturated aldehyde with an alcohol in the presence of oxygen, which has a high unsaturated carboxylic acid ester production rate and a high unsaturated aldehyde conversion. A method for producing an unsaturated carboxylic acid ester, which maintains a stable rate and eliminates the risk of reactor damage and catalyst ignition.

【0002】[0002]

【従来の技術】工業的に有用なメタクリル酸メチル又は
アクリル酸メチルを製造する方法として、メタクロレイ
ン又はアクロレインをメタノールと反応させて直接、メ
タクリル酸メチル又はアクリル酸メチルを製造する酸化
エステル化法が提案されている。この製法ではメタクロ
レイン又はアクロレインをメタノール中で分子状酸素と
反応させることによって行われ、パラジウムと鉛、ビス
マス、タリウム、水銀を含む触媒を用いた例が、特公昭
57−35856〜35861号各公報に、また、パラ
ジウムとこれら金属との金属間化合物を触媒とする例
が、特公昭62−7902号公報に開示されている。
2. Description of the Related Art An industrially useful method for producing methyl methacrylate or methyl acrylate is an oxidative esterification method for directly producing methyl methacrylate or methyl acrylate by reacting methacrolein or acrolein with methanol. Proposed. In this production method, methacrolein or acrolein is reacted with molecular oxygen in methanol, and an example using a catalyst containing palladium and lead, bismuth, thallium, and mercury is disclosed in JP-B-57-35856-35861. Japanese Patent Publication No. 62-7902 discloses an example in which an intermetallic compound of palladium and these metals is used as a catalyst.

【0003】また、特開平9−216850号公報他に
は、パラジウムとビスマスを用いた触媒が、特開200
1−220367にはルテニウムと鉛を用いた触媒が例
示されている。これらの開示例に示される触媒は全て、
炭酸カルシウム、シリカ、アルミナなどの担体に担持さ
れた固体触媒であり、反応は、これらの固体触媒をアル
コールと不飽和アルデヒドの溶液中に分散させて(以
下、場合により触媒スラリーと略記する)酸素を含むガ
スを吹き込んで行われるのが一般的であり、本件発明者
らも気泡塔反応器を用いてメタクロレインとメタノール
からメタクリル酸メチルを製造する実験を長期にわたり
連続的に行っていた。
A catalyst using palladium and bismuth is disclosed in JP-A-9-216850 and others.
1-220367 exemplifies a catalyst using ruthenium and lead. The catalysts shown in these disclosures are all
A solid catalyst supported on a carrier such as calcium carbonate, silica, or alumina. The reaction is carried out by dispersing these solid catalysts in a solution of an alcohol and an unsaturated aldehyde (hereinafter, abbreviated as catalyst slurry in some cases) oxygen. In general, the present inventors have conducted an experiment of producing methyl methacrylate from methacrolein and methanol using a bubble column reactor continuously for a long period of time.

【0004】さて、実際の工業プロセスでは、定期的な
点検修理、機器類や触媒などの交換などの理由で運転を
休止する機会や、その後再スタートをかける機会が必ず
発生する。長期連続運転を行っていた本発明者らも、目
的を達成した後、運転を休止した際、触媒スラリーを抜
き出し、反応器内を洗浄し、反応器の中を点検して、損
傷や腐食などの壁面の異常、接続部パッキングの劣化な
どを点検した。
Now, in an actual industrial process, there is always an opportunity to stop the operation for a reason such as periodical inspection and repair, replacement of devices and catalysts, and an opportunity to restart the operation. The inventors of the present invention who have been operating for a long period of time also, after achieving the purpose, when the operation is stopped, withdraw the catalyst slurry, wash the inside of the reactor, inspect the inside of the reactor, damage and corrosion Checked for abnormalities on the wall surface and deterioration of connection packing.

【0005】まず、反応器から触媒スラリーを抜き出し
た。反応器の底面、温度計のさや管や添加物投入管の上
面などにも触媒が若干残っていたが、抜き出したスラリ
ーの処理に追われて、残留触媒の処理が後回しになって
しまった。そこで、念のため、この反応器内に滞留して
いた触媒の性能を評価したところ、触媒スラリーとして
常時循環していた触媒と比較して、不飽和アルデヒド転
化率、不飽和カルボン酸エステル選択性ともに大幅に低
下しており、触媒が化学的に変化している危険性が考え
られた。
First, the catalyst slurry was extracted from the reactor. Although some catalyst remained on the bottom surface of the reactor, the thermometer pod, and the top surface of the additive input tube, the processing of the residual catalyst was postponed due to the processing of the extracted slurry. Therefore, as a precaution, when the performance of the catalyst retained in this reactor was evaluated, it was found that the unsaturated aldehyde conversion rate and unsaturated carboxylic acid ester selectivity were higher than those of the catalyst that was constantly circulated as a catalyst slurry. Both were significantly decreased, and there was a possibility that the catalyst was chemically changed.

【0006】さらに、反応器内を詳細に点検したとこ
ろ、触媒の一部が反応器器壁に固着していた。このこと
から、固着触媒塊とスラリーとの摩擦による触媒の磨
耗、脱離した固着触媒塊による反応器器壁の磨耗、磨耗
個所からのエロージョン−コロージョン腐食、スラリー
中を激しく流動する固着触媒塊と器壁などとの衝突によ
る損壊、損壊触媒塊による反応性の低下など、固着触媒
塊に起因するさまざまなトラブルが想定された。これら
はどれ一つとっても、工業プラントにとっては極めて危
険な状況をもたらしかねない重大なトラブルである。
Further, when the inside of the reactor was inspected in detail, part of the catalyst adhered to the reactor wall. From this, the wear of the catalyst due to the friction between the fixed catalyst mass and the slurry, the wear of the reactor wall due to the detached fixed catalyst mass, the erosion-corrosion corrosion from the wear point, and the fixed catalyst mass that violently flows in the slurry. Various troubles due to the stuck catalyst mass were assumed, such as damage due to collision with the vessel wall, decrease in reactivity due to damaged catalyst mass, and so on. Any one of these is a serious trouble that can pose a very dangerous situation for an industrial plant.

【0007】また、固着していた触媒をこそぎ落として
分析しようとしたところ、極めて危険なことに、非常な
発熱を伴うことがわかり、実験担当者の機転ですぐに水
中に投入し事無きを得た。さらに、活性炭を担体として
用いた実験では、触媒自体が赤熱発火してしまった場合
もあり、この事実は、大量の可燃物を取り扱う実際の工
業プロセスでは、大規模な爆発や火災につながりかねな
い極めて重篤な非常事態であり、なによりもまず安全が
優先される化学プラントの実用化にとっては、致命的な
障害である。
[0007] Further, when an attempt was made to scrape off the adhered catalyst and analyze it, it was found that it was extremely dangerous and accompanied by an extremely high heat generation. Got In addition, in experiments using activated carbon as a carrier, the catalyst itself may ignite red heat, which may lead to a large-scale explosion or fire in the actual industrial process that handles a large amount of combustible materials. This is a very serious emergency, and above all, it is a fatal obstacle to the practical application of a chemical plant where safety is the first priority.

【0008】このように、運転休止や何らかの理由で触
媒を抜き出す際に、反応器内に触媒が残留することは、
触媒の不可逆的な劣化をもたらすのみならず、化学プラ
ントにとっては生命線とも言える爆発火災に対する安全
性を著しく損ない、極めて危険なトラブルをもたらすこ
とが判明した。また、触媒が残留する原因としては、反
応器の底面、温度計のさや管や添加物投入管の上平面な
どに滞留するだけでなく、反応器の凹凸部における触媒
の固着も深刻で、この固着触媒は、爆発火災などの直接
的な着火源になる危険性をはらむのみならず、反応器の
腐食や磨耗などの原因にもなり得て、日頃気付かないう
ちに徐々に損傷が進行し、あるとき、突然反応器が損壊
するという致命的な危険をもはらむことがわかり、それ
らの安全面の解決無くしては、プロセスの工業化は絶対
に有り得ないことも判った。
Thus, when the catalyst is withdrawn for some reason or when operation is stopped, the catalyst remains in the reactor.
It was found that not only irreversible deterioration of the catalyst but also seriously impairing safety against explosion and fire, which is a lifeline for a chemical plant, resulting in extremely dangerous trouble. Further, as a cause of the catalyst remaining, not only is it retained on the bottom surface of the reactor, the sheath of the thermometer or the upper flat surface of the additive feeding pipe, but also the adhesion of the catalyst on the uneven portion of the reactor is serious. The adhered catalyst not only poses a direct ignition source such as an explosion fire, but it can also cause corrosion and wear of the reactor, and damage gradually progresses without noticing. At one point, it turned out that there was a fatal risk of sudden reactor damage, and it was also found that without the solution of those safety aspects, industrialization of the process would never be possible.

【0009】[0009]

【発明が解決しようとする課題】本発明は、このような
問題点に鑑みてなされたものであって、プロセスの安全
を確保して、触媒の劣化を防ぎ、長期にわたり安定し
て、連続的に不飽和カルボン酸エステルの製造を行うこ
とのできる方法を提供することを目的とする。
SUMMARY OF THE INVENTION The present invention has been made in view of the above problems, and secures process safety, prevents catalyst deterioration, is stable over a long period of time, and is continuous. It is an object of the present invention to provide a method capable of producing an unsaturated carboxylic acid ester.

【0010】[0010]

【課題を解決するための手段】本発明者らは、最優先で
本課題の解決にあたった。まず、触媒を反応器内に残留
させないことが重要であり、できるだけ全量抜き出すこ
と、少なくともある割合以上はかならず抜き出すこと
で、触媒の劣化を防止し、安全を確保し得ることを見出
し、本件発明の端緒とした。さらに、触媒を抜き出す際
に洗浄して残留する触媒を可及的少量に抑えること、洗
浄に、反応液や原料である不飽和アルデヒドやアルコー
ルなどを用いることで、その後、該抜き出し触媒を繰り
返し使用しても、安定して反応成績を得られることを確
認して本件発明をさらに発展させた。
[Means for Solving the Problem] The present inventors have solved this problem with the highest priority. First, it is important not to allow the catalyst to remain in the reactor, and it has been found that the catalyst can be prevented from deteriorating and safety can be ensured by extracting the entire amount as much as possible, and always extracting at least a certain ratio or more. It was a start. In addition, when removing the catalyst, wash it to keep the amount of residual catalyst as small as possible, and use the reaction solution and raw materials such as unsaturated aldehydes and alcohols for washing. Even so, it was confirmed that stable reaction results could be obtained, and the present invention was further developed.

【0011】そして、反応器内に触媒が固着しないよう
な処理を施すことで、プラントの安全を脅かす触媒の固
着も防ぐことができ、これらの知見を総合して本件発明
を完成させた。すなわち、本件発明は、 1.酸素の存在下で不飽和アルデヒドとアルコールを触
媒と反応させて不飽和カルボン酸エステルを製造する方
法において、反応器に残留する触媒が、反応に投入した
触媒の重量に対して3重量%以下となるように排出する
ことを特徴とする不飽和カルボン酸エステルの製造方法
に係る。
[0011] Then, by carrying out a treatment to prevent the catalyst from sticking in the reactor, it is possible to prevent the catalyst from sticking, which threatens the safety of the plant, and the present invention was completed based on these findings. That is, the present invention is: In the method for producing an unsaturated carboxylic acid ester by reacting an unsaturated aldehyde and an alcohol with a catalyst in the presence of oxygen, the amount of the catalyst remaining in the reactor is 3% by weight or less based on the weight of the catalyst added to the reaction. The present invention relates to a method for producing an unsaturated carboxylic acid ester, which is characterized in that it is discharged as follows.

【0012】2.反応が、反応器の運転を休止したの
ち、再び反応を開始することを特徴とする上記1に記載
の不飽和カルボン酸エステルの製造方法に係る。 3.反応が、反応器内を洗浄することにより触媒を排出
する上記1又は2に記載の不飽和カルボン酸エステルの
製造方法に係る。 4.反応が、反応器を反応液、触媒スラリー、アルコー
ルまたは水の少なくとも一つで洗浄する上記3に記載の
不飽和カルボン酸エステルの製造方法に係る。 5.反応が、反応器の接液部への触媒の付着を防止する
上記1ないし4に記載の不飽和カルボン酸エステルの製
造方法に係る。
2. The reaction relates to the method for producing an unsaturated carboxylic acid ester according to the above 1, wherein the reaction is restarted after the operation of the reactor is stopped. 3. The reaction relates to the method for producing an unsaturated carboxylic acid ester according to the above 1 or 2, wherein the catalyst is discharged by washing the inside of the reactor. 4. The reaction relates to the method for producing an unsaturated carboxylic acid ester according to the above 3, wherein the reactor is washed with at least one of a reaction solution, a catalyst slurry, alcohol and water. 5. The reaction relates to the method for producing an unsaturated carboxylic acid ester described in 1 to 4 above, which prevents the catalyst from adhering to the liquid contact part of the reactor.

【0013】6.反応が、反応器の運転休止直後の反応
器の接液部における触媒の付着量が、反応器に投入した
触媒の重量に対して3重量%以下である上記1ないし5
に記載の不飽和カルボン酸エステルの製造方法に係る。 7.該触媒がパラジウムおよび/またはルテニウムとX
(Xは鉛、ビスマス、水銀、タリウムから選ばれる少な
くとも1種類以上の金属を示す)を含む触媒であること
を特徴とする上記1ないし6記載の不飽和カルボン酸エ
ステルの製造方法に係る。 8.不飽和アルデヒドがアクロレイン又はメタクロレイ
ンで、アルコールがメタノールである上記1ないし7記
載の不飽和カルボン酸エステルの製造方法に係る。
6. In the reaction, the amount of catalyst adhering to the liquid contact part of the reactor immediately after the operation of the reactor is stopped is 3% by weight or less based on the weight of the catalyst charged into the reactor.
The method for producing an unsaturated carboxylic acid ester according to 1. 7. The catalyst is palladium and / or ruthenium and X
The method for producing an unsaturated carboxylic acid ester according to any one of 1 to 6 above, which is a catalyst containing (X represents at least one metal selected from lead, bismuth, mercury, and thallium). 8. The method for producing an unsaturated carboxylic acid ester according to the above 1 to 7, wherein the unsaturated aldehyde is acrolein or methacrolein and the alcohol is methanol.

【0014】[0014]

【発明の実施の形態】以下に本発明を詳細に説明する。
本発明において使用する不飽和アルデヒドとしては、ア
クロレイン、メタクロレイン、クロトンアルデヒドなど
の脂肪族不飽和アルデヒド並びにこれらアルデヒドの誘
導体などがあげられ、アクロレインとメタクロレインは
好ましく用いられる。これらの不飽和アルデヒドは単独
もしくは任意の二種以上の混合物として用いることがで
きる。
BEST MODE FOR CARRYING OUT THE INVENTION The present invention is described in detail below.
Examples of the unsaturated aldehyde used in the present invention include aliphatic unsaturated aldehydes such as acrolein, methacrolein, and crotonaldehyde, and derivatives of these aldehydes, and acrolein and methacrolein are preferably used. These unsaturated aldehydes can be used alone or as a mixture of two or more kinds.

【0015】特に、イソブチレン、プロピレンから触媒
存在下酸素で部分酸化されて製造されるアクロレインと
メタクロレインはさらに好ましく用いられる。本発明に
おいて使用するアルコールとしては、例えば、メタノー
ル、エタノール、イソプロパノール、オクタノールなど
の脂肪族飽和アルコール;エチレングリコール、ブタン
ジオールなどのジオール;アリルアルコール、メタリル
アルコールなどの脂肪族不飽和アルコール;ベンジルア
ルコールなどの芳香族アルコールなどがあげられる。特
にメチルアルコール、エチルアルコールなどの低級アル
コールが反応が速やかで好ましい。これらのアルコール
は単独もしくは任意の二種以上の混合物として用いるこ
とができる。
Particularly, acrolein and methacrolein produced by partial oxidation with oxygen from isobutylene and propylene in the presence of a catalyst are more preferably used. Examples of the alcohol used in the present invention include aliphatic saturated alcohols such as methanol, ethanol, isopropanol and octanol; diols such as ethylene glycol and butanediol; aliphatic unsaturated alcohols such as allyl alcohol and methallyl alcohol; benzyl alcohol. Such as aromatic alcohol. Particularly, lower alcohols such as methyl alcohol and ethyl alcohol are preferred because of quick reaction. These alcohols can be used alone or as a mixture of two or more kinds.

【0016】本発明反応における不飽和アルデヒドとア
ルコールとの使用量比には特に限定はなく例えば不飽和
アルデヒド/アルコールのモル比で10〜1/1000
のような広い範囲で実施できるが、一般には不飽和アル
デヒドの量が少ない方が好ましく、1/2〜1/50の
範囲にするのが好ましい。本発明で使用する酸素は分子
状酸素、すなわち酸素ガス自体又は酸素ガスを反応に不
活性な希釈剤、例えば窒素、炭酸ガスなどで希釈した混
合ガスの形とすることができ、空気を用いることもでき
る。反応系に存在させる酸素の量は、反応に必要な化学
量論量以上、好ましくは化学量論量の1.2倍以上あれ
ば充分である。
The amount ratio of unsaturated aldehyde to alcohol used in the reaction of the present invention is not particularly limited, and for example, unsaturated aldehyde / alcohol molar ratio is from 10 to 1/1000.
However, it is generally preferable that the amount of unsaturated aldehyde is small, and it is preferable that the amount is in the range of 1/2 to 1/50. The oxygen used in the present invention may be in the form of molecular oxygen, that is, oxygen gas itself or a mixed gas obtained by diluting oxygen gas with a reaction-inert diluent such as nitrogen or carbon dioxide, and air is used. You can also The amount of oxygen present in the reaction system is sufficient if it is at least the stoichiometric amount necessary for the reaction, preferably at least 1.2 times the stoichiometric amount.

【0017】反応の全圧は減圧から加圧下の任意の広い
圧力範囲で実施することができるが、通常は1〜20k
g/cm2の圧力で実施される。反応系に供給する酸素
の分圧は、反応器出口側の酸素分圧が0.8kg/cm
2以下となるように管理するのが好ましく、より好まし
くは0.4kg/cm2以下である。一方、反応器流出
ガスの酸素濃度が爆発範囲(8%)を越えないように全
圧を設定するとよい。本発明反応は、気相反応、液相反
応、潅液反応などの任意の従来公知の方法で実施でき
る。反応器形式も固定床式、流動床式、撹拌槽式などの
従来公知の任意の形式によることができる。例えば液相
で実施する際には気泡塔反応器、ドラフトチューブ型反
応器、撹拌槽反応器などの任意の反応器形式によること
ができる。
The total pressure of the reaction can be carried out in any wide pressure range from reduced pressure to increased pressure, but usually 1 to 20 k.
It is carried out at a pressure of g / cm 2 . The partial pressure of oxygen supplied to the reaction system is such that the oxygen partial pressure on the outlet side of the reactor is 0.8 kg / cm.
It is preferable to control it to be 2 or less, and more preferably 0.4 kg / cm 2 or less. On the other hand, it is advisable to set the total pressure so that the oxygen concentration of the reactor outflow gas does not exceed the explosion range (8%). The reaction of the present invention can be carried out by any conventionally known method such as a gas phase reaction, a liquid phase reaction and a perfusion reaction. The reactor type may be any conventionally known type such as a fixed bed type, a fluidized bed type, and a stirring tank type. For example, when it is carried out in the liquid phase, it may be carried out in any reactor type such as a bubble column reactor, a draft tube type reactor and a stirred tank reactor.

【0018】反応は、無溶媒でも実施できるが、反応成
分に対して不活性な溶媒、例えば、ヘキサン、デカン、
ベンゼン、ジオキサンなどを用いて実施することができ
る。触媒の抜き出しは、反応器下部から自然落下させる
方法、フィルター分離器、遠心分離器、沈降分離器など
の触媒分離器で分離した触媒を反応器へ戻さずに回収す
る方法、ガスや化合物の蒸気と共に飛散させてサイクロ
ンなどで回収する方法など、既知のいかなる方法も採用
可能であるが、たとえば、液相で気泡塔反応器で反応を
行っている場合は、ガスを吹き込みながら触媒スラリー
を流動させたまま、触媒スラリーごと反応器下部から自
然落下で抜く方法や、沈降分離装置やフィルター分離装
置から抜く方法が好ましい。
The reaction can be carried out without a solvent, but a solvent inert to the reaction components, such as hexane, decane,
It can be carried out using benzene, dioxane or the like. The catalyst can be extracted by dropping it from the bottom of the reactor, recovering the catalyst separated by a catalyst separator such as a filter separator, centrifuge, or sedimentation separator without returning it to the reactor, or vapor of gas or compound. Any known method such as a method of scattering and collecting with a cyclone or the like can be adopted.For example, when the reaction is carried out in the bubble column reactor in the liquid phase, the catalyst slurry is made to flow while blowing gas. It is preferable to remove the catalyst slurry as it is from the bottom of the reactor by gravity drop, or remove it from the sedimentation separator or the filter separator.

【0019】触媒を抜き出す際に反応器内に滞留するこ
とが許される量は、反応に投入した重量に対して3重量
%、好ましくは1重量%、さらに好ましくは0.3重量
%以下である。3重量%以上反応器に触媒が残ると、触
媒が劣化してしまい、再スタートをかけても所定の反応
成績を得ることが困難である。さらに3重量%以上大量
の触媒が滞留あるいは固着すると、一旦なにかのきっか
けで発熱した際に、固着触媒塊の中に熱が蓄積してさら
なる反応を誘発し、従来技術のところで述べたような赤
熱現象に結び付く危険性が高く、プラントの安全上この
ような事態は絶対に避けなければならない。
When the catalyst is withdrawn, the amount allowed to stay in the reactor is 3% by weight, preferably 1% by weight, more preferably 0.3% by weight or less based on the weight of the reaction. . If the catalyst remains in the reactor in an amount of 3% by weight or more, the catalyst deteriorates and it is difficult to obtain a predetermined reaction result even after restarting. Further, if a large amount of catalyst of 3% by weight or more stays or adheres, once the heat is generated for some reason, heat is accumulated in the adhered catalyst mass and induces further reaction, resulting in red heat as described in the prior art. There is a high risk of being linked to a phenomenon, and such a situation must be absolutely avoided for plant safety.

【0020】抜き出した触媒の保存方法については、ア
ルコール、不飽和アルデヒド、不飽和カルボン酸エステ
ル、不飽和カルボン酸などの可燃物を含むため、プラン
トの安全を確実に確保するためにも、燃焼の3要素であ
る、可燃物、酸素、着火源のいずれかを避けて保存する
ことが安全上必須である。従って、保存には実質的に酸
素に触れない条件(たとえば窒素中や二酸化炭素中)あ
るいは実質的に着火源が無い状態(たとえば反応液やア
ルコール中、水中)で保存する方法が好ましく例示され
る。可燃物を避けることは他の二つを避ける方法と比較
すれば簡便とはいえないが、触媒スラリーを一旦水溶性
アルコールなどで充分洗浄して、その後、水で充分洗浄
する方法なども可能である。
Regarding the method of storing the extracted catalyst, since combustible substances such as alcohol, unsaturated aldehyde, unsaturated carboxylic acid ester and unsaturated carboxylic acid are contained, in order to ensure the safety of the plant, It is essential for safety to avoid the combustibles, oxygen, and ignition sources, which are the three elements, and store them. Therefore, a preferable method for storage is a method of storing under conditions that are not substantially exposed to oxygen (for example, in nitrogen or carbon dioxide) or in a state where there is substantially no ignition source (for example, in a reaction solution, alcohol, or water). It Although avoiding flammable substances is not as simple as comparing with the other two methods, it is also possible to wash catalyst slurry thoroughly with water-soluble alcohol, etc., and then wash it thoroughly with water. is there.

【0021】反応器を洗浄することも、排出を確実にす
る方法として本件発明では重要で、反応器外部からポン
プなどで、反応液、触媒スラリー、アルコールまたは水
の少なくとも一つを送液して、反応器内を洗浄する方
法、窒素や二酸化炭素などの不活性ガスや水蒸気で吹き
飛ばす方法、ふき取り、はき取り、ハンマリングなど既
知の洗浄方法が採用可能である。しかしながら、反応系
に含まれない物質を混入させない、触媒を激しい流動や
衝突による破壊から守る、などの理由から、反応液、触
媒スラリー、アルコールまたは水の少なくとも一つで洗
浄する方法が好ましく、たとえば、先に例示した触媒ス
ラリーを流動させたまま抜き出す方法は、触媒スラリー
で洗浄しながら触媒を排出する一手段として、好ましく
例示される。反応器内を触媒が付着しないようにするこ
とは、本発明の重要な要件の一つである。
Cleaning the reactor is also important in the present invention as a method for ensuring discharge, and at least one of the reaction solution, catalyst slurry, alcohol and water is sent from outside the reactor by a pump or the like. A known cleaning method such as a method of cleaning the inside of the reactor, a method of blowing off with an inert gas such as nitrogen or carbon dioxide or water vapor, wiping, scraping, hammering can be adopted. However, a method of washing with at least one of a reaction solution, a catalyst slurry, alcohol or water is preferable for reasons such as not mixing in a substance not contained in the reaction system and protecting the catalyst from destruction due to violent flow or collision. The method of extracting the catalyst slurry while being fluidized is preferably exemplified as one means for discharging the catalyst while washing with the catalyst slurry. Preventing the catalyst from adhering to the inside of the reactor is one of the important requirements of the present invention.

【0022】本発明の方法で触媒が付着しないようにす
る対象となる面は、各反応器、各反応器を接続する配管
及び触媒スラリーを触媒分離装置へ導く配管などを示す
ことは勿論のこと、上記反応器や配管に接続された流量
計、温度計、圧力計等も含まれる。さらに、上記の触媒
が付着しないようにする対象となる面には、触媒スラリ
ーの流動により濡れたり乾いたりする反応器器壁の液相
部と気相部の境界部分、流動するスラリーや回転する攪
拌装置などから飛沫として飛んだスラリーが接触する可
能性のある反応器内壁上面や上部側面、攪拌軸、攪拌翼
面、蒸発したアルコールやアルデヒドなどと一緒に飛沫
同伴してくるスラリーが触れるコンデンサーなども含ま
れる。
It is needless to say that the surface to which the catalyst does not adhere in the method of the present invention shows the reactors, the pipes for connecting the reactors, the pipes for guiding the catalyst slurry to the catalyst separation device, and the like. Also included are a flow meter, a thermometer, a pressure gauge, etc. connected to the reactor or the pipe. Further, on the surface to which the above catalyst does not adhere, the boundary portion between the liquid phase portion and the gas phase portion of the reactor wall that gets wet or dry by the flow of the catalyst slurry, the flowing slurry or the rotating There is a possibility that the slurry that has flown as droplets from the stirrer may come into contact with the reactor, such as the inner wall top and top surfaces, the stirring shaft, the stirring blade surface, and the condenser that the slurry that accompanies with the evaporated alcohol or aldehyde touches Is also included.

【0023】触媒が付着あるいは滞留しないようにする
方法としては、触媒が滞留しにくい構造とする、付着の
起因となる細部への触媒の滞留を誘引する凹凸を無くす
る、触媒に対して不活性な表面処理をする(たとえば、
表面をガラスコーティング(GL)やフッ素コーティン
グする(FL))、洗浄用の液体を反応器上部から壁面
に沿って下方へ常時流す、静電気を防止する、などのさ
まざまな方法を取ることができる。これらの方法のう
ち、どれが好ましいかは反応器の細部の構造や機能によ
るため一義的には決められない。反応器を触媒が滞留し
にくい構造とするのは、例えば、水平部分の面積を小さ
くする、排出口に向けて多少傾斜を持たせる、液だまり
ができないようにする、温度計や圧力計などの測定機器
類のさや管、添加物投入管など突起物は必要最小限にす
る等の方法が挙げられる。
As a method for preventing the catalyst from adhering or staying, a structure in which the catalyst is hard to stay is formed, an unevenness that induces the catalyst to stay in the details causing the sticking is eliminated, and the catalyst is inactive. Surface treatment (for example,
Various methods such as glass coating (GL) or fluorine coating (FL) on the surface, constant flow of a cleaning liquid downward along the wall surface from the upper part of the reactor, and prevention of static electricity can be taken. Which of these methods is preferable cannot be uniquely determined because it depends on the detailed structure and function of the reactor. The structure of the reactor in which the catalyst is hard to stay is, for example, to reduce the area of the horizontal part, to make it slightly inclined toward the discharge port, to prevent liquid pooling, such as thermometer and pressure gauge. Methods such as minimizing the protrusions of the measuring instrument such as the pod and the additive input pipe can be used.

【0024】触媒に対して不活性な表面処理をする方法
としては、一般的には、ガラスコーティングやフッ素コ
ーティングが想定されるが、コストが高く、ガラスの損
壊やフッ素樹脂の剥離も懸念されるため、反応器内の触
媒スラリーが激しく流動している部分には使い難い。た
とえば、蒸発してきた有機化合物やそれに伴って飛沫同
伴してきた触媒を凝縮させるコンデンサーなどの表面加
工には採用できる。凹凸を無くする方法は、反応器内の
表面加工など面積の大きな個所の加工に対して、簡便で
安価である。このような平滑性を施す方法としては、J
IS H0400−1961に規定されているバフ研磨
等の機械研磨、又は「金属表面技術便覧」(改定新版
p113,120金属表面技術協会編、日刊工業新聞
社)に記載されている化学研磨、又は電解研磨等が好ま
しい。
Glass coating and fluorine coating are generally envisioned as a method for surface-inactivating the catalyst, but the cost is high and there is a concern that glass may be damaged or fluororesin may be peeled off. Therefore, it is difficult to use in a portion where the catalyst slurry in the reactor is violently flowing. For example, it can be used for surface treatment of condensers that condense evaporated organic compounds and catalysts entrained with them. The method of eliminating unevenness is simple and inexpensive for processing a large area such as surface processing in a reactor. As a method for providing such smoothness, J
Mechanical polishing such as buff polishing specified in ISH0400-1961, or "Handbook of Metal Surface Technology" (revised new edition
Chemical polishing, electrolytic polishing, etc. described in "P113, 120 Metal Surface Technology Association", Nikkan Kogyo Shimbun) are preferred.

【0025】反応器の液相部と気相部の境界部分や攪拌
軸などは、触媒スラリーが常時触れる一方で乾燥もし易
く、いわゆる濡れ乾きによる固着が発生し易い。このよ
うな個所では、たとえば、反応器上部より洗浄の液体を
常時流す方法が有効であり、反応器内壁上方の温度の低
い部分で凝縮したアルコールなどが流下するのを利用す
ることもできる。静電気を除電する方法は、これらG
L、FL、表面平滑化などと組合わせて行うことで一層
固着防止効果が上がるものである。静電気防止は、静電
気によるスパーク着火を防ぐ安全上の目的からも好まし
い。
The boundary portion between the liquid phase portion and the gas phase portion of the reactor, the stirring shaft, and the like are easily contacted by the catalyst slurry and easily dried, and so-called wet-dry adhesion is likely to occur. In such a place, for example, a method of constantly flowing a washing liquid from the upper part of the reactor is effective, and it is also possible to use the fact that alcohol condensed in a low temperature portion above the inner wall of the reactor flows down. The method of removing static electricity is these G
When combined with L, FL, surface smoothing, etc., the effect of preventing sticking is further enhanced. The prevention of static electricity is also preferable for safety purposes to prevent spark ignition due to static electricity.

【0026】滞留したり固着してしまった触媒におい
て、不飽和アルデヒド転化率、不飽和カルボン酸エステ
ル選択性ともに大幅に低下した理由は明らかではない
が、不飽和アルデヒドとしてメタクロレインを用いた実
験では、滞留した触媒を分析したところ、触媒中にポリ
マー様の物質が認められ、分析の結果カルボニル基に由
来する赤外吸収が認められたため、このポリマー様の物
質はメタクロレイン、メタクリル酸、メタクリル酸メチ
ルなどが重合したものと推定された。したがって、触媒
の表面をポリマーが覆って不活性化してしまったと想定
している。
Although the reason why the unsaturated aldehyde conversion rate and the unsaturated carboxylic acid ester selectivity are greatly reduced in the catalyst that has stayed or is stuck is not clear, in an experiment using methacrolein as the unsaturated aldehyde, When the accumulated catalyst was analyzed, a polymer-like substance was found in the catalyst, and as a result of the analysis, infrared absorption derived from the carbonyl group was observed.Therefore, this polymer-like substance was identified as methacrolein, methacrylic acid, and methacrylic acid. It was presumed that methyl etc. were polymerized. Therefore, it is assumed that the surface of the catalyst was covered with the polymer and was deactivated.

【0027】本発明に用いる触媒はパラジウムおよび/
またはルテニウムと、X(Xは鉛、ビスマス、水銀、タ
リウムから選ばれる少なくとも1種類以上の金属)を含
むことが必須である。パラジウムおよび/またはルテニ
ウムとXが合金、金属間化合物を形成しても良い。ま
た、異種元素としてFe、Te、Ni、Cr、Co、C
d、In、Ta、Cu、Zn、Zr、Hf、W、M
n、 Ag、Re、Sb、Sn、Rh、Ru、Ir、P
t、Au、Ti、Al、B、Si、Ge、Se、Ta等
を含んでもよい。これらの異種元素は通常、5重量%、
好ましくは1重量%を超えない範囲で含むことができ
る。
The catalyst used in the present invention is palladium and / or
Alternatively, it is essential to contain ruthenium and X (X is at least one metal selected from lead, bismuth, mercury, and thallium). Palladium and / or ruthenium and X may form an alloy or an intermetallic compound. Moreover, Fe, Te, Ni, Cr, Co, and C are used as different elements.
d, In, Ta, Cu, Zn, Zr, Hf, W, M
n, Ag, Re, Sb, Sn, Rh, Ru, Ir, P
It may contain t, Au, Ti, Al, B, Si, Ge, Se, Ta or the like. These different elements are usually 5% by weight,
It can be contained preferably in a range not exceeding 1% by weight.

【0028】さらにはアルカリ金属化合物及びアルカリ
土類金属化合物から選ばれる少なくとも一員を含むもの
は反応活性が高くなるなどの利点がある。アルカリ金
属、アルカリ土類金属は通常0.01〜30重量%、好
ましくは0.01〜5重量%の範囲から選ばれる。これ
らの異種元素、アルカリ金属、アルカリ土類金属化合物
などは結晶格子間に少量、侵入したり、結晶格子金属の
一部と置換していてもよい。また、アルカリ金属及び/
又はアルカリ土類金属化合物は、触媒調製時にパラジウ
ム化合物、ルテニウム化合物、あるいはXの化合物を含
む溶液に加えておき担体に吸着あるいは付着させてもよ
いし、あらかじめこれらを担持した担体を利用して触媒
を調製することもできる。また、反応条件下に反応系に
添加することも可能である。
Further, those containing at least one member selected from alkali metal compounds and alkaline earth metal compounds are advantageous in that the reaction activity becomes high. The alkali metal and alkaline earth metal are usually selected in the range of 0.01 to 30% by weight, preferably 0.01 to 5% by weight. A small amount of these different elements, alkali metals, alkaline earth metal compounds, etc. may penetrate into the crystal lattice or may be substituted with a part of the crystal lattice metal. Also, alkali metal and /
Alternatively, the alkaline earth metal compound may be added to a solution containing a palladium compound, a ruthenium compound, or a compound of X at the time of catalyst preparation and adsorbed or adhered to a carrier, or a carrier supporting these in advance may be used as a catalyst. Can also be prepared. It is also possible to add it to the reaction system under the reaction conditions.

【0029】これらの触媒構成要素は単独にあるいはシ
リカ、アルミナ、シリカアルミナ、チタン、炭酸塩、水
酸化物、活性炭、ジルコニアなどの担体に担持されたも
のがよい。本発明におけるパラジウムおよび/またはル
テニウム担持触媒の担持量は、特に限定はないが、通常
0.1〜20重量%、好ましくは1〜10重量%であ
り、アルカリ金属化合物もしくはアルカリ土類金属化合
物を使用する場合、担持量は、通常、0.01〜30重
量%、好ましくは0.01〜15重量%である。
These catalyst constituents may be supported alone or on a carrier such as silica, alumina, silica-alumina, titanium, carbonate, hydroxide, activated carbon or zirconia. The amount of the palladium- and / or ruthenium-supported catalyst supported in the present invention is not particularly limited, but is usually 0.1 to 20% by weight, preferably 1 to 10% by weight, and the amount of alkali metal compound or alkaline earth metal compound When used, the supported amount is usually 0.01 to 30% by weight, preferably 0.01 to 15% by weight.

【0030】本発明の触媒は公知の調製方法で準備する
ことができる。代表的な触媒調製方法について説明すれ
ば、たとえば、可溶性の鉛化合物および塩化パラジウム
などの可溶性のパラジウム塩を含む水溶液に担体を加え
て加温含浸させ、パラジウム、鉛を含浸する。ついでホ
ルマリン、ギ酸、ヒドラジンあるいは水素ガスなどで還
元する。この例で示すならば、パラジウムを担持する前
に鉛を担持してもよいし、パラジウムと鉛を同時に担持
してもよい。
The catalyst of the present invention can be prepared by a known preparation method. A typical catalyst preparation method will be described. For example, a carrier is added to an aqueous solution containing a soluble lead compound and a soluble palladium salt such as palladium chloride, and the mixture is warmed and impregnated with palladium and lead. Then, it is reduced with formalin, formic acid, hydrazine or hydrogen gas. In this example, lead may be loaded before loading palladium, or palladium and lead may be loaded simultaneously.

【0031】触媒調製のために用いられるパラジウム化
合物及びルテニウム化合物は、例えば蟻酸塩、酢酸塩な
どの有機酸塩、硫酸塩、塩酸塩、硝酸塩のごとき無機酸
塩、アンミン錯体、ベンゾニトリル錯体、アセチルアセ
トナート錯体、カルボニル錯体などの有機金属錯体、酸
化物、水酸化物などのなかから適宜選ばれるが、パラジ
ウム化合物としては塩化パラジウム、酢酸パラジウムな
どが、ルテニウム化合物としては塩化ルテニウムなどが
好ましい。
The palladium compound and ruthenium compound used for preparing the catalyst include organic acid salts such as formate salts and acetate salts, inorganic acid salts such as sulfates, hydrochlorides and nitrates, ammine complexes, benzonitrile complexes and acetyl compounds. It is appropriately selected from organic metal complexes such as an acetonate complex and a carbonyl complex, oxides, hydroxides and the like. Palladium compounds such as palladium chloride and palladium acetate are preferred, and ruthenium compounds such as ruthenium chloride are preferred.

【0032】Xの化合物としては硝酸塩、酢酸塩などの
無機塩、ホスフィン錯体など有機金属錯体を用いること
ができ、硝酸塩、酢酸塩などが好適である。またアルカ
リ金属化合物、アルカリ土類金属化合物についても有機
酸塩、無機酸塩、水酸化物などから選ばれる。触媒の使
用量は、反応原料の種類、触媒の組成や調製法、反応条
件、反応形式などによって大巾に変更することができ、
特に限定はないが、触媒をスラリー状態で反応させる場
合には反応液1リットル中に0.04〜0.5kg使用
するのが好ましい。
As the compound of X, inorganic salts such as nitrates and acetates and organic metal complexes such as phosphine complexes can be used, and nitrates and acetates are preferable. The alkali metal compound and alkaline earth metal compound are also selected from organic acid salts, inorganic acid salts, hydroxides and the like. The amount of the catalyst used can be widely changed depending on the type of reaction raw material, the composition and preparation method of the catalyst, the reaction conditions, the reaction format, etc.
Although not particularly limited, when the catalyst is reacted in the slurry state, it is preferable to use 0.04 to 0.5 kg in 1 liter of the reaction liquid.

【0033】本発明の反応は、反応系にアルカリ金属も
しくはアルカリ土類金属の化合物(例えば、酸化物、水
酸化物、炭酸塩、カルボン酸塩など)を添加して反応系
のpHを6〜9に保持することが好ましい。特にpHを
6以上にすることで触媒中のX成分の溶解を防ぐ効果が
ある。これらのアルカリ金属もしくはアルカリ土類金属
の化合物は単独もしくは二種以上組み合わせて使用する
ことができる。本発明反応は、100℃以上の高温でも
実施できるが、好ましくは30〜100℃、さらに好ま
しくは60〜90℃である。反応時間は特に限定される
ものではなく、設定した条件により異なるので一義的に
は決められないが 通常1〜20時間である。
In the reaction of the present invention, the pH of the reaction system is adjusted to 6 to 6 by adding an alkali metal or alkaline earth metal compound (eg, oxide, hydroxide, carbonate, carboxylate, etc.) to the reaction system. It is preferable to hold at 9. Particularly, setting the pH to 6 or higher has the effect of preventing the dissolution of the X component in the catalyst. These alkali metal or alkaline earth metal compounds can be used alone or in combination of two or more. The reaction of the present invention can be carried out at a high temperature of 100 ° C or higher, but is preferably 30 to 100 ° C, more preferably 60 to 90 ° C. The reaction time is not particularly limited and cannot be uniquely determined because it depends on the set conditions, but it is usually 1 to 20 hours.

【0034】以下、実施例をもって本発明の実施の形態
を具体的に説明する。担体として富士シリシア社製のシ
リカゲル(キャリアクト10 商品名 平均粒子径 5
0μm)にパラジウム5重量%、鉛5重量%、マグネシ
ウム4重量%を担持した触媒3750gを、液相部が3
0リットルのステンレス製外部循環型気泡塔反応器に仕
込み、34重量%のメタクロレイン/メタノールを1
3.5リットル/h、NaOH/メタノールを1.5リ
ットル/hで供給し、温度80℃、圧力5.0kg/c
2で空気を供給しながら反応を行った。
The embodiments of the present invention will be specifically described below with reference to examples. Silica gel manufactured by Fuji Silysia Ltd. as a carrier (Carrieract 10 trade name average particle size 5
0 μm), 3750 g of a catalyst carrying 5% by weight of palladium, 5% by weight of lead and 4% by weight of magnesium in a liquid phase part
A 0 liter stainless steel external circulation bubble column reactor was charged with 34 wt% of methacrolein / methanol.
3.5 liter / h, NaOH / methanol at 1.5 liter / h, temperature 80 ° C, pressure 5.0 kg / c
The reaction was carried out while supplying air at m 2 .

【0035】反応液のpHが7.1となるようにNaO
H濃度調製し、また、供給原料液中の鉛濃度が20pp
mとなるように酢酸鉛をメタクロレイン/メタノールに
溶かして連続的に供給した。一方、反応器出口酸素濃度
は、4モル%(酸素分圧0.20kg/cm2)となる
ように空気量を調整しながら反応器に空気を供給した。
反応器の概略図を図1に示す。反応器には接地を取っ
た。
NaO is added so that the pH of the reaction solution becomes 7.1.
The H concentration was adjusted, and the lead concentration in the feedstock liquid was 20 pp.
Lead acetate was dissolved in methacrolein / methanol so as to be m and continuously supplied. On the other hand, air was supplied to the reactor while adjusting the amount of air so that the oxygen concentration at the outlet of the reactor was 4 mol% (oxygen partial pressure 0.20 kg / cm 2 ).
A schematic diagram of the reactor is shown in FIG. The reactor was grounded.

【0036】滞留あるいは固着していた触媒と本件発明
に従って適切に排出し触媒の反応成績の評価は、以下の
ように行った。電磁誘導撹拌器付き60mlのステンレ
ス製オートクレーブに触媒4.0g、原料として、メタ
クロレイン濃度が20重量%のメタノールを30ml加
え、滞留時間3時間となる様にメタクロレイン濃度20
重量%のメタノールを連続的に供給し、温度80℃、圧
力4kg/cm2、回転数1000rpm(撹拌チップ
速度:1.2m/s)、pH7となるようにNaOH/
メタノール溶液を、出口酸素濃度8%となる様に、空気
および窒素を供給し、連続反応を約200時間行った。
The reaction results of the catalyst that had stagnated or adhered and the catalyst appropriately discharged according to the present invention were evaluated as follows. To a 60 ml stainless steel autoclave equipped with an electromagnetic induction stirrer, 4.0 g of a catalyst and 30 ml of methanol having a methacrolein concentration of 20% by weight as a raw material were added, and a methacrolein concentration of 20% was added so that a residence time was 3 hours.
By continuously supplying wt% of methanol, a temperature of 80 ° C., a pressure of 4 kg / cm 2 , a rotation speed of 1000 rpm (stirring tip speed: 1.2 m / s), and NaOH / so that the pH was 7 were obtained.
Air and nitrogen were supplied to the methanol solution so that the outlet oxygen concentration was 8%, and the continuous reaction was carried out for about 200 hours.

【0037】不飽和アルデヒド転化率(モル%)、不飽
和カルボン酸エステル選択率(モル%)は以下のように
評価した。反応液ならびに反応器出口ガスの分析は、通
常のガスクロマトグラム法にて、島津製作所製GC−8
A型機に化学品検査協会製G−100カラム(ほぼ沸点
順に溶出する)を装着し、恒温槽をプログラム昇温させ
て、水素炎検出器(FID)を用いて行った。
The conversion of unsaturated aldehyde (mol%) and the selectivity of unsaturated carboxylic acid ester (mol%) were evaluated as follows. The reaction solution and the gas at the outlet of the reactor are analyzed by an ordinary gas chromatogram method using a GC-8 manufactured by Shimadzu Corporation.
The A-100 machine was equipped with a G-100 column manufactured by the Chemicals Inspection Association (eluting in almost the order of boiling points), the temperature of the thermostat was programmed, and the hydrogen flame detector (FID) was used.

【0038】[0038]

【実施例1】反応器内面がJIS B0601で測定さ
れる表面粗さの値として100μm以下になるように研
磨した反応器を用いて、反応を240時間連続して行っ
た。その後、吹き込みガスを窒素に切り替えて触媒スラ
リーの流動は維持し、反応温度を室温までさげ、反応圧
力を大気圧まで下げた。触媒スラリーを、流動させたま
ま、反応器下部から自然落下させた。反応器内に残留し
ていた触媒は、上記排出作業の直後にメタノールで洗浄
して回収した。反応成績評価後、水置換して重量を測っ
たところ9.5gであった。反応器壁面に触媒の固着は
見られなかった。排出触媒はメタノール中で保存し、滞
留していた9.5gの触媒と共に、再スタート時に反応
器に戻した。再スタートをかけて50時間後(合計29
0時間)の反応成績を、41時間、235時間の反応成
績と共に表1にまとめた。触媒スラリーとして抜き出し
た触媒と、滞留していた触媒(滞留触媒1とする)の反
応成績は表2にまとめた。
Example 1 The reaction was continuously carried out for 240 hours using a reactor whose inner surface was polished so that the surface roughness value measured according to JIS B0601 was 100 μm or less. Then, the blowing gas was switched to nitrogen, the flow of the catalyst slurry was maintained, the reaction temperature was lowered to room temperature, and the reaction pressure was lowered to atmospheric pressure. The catalyst slurry was allowed to fall from the bottom of the reactor while keeping it flowing. The catalyst remaining in the reactor was washed with methanol and recovered immediately after the discharging work. After the evaluation of the reaction results, the weight was measured by substituting with water and found to be 9.5 g. No catalyst adhered to the wall of the reactor. The discharged catalyst was stored in methanol and returned to the reactor at the time of restart together with the remaining 9.5 g of the catalyst. 50 hours after restart (29 in total)
The reaction results for 0 hour) are summarized in Table 1 together with the reaction results for 41 hours and 235 hours. Table 2 shows the reaction results of the catalyst extracted as the catalyst slurry and the retained catalyst (retained catalyst 1).

【0039】[0039]

【表1】 [Table 1]

【0040】[0040]

【表2】 [Table 2]

【0041】[0041]

【比較例1】触媒スラリーを排出する際、窒素の供給を
止めて流動させなかった以外は、実施例1と同様の反応
器で同様の反応を行った。反応時間228時間で反応停
止後、反応器内を点検したところ、反応器底面水平部分
に触媒が大量に残留しており、ちいさなスコップを用い
て数回でほぼ全量すくいだした。実験室内は室温15℃
〜20℃でメタノールやメタクロレインが揮発する温度
ではなかったが、触媒は、スコップ上にある間から速や
かに乾燥し、スコップ底面は手で触れないほど熱くなっ
ていた。安全のため室温まで冷ました後、実施例1と同
様に小スケールで反応成績を比較し、その後、重量を測
定したところ、235.8gで、投入触媒に対して6.
3%であった。回収した触媒を全量反応器に戻して再度
上記大型反応器で反応を再開した。再スタートをかけて
67時間後(合計295時間)の反応成績を、38時
間、220時間の反応成績と共に表3にまとめた。触媒
スラリーとして抜き出した触媒と、滞留していた触媒
(滞留触媒2とする)の反応成績は表4にまとめた。
Comparative Example 1 When discharging the catalyst slurry, the same reaction was performed in the same reactor as in Example 1 except that the supply of nitrogen was stopped and the flow was stopped. After stopping the reaction at a reaction time of 228 hours, when the inside of the reactor was inspected, a large amount of the catalyst remained in the horizontal portion of the bottom surface of the reactor, and almost the entire amount was scooped with a small scoop several times. Room temperature 15 ℃ in the laboratory
Although it was not at a temperature of -20 ° C at which methanol and methacrolein volatilize, the catalyst dried quickly while it was on the scoop, and the bottom of the scoop was so hot that it could not be touched. After cooling to room temperature for safety, the reaction results were compared on a small scale as in Example 1, and then the weight was measured to be 235.8 g, which was 6.
It was 3%. The whole amount of the recovered catalyst was returned to the reactor and the reaction was restarted again in the large reactor. The reaction results 67 hours after the restart (295 hours in total) are summarized in Table 3 together with the reaction results of 38 hours and 220 hours. Table 4 shows the reaction results of the catalyst extracted as the catalyst slurry and the catalyst that remained (retained catalyst 2).

【0042】[0042]

【表3】 [Table 3]

【0043】[0043]

【表4】 [Table 4]

【0044】[0044]

【比較例2】反応器上部の気泡塔本体とコンデンサ−接
続部の溶接部分を研磨しなかった以外は実施例1と同様
に反応を行った。213時間反応後、触媒スラリーを実
施例1と同様に排出し、滞留した触媒はメタノールで洗
浄して回収した。反応器内を点検すると、接続部の溶接
部分に沿って、ハチマキ状に触媒が固着しており、発火
する危険もあったため、固着個所に部分的に細いチュー
ブで窒素を吹きかけながら、こそげ落とすようにして回
収した。固着触媒は白い固形状の物質と共に塊となって
いたので、重量はその白色固体を含めた値であるが、4
8.5gであった。
Comparative Example 2 A reaction was carried out in the same manner as in Example 1 except that the welded portion of the bubble column main body above the reactor and the condenser-connecting portion was not polished. After reacting for 213 hours, the catalyst slurry was discharged in the same manner as in Example 1, and the retained catalyst was washed with methanol and collected. When the inside of the reactor was inspected, the catalyst adhered in a bead-like shape along the welded part of the connection part, and there was a risk of ignition.Therefore, blow nitrogen with a thin tube to the adhered part and remove it. And collected. Since the fixed catalyst was agglomerated with a white solid substance, the weight is the value including the white solid.
It was 8.5 g.

【0045】固着触媒を実施例1と同様に小スケールで
反応成績を比較し、その後、白色固体を一部けずりとり
分析したところ、ナトリウムが検出され、カルボニルに
由来する赤外吸収も認められたことから、メタクリル酸
ナトリウム、炭酸ナトリウムなどのナトリウム塩類、メ
タクロレイン、メタクリル酸メチル、メタクリル酸など
の重合物が想定された。回収した触媒は白色固体も含め
て全量反応器に戻して再度上記大型反応器で反応を再開
した。再スタートをかけて71時間後(合計284時
間)の反応成績を、52時間、284時間の反応成績と
共に表5にまとめた。触媒スラリーとして抜き出した触
媒と、滞留していた触媒(滞留触媒3とする)の反応成
績は表6にまとめた。
The reaction results of the fixed catalysts were compared on a small scale as in Example 1, and then a white solid was partially scraped and analyzed. As a result, sodium was detected and carbonyl-derived infrared absorption was also observed. Therefore, sodium salts such as sodium methacrylate and sodium carbonate, and polymers such as methacrolein, methyl methacrylate, and methacrylic acid were assumed. The total amount of the recovered catalyst, including the white solid, was returned to the reactor and the reaction was restarted again in the large reactor. The reaction results 71 hours after the restart (284 hours in total) are summarized in Table 5 together with the reaction results of 52 hours and 284 hours. Table 6 shows the reaction results of the catalyst extracted as the catalyst slurry and the catalyst that remained (retained catalyst 3).

【0046】[0046]

【表5】 [Table 5]

【0047】[0047]

【表6】 [Table 6]

【0048】[0048]

【発明の効果】本発明の製造方法によれば、高い不飽和
カルボン酸エステル生産速度と高い不飽和アルデヒド転
化率を長期に渡り安定して維持できるのみならず、反応
器の損傷や触媒の発火の危険性を排除でき、プラントの
安全操業も確保でき、工業的有用性が高い。
EFFECTS OF THE INVENTION According to the production method of the present invention, not only a high unsaturated carboxylic acid ester production rate and a high unsaturated aldehyde conversion rate can be stably maintained for a long period of time, but also reactor damage and catalyst ignition occur. It is possible to eliminate the danger of, and to secure the safe operation of the plant, and it has high industrial utility.

【図面の簡単な説明】[Brief description of drawings]

【図1】図1は、本発明に使用の反応器である。FIG. 1 is a reactor used in the present invention.

【符号の説明】[Explanation of symbols]

1 コンデンサー 2 気泡反応器、 3 フランジ、 4 スラリー循環ダウンカマー、 5 酸素を含むガス 1 condenser 2 bubble reactor, 3 flanges, 4 slurry circulation downcomer, Gas containing oxygen

───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 4H006 AA02 AC46 AC48 BA07 BA09 BA11 BA13 BA23 BA25 BE30 KA06 KE00 4H039 CA65 CA66 CC30 CD10 CD30 CL25    ─────────────────────────────────────────────────── ─── Continued front page    F-term (reference) 4H006 AA02 AC46 AC48 BA07 BA09                       BA11 BA13 BA23 BA25 BE30                       KA06 KE00                 4H039 CA65 CA66 CC30 CD10 CD30                       CL25

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】 酸素の存在下で不飽和アルデヒドとアル
コールを触媒と反応させて不飽和カルボン酸エステルを
製造する方法において、反応器に残留する触媒が、反応
に投入した触媒の重量に対して3重量%以下となるよう
に排出することを特徴とする不飽和カルボン酸エステル
の製造方法。
1. A method for producing an unsaturated carboxylic acid ester by reacting an unsaturated aldehyde and an alcohol with a catalyst in the presence of oxygen, wherein the catalyst remaining in the reactor is relative to the weight of the catalyst added to the reaction. A method for producing an unsaturated carboxylic acid ester, which comprises discharging so as to be 3% by weight or less.
【請求項2】 反応が、反応器の運転を休止したのち、
再び反応を開始することを特徴とする請求項1に記載の
不飽和カルボン酸エステルの製造方法。
2. The reaction, after shutting down the reactor,
The method for producing an unsaturated carboxylic acid ester according to claim 1, wherein the reaction is started again.
【請求項3】 反応が、反応器内を洗浄することにより
触媒を排出する請求項1又は2に記載の不飽和カルボン
酸エステルの製造方法。
3. The process for producing an unsaturated carboxylic acid ester according to claim 1, wherein the reaction discharges the catalyst by washing the inside of the reactor.
【請求項4】 反応が、反応器を反応液、触媒スラリ
ー、アルコールまたは水の少なくとも一つで洗浄する請
求項3に記載の不飽和カルボン酸エステルの製造方法。
4. The method for producing an unsaturated carboxylic acid ester according to claim 3, wherein in the reaction, the reactor is washed with at least one of a reaction solution, a catalyst slurry, alcohol and water.
【請求項5】 反応が、反応器の接液部への触媒の付着
を防止する請求項1ないし4に記載の不飽和カルボン酸
エステルの製造方法。
5. The method for producing an unsaturated carboxylic acid ester according to claim 1, wherein the reaction prevents the catalyst from adhering to the liquid contact part of the reactor.
【請求項6】 反応が、反応器の運転休止直後の反応器
の接液部における触媒の付着量が、反応器に投入した触
媒の重量に対して3重量%以下である請求項1ないし5
に記載の不飽和カルボン酸エステルの製造方法。
6. The reaction, wherein the amount of catalyst adhering to the liquid contact portion of the reactor immediately after the reactor is stopped is 3% by weight or less based on the weight of the catalyst charged into the reactor.
The method for producing an unsaturated carboxylic acid ester according to 1.
【請求項7】 該触媒がパラジウムおよび/またはルテ
ニウムとX(Xは鉛、ビスマス、水銀、タリウムから選
ばれる少なくとも1種類以上の金属を示す)を含む触媒
であることを特徴とする請求項1ないし6記載の不飽和
カルボン酸エステルの製造方法。
7. The catalyst comprising palladium and / or ruthenium and X (X represents at least one metal selected from lead, bismuth, mercury, and thallium), and the catalyst is characterized in that: 7. A method for producing an unsaturated carboxylic acid ester according to any one of 6 to 6.
【請求項8】 不飽和アルデヒドがアクロレイン又はメ
タクロレインで、アルコールがメタノールである請求項
1ないし7記載の不飽和カルボン酸エステルの製造方
法。
8. The method for producing an unsaturated carboxylic acid ester according to claim 1, wherein the unsaturated aldehyde is acrolein or methacrolein and the alcohol is methanol.
JP2002067179A 2002-03-12 2002-03-12 Method for producing unsaturated carboxylic acid ester Expired - Lifetime JP4115719B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002067179A JP4115719B2 (en) 2002-03-12 2002-03-12 Method for producing unsaturated carboxylic acid ester

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002067179A JP4115719B2 (en) 2002-03-12 2002-03-12 Method for producing unsaturated carboxylic acid ester

Publications (2)

Publication Number Publication Date
JP2003267922A true JP2003267922A (en) 2003-09-25
JP4115719B2 JP4115719B2 (en) 2008-07-09

Family

ID=29198652

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002067179A Expired - Lifetime JP4115719B2 (en) 2002-03-12 2002-03-12 Method for producing unsaturated carboxylic acid ester

Country Status (1)

Country Link
JP (1) JP4115719B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023025676A1 (en) 2021-08-23 2023-03-02 Röhm Gmbh Preparing a catalyst for the oxidative esterification of methacrolein into methyl methacrylate to extend service life

Also Published As

Publication number Publication date
JP4115719B2 (en) 2008-07-09

Similar Documents

Publication Publication Date Title
US7524988B2 (en) Preparation of acetic acid
JP4846576B2 (en) Palladium-containing catalyst and method for producing the same
JPWO2004037410A1 (en) Carbon interstitial palladium metal, palladium catalyst, production method thereof, and production method of α, β-unsaturated carboxylic acid
US7485749B2 (en) Preparation of acetic acid
WO2006054643A1 (en) Oxidation catalyst and oxidation method
JP2003267922A (en) Method for producing unsaturated carboxylic acid ester
JPH01110643A (en) Removal of halide from carboxylic acid
WO2008153708A2 (en) Reaction product of rhodium-catalyzed methanol carbonylation
JP2009198179A (en) Holding tub of aromatic carboxylic acid containing composition, and manufacturing method of aromatic carboxylic acid using the same
JP2002035575A (en) Method for stopping refining column
JP2007090164A (en) NOBLE METAL-CONTAINING CATALYST, ITS MANUFACTURING METHOD, AND MANUFACTURING METHOD OF alpha,beta-UNSATURATED CARBOXYLIC ACID AND alpha,beta-UNSATURATED CARBOXYLIC ACID ANHYDRIDE USING THE SAME
JP4114913B2 (en) Method for producing unsaturated carboxylic acid ester
JP2007185633A (en) PALLADIUM-CONTAINING CATALYSTS, METHOD OF PRODUCING THE SAME AND METHOD OF PRODUCING alpha, beta-UNSATURATED CARBOXYLIC ACID
JP4846625B2 (en) Palladium-containing catalyst, method for producing the same, and method for producing α, β-unsaturated carboxylic acid
JP4995479B2 (en) Process for producing α, β-unsaturated carboxylic acid and acid anhydride having α, β-unsaturated carboxylic acid skeleton
JP2007044607A (en) Noble metal-containing catalyst and method for producing alpha,beta-unsaturated carboxylic acid and alpha,beta-unsaturated carboxylic acid anhydride by using the same
JP4829730B2 (en) Method for producing palladium-containing supported catalyst
JP2011235215A (en) METHOD FOR PRODUCING PALLADIUM-CONTAINING CARRYING CATALYST, THE CATALYST, AND METHOD FOR PRODUCING α,β-UNSATURATED CARBOXYLIC ACID
JP2005218953A (en) PALLADIUM-CONTAINING CATALYST, MANUFACTURING METHOD THEREFOR AND METHOD FOR PRODUCING alpha, beta-UNSATURATED CARBOXYLIC ACID
JP4127522B2 (en) Continuous process for the production of carboxylic acid esters
JP4911361B2 (en) Palladium-containing catalyst, method for producing the same, and method for producing α, β-unsaturated carboxylic acid
JP5645050B2 (en) Palladium-containing supported catalyst, method for producing the same, and method for producing α, β-unsaturated carboxylic acid
JP5609394B2 (en) Method for producing palladium-containing supported catalyst and method for producing α, β-unsaturated carboxylic acid
JP2003164817A (en) Method of cleaning and removing easily polymerizable compound
JP2004137173A (en) Method for starting unsaturated carboxylate synthesis reaction

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20031006

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050223

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080109

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080115

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20080310

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080310

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080415

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080416

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110425

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4115719

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110425

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110425

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110425

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110425

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120425

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120425

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130425

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130425

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140425

Year of fee payment: 6

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term