JP2003266949A - Phase change type optical information recording medium and manufacturing method therefor - Google Patents

Phase change type optical information recording medium and manufacturing method therefor

Info

Publication number
JP2003266949A
JP2003266949A JP2002077228A JP2002077228A JP2003266949A JP 2003266949 A JP2003266949 A JP 2003266949A JP 2002077228 A JP2002077228 A JP 2002077228A JP 2002077228 A JP2002077228 A JP 2002077228A JP 2003266949 A JP2003266949 A JP 2003266949A
Authority
JP
Japan
Prior art keywords
layer
optical information
recording
recording medium
information recording
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002077228A
Other languages
Japanese (ja)
Other versions
JP4021691B2 (en
Inventor
Masaru Magai
勝 真貝
Kiyoto Shibata
清人 柴田
Katsunari Hanaoka
克成 花岡
Yuji Miura
裕司 三浦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ricoh Co Ltd
Original Assignee
Ricoh Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ricoh Co Ltd filed Critical Ricoh Co Ltd
Priority to JP2002077228A priority Critical patent/JP4021691B2/en
Publication of JP2003266949A publication Critical patent/JP2003266949A/en
Application granted granted Critical
Publication of JP4021691B2 publication Critical patent/JP4021691B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a phase change type optical information recording medium making it possible to reduce or eliminate an initializing process time, and a manufacturing method therefor. <P>SOLUTION: (1) The phase change type optical information recording medium is formed by laminating at least a first dielectric layer, a recording layer, a second dielectric layer and a reflecting layer sequentially on a base. The recording layer has a first recording layer (crystallization accelerating layer) containing Ge and a second recording layer constituted mainly of SbTe having a composition ratio approximate to a eutectic composition (70≤Sb≤80 and 20≤Te≤30 in atom.%), and the reflectance before the start of recording is 60% or more of that after the recording. (2) In the manufacturing method of the phase change type optical information recording medium formed by laminating at least the first dielectric layer, the recording layer, the second dielectric layer and the reflecting layer sequentially on the base, the base is heated to a temperature lower than the deflection temperature under load of a base material on the occasion of forming the second recording layer in the case when the recording layer has the first recording layer (crystallization accelerating layer) and the second recording layer. <P>COPYRIGHT: (C)2003,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、アドレス信号が認
識可能な程度に成膜後の反射率が高く、レーザーを用い
た初期化を無くすか又は軽減できる相変化型光情報記録
媒体、及びその製造方法に関する。更に詳しくは、結晶
化度の高い記録膜を形成するための第一記録層(結晶化
促進層)を設け、記録前後の反射率差を小さくした相変
化型光情報記録媒体、及びその製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a phase change type optical information recording medium having a high reflectance after film formation to the extent that an address signal can be recognized and eliminating or reducing initialization using a laser, and a method thereof. It relates to a manufacturing method. More specifically, a phase change type optical information recording medium in which a first recording layer (crystallization promoting layer) for forming a recording film having high crystallinity is provided to reduce the reflectance difference before and after recording, and a method for manufacturing the same. Regarding

【0002】[0002]

【従来の技術】相変化型光情報記録媒体は、一般に、プ
ラスチック基板/誘電体材料層/カルコゲン系相変化記
録層/誘電体材料層/Al又はAg系合金からなる冷却
反射層という、基板と4層の機能性薄膜からなる層構成
を持っている。ここで用いられているカルコゲン系相変
化記録層は熱履歴により結晶と非結晶の構造をとる。通
常は、情報記録前に反射率の高い結晶状態となってい
て、情報記録により反射率の低い非結晶のマークが形成
される。生産工程上は、各層の成膜プロセスが終了した
時点では非結晶の状態であり、反射率が低く情報を書き
込むためのアドレス情報が読み取れないので、レーザー
光を照射することにより加熱し結晶状態に変化させて出
荷される。この結晶化状態に変化させるプロセスは初期
化プロセスと呼ばれている。
2. Description of the Related Art A phase change type optical information recording medium is generally called a plastic substrate / dielectric material layer / chalcogen phase change recording layer / dielectric material layer / cooling reflection layer made of Al or Ag alloy. It has a layered structure consisting of four layers of functional thin films. The chalcogen-based phase change recording layer used here has a crystalline or amorphous structure due to thermal history. Usually, a crystalline state having high reflectance is recorded before information recording, and an amorphous mark having low reflectance is formed by information recording. In the production process, when the film formation process for each layer is completed, the layer is in an amorphous state, and the reflectance is low and the address information for writing information cannot be read. It is shipped after being changed. The process of changing to the crystallized state is called the initialization process.

【0003】初期化の方法には、半導体レーザーによる
方法(特許第2892818号公報)が最も多用されて
いる。但し、この初期化プロセスは、光情報記録媒体作
製プロセス上、他の工程と比べて時間が長くかかるの
で、初期化装置を数多く設置しなければならないなどの
問題を抱えている。そこで、時間を短縮する方法とし
て、半導体レーザー・アレイによる方法(特開平10−
112065号公報)、フラッシュランプによる方法
(特許第02846129号公報)などが考案されてい
る。しかし、フラッシュランプによる方法は基板を加熱
してしまい、基板自体に変形を起こさせてしまう可能性
があるので、その対策として、基板の吸収波長領域を減
衰させるフィルターを介して光照射を行うという方法が
取られている(特開平10−188363号公報)。
A method using a semiconductor laser (Japanese Patent No. 2892818) is most frequently used as an initialization method. However, this initialization process takes a longer time than other steps in the process of manufacturing the optical information recording medium, and thus has a problem that many initialization devices must be installed. Therefore, as a method of shortening the time, a method using a semiconductor laser array (Japanese Patent Laid-Open No. 10-
112065), a method using a flash lamp (Japanese Patent No. 02846129), and the like. However, the method using a flash lamp may heat the substrate and cause the substrate itself to be deformed.As a countermeasure against this, light irradiation is performed through a filter that attenuates the absorption wavelength region of the substrate. A method has been adopted (Japanese Patent Laid-Open No. 10-188363).

【0004】また、特開2001−297482号公報
には、初期設定段階又はプレディング段階を使用するこ
となく使用され得る相変化型の再書き込み可能な光学式
記録素子として、記録層が2つのサブ層からなるものが
開示されている。しかし、この公報に具体的に開示され
ているのは、実質的にSbからなるサブ層とTeIn
からなるサブ層の組み合わせのみであり、しかも実施例
(例1)によれば、SbターゲットとTeIn0.37
ターゲットを用いて記録ディスクを作成したところ、反
射率は約7%で、記録のために十分なトラッキングを可
能にするには低すぎ、16時間室温で保持したところ反
射率が10.5%まで増加したと記載されている(〔0
035〕〜〔0036〕参照)。この記載からみて、こ
の公報に記載されたような通常のスパッタリングによる
方法では、記録膜作成後に室温保持という処理を加えな
ければ満足な反射率を有する素子(媒体)が得られない
と解される。しかも、この公報には、本発明の必須の構
成要件であるGeを含む第一記録層と共晶系組成近傍の
組成比のSbTeを主成分とする第二記録層からなる記
録層を有し、実用上十分な反射率を有する相変化型光情
報記録媒体について全く記載がなく、このような媒体を
通常のスパッタリングで製造できること、更には、より
高い反射率の媒体を得るため、第二記録層成膜時に基板
材料の過重たわみ温度未満の温度に基板を加熱すること
などについて記載も示唆もされていない。
Further, Japanese Patent Laid-Open No. 2001-297482 discloses a phase change type rewritable optical recording element which can be used without using an initial setting step or a predating step. Layers are disclosed. However, what it is specifically disclosed in this publication, sublayer consisting essentially of Sb and TEIn m
According to the embodiment (Example 1), only Sb target and TeIn 0.37 are used.
When a recording disk was created using the target, the reflectance was about 7%, which was too low to enable sufficient tracking for recording, and when kept at room temperature for 16 hours, the reflectance was up to 10.5%. It is stated that the number has increased ([0
035] to [0036]). From this description, it is understood that the ordinary sputtering method as described in this publication cannot obtain an element (medium) having a satisfactory reflectance unless a treatment of keeping the room temperature after the recording film is formed. . Moreover, this publication has a recording layer composed of a first recording layer containing Ge, which is an essential constituent of the present invention, and a second recording layer containing SbTe as a main component in a composition ratio near the eutectic composition. , There is no description about a phase change type optical information recording medium having practically sufficient reflectance, that such a medium can be manufactured by ordinary sputtering, and further, in order to obtain a medium with higher reflectance, the second recording There is no description or suggestion of heating the substrate to a temperature below the over-deflection temperature of the substrate material during layer formation.

【0005】[0005]

【発明が解決しようとする課題】本発明は、レーザー光
を照射して加熱することにより記録層の物性(結晶状態
と非結晶状態)を変えて記録マークを作り、記録マーク
部と他の部分との状態の違いに起因する読み出しレーザ
ー光の反射率の違いを利用する相変化型光情報記録媒体
において、初期化プロセス・タイムを軽減するか又は無
くすことが出来る記録媒体及びその製造方法、即ち、記
録媒体を構成する各層の成膜プロセス後において、従来
のような(完全な)初期化プロセスを実施しなくても、
記録層が結晶化した高い反射率を有する記録媒体及びそ
の製造方法の提供を目的とする。
SUMMARY OF THE INVENTION According to the present invention, a recording mark is formed by changing the physical properties (crystalline state and amorphous state) of a recording layer by irradiating a laser beam and heating to form a recording mark portion and other portions. In a phase-change type optical information recording medium utilizing the difference in the reflectance of the read laser light due to the difference in the state of the recording medium, a recording medium capable of reducing or eliminating the initialization process time, and a manufacturing method thereof, that is, After the film forming process of each layer constituting the recording medium, the conventional (complete) initialization process is not necessary.
An object of the present invention is to provide a recording medium having a high reflectance in which the recording layer is crystallized and a method for manufacturing the recording medium.

【0006】[0006]

【課題を解決するための手段】上記課題は、次の1)〜
10)の発明によって解決される。 1) 基板上に少なくとも第一誘電体層、記録層、第二
誘電体層、反射層を順次積層した光情報記録媒体であっ
て、記録層が、Geを含む第一記録層(結晶化促進
層)、及び共晶系組成近傍の組成比のSbTe(原子%
で、70≦Sb≦80、20≦Te≦30)を主成分と
する第二記録層を有し、記録開始前の反射率が記録後の
反射率の60%以上であることを特徴とする相変化型光
情報記録媒体。 2) Geを含む第一記録層の中に、Geの組成比より
も少ない量のBiを含むことを特徴とする1)記載の相
変化型光情報記録媒体。 3) Geを含む第一記録層が、Ge層と、これよりも
薄いBi層の二層からなることを特徴とする1)記載の
相変化型光情報記録媒体。 4) 記録開始前の反射率が記録後の反射率の80%以
上であることを特徴とする1)〜3)の何れかに記載の
相変化型光情報記録媒体。 5) 基板上に少なくとも第一誘電体層、記録層、第二
誘電体層、反射層を順次積層した光情報記録媒体の製造
方法であって、該記録層が、第一記録層(結晶化促進
層)、第二記録層を有する場合において、第二記録層成
膜時に、基板材料の過重たわみ温度未満の温度に基板を
加熱することを特徴とする相変化型光情報記録媒体の製
造方法。 6) 基板上に少なくとも第一誘電体層、記録層、第二
誘電体層、反射層を順次積層した光情報記録媒体の製造
方法であって、該記録層が、第一記録層(結晶化促進
層)、第二記録層を有する場合に、第二記録層成膜時又
は第二記録層成膜工程の上流工程において、基板材料の
過重たわみ温度未満の温度に基板を加熱すると共に、製
膜用の真空槽内にArガス又はArガスを含む希ガスを
導入することを特徴とする相変化型光情報記録媒体の製
造方法。 7) 導入するArガスの圧力が2×10−3〜2×1
−2Torrであることを特徴とする6)記載の相変
化型光情報記録媒体の製造方法。 8) 第二記録層の成膜速度を1.4nm/秒以上とす
ることを特徴とする5)〜7)の何れかに記載の相変化
型光情報記録媒体の製造方法。 9) 成膜方法がパルス状の波形を有する直流放電スパ
ッタであることを特徴とする5)〜8)の何れかに記載
の相変化型光情報記録媒体の製造方法。 10) パルス状波形の周波数が1〜100kHzであ
り、スパッタリングに有効な電圧となる比率が75%以
上であることを特徴とする9)記載の相変化型光情報記
録媒体の製造方法。
[Means for Solving the Problems] The above problems are solved in the following 1) to
It is solved by the invention of 10). 1) An optical information recording medium in which at least a first dielectric layer, a recording layer, a second dielectric layer, and a reflective layer are sequentially laminated on a substrate, and the recording layer is a first recording layer containing Ge (promoting crystallization). Layer) and SbTe (atomic%) at a composition ratio near the eutectic composition
And has a second recording layer containing 70 ≦ Sb ≦ 80, 20 ≦ Te ≦ 30) as a main component, and the reflectance before recording is 60% or more of the reflectance after recording. Phase change type optical information recording medium. 2) The phase change type optical information recording medium as described in 1), wherein the first recording layer containing Ge contains Bi in an amount smaller than the composition ratio of Ge. 3) The phase change type optical information recording medium according to 1), wherein the first recording layer containing Ge is composed of two layers of a Ge layer and a Bi layer thinner than the Ge layer. 4) The phase change type optical information recording medium according to any one of 1) to 3), wherein the reflectance before recording is 80% or more of the reflectance after recording. 5) A method for manufacturing an optical information recording medium in which at least a first dielectric layer, a recording layer, a second dielectric layer, and a reflective layer are sequentially laminated on a substrate, wherein the recording layer is a first recording layer (crystallized). (Acceleration layer) and the second recording layer, the method for producing a phase-change optical information recording medium, characterized in that the substrate is heated to a temperature lower than the excessive deflection temperature of the substrate material when the second recording layer is formed. . 6) A method for manufacturing an optical information recording medium in which at least a first dielectric layer, a recording layer, a second dielectric layer, and a reflective layer are sequentially laminated on a substrate, wherein the recording layer is a first recording layer (crystallized). (Acceleration layer) and a second recording layer, the substrate is heated to a temperature lower than the over-deflection temperature of the substrate material during the second recording layer deposition or in the upstream step of the second recording layer deposition step, and A method of manufacturing a phase-change optical information recording medium, which comprises introducing Ar gas or a rare gas containing Ar gas into a vacuum chamber for a film. 7) The pressure of the introduced Ar gas is 2 × 10 −3 to 2 × 1.
0 6 characterized in that it is a -2 Torr) method of manufacturing the phase-change optical information recording medium according. 8) The method for producing a phase change type optical information recording medium according to any one of 5) to 7), wherein the film forming rate of the second recording layer is 1.4 nm / sec or more. 9) The method for producing a phase change optical information recording medium according to any one of 5) to 8), wherein the film forming method is DC discharge sputtering having a pulsed waveform. 10) The method for producing a phase change type optical information recording medium according to 9), wherein the pulsed waveform has a frequency of 1 to 100 kHz and a ratio of a voltage effective for sputtering is 75% or more.

【0007】以下、上記本発明について詳しく説明す
る。初期化プロセスを無くすか又は初期化プロセスの比
重を小さくするためには、成膜終了後の完成した光情報
記録媒体の反射率が高くなければならない。反射率が高
いということは、完成した光情報記録媒体の記録層が結
晶化状態にあるか又は結晶化状態に近い構造を持ってい
るということである。このような結晶化状態に近い構造
を得るためには、記録層の結晶化を容易にするための材
料、構造及びプロセスを採用する必要がある。相変化記
録材料の中でも共晶系と呼ばれているSbTeは、結晶
化温度が比較的低いため、基板上に膜厚200nm程度
の下部誘電体層(下地層)を成膜する時の基板温度の上
昇により、成膜後の状態で60%以上の光情報記録媒体
としての反射率を持つ。但しSbTeのみでは記録後の
マークの安定性は低く、保存状態で温度が80℃前後に
上昇すると記録したアモルファス状態のマークが結晶化
してマークが読めなくなってしまうなどの不具合を生ず
る。
The present invention will be described in detail below. In order to eliminate the initialization process or reduce the specific gravity of the initialization process, the reflectance of the completed optical information recording medium after completion of film formation must be high. The high reflectance means that the recording layer of the completed optical information recording medium is in the crystallized state or has a structure close to the crystallized state. In order to obtain a structure close to such a crystallized state, it is necessary to adopt materials, structures and processes for facilitating the crystallization of the recording layer. Among the phase change recording materials, SbTe, which is called eutectic system, has a relatively low crystallization temperature, so the substrate temperature when forming a lower dielectric layer (underlayer) with a film thickness of about 200 nm on the substrate. As a result, the reflectance as an optical information recording medium after film formation is 60% or more. However, with SbTe alone, the stability of the mark after recording is low, and when the temperature rises to around 80 ° C. in the storage state, the recorded amorphous state mark is crystallized and the mark becomes unreadable.

【0008】これに対し、本発明では、保存安定性を向
上させることができる材料、特に効果が確認されている
Geを含む第一記録層を先に成膜し、保存安定性を確保
した上で、反射率の高い共晶系組成近傍の組成比のSb
Te(原子%で、70≦Sb≦80、20≦Te≦3
0)を主成分とする第二記録層を成膜して、少なくとも
この二層を有する記録層とすることにより、記録開始前
の反射率が記録後の反射率の60%以上である相変化型
光情報記録媒体を得ることに成功した。60%以上の反
射率があると、記録前にレーザー初期化する際の時間を
短縮できる。また、上記共晶系近傍組成の記録材料は、
繰り返し記録時の熱衝撃に強く、優れた繰り返し記録特
性を有すると共に、高密度記録及び多回数の記録に対し
ても対応可能な優れた物性を有する。なお、「主成分」
とは、第二記録層材料全体の95モル%以上がSbTe
であることを意味する。
On the other hand, in the present invention, a material capable of improving storage stability, particularly a first recording layer containing Ge, which has been confirmed to be particularly effective, is formed first to ensure storage stability. And Sb with a composition ratio near the eutectic composition with high reflectance
Te (in atomic%, 70 ≦ Sb ≦ 80, 20 ≦ Te ≦ 3
0) as a main component to form a second recording layer to form a recording layer having at least these two layers, whereby the reflectance before recording is 60% or more of the reflectance after recording. Succeeded in obtaining a type optical information recording medium. When the reflectance is 60% or more, the time required for laser initialization before recording can be shortened. In addition, the recording material of the composition near the eutectic system,
It is resistant to thermal shock during repeated recording, has excellent repeated recording characteristics, and has excellent physical properties that can be applied to high density recording and recording many times. In addition, "main component"
Means that 95% by mole or more of the second recording layer material is SbTe.
Means that.

【0009】光情報記録媒体としての保存特性を確保す
るためには、第一記録層の材料としてGeが必須の構成
成分である。しかし、第一記録層をGe単体で作成する
と、成膜時に放電が不安定になる場合があるため、第一
記録層は、このGeと第二記録層の結晶化促進を発現さ
せる材料とにより構成する。これにより第二記録層の結
晶化が促進され、記録開始前の反射率と記録後の反射率
の比率を小さくすると共に、記録層全体の反射率を向上
させて、光情報記録媒体のレーザー初期化を軽減でき
る。結晶化促進を発現させる材料の具体例としては、B
i(融点270.95℃)が最も結晶化促進効果が大き
く、その他には、In(融点156.4℃)、Sn(融
点231.97℃)、Se(融点220.2℃)など融
点の低い金属元素を挙げることができる。従って、Ge
を含む第一記録層材料としては、二元ならばBiGe、
InGe、SnGe、SeGe、三元ならばBiInG
e、BiSnGe、BiSeGe、InSnGe、In
SeGe、SnSeGeを挙げることができる。更に、
四元、五元とすることも可能であるが、Biの結晶化促
進効果が最も大きいので、Biの含有量の多い方が相対
反射率を上げる面では有利となる。但し、BiがGeよ
り多くなると、記録特性上アモルファスレベルの反射率
が上昇してしまい、信号比が小さくなり、モジュレーシ
ョン特性の劣化を招く。
Ge is an essential component as the material of the first recording layer in order to secure the storage characteristics of the optical information recording medium. However, if the first recording layer is made of Ge alone, the discharge may become unstable during film formation. Therefore, the first recording layer is composed of Ge and a material that promotes crystallization promotion of the second recording layer. Constitute. This promotes crystallization of the second recording layer, reduces the ratio of the reflectance before the start of recording and the reflectance after recording, and improves the reflectance of the entire recording layer to improve the laser initial phase of the optical information recording medium. Can be reduced. As a specific example of the material for exhibiting crystallization promotion, B
i (melting point 270.95 ° C.) has the largest crystallization promoting effect, and other melting points such as In (melting point 156.4 ° C.), Sn (melting point 231.97 ° C.), Se (melting point 220.2 ° C.) Mention may be made of low metal elements. Therefore, Ge
The first recording layer material containing
InGe, SnGe, SeGe, BiInG for ternary
e, BiSnGe, BiSeGe, InSnGe, In
SeGe and SnSeGe can be mentioned. Furthermore,
It is possible to use quaternary or quaternary elements, but since the effect of promoting crystallization of Bi is greatest, the higher the Bi content, the more advantageous in terms of increasing the relative reflectance. However, when Bi is larger than Ge, the reflectance of the amorphous level is increased due to the recording characteristics, the signal ratio is reduced, and the modulation characteristics are deteriorated.

【0010】なお、第一記録層の膜厚は、1.2〜4.
8nm、好ましくは1.8〜2.8nmとし、第二記録
層の膜厚は、10〜25nm、好ましくは13〜17n
mとする。また、第一記録層を積層構造とする場合に
は、Ge層の膜厚を0.7〜2.6nm、好ましくは
1.1〜1.5nm、Biなどの他の材料からなる層の
膜厚を、0.5〜2.2nm、好ましくは0.7〜1.
3nmとする。第一記録層を積層構造とする利点として
は、保存性向上に有効なGeと第二記録層の結晶化促進
に有効な材料を任意の割合で用いて適宜製作できること
が挙げられる。即ち、保存性を向上させたい、結晶化を
更に促進させたいなどの目的に応じて割合を変更するこ
とが容易となる。更に、記録開始前の反射率が記録後の
反射率の80%以上であれば、レーザーにより改めて初
期化を行う必要がなくなり、製造工程を一工程削減でき
る。
The thickness of the first recording layer is 1.2-4.
8 nm, preferably 1.8 to 2.8 nm, and the thickness of the second recording layer is 10 to 25 nm, preferably 13 to 17 n.
m. When the first recording layer has a laminated structure, the Ge layer has a film thickness of 0.7 to 2.6 nm, preferably 1.1 to 1.5 nm, and is a layer film made of another material such as Bi. The thickness is 0.5 to 2.2 nm, preferably 0.7 to 1.
3 nm. An advantage of the laminated structure of the first recording layer is that Ge, which is effective in improving storage stability, and a material, which is effective in promoting crystallization of the second recording layer, can be appropriately produced in an arbitrary ratio. That is, it becomes easy to change the ratio according to the purpose such as improvement of storage stability and further promotion of crystallization. Furthermore, if the reflectance before the start of recording is 80% or more of the reflectance after recording, it is not necessary to perform initialization again with a laser, and the manufacturing process can be reduced by one step.

【0011】上記相変化型光情報記録媒体の製造方法と
しては、まず、記録開始前の反射率と記録後の反射率の
比率を小さくする最も効果的な方法の一つとして、結晶
化転移が容易となるように熱を加えておく方法、具体的
には相変化記録層(本発明では第二記録層)の膜形成時
又は相変化記録層の膜形成工程よりも上流の工程におい
て、基板が吸収する波長の光を照射し、基板及び記録層
材料を基板材料の過重たわみ温度(ポリカーボネートで
は125℃)未満に加熱する工程を設ける方法が挙げら
れる。上記の方法の内、相変化記録層の膜形成工程より
も上流の工程において単に基板を加熱する方法は、本出
願人の先願に係る特願2001−81859号として既
に提案したが、この方法は本発明の光情報記録媒体の製
造にも適用できる。しかし、単純に基板を加熱するだけ
ではある温度以上で反射率の飽和が起きてしまうことも
あるため、本発明では更に反射率を向上させることがで
きる方法及び条件についても提示した。
As a method of manufacturing the above-mentioned phase change type optical information recording medium, first, as one of the most effective methods for reducing the ratio of the reflectance before recording to the reflectance after recording, crystallization transition is caused. A method of applying heat so as to facilitate the process, specifically, during the film formation of the phase change recording layer (the second recording layer in the present invention) or in the step upstream of the film forming step of the phase change recording layer. And a step of heating the substrate and the recording layer material to a temperature lower than the over-deflection temperature of the substrate material (125 ° C. for polycarbonate). Among the above methods, a method of simply heating the substrate in the step upstream of the film forming step of the phase change recording layer has already been proposed as Japanese Patent Application No. 2001-81859 filed by the present applicant. Can also be applied to the manufacture of the optical information recording medium of the present invention. However, since the reflectance may be saturated at a certain temperature or more by simply heating the substrate, the present invention has also presented a method and conditions capable of further improving the reflectance.

【0012】上記のような方法で基板を加熱すると、次
の三つの技術的効果がある。一つ目は、第一誘電体層の
厚みが薄い場合、第一誘電体層の成膜のプロセス条件や
膜厚に依らずに基板温度をコントロールすることができ
ること、二つ目は、記録層成膜時に熱により記録層材料
の結晶化が一層容易になること、三つ目は、基板の脱ガ
ス化が進み、吸着ガス及び水分による反射率の低下を防
ぐことができることである。更に、基板を加熱すること
で、通常の薄い膜厚の第一誘電体層(下部保護層)を有
する場合でもレーザー照射による初期化を軽減できる
か、或いはレーザー照射による初期化を必要としない光
情報記録媒体を容易に製造することができる。また、記
録層を二層化することにより、その材料の結晶化温度よ
りも低い温度で結晶化させることができる。結晶化促進
材料を含む同じ組成の材料でも、同時に成膜してしまう
と成膜後の反射率が上がらず、二層化して成膜すること
により初めて成膜後の反射率が上がるのは、結晶化促進
層を含む第一層目が種結晶となり、そこを結晶核として
促進材料が第二記録層成膜中に拡散しながら成膜されて
いくという過程をとるためと思われる。
Heating the substrate by the above method has the following three technical effects. The first is that when the thickness of the first dielectric layer is small, the substrate temperature can be controlled without depending on the process conditions and film thickness of the film formation of the first dielectric layer. At the time of film formation, the recording layer material is more easily crystallized by heat, and thirdly, the degassing of the substrate progresses, and the decrease in reflectance due to the adsorbed gas and moisture can be prevented. Furthermore, by heating the substrate, the initialization by laser irradiation can be reduced even when the first dielectric layer (lower protective layer) having a normal thin film thickness is provided, or the light which does not require initialization by laser irradiation can be used. The information recording medium can be easily manufactured. Further, by forming the recording layer into two layers, crystallization can be performed at a temperature lower than the crystallization temperature of the material. Even if a material having the same composition including a crystallization promoting material does not increase the reflectance after film formation at the same time, the reflectance after film formation increases only when the film is formed into two layers. This is probably because the first layer including the crystallization promoting layer serves as a seed crystal, and the promoting material is formed as a crystal nucleus while diffusing the promoting material during the film formation of the second recording layer.

【0013】また、加熱時に真空槽内にAr(アルゴ
ン)ガス又はArガスを含む希ガスを導入すると、成膜
後の反射率を向上させることができると共に、Arガス
を含まないときよりも高い反射率とより均一な反射率分
布を得ることができる。図1に、加熱時に導入するAr
の流量と記録前の相対反射率の関係を示す。即ち、第二
記録層成膜直前の温度を45℃に制御し〔E−タイプフ
ィルム状熱電対(安立計器社製SE4699)で測
定〕、Arの流量を変化させ、成膜速度を変えた場合に
得られる媒体について、記録前の相対反射率を測定した
結果である。この図から、成膜速度が1.4nm/秒以
上の場合に相対反射率が80%以上になること、及び、
Ar流量が0〜70sccmの範囲では、Arを導入し
ない場合(y軸上の場合)よりも相対反射率が向上する
ことが分る。導入するArガスの好ましい圧力は、2×
10−3〜2×10−2Torrである(実施例3参
照)。Arガスの圧力が大き過ぎると、雰囲気ガスであ
るArが加熱している基板を冷却することになり、却っ
て反射率を下げてしまうことになる。
Further, when Ar (argon) gas or a rare gas containing Ar gas is introduced into the vacuum chamber during heating, the reflectance after film formation can be improved, and the reflectance is higher than when Ar gas is not contained. A reflectance and a more uniform reflectance distribution can be obtained. In Figure 1, Ar introduced during heating
3 shows the relationship between the flow rate and the relative reflectance before recording. That is, when the temperature immediately before film formation of the second recording layer was controlled to 45 ° C. [measured with an E-type film thermocouple (SE4699 manufactured by Anritsu Keiki Co.)], the flow rate of Ar was changed, and the film formation rate was changed. It is the result of measuring the relative reflectance of the medium obtained in (1) before recording. From this figure, it is shown that the relative reflectance is 80% or more when the film forming rate is 1.4 nm / sec or more, and
It can be seen that when the Ar flow rate is in the range of 0 to 70 sccm, the relative reflectance is improved as compared with the case where Ar is not introduced (on the y axis). The preferable pressure of Ar gas to be introduced is 2 ×
It is 10 −3 to 2 × 10 −2 Torr (see Example 3). If the pressure of the Ar gas is too large, the substrate heated by Ar, which is the atmospheric gas, will be cooled, and the reflectance will be rather decreased.

【0014】また、反射率を向上させる別の方法として
は、第二記録層の成膜速度を1.4nm/秒以上とする
方法がある。この方法によれば、これよりも遅い成膜速
度のときに比べてより高い反射率を得ることができ、記
録前の反射率が記録後の反射率の80%以上であるよう
にすることができる。通常は、ゆっくり成膜した方が結
晶性の良い膜が得られるが、本発明では結晶化促進材料
を用い成膜前に加熱することにより逆に速い成膜速度の
ときに結晶性の良い膜が得られる。しかしそのメカニズ
ムは今のところ明らかではない。図2に、第二記録層の
成膜速度と記録前の相対反射率の関係を示す。即ち、第
二記録層成膜直前の基板温度が45℃になるように制御
し〔E−タイプフィルム状熱電対(安立計器社製SE4
699)で測定〕、加熱時にアルゴンを導入しないで成
膜した場合の成膜速度と得られる媒体の記録前相対反射
率の関係を測定したものであり、上記図2のy軸上の場
合に相当する。この図から、1.4nm/秒以上の成膜
速度であれば、80%以上の相対反射率となることが分
る。
As another method for improving the reflectance, there is a method in which the film forming rate of the second recording layer is 1.4 nm / sec or more. According to this method, a higher reflectance can be obtained as compared with the case where the film forming speed is slower than this, and the reflectance before recording can be 80% or more of the reflectance after recording. it can. In general, a film having good crystallinity can be obtained by slowly forming a film, but in the present invention, a film having good crystallinity can be obtained at a high film formation rate by using a crystallization promoting material and heating before film formation. Is obtained. However, the mechanism is not clear so far. FIG. 2 shows the relationship between the film formation rate of the second recording layer and the relative reflectance before recording. That is, the substrate temperature immediately before forming the second recording layer was controlled to be 45 ° C. [E-type film thermocouple (SE4 manufactured by Anritsu Keiki Co., Ltd.
699)], the relationship between the film forming speed in the case of forming a film without introducing argon during heating and the relative reflectance before recording of the obtained medium was measured. Equivalent to. From this figure, it can be seen that the relative reflectance is 80% or more at a film forming rate of 1.4 nm / sec or more.

【0015】ところで、第二記録層の膜厚を20nmと
すると、成膜速度が8nm/秒の場合の成膜時間は2.
5秒となり成膜制御性に問題はないが、成膜速度が20
nm/秒以上の場合には成膜時間が1秒以下となり、成
膜時の膜厚制御性、即ち、ある投入スパッタ電力におけ
るスパッタ時間の実効的な制御性に限界を生じ、その結
果、各記録媒体毎の膜厚のバラツキが発生し、記録特性
及び保存特性に影響を与える。スパッタ時間の実効的な
制御性に限界が生ずる理由としては、通常のスパッタ方
式では、放電開始直後の0.05〜0.2秒間は放電着
火の遅延が起ることがあるからである。例えば、成膜時
間が1秒で放電着火遅延が0.2秒であった場合、その
誤差は膜厚として2割に達し、光記録媒体としての記録
特性に影響を与えてしまう。その対策としては、単位時
間当りの成膜速度を変えずに単位時間当りの実成膜時間
をシェアする方法、即ち、成膜方法をパルス状の波形を
有する直流放電スパッタとすればよい。これにより、記
録層膜厚のバラツキが少なく安定した高速成膜が可能と
なる。
By the way, when the film thickness of the second recording layer is 20 nm, the film forming time is 2. When the film forming rate is 8 nm / sec.
5 seconds, no problem in film formation controllability, but film formation rate is 20
In the case of nm / sec or more, the film formation time becomes 1 second or less, and the film thickness controllability at the time of film formation, that is, the effective controllability of the sputtering time at a given sputtering power is limited, and as a result, each The film thickness varies from recording medium to recording medium and affects the recording and storage characteristics. The reason why there is a limit to the effective controllability of the sputtering time is that in the normal sputtering method, the discharge ignition may be delayed for 0.05 to 0.2 seconds immediately after the start of discharge. For example, when the film formation time is 1 second and the discharge ignition delay is 0.2 seconds, the error reaches 20% as the film thickness, which affects the recording characteristics of the optical recording medium. As a countermeasure, a method of sharing the actual film formation time per unit time without changing the film formation rate per unit time, that is, the film formation method may be DC discharge sputtering having a pulse-like waveform. As a result, stable high-speed film formation is possible with little variation in the recording layer thickness.

【0016】放電開始時、即ちスパッタカソードにマイ
ナス電圧が印加された直後0.05〜0.2秒間に放電
着火の遅延が起るにも拘らずパルス状電圧印加が良い理
由としては、パルス波形の電圧が放電トリガー的に働く
ためと考えられる。しかし、パルス状のDC(直流)を
カソードに印加するにしても成膜時間以上又は成膜時間
と同等の印加時間では全く効果がない。また、放電が安
定して継続する周期でパルス化されていない場合は実質
的に効果はないものと考えられる。更に、少なくともパ
ルス化することにより、スパッタ処理がなされる実質時
間では高速の成膜速度で処理し、かつ、膜厚制御性安定
域に達するのに十分な程度にトータルの成膜時間を長く
する必要がある。もともと膜厚制御性安定域に達する時
間以上の成膜時間がある場合は別として、膜厚制御性安
定域に達する時間よりも短い成膜時間の場合には、特
に、周波数やデューティ(ターゲットに負電荷をかける
時間比率)を考慮する必要がある。再現性が取れる範囲
では、予め実効成膜速度を求めておいて、膜厚制御時に
補正すればよい。
The reason why the pulsed voltage application is good at the start of discharge, that is, although the discharge ignition is delayed for 0.05 to 0.2 seconds immediately after the negative voltage is applied to the sputter cathode, is the reason why the pulse waveform is applied. It is considered that this voltage is due to the discharge trigger function. However, even if a pulsed DC (direct current) is applied to the cathode, it has no effect when the film formation time is longer than or equal to the film formation time. Further, it is considered that there is substantially no effect if the discharge is not pulsed in a stable and continuous cycle. Furthermore, at least by pulsing, the film formation is performed at a high film formation speed during the substantial time during which the sputtering process is performed, and the total film formation time is lengthened to an extent sufficient to reach the stable region of film thickness controllability. There is a need. Except when there is originally a film formation time that is longer than the time to reach the stable film thickness controllability range, especially when the film formation time is shorter than the time to reach the stable film thickness controllability range, the frequency and duty (target It is necessary to consider the time ratio of applying a negative charge). In the range where reproducibility can be obtained, the effective film formation rate may be obtained in advance and corrected during film thickness control.

【0017】また、本発明では、パルス状波形の周波数
が1〜100kHzであり、スパッタリングに有効な電
圧となる(即ち、カソード電極に負の電圧を供給し、タ
ーゲットに負電荷をかける)時間比率を75%以上とす
ることが好ましい。この条件下では、放電遅延が無く安
定した高速成膜ができる。これに対し、上記時間比率が
75%未満の場合には、放電遅延の影響を加味した係数
を考慮する必要がある。図3に、パルス状波形が50k
Hzで周期が20μ秒の場合のパルス波形の一例を示
す。図中、カソード電圧は、スパッタリングターゲット
に印加される電圧、リバース電位は、ターゲット表面に
残った電荷をキャンセルするための逆電位、リバースタ
イムは、該逆電位をかける時間であり、周期からリバー
スタイムを引いた時間がターゲットに負電荷をかける時
間であって、その比率がデューティ(%)である。
Further, according to the present invention, the frequency of the pulse-like waveform is 1 to 100 kHz, and the time ratio becomes a voltage effective for sputtering (that is, a negative voltage is supplied to the cathode electrode and a negative charge is applied to the target). Is preferably 75% or more. Under this condition, stable high-speed film formation can be performed without discharge delay. On the other hand, when the time ratio is less than 75%, it is necessary to consider the coefficient in consideration of the influence of discharge delay. In Figure 3, the pulse-like waveform is 50k.
An example of a pulse waveform when the period is 20 μs in Hz is shown. In the figure, the cathode voltage is the voltage applied to the sputtering target, the reverse potential is the reverse potential for canceling the charges remaining on the target surface, the reverse time is the time for applying the reverse potential, and the reverse time from the cycle. Is the time to apply a negative charge to the target, and the ratio is the duty (%).

【0018】図4に、デューティと膜厚/実効スパッタ
時間(nm/秒)の関係を示すが、デューティが75%
未満では実効的に成膜速度が低下してしまうことが観察
されている。デューティが75%未満では、前述したよ
うに膜厚補正をする必要がある。更に、第二記録層成膜
時又は第二記録層成膜工程の上流工程において、Arガ
ス又はArガスを含む希ガスを導入しながら基板を加熱
すると共に、第二記録層成膜時の成膜速度を1.4nm
/秒以上とすることにより、光情報記録媒体のas d
epo.(成膜後)反射率を更に向上させることができ
る。なお、本発明で用いる基板は、基板側から光を照射
する場合には、記録・再生・消去可能な程度に透明であ
る必要があるが、それ以外の場合には透明でも不透明で
も良い。
FIG. 4 shows the relationship between the duty and the film thickness / effective sputtering time (nm / sec). The duty is 75%.
It has been observed that when the ratio is less than 1, the film formation rate is effectively reduced. If the duty is less than 75%, it is necessary to correct the film thickness as described above. Further, the substrate is heated while introducing the Ar gas or a rare gas containing Ar gas at the time of forming the second recording layer or at the upstream step of the second recording layer forming process, and at the same time as the process at the time of forming the second recording layer. Film speed 1.4nm
/ Sec or more, the as d of the optical information recording medium
epo. The reflectance (after film formation) can be further improved. The substrate used in the present invention needs to be transparent to the extent that recording / reproducing / erasing is possible when light is emitted from the substrate side, but in other cases, it may be transparent or opaque.

【0019】[0019]

【実施例】以下、実施例及び比較例により本発明を具体
的に説明するが、本発明はこれらの実施例により何ら限
定されるものではない。
EXAMPLES The present invention will be specifically described below with reference to examples and comparative examples, but the present invention is not limited to these examples.

【0020】実施例1 (膜厚約72nmの第一誘電体
層を設け、加熱なしで反射率60%以上の媒体を製造す
る例) 光情報記録媒体の溝情報を形成したNiスタンパを用い
て成形した厚さ0.6mmのポリカーボネート基板上
に、成膜室又は成膜用ターゲットを多数持つ多層成膜用
のマグネトロンスパッタ装置を用いて、光情報記録媒体
の各層を順次成膜した。まず、第一誘電体層として、膜
厚約72nmのZnS・SiO(ZnS80モル%−
SiO20モル%)膜を形成した。次に、相変化記録
層として、最初に、膜厚2.5nmのBi49Ge51
からなる第一記録層を形成し、次いで、膜厚20nmの
Sb78Te22(結晶化温度124℃)からなる第二
記録層を形成した。このときの基板の温度を、それまで
のプロセスと同一条件下でE−タイプフィルム状熱電対
(安立計器社製SE4699)により測定したところ、
相変化記録層成膜直前で33℃となっていた。次に、第
二誘電体層として、膜厚12nmの、第一誘電体層と同
一組成のZnS・SiO膜を形成した。次に、第二誘
電体層のSと反射層のAgとの反応防止層として、膜厚
4nmのSiC膜を形成した後、膜厚140nmのAg
の反射層を形成した。最後に、紫外線硬化樹脂からなる
オーバーコート層を形成し、更に厚さ0.6mmの溝な
し基板と貼り合わせて、板厚1.2mmの光情報記録媒
体を得た。
Example 1 (Example of Producing Medium with Reflectivity of 60% or More without Heating by Providing First Dielectric Layer with Thickness of about 72 nm) Using Ni Stamper with Groove Information of Optical Information Recording Medium Each layer of the optical information recording medium was sequentially formed on the molded polycarbonate substrate having a thickness of 0.6 mm by using a magnetron sputtering apparatus for forming a multilayer film having a film forming chamber or a large number of film forming targets. First, as the first dielectric layer, ZnS.SiO 2 (ZnS 80 mol%-
SiO 2 20 mol%) film was formed. Next, as a phase change recording layer, first, Bi 49 Ge 51 with a film thickness of 2.5 nm
Then, a second recording layer made of Sb 78 Te 22 (crystallization temperature of 124 ° C.) having a film thickness of 20 nm was formed. The temperature of the substrate at this time was measured with an E-type film-like thermocouple (SE4699 manufactured by Anritsu Keiki Co., Ltd.) under the same conditions as in the processes so far.
The temperature was 33 ° C. immediately before the formation of the phase change recording layer. Next, as a second dielectric layer, a ZnS.SiO 2 film having a film thickness of 12 nm and having the same composition as that of the first dielectric layer was formed. Next, after forming a 4 nm-thickness SiC film as a reaction prevention layer between S of the second dielectric layer and Ag of the reflection layer, Ag of 140 nm thickness was formed.
The reflective layer of was formed. Finally, an overcoat layer made of an ultraviolet curable resin was formed and further bonded to a grooveless substrate having a thickness of 0.6 mm to obtain an optical information recording medium having a plate thickness of 1.2 mm.

【0021】上記のようにして作製した光情報記録媒体
の反射率を、特性評価装置(パルステック工業株式会社
製−RW自動評価システムDDU−1000)により、
波長650nmの半導体レーザーを使って測定し評価し
た。まず、この光情報記録媒体を7mWの信号イレース
・レーザー強度でイレース(消去)し、イレースした後
の反射率の値とイレースしていない成膜直後の部分とを
比べたところ、イレースしていない部分の反射率は、信
号イレース・レーザー強度でイレースした部分の反射率
の69%となった。この、イレースしていない部分をレ
ーザー初期化装置で処理したところ、通常約60秒かか
る初期化時間の約半分に当る32秒で初期化が完了し、
初期化時間を大幅に短縮できた。レーザー初期化後の光
情報記録媒体の反射率は、膜厚140nmでガラス上に
成膜したAgスパッタ膜を87.7%基準の反射率比較
対象として用いた場合の換算値として19%の反射率と
なった。19%という値は通常のレーザー初期化工程品
と同じ反射率である。また、初期化後の光情報記録媒体
のジッターとモジュレーションを測定したところ、それ
ぞれ6.5%と64%であった。記録チェック後、この
光情報記録媒体を80℃85%RHの高温高湿槽に10
0時間保管し、再度ジッターとモジュレーションを測定
したところ、それぞれ7.1%と62%であり、その変
化が問題となるレベルではなかった。
The reflectance of the optical information recording medium manufactured as described above was measured by a characteristic evaluation device (Pulstec Industrial Co., Ltd.-RW automatic evaluation system DDU-1000).
It measured and evaluated using the semiconductor laser of wavelength 650nm. First, the optical information recording medium was erased with a signal erase / laser intensity of 7 mW, and the reflectance value after erasing was compared with the portion immediately after film formation without erasing. The reflectance of the portion was 69% of the reflectance of the portion erased by the signal erase laser intensity. When this non-erased part was processed with a laser initialization device, the initialization was completed in 32 seconds, which is about half of the initialization time that normally takes about 60 seconds,
The initialization time has been greatly reduced. The reflectance of the optical information recording medium after the laser initialization is 19% as a converted value when an Ag sputtered film having a film thickness of 140 nm formed on glass is used as a comparison target of the reflectance of 87.7%. Became a rate. The value of 19% is the same reflectance as that of a normal laser initialization process product. The jitter and modulation of the optical information recording medium after initialization were measured and found to be 6.5% and 64%, respectively. After checking the recording, place this optical information recording medium in a high temperature and high humidity tank at 80 ° C and 85% RH for 10 minutes.
When it was stored for 0 hour and the jitter and the modulation were measured again, they were 7.1% and 62%, respectively, and the changes were not at a problematic level.

【0022】実施例2 (膜厚約72nmの第一誘電体
層を設け、加熱して反射率60%以上の媒体を製造する
例) 実施例1と同様にして、光情報記録媒体を作製した。ま
ず、実施例1と同一組成・同一膜厚の第一誘電体層を形
成した。次に、相変化記録層として、最初に、膜厚2.
5nmのBi49Ge51膜を形成した後、3kWの赤
外線ランプを用い、制御温度を120℃として、基板を
正面から加熱して第一記録層を形成した。このときの基
板の温度は、それまでのプロセスと同一条件下でE−タ
イプフィルム状熱電対(安立計器社製SE4699)に
より測定したところ、相変化記録層成膜直前で45℃と
なっていた。制御温度とポリカーボネート基板の表面温
度との関係を表1に示した。更に、基板温度が下がらな
いうちに、実施例1と同一組成・同一膜厚の第二記録層
を形成した。このときの成膜方法は通常のDCスパッタ
法であり、成膜速度は1.4nm/秒とした。その後の
第二誘電体層以降は、実施例1と全く同様にして形成し
光情報記録媒体を得た。
Example 2 (Example of Providing First Dielectric Layer with Film Thickness of 72 nm and Heating to Produce Medium with Reflectivity of 60% or More) In the same manner as in Example 1, an optical information recording medium was produced. . First, a first dielectric layer having the same composition and the same film thickness as in Example 1 was formed. Next, as the phase change recording layer, first, the film thickness 2.
After forming a Bi 49 Ge 51 film having a thickness of 5 nm, the substrate was heated from the front with a control temperature of 120 ° C. using an infrared lamp of 3 kW to form a first recording layer. The temperature of the substrate at this time was measured by an E-type film thermocouple (SE4699 manufactured by Anritsu Keiki Co., Ltd.) under the same conditions as in the processes up to that point, and it was 45 ° C. immediately before the formation of the phase change recording layer. . Table 1 shows the relationship between the control temperature and the surface temperature of the polycarbonate substrate. Further, a second recording layer having the same composition and the same film thickness as in Example 1 was formed before the substrate temperature was lowered. The film forming method at this time was an ordinary DC sputtering method, and the film forming rate was 1.4 nm / sec. Subsequent second dielectric layers and thereafter were formed in exactly the same manner as in Example 1 to obtain an optical information recording medium.

【0023】得られた光情報記録媒体の成膜直後の反射
率を、実施例1と同様にして測定し評価したところ、7
mWイレース有無の反射率比較では、イレースしていな
い部分の反射率はイレースした部分の反射率の80%と
なった。また、光情報記録媒体としての反射率は18.
0%であった。更に、この光情報記録媒体の記録特性及
び保存特性を調べた。評価は、650nm、NA0.6
の光ピックアップを有するドライブを用い、線記録密度
0.267μm/bit、トラックピッチ0.74μ
m、記録線速度8.5m/秒とし、信号は8/16変調
して行った。その結果、このディスクの初期ジッター
は、6%台であった。また1000回の書換え後でも8
%台を維持し、繰り返し記録消去の特性変化が比較的小
さく良好であった。保存試験として、80℃85%RH
の条件下で100時間の保存試験を行い、1%を超える
ジッター変化の有無で寿命判定をしたが、ジッター変化
は1%以下であり、保存特性は良好であった。
The reflectance of the obtained optical information recording medium immediately after film formation was measured and evaluated in the same manner as in Example 1.
Comparing the reflectance with and without mW erase, the reflectance of the non-erased portion was 80% of the reflectance of the erased portion. The reflectance as an optical information recording medium is 18.
It was 0%. Further, the recording characteristics and storage characteristics of this optical information recording medium were examined. Evaluation is 650 nm, NA 0.6
Using a drive having an optical pickup of, linear recording density 0.267 μm / bit, track pitch 0.74 μ
m, the recording linear velocity was 8.5 m / sec, and the signal was modulated by 8/16. As a result, the initial jitter of this disc was in the 6% range. Even after rewriting 1000 times, 8
% Was maintained, and the change in characteristics of repeated recording and erasing was relatively small and good. As a storage test, 80 ℃ 85% RH
A storage test was carried out for 100 hours under the condition (1), and the life was judged by the presence or absence of a change in jitter of more than 1%, but the change in jitter was 1% or less, and the storage characteristics were good.

【0024】実施例3 (Arガス導入で反射率が1%
向上した例) 基板加熱時にスパッタ装置の真空槽内にArガスを導入
した点以外は、実施例2と全く同様にして光情報記録媒
体を作製した。このときのAr導入量は5sccmであ
り、真空槽内のガス圧は表2にあるように2.0×10
−3Torrであった。得られた光情報記録媒体の成膜
直後の反射率を、実施例2と同様にして測定し評価した
ところ、7mWイレース有無の反射率比較では、イレー
スしていない部分の反射率はイレースした部分の反射率
の81%となり、1%の反射率向上が認められた。更
に、反射率の分布は全面で±1.5%以内であり、ほぼ
均一であった。
Example 3 (Reflectance of 1% with introduction of Ar gas)
Improved Example) An optical information recording medium was produced in exactly the same manner as in Example 2 except that Ar gas was introduced into the vacuum chamber of the sputtering apparatus when the substrate was heated. The amount of Ar introduced at this time was 5 sccm, and the gas pressure in the vacuum chamber was 2.0 × 10 5 as shown in Table 2.
-3 Torr. The reflectance of the obtained optical information recording medium immediately after film formation was measured and evaluated in the same manner as in Example 2. In comparison of the reflectance with and without the 7 mW erase, the reflectance of the non-erased portion was the erased portion. The reflectance was 81%, which was an improvement of 1%. Furthermore, the distribution of reflectance was within ± 1.5% over the entire surface and was almost uniform.

【0025】実施例4 (第二記録層をパルスDCスパ
ッタすることにより、反射率が4.9%向上した例) 第二記録層を、成膜速度を上げたパルスDCスパッタ法
で成膜した点以外は、実施例2と全く同様にして光情報
記録媒体を作製した。このときのパルスの周期は50k
Hz、陰極となるスパッタ電極に負電圧を印加する時間
比率は80%とした。また成膜速度は、負電圧の値がパ
ルス化しないときに24nm/秒となる条件:DC電圧
−558V、電流2.7A(=約1.5kW)とした。
スパッタ時間は1.04秒とした。得られた光情報記録
媒体の成膜直後の反射率を、実施例2と同様にして測定
し評価したところ、7mWイレース有無の反射率比較で
は、イレースしていない部分の反射率はイレースした部
分の反射率の84.9%となり、4.9%の反射率向上
が認められた。
Example 4 (Example in which the reflectance was improved by 4.9% by performing pulse DC sputtering on the second recording layer) The second recording layer was formed by the pulse DC sputtering method at an increased film forming speed. An optical information recording medium was produced in exactly the same manner as in Example 2 except for the above points. The pulse cycle at this time is 50k
Hz, and the time ratio of applying a negative voltage to the sputtering electrode serving as the cathode was 80%. Further, the film formation rate was set to a condition that the value of the negative voltage was 24 nm / sec when it was not pulsed: DC voltage −558 V, current 2.7 A (= about 1.5 kW).
The sputtering time was 1.04 seconds. The reflectance of the obtained optical information recording medium immediately after film formation was measured and evaluated in the same manner as in Example 2. In comparison of the reflectance with and without the 7 mW erase, the reflectance of the non-erased portion was the erased portion. The reflectance was 84.9%, which was an improvement of 4.9%.

【0026】実施例5 (Arガス導入及び第二記録層
をパルスDCスパッタすることにより、反射率が5.9
%向上した例) 基板加熱時にArガスを導入し、第二記録層を、成膜速
度を上げたパルスDCスパッタで成膜した点以外は、実
施例2と全く同様にして光情報記録媒体を作製した。こ
のときのAr導入量は30sccmとし、パルスの条件
と成膜速度は実施例4と同じにした。得られた光情報記
録媒体の成膜直後の反射率を、実施例2と同様にして測
定し評価したところ、7mWイレース有無の反射率比較
では、イレースしていない部分の反射率はイレースした
部分の反射率の85.9%となり、5.9%の反射率向
上が認められた。
Example 5 (Refer to the reflectance of 5.9 by introducing Ar gas and performing pulse DC sputtering on the second recording layer.
%) Example) An optical information recording medium was prepared in exactly the same manner as in Example 2 except that Ar gas was introduced at the time of heating the substrate and the second recording layer was formed by pulsed DC sputtering at an increased film forming rate. It was made. The amount of Ar introduced at this time was 30 sccm, and the pulse conditions and the film formation rate were the same as in Example 4. The reflectance of the obtained optical information recording medium immediately after film formation was measured and evaluated in the same manner as in Example 2. In comparison of the reflectance with and without the 7 mW erase, the reflectance of the non-erased portion was the erased portion. The reflectance was 85.9%, which was an improvement of 5.9%.

【0027】実施例6(Arガス無しでスパッタする
例) 真空槽内にArを導入しない点以外は、実施例3と全く
同じ条件で光情報記録媒体を作製した。そのときの真空
槽内のガス圧は表2に示したように10−5Torr未
満の高真空度であった。得られた光情報記録媒体の成膜
直後の反射率を、実施例3と同様にして測定し評価した
ところ、7mWイレース有無の反射率比較では、イレー
スしていない部分の反射率はイレースした部分の反射率
の80%となった。但し、ステンレス製の基板固定冶具
が接触する中央部及び周辺部では、反射率が多少(5〜
10%)下がっていた。この反射率の分布ムラを無くす
ためには、均一化のための追加的レーザー初期化を行う
必要があった。
Example 6 (Example of sputtering without Ar gas) An optical information recording medium was produced under exactly the same conditions as in Example 3 except that Ar was not introduced into the vacuum chamber. At that time, the gas pressure in the vacuum chamber was a high vacuum degree of less than 10 −5 Torr as shown in Table 2. The reflectance of the obtained optical information recording medium immediately after film formation was measured and evaluated in the same manner as in Example 3, and in the reflectance comparison with and without 7 mW erase, the reflectance of the non-erased portion was the erased portion. Of 80%. However, in the central part and the peripheral part where the stainless steel substrate fixing jig comes into contact, the reflectance is somewhat (5 to 5).
10%). In order to eliminate this uneven distribution of reflectance, it was necessary to perform additional laser initialization for uniformization.

【0028】実施例7(記録層を通常スパッタした例) 実施例4におけるパルスDCスパッタに代えて、パルス
形状でない通常のスパッタ成膜を行った。成膜速度は2
4nm/秒、即ち、膜厚20nmの第二記録層を成膜す
るのに0.83秒に設定した。成膜後の実際の膜厚を測
定したところ、20nmの膜厚設定に対し、15〜20
nmの範囲でややばらついた結果となった。
Example 7 (Example of Normal Sputtering of Recording Layer) Instead of the pulse DC sputtering in Example 4, a normal sputter film having no pulse shape was formed. Deposition rate is 2
It was set to 4 nm / sec, that is, 0.83 sec for forming the second recording layer having a film thickness of 20 nm. The actual film thickness after film formation was measured and found to be 15 to 20 for a film thickness setting of 20 nm.
The result was slightly dispersed in the range of nm.

【0029】比較例1(通常のスパッタを行い、記録層
を二層に分けない例) Bi、Ge、Sb、Teの組成比が実施例1と同一にな
るようにターゲットを形成し、記録層を二層に分けずに
膜厚22.5nmで成膜した点以外は、実施例1と全く
同じ条件で光情報記録媒体を作製し、この媒体を実施例
1と全く同様にして測定し評価したところ、溝情報が読
めないためイレースできなかった。そこで、位置を固定
し、絶対反射率のみを測定したところ5%以下であっ
た。次に、レーザー初期化を行ったところ60秒を要し
た。また、レーザー初期化したこの光情報記録媒体につ
いて、実施例1と同様にして測定したところ、ジッタ
ー、モジュレーション、高温高湿保存後の変化も全て同
じ結果となった。
Comparative Example 1 (Example in which normal sputtering is performed and the recording layer is not divided into two layers) A target is formed so that the composition ratio of Bi, Ge, Sb, and Te is the same as in Example 1, and the recording layer is formed. An optical information recording medium was prepared under exactly the same conditions as in Example 1 except that the film was formed into a two-layered film having a thickness of 22.5 nm, and this medium was measured and evaluated in exactly the same manner as in Example 1. However, I could not erase because the groove information could not be read. Therefore, when the position was fixed and only the absolute reflectance was measured, it was 5% or less. Next, when the laser initialization was performed, it took 60 seconds. When the laser-initialized optical information recording medium was measured in the same manner as in Example 1, the same results were obtained for jitter, modulation, and changes after storage at high temperature and high humidity.

【0030】比較例2 (膜厚約72nmの第一誘電体
層を設け、基板材料の過重たわみ温度以上に加熱する
例〕 実施例2において、基板温度が基板材料であるポリカー
ボネートの過重たわみ温度(125℃)以上の130℃
までとなるように加熱を行ったところ、ポリカーボネー
ト基板は、温度と成膜した膜の応力により変形し、基板
の平面性を留めない程にベコベコになった。
Comparative Example 2 (Example in which a first dielectric layer having a film thickness of about 72 nm is provided and heating is performed at a temperature equal to or higher than the over-deflection temperature of the substrate material) In Example 2, the substrate temperature is the over-deflection temperature of the polycarbonate which is the substrate material ( 130 ℃ above 125 ℃)
When heated up to this point, the polycarbonate substrate was deformed due to the temperature and the stress of the formed film, and became so sticky that the flatness of the substrate could not be retained.

【0031】[0031]

【表1】 [Table 1]

【0032】[0032]

【表2】 [Table 2]

【0033】[0033]

【発明の効果】本発明によれば、記録開始前の反射率、
及び高温保存信頼性が高く、レーザー初期化負荷が軽減
されるか又は初期化が不要であり、より均一な反射率分
布を有する相変化型光情報記録媒体、及びその製造方法
を提供することができる。
According to the present invention, the reflectance before the start of recording,
And a high-temperature storage reliability, a laser initialization load is reduced or initialization is unnecessary, and a phase change type optical information recording medium having a more uniform reflectance distribution, and a manufacturing method thereof are provided. it can.

【図面の簡単な説明】[Brief description of drawings]

【図1】加熱時に導入するArの流量と記録前の相対反
射率の関係を示す図。
FIG. 1 is a diagram showing the relationship between the flow rate of Ar introduced during heating and the relative reflectance before recording.

【図2】第二記録層の成膜速度と記録前の相対反射率の
関係を示す図。
FIG. 2 is a diagram showing a relationship between a film formation rate of a second recording layer and a relative reflectance before recording.

【図3】パルス状の直流スパッタの電圧波形の一例を示
す模式図。
FIG. 3 is a schematic diagram showing an example of a voltage waveform of pulsed DC sputtering.

【図4】パルス印加時の印電圧印加デューティと実質成
膜速度を示す図。
FIG. 4 is a diagram showing a print voltage application duty and a substantial film formation rate when a pulse is applied.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 花岡 克成 東京都大田区中馬込1丁目3番6号 株式 会社リコー内 (72)発明者 三浦 裕司 東京都大田区中馬込1丁目3番6号 株式 会社リコー内 Fターム(参考) 2H111 EA03 EA04 EA23 EA31 FA12 FA21 FB02 FB05 FB09 FB10 FB12 FB30 GA03 5D029 JA01 JB03 JB05 JC02 5D121 AA01 EE03 EE17 EE18 EE27 EE28 GG07    ─────────────────────────────────────────────────── ─── Continued front page    (72) Inventor Katsunari Hanaoka             1-3-3 Nakamagome, Ota-ku, Tokyo Stocks             Company Ricoh (72) Inventor Yuji Miura             1-3-3 Nakamagome, Ota-ku, Tokyo Stocks             Company Ricoh F term (reference) 2H111 EA03 EA04 EA23 EA31 FA12                       FA21 FB02 FB05 FB09 FB10                       FB12 FB30 GA03                 5D029 JA01 JB03 JB05 JC02                 5D121 AA01 EE03 EE17 EE18 EE27                       EE28 GG07

Claims (10)

【特許請求の範囲】[Claims] 【請求項1】 基板上に少なくとも第一誘電体層、記録
層、第二誘電体層、反射層を順次積層した光情報記録媒
体であって、該記録層が、Geを含む第一記録層(結晶
化促進層)、及び共晶系組成近傍の組成比のSbTe
(原子%で、70≦Sb≦80、20≦Te≦30)を
主成分とする第二記録層を有し、記録開始前の反射率が
記録後の反射率の60%以上であることを特徴とする相
変化型光情報記録媒体。
1. An optical information recording medium in which at least a first dielectric layer, a recording layer, a second dielectric layer, and a reflective layer are sequentially laminated on a substrate, and the recording layer contains Ge. (Crystallization promoting layer) and SbTe having a composition ratio near the eutectic composition
It has a second recording layer containing (at atomic%, 70 ≦ Sb ≦ 80, 20 ≦ Te ≦ 30) as a main component, and the reflectance before recording is 60% or more of the reflectance after recording. A characteristic phase change type optical information recording medium.
【請求項2】 Geを含む第一記録層の中に、Geの組
成比よりも少ない量のBiを含むことを特徴とする請求
項1記載の相変化型光情報記録媒体。
2. The phase-change optical information recording medium according to claim 1, wherein the first recording layer containing Ge contains Bi in an amount smaller than the composition ratio of Ge.
【請求項3】 Geを含む第一記録層が、Ge層と、こ
れよりも薄いBi層の二層からなることを特徴とする請
求項1記載の相変化型光情報記録媒体。
3. The phase change type optical information recording medium according to claim 1, wherein the first recording layer containing Ge is composed of two layers, a Ge layer and a Bi layer thinner than the Ge layer.
【請求項4】 記録開始前の反射率が記録後の反射率の
80%以上であることを特徴とする請求項1〜3の何れ
かに記載の相変化型光情報記録媒体。
4. The phase-change optical information recording medium according to claim 1, wherein the reflectance before recording is 80% or more of the reflectance after recording.
【請求項5】 基板上に、少なくとも第一誘電体層、記
録層、第二誘電体層、反射層を順次積層した光情報記録
媒体の製造方法であって、該記録層が、第一記録層(結
晶化促進層)、第二記録層を有する場合において、第二
記録層成膜時に、基板材料の過重たわみ温度未満の温度
に基板を加熱することを特徴とする相変化型光情報記録
媒体の製造方法。
5. A method of manufacturing an optical information recording medium in which at least a first dielectric layer, a recording layer, a second dielectric layer, and a reflective layer are sequentially laminated on a substrate, wherein the recording layer is the first recording layer. In the case of having a layer (crystallization promoting layer) and a second recording layer, the substrate is heated to a temperature lower than the excessive deflection temperature of the substrate material when the second recording layer is formed, and the phase change optical information recording is characterized. Medium manufacturing method.
【請求項6】 基板上に、少なくとも第一誘電体層、記
録層、第二誘電体層、反射層を順次積層した光情報記録
媒体の製造方法であって、該記録層が、第一記録層(結
晶化促進層)、第二記録層を有する場合に、第二記録層
成膜時又は第二記録層成膜工程の上流工程において、基
板材料の過重たわみ温度未満の温度に基板を加熱すると
共に、製膜用の真空槽内にArガス又はArガスを含む
希ガスを導入することを特徴とする相変化型光情報記録
媒体の製造方法。
6. A method of manufacturing an optical information recording medium in which at least a first dielectric layer, a recording layer, a second dielectric layer, and a reflective layer are sequentially laminated on a substrate, wherein the recording layer is the first recording layer. When having a layer (crystallization promoting layer) and a second recording layer, the substrate is heated to a temperature lower than the over-deflection temperature of the substrate material during the formation of the second recording layer or in the upstream step of the second recording layer forming step. In addition, the method for producing a phase-change optical information recording medium, characterized in that Ar gas or a rare gas containing Ar gas is introduced into the vacuum chamber for film formation.
【請求項7】 導入するArガスの圧力が2×10−3
〜2×10−2Torrであることを特徴とする請求項
6記載の相変化型光情報記録媒体の製造方法。
7. The pressure of Ar gas introduced is 2 × 10 −3.
7. The method for manufacturing a phase-change optical information recording medium according to claim 6, wherein the phase change optical information recording medium is about 2 × 10 −2 Torr.
【請求項8】 第二記録層の成膜速度を1.4nm/秒
以上とすることを特徴とする請求項5〜7の何れかに記
載の相変化型光情報記録媒体の製造方法。
8. The method for manufacturing a phase change optical information recording medium according to claim 5, wherein the film forming rate of the second recording layer is 1.4 nm / sec or more.
【請求項9】 成膜方法がパルス状の波形を有する直流
放電スパッタであることを特徴とする請求項5〜8の何
れかに記載の相変化型光情報記録媒体の製造方法。
9. The method for producing a phase change optical information recording medium according to claim 5, wherein the film forming method is DC discharge sputtering having a pulsed waveform.
【請求項10】 パルス状波形の周波数が1〜100k
Hzであり、スパッタリングに有効な電圧となる比率が
75%以上であることを特徴とする請求項9記載の相変
化型光情報記録媒体の製造方法。
10. The frequency of the pulsed waveform is 1 to 100 k.
10. The method for producing a phase-change optical information recording medium according to claim 9, wherein the ratio is Hz and the ratio of the voltage effective for sputtering is 75% or more.
JP2002077228A 2002-03-19 2002-03-19 Phase change optical information recording medium and method for manufacturing the same Expired - Fee Related JP4021691B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002077228A JP4021691B2 (en) 2002-03-19 2002-03-19 Phase change optical information recording medium and method for manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002077228A JP4021691B2 (en) 2002-03-19 2002-03-19 Phase change optical information recording medium and method for manufacturing the same

Publications (2)

Publication Number Publication Date
JP2003266949A true JP2003266949A (en) 2003-09-25
JP4021691B2 JP4021691B2 (en) 2007-12-12

Family

ID=29205657

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002077228A Expired - Fee Related JP4021691B2 (en) 2002-03-19 2002-03-19 Phase change optical information recording medium and method for manufacturing the same

Country Status (1)

Country Link
JP (1) JP4021691B2 (en)

Also Published As

Publication number Publication date
JP4021691B2 (en) 2007-12-12

Similar Documents

Publication Publication Date Title
CN1287370C (en) Disposable write optical recording medium
EP0288354B1 (en) Process for manufacturing an optical recording medium
KR20020026187A (en) Optical recording medium and use of such optical recording medium
JP4012934B1 (en) Optical recording medium and optical recording method and optical recording apparatus using multilayer optical recording medium
US6335069B1 (en) Phase-changeable optical recording medium, method of manufacturing the same, and method of recording information on the same
KR100563882B1 (en) Optical disc
EP0846322B1 (en) Reversible optical information medium
EP1752973B1 (en) Method of recording information in optical recording medium, information recording apparatus and optical recording medium
JPH08190734A (en) Optical recording medium
JPH10226173A (en) Optical recording medium and its manufacture
JP4021691B2 (en) Phase change optical information recording medium and method for manufacturing the same
JP2560153B2 (en) Optical information recording medium
JP2001209970A (en) Information recording medium, method of producing the same and method of recording and reproducing the same
JPH08329521A (en) Optical recording medium
JP3891471B2 (en) Phase change recording medium
JP4322927B2 (en) Optical recording method, optical recording medium, and multilayer optical recording medium optical recording apparatus
JP4132929B2 (en) Thin film manufacturing method
JPH10340487A (en) Production of optical recording medium
JP2002269809A (en) Information recording medium, initializing method for information recording medium and recording method for information
JPH10289478A (en) Optical information recording medium and its production
JP3173177B2 (en) Optical recording medium and manufacturing method thereof
JP4121231B2 (en) Initializing method of optical recording medium
JP2002225436A (en) Optical information recording medium and its manufacturing method
JPH10106045A (en) Optical recording medium and its manufacturing method and equipment
JPH1021587A (en) Production of optical recording medium

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041022

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070314

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070626

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070827

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070925

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070927

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101005

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111005

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121005

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131005

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees