JP2003266318A - Grinding wheel, grinding method and grinder for organic elastic body - Google Patents
Grinding wheel, grinding method and grinder for organic elastic bodyInfo
- Publication number
- JP2003266318A JP2003266318A JP2002064652A JP2002064652A JP2003266318A JP 2003266318 A JP2003266318 A JP 2003266318A JP 2002064652 A JP2002064652 A JP 2002064652A JP 2002064652 A JP2002064652 A JP 2002064652A JP 2003266318 A JP2003266318 A JP 2003266318A
- Authority
- JP
- Japan
- Prior art keywords
- grinding
- abrasive grain
- elastic body
- grindstone
- organic elastic
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Polishing Bodies And Polishing Tools (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は、有機弾性体の研削
砥石、研削盤及び研削方法に係り、特に、寸法精度及び
仕上げ面精度に優れ、かつ砥石目詰まりを抑制し長期に
わたり有機弾性体を安定した研削を可能とする研削砥石
及び研削方法に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a grindstone for an organic elastic body, a grinder, and a grinding method, and more particularly, to an organic elastic body which is excellent in dimensional accuracy and finishing surface accuracy, and which suppresses clogging of the grindstone for a long time. The present invention relates to a grinding wheel and a grinding method that enable stable grinding.
【0002】[0002]
【従来の技術】ゴム等の種々の有機弾性体を用いた機械
部品のうち、OA機器の回転ローラ等に用いられるもの
は、高い寸法精度及び面精度が要求されるため、成型加
工後に仕上げ研削が行われるのが一般的である。研削加
工には、一般に、図5に示すように、砥石主軸台3に固
定ジグ2で固定された砥石1及びベアリング台6とモー
タ4とで支持された被研削体ローラ5を同時に回転させ
ながら当接させて研削を行う、いわゆる円筒プランジ研
削(図5(a))や、砥石1及びローラ5を回転させな
がら、さらに一方を軸方向(矢印方向)に移動させ、ロ
ーラ全面を研削するいわゆるトラバース研削(図5
(b))等が採用され、砥石の砥粒密度(大きさ及び間
隔)は、要求される仕上げ面精度に応じて選択される。
このような方法で有機弾性体の研削を行うと、研削くず
が砥粒間の隙間や気孔内に入り込み、目詰まりが起こり
易いことから、砥石のドレッシングを頻繁に行う必要が
あり、生産性が低いという問題がある。そこで、目詰ま
りを抑え生産性を向上させる種々の方策が検討されてお
り、例えば、特開2001−71270には、砥石外周
面に溝を形成し、研削くずを溝に沿って排出させる方法
や研削時に圧縮空気を吹き付け強制的に研削くずを排出
する方法が開示されている。これらの方法により、長期
間にわたり砥石の目詰まりは抑えられることとなり、有
機弾性体の研削生産性が大きく向上した。2. Description of the Related Art Among machine parts using various organic elastic materials such as rubber, those used for rotary rollers of OA equipment require high dimensional accuracy and surface accuracy, and therefore finish grinding after molding. Is generally performed. In the grinding process, generally, as shown in FIG. 5, while simultaneously rotating a grindstone 1 fixed to a grindstone headstock 3 by a fixing jig 2 and a grinding target roller 5 supported by a bearing stand 6 and a motor 4, So-called cylindrical plunge grinding (FIG. 5 (a)) in which abutting is performed, or one of which is further moved in the axial direction (arrow direction) while rotating the grindstone 1 and the roller 5 to grind the entire surface of the roller. Traverse grinding (Fig. 5
(B)) or the like is adopted, and the abrasive grain density (size and interval) of the grindstone is selected according to the required finishing surface accuracy.
When the organic elastic body is ground by such a method, grinding debris enters the gaps or pores between the abrasive grains, and clogging is likely to occur.Therefore, it is necessary to frequently perform dressing of the grindstone, which results in high productivity. There is a problem of being low. Therefore, various measures for suppressing clogging and improving productivity have been studied. For example, in Japanese Patent Laid-Open No. 2001-71270, a method of forming a groove on the outer peripheral surface of a grindstone and discharging grinding waste along the groove, A method is disclosed in which compressed air is blown during grinding to forcibly discharge grinding debris. By these methods, the clogging of the grindstone can be suppressed for a long period of time, and the grinding productivity of the organic elastic body is greatly improved.
【0003】[0003]
【発明が解決しようとする課題】しかし、例えばプリン
タの場合、画素密度の増大、フルカラー化等、より高精
細な画像が要求されてくると、紙送りローラ、トナー定
着ローラや感光ドラム等についても、ますます高い仕上
げ面精度及び寸法精度が要求され、特開2001−71
270に開示された研削方法では、必ずしも要求される
精度の研削はできるとは限らなかった。即ち、有機弾性
体は弾性変形が大きいため、砥石を弾性体に当てたとき
に弾性体が逃げてしまい、設計値通りの切り込みが行え
ず寸法精度が低くなるととともに、表面に鋸歯状縞模様
が生じて面精度が低くなり、より高い加工精度に対応す
ることが容易でないことが分かった。このため、有機弾
性体を例えば液体窒素等でガラス転移点以下の低温に冷
却して研削を行う方法も検討されているが、加工精度は
向上するものの生産性が低く、生産コストが増大するい
う問題がある。また、水等を供給しながら研削を行う湿
式法を採用することにより、面精度は向上するが、砥石
と有機弾性体表面との間で滑りが生じて、所望の寸法精
度が得られないことも分かった。即ち、従来の研削方法
では、寸法精度及び面精度のいずれも満たす高精度の有
機弾性体研削を生産性よく行うことは実際上困難であっ
た。However, in the case of a printer, for example, when a higher-definition image such as an increase in pixel density or full color is demanded, the paper feed roller, the toner fixing roller, the photosensitive drum, etc. are also required. Increasingly high finishing surface accuracy and dimensional accuracy are required.
The grinding method disclosed in No. 270 did not always achieve the required accuracy of grinding. That is, since the organic elastic body has a large elastic deformation, when the grindstone is applied to the elastic body, the elastic body escapes, and it is not possible to make a cut as designed and the dimensional accuracy becomes low, and a sawtooth stripe pattern is formed on the surface. It has been found that it is difficult to cope with higher processing accuracy due to the occurrence of surface accuracy. For this reason, a method of cooling the organic elastic body to a low temperature below the glass transition point with liquid nitrogen or the like and performing grinding is also being studied, but although the processing accuracy is improved, the productivity is low and the production cost is increased. There's a problem. Further, by adopting a wet method in which grinding is performed while supplying water or the like, surface accuracy is improved, but slippage occurs between the grindstone and the surface of the organic elastic body, and desired dimensional accuracy cannot be obtained. I also understood. That is, in the conventional grinding method, it was practically difficult to perform highly accurate organic elastic body grinding satisfying both dimensional accuracy and surface accuracy with high productivity.
【0004】以上のような状況に鑑み、本発明者は、よ
り高い加工精度を達成可能な研削方法を開発すべく、種
々の構造、粒度の砥石を用いて様々な条件で研削を行
い、これらの条件と加工精度との関係について詳細な検
討を行った。この中で、砥石層をらせん状に形成した砥
石は、研削くずを効率よく排出して目詰まりを抑える効
果を有するのみならず、らせん状砥石層の構造により、
特に砥石層の間隔及びらせん軸に対する角度により寸法
精度及び面精度が大きく変化することを見出した。そこ
で、本発明者はかかる知見を基にさらに検討を加え、高
い寸法精度及び面精度のいずれも満たす砥石構造を案出
し、本発明の完成に至ったものである。即ち、本発明
は、仕上げ面精度及び寸法精度に優れた有機弾性体の研
削砥石を提供することを目的とする。さらに、生産性、
加工精度に優れた有機弾性体の研削方法及び研削装置を
提供することを目的とする。In view of the above situation, the inventor of the present invention grinds under various conditions using grindstones of various structures and grain sizes in order to develop a grinding method capable of achieving higher processing accuracy. A detailed study was conducted on the relationship between the conditions of 1 and processing accuracy. Among these, the grindstone in which the grindstone layer is formed in a spiral shape not only has the effect of efficiently discharging grinding debris and suppressing clogging, but due to the structure of the spiral grindstone layer,
In particular, it has been found that the dimensional accuracy and surface accuracy greatly change depending on the distance between the grindstone layers and the angle with respect to the spiral axis. Therefore, the present inventor has further studied based on such knowledge, devised a grindstone structure satisfying both high dimensional accuracy and surface accuracy, and completed the present invention. That is, it is an object of the present invention to provide a grinding stone of an organic elastic body having excellent finished surface accuracy and dimensional accuracy. In addition, productivity,
An object of the present invention is to provide a grinding method and a grinding device for an organic elastic body having excellent processing accuracy.
【0005】[0005]
【課題を解決するための手段】本発明の有機弾性体の研
削砥石は、円盤又は円柱状体の外周面において半径方向
外側に突出するらせん状の砥粒層が形成された砥石であ
って、砥石主軸と砥粒層のなす角度θを65〜85゜、
円周方向に沿った砥粒層間の前記外周面上の距離Lを2
0mm以上としたことを特徴とする。砥石外周面に砥粒
層をらせん状に形成し、円周方向に沿った砥粒層間の距
離Lを20mm以上とすることにより、砥石が連続的に
有機弾性体に接触し、安定した圧力で研削が可能となる
とともに、一つの砥粒層で研削した後次の砥粒層で研削
するため十分大きな切り込み深さが得られ、短時間で設
計値まで研削を行うことができる。また、砥石主軸と砥
粒層のなす角度θを65〜85゜とすることにより、L
が20mm以上と大きい場合であっても、有機弾性体に
及ぼす力が均一に保たれる結果振動が抑えられ、均一な
研削が可能となってより高い面精度を得ることができ
る。なお、本発明の研削砥石は、円周方向に砥粒層が形
成された部分と砥粒のない部分が交互に配置された構成
となり、1つの砥粒層において、円周方向の一端部近傍
の砥粒とそれに続き他端部までに存在する砥粒とに、そ
れぞれ有機弾性体の削り取り機能と仕上げ機能とを持た
せるという役割分担を行なわせる構成としたものであ
る。砥粒層の間の領域(凹部)には研削くずが残らない
ため、上記砥粒層一端部に存在する砥粒が有機弾性体の
切り込みを阻害されることはない。また、その後方他端
部までの砥粒により仕上げが行われ十分な面精度を得る
ことができる。なお、この砥粒層に研削くずが入り込ん
だとしても、先端部砥粒の切り込み機能には影響せず、
また面精度も確保される。以上の突出する砥粒層は、例
えば、円盤又は円柱状体の外周面部に砥粒層を電着法等
により形成したり、あるいは砥石体の外周面を切削等し
て形成することができる。A grinding wheel for an organic elastic body of the present invention is a grinding wheel in which a spiral abrasive grain layer protruding radially outward is formed on the outer peripheral surface of a disk or a cylindrical body, The angle θ between the main axis of the grindstone and the abrasive layer is 65-85 °,
The distance L on the outer peripheral surface between the abrasive grain layers along the circumferential direction is 2
It is characterized in that it is set to 0 mm or more. By forming an abrasive grain layer in a spiral shape on the outer peripheral surface of the grindstone and setting the distance L between the abrasive grain layers along the circumferential direction to 20 mm or more, the grindstone continuously contacts the organic elastic body, and a stable pressure is applied. Grinding becomes possible, and a sufficiently large cutting depth is obtained because grinding is performed with one abrasive grain layer and then with the next abrasive grain layer, and it is possible to perform grinding to a design value in a short time. Further, by setting the angle θ between the main axis of the grindstone and the abrasive grain layer to be 65 to 85 °, L
Even when the value is as large as 20 mm or more, the force exerted on the organic elastic body is kept uniform, so that vibration is suppressed, uniform grinding is possible, and higher surface accuracy can be obtained. In addition, the grinding wheel of the present invention has a configuration in which a portion in which the abrasive grain layer is formed and a portion in which no abrasive grain is present are alternately arranged in the circumferential direction, and in one abrasive grain layer, the vicinity of one end portion in the circumferential direction is provided. The abrasive grains and the abrasive grains present thereafter up to the other end are divided into the functions of shaving and finishing the organic elastic body, respectively. Since no grinding waste remains in the region (recess) between the abrasive grain layers, the abrasive grains present at one end of the abrasive grain layer do not hinder the cutting of the organic elastic body. Further, the polishing is performed with the abrasive grains to the other end portion on the rear side, and sufficient surface accuracy can be obtained. Even if grinding debris enters this abrasive grain layer, it does not affect the cutting function of the tip abrasive grains,
Also, the surface accuracy is secured. The above-mentioned protruding abrasive grain layer can be formed, for example, by forming an abrasive grain layer on the outer peripheral surface of a disc or a columnar body by an electrodeposition method or by cutting the outer peripheral surface of a grindstone body.
【0006】また、本発明の研削砥石は、前記砥粒層間
に該砥粒層よりも砥粒密度の小さい第2の砥粒層を設け
た構成としてもよく、同様の効果が得られる。なお、本
発明において、らせん状の砥粒層とは、砥石端面で砥石
層が分断される場合は環状の場合も含む意味であり、砥
石幅が狭い場合に環状の砥粒層を用いることができる。
また、前記突出する砥粒層の砥石主軸方向における長さ
の和を、外周面にわたり略一定とするのが好ましい。こ
れにより、より安定した研削が可能となり、面精度もさ
らに向上する。Further, the grinding wheel of the present invention may have a structure in which a second abrasive grain layer having a smaller abrasive grain density than the abrasive grain layer is provided between the abrasive grain layers, and the same effect can be obtained. In the present invention, the spiral abrasive grain layer means that the case where the grindstone layer is divided at the end face of the grindstone also includes the annular shape, and when the grindstone width is narrow, it is possible to use the annular abrasive grain layer. it can.
Further, it is preferable that the sum of the lengths of the protruding abrasive grain layers in the main axis direction of the grindstone is substantially constant over the outer peripheral surface. As a result, more stable grinding is possible and the surface accuracy is further improved.
【0007】本発明の有機弾性体の研削盤は、上記本発
明の砥石と、該砥石の回転機構と、被研削有機弾性体と
前記砥石とを相対的に移動させる機構と、を備えたこと
を特徴とする。これにより、ローラ、平板状等、様々な
形状の有機弾性体の精密研削が可能となり、加工精度に
優れかつ生産性の高い研削盤を実現することができる。The grinder for an organic elastic body of the present invention comprises the above-mentioned grindstone of the present invention, a rotating mechanism for the grindstone, and a mechanism for relatively moving the grindstone with the organic elastic body to be ground. Is characterized by. As a result, it is possible to precisely grind organic elastic bodies having various shapes such as a roller and a flat plate shape, and it is possible to realize a grinder having excellent processing accuracy and high productivity.
【0008】また、本発明の有機弾性体の研削方法は、
有機弾性体を研削用砥石で研削する方法であって、上記
本発明の砥石を回転させながら有機弾性体に当接させる
ことを特徴とする。The method for grinding an organic elastic material of the present invention is
A method of grinding an organic elastic body with a grinding stone, characterized in that the grindstone of the present invention is brought into contact with the organic elastic body while rotating.
【0009】[0009]
【発明の実施の形態】以下に本発明の実施の形態を図に
基づいて説明する。図1は有機弾性体ローラの研削に用
いられる研削盤及び砥石の一例を示す模式図である。図
に示すように、研削盤は、砥石1を回転可能に支持する
砥石主軸台3と、被研削物である有機弾性体ローラ5を
回転可能に支持するベアリング台6及びモータ4とから
構成され、砥石1は固定ジグ2により砥石主軸台3に固
定される。また、砥石主軸台3は、不図示の移動機構に
より、図の左右及び上下方向に移動する。BEST MODE FOR CARRYING OUT THE INVENTION Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 is a schematic view showing an example of a grinder and a grindstone used for grinding an organic elastic body roller. As shown in the figure, the grinder includes a grindstone headstock 3 that rotatably supports the grindstone 1, a bearing base 6 that rotatably supports an organic elastic body roller 5 that is an object to be ground, and a motor 4. The grindstone 1 is fixed to the grindstone headstock 3 by a fixing jig 2. Further, the grindstone headstock 3 is moved in the horizontal and vertical directions in the figure by a moving mechanism (not shown).
【0010】砥石1は、円筒部材の外周面にらせん状の
砥粒層1aが所定の間隔を開け、砥石主軸方向と所定の
角度(θ)をもって形成されている。ここで、θは65
〜85゜とし、円周方向に沿った砥粒層間の前記外周面
上の距離Lは20mm以上とする。Lを20mm以上と
することにより、十分な切り込み深さが確保され、より
高い寸法精度の研削を短時間で行うことができる。一
方、θを65゜以上とすることにより、Lが20mm以
上とした場合でも、有機弾性体と砥石との振動が抑えら
れ、より均一な研削が可能となり面精度が向上する。ま
た、85゜以下とすることにより、研削くずの排出が速
やかに行われ、目詰まりを抑制し、高い生産性を確保す
ることができる。なお、円周(回転)方向に沿った砥粒
層の幅は、長すぎると溝の効果が低下し又短すぎると研
削効果(特に面精度)が低下するため、0.3L〜3.
0L程度とするのが好ましい。また、砥粒層の有機弾性
体に接触する面積が常に一定となるように、外周面全周
にわたり、主軸方向の砥粒層長さの総和が一定になるよ
うに形成するのが好ましい。The grindstone 1 is formed with a spiral abrasive grain layer 1a on the outer peripheral surface of a cylindrical member at a predetermined interval and at a predetermined angle (θ) with the main axis of the grindstone. Where θ is 65
˜85 °, and the distance L on the outer peripheral surface between the abrasive grain layers along the circumferential direction is 20 mm or more. By setting L to 20 mm or more, a sufficient cutting depth is secured, and grinding with higher dimensional accuracy can be performed in a short time. On the other hand, when θ is set to 65 ° or more, even when L is set to 20 mm or more, vibration between the organic elastic body and the grindstone is suppressed, and more uniform grinding becomes possible and surface accuracy is improved. Further, by setting the angle to 85 ° or less, the discharge of grinding debris is promptly performed, clogging can be suppressed, and high productivity can be secured. If the width of the abrasive grain layer along the circumferential (rotational) direction is too long, the effect of the groove decreases, and if it is too short, the grinding effect (particularly surface accuracy) decreases, so 0.3L to 3.
It is preferably about 0 L. Further, it is preferable that the total length of the abrasive grain layers in the main axis direction is constant over the entire outer peripheral surface so that the area of the abrasive grain layer in contact with the organic elastic body is always constant.
【0011】突出した砥粒層の高さは、0.5mm程度
又はこれ以上とするのが好ましい。このような凹凸を形
成することにより、砥石と有機弾性体との接触面積が小
さくなり、砥石が有機弾性体を押しつける単位面積あた
りの力が大きくなる。この結果、有機弾性体が凹部内に
食い込む形となるため、有機弾性体の逃げがより抑えら
れ、所望の切り込みがより速やかに行われ、寸法精度、
面精度は一層向上する。さらに、研削くずは凹部を通っ
て排出され易くなり、より長期にわたり安定した連続研
削が可能となる。The height of the protruding abrasive grain layer is preferably about 0.5 mm or more. By forming such irregularities, the contact area between the grindstone and the organic elastic body is reduced, and the force per unit area by which the grindstone presses the organic elastic body is increased. As a result, since the organic elastic body has a shape to bite into the concave portion, the escape of the organic elastic body is further suppressed, a desired cut is made more quickly, and the dimensional accuracy,
The surface accuracy is further improved. Further, the grinding debris is easily discharged through the recess, and stable continuous grinding can be performed for a longer period.
【0012】図1に示した研削盤を用いた有機弾性体ロ
ーラの研削は次にようにして行われる。まず、有機弾性
体ローラ5及び砥石1をそれぞれ所定の回転数で回転さ
せ、続いて所定の切り込み深さに対応したストローク
分、所定の切り込み速度で砥石を下降させながら研削を
行う。この場合、砥石を主軸方向に所定のストロークで
揺動させるのが好ましく、ローラ面精度及び寸法精度を
より向上させることができる。研削を開始すると、研削
くずは砥粒層の間から効果的に外部に排出される。ま
た、砥石外周面の回転方向における砥粒層先端部の砥粒
と、同じ砥粒層内の後方に位置する砥粒とにより、それ
ぞれ有機弾性体の切り込みと仕上げとが行われる。即
ち、研削を継続すると研削くずが砥粒層内部を詰まらせ
ることになるが、砥粒層内の回転方向先端部の砥粒によ
り常に所定の砥粒切り込み深さhmaxが担保され、有機
弾性体の切り込みが安定して行われる。また、後方の砥
粒により高い面精度を得ることができる。このようにし
て、例えば#100以上の砥石を用いても目詰まりが抑
制され、極めて高い仕上げ面精度(Rmax=10μm程
度以下)及び寸法精度(10μm程度以下)の研削が可
能となる。Grinding of the organic elastic roller using the grinder shown in FIG. 1 is performed as follows. First, the organic elastic roller 5 and the grindstone 1 are each rotated at a predetermined number of revolutions, and then the grinding wheel is lowered at a predetermined cutting speed for a stroke corresponding to a predetermined cutting depth. In this case, it is preferable to swing the grindstone in the main axis direction with a predetermined stroke, and the roller surface accuracy and the dimensional accuracy can be further improved. When the grinding is started, the grinding waste is effectively discharged from the space between the abrasive grain layers to the outside. Further, the cutting and finishing of the organic elastic body are respectively performed by the abrasive grains at the tip of the abrasive grain layer in the rotational direction of the outer peripheral surface of the grindstone and the abrasive grains located rearward in the same abrasive grain layer. That is, if grinding continues, grinding debris will clog the inside of the abrasive grain layer, but the abrasive grain at the tip of the abrasive grain layer in the direction of rotation always ensures a predetermined abrasive grain cutting depth hmax, and the organic elastic body Slitting is performed stably. Further, a high surface accuracy can be obtained by the rear abrasive grains. In this way, for example, even if a grindstone of # 100 or more is used, clogging is suppressed and grinding with extremely high finished surface accuracy (Rmax = about 10 μm or less) and dimensional accuracy (about 10 μm or less) becomes possible.
【0013】本発明の他の形態の砥石を図2の模式的断
面図に示す。図2(a)に示した砥石は、砥石外周面を
切削して溝1bを形成することにより、突出する砥粒層
1aを形成したものである。溝の深さは、上述した砥粒
層の高さと同様に、0.5mm程度又はそれ以上が好適
に選択される。また、図2(b)に示した構造の砥石も
同様の効果が得られる。図2(b)の砥石は、砥石外周
面にらせん状の砥粒層1aを形成し、その間に砥粒層1
aよりも砥粒密度の小さい(粗い)第2の砥粒層1a’
を形成した構成としたものである。例えば、#10程度
の粒度の粗い砥粒層1a’と#100程度の細かい砥粒
層1aとが交互に配置される。この場合、図1や図2
(a)の砥石と比べて研削くずの排出効果は低下するた
め、場合によっては、圧縮空気を吹き付けながら研削行
うことにより、安定した加工精度でゴムの連続研削を行
うことができる。A grindstone according to another embodiment of the present invention is shown in the schematic sectional view of FIG. The grindstone shown in FIG. 2A is formed by cutting the outer peripheral surface of the grindstone to form the groove 1b to form the protruding abrasive grain layer 1a. The depth of the groove is preferably selected to be about 0.5 mm or more, similarly to the height of the abrasive grain layer described above. Further, the same effect can be obtained with the grindstone having the structure shown in FIG. The grindstone of FIG. 2 (b) forms a spiral abrasive grain layer 1a on the outer peripheral surface of the grindstone, and the abrasive grain layer 1
Second abrasive grain layer 1a ′ having a smaller (rougher) abrasive grain density than a
Is formed. For example, the coarse abrasive grain layers 1a 'having a grain size of about # 10 and the fine abrasive grain layers 1a of about # 100 are alternately arranged. In this case,
Since the discharge effect of grinding debris is lower than that of the grindstone of (a), in some cases, continuous grinding of rubber can be performed with stable processing accuracy by performing grinding while blowing compressed air.
【0014】なお、本発明の砥石は、砥石全体が砥粒で
構成される構造であっても、また、外周面部のみに砥粒
層が形成された構造であっても良い。その作製には、図
1や図2(b)に示した砥石は、例えば電着法により、
また図2(a)の溝付砥石の場合は、例えば、砥石の外
周面をらせん状に切削する方法等を用いることができ
る。The grindstone of the present invention may have a structure in which the whole grindstone is composed of abrasive grains, or a structure in which an abrasive grain layer is formed only on the outer peripheral surface portion. The grindstone shown in FIGS. 1 and 2 (b) is manufactured by, for example, an electrodeposition method.
In the case of the grooved grindstone of FIG. 2A, for example, a method of cutting the outer peripheral surface of the grindstone in a spiral shape can be used.
【0015】次に実施例を挙げて本発明をより詳細に説
明する。10mm幅、150mm径の砥石(クレノート
ン社製WA100k8v)に、図2(a)に示すらせん
溝を形成した。ここで、砥粒層の幅を6.12mm、溝
の幅及び深さをそれぞれ6.12mm、0.5mmと
し、砥石主軸との砥粒層角度θを80゜とした。このと
き、円周方向に沿った砥粒層間の距離Lは35mmであ
る。この砥石1を、図3に示すように、研削盤(黒田精
工平面研削盤GS−BMS型)に取り付け、一方、30
mm径、長さ70mmのOA機器回転ローラ用ゴムロー
ラ(ウレタンゴム)5を支柱式2分力動力計7に取り付
け、平面研削を行った。ここで、研削条件は、研削周速
10m/s、送り速度0.3m/min、一回の切り込
み深さ0.1mm、切り込み回数15回とした。また、
比較のため、溝なし砥石(比較例1)及びθ=45゜、
L=8.7mmのらせん溝砥石(比較例2)を用いて同
様の研削を行った。Next, the present invention will be described in more detail with reference to examples. The spiral groove shown in FIG. 2A was formed on a grindstone (WA100k8v manufactured by Klenorton Co., Ltd.) having a width of 10 mm and a diameter of 150 mm. Here, the width of the abrasive grain layer was 6.12 mm, the width and depth of the groove were 6.12 mm and 0.5 mm, respectively, and the angle θ of the abrasive grain layer with the main axis of the grindstone was 80 °. At this time, the distance L between the abrasive grain layers along the circumferential direction is 35 mm. As shown in FIG. 3, this grindstone 1 was attached to a grinder (Kuroda Seiko surface grinder GS-BMS type), while 30
A rubber roller (urethane rubber) 5 for OA equipment rotating roller having a diameter of mm and a length of 70 mm was attached to a strut-type two-component force dynamometer 7 and surface grinding was performed. Here, the grinding conditions were a grinding peripheral speed of 10 m / s, a feed speed of 0.3 m / min, a cutting depth of 0.1 mm, and a cutting frequency of 15 times. Also,
For comparison, a grooveless grindstone (Comparative Example 1) and θ = 45 °,
The same grinding was performed using a spiral grooved grindstone with L = 8.7 mm (Comparative Example 2).
【0016】それぞれについて、切り残し量及び仕上げ
面精度について得られた結果の一部を表1に示す。ま
た、本実施例及び比較例1の研削抵抗の変化を図4に示
す。ここで、図4中のFtは接線方向の研削抵抗、Fn
は垂直方向の研削抵抗(図3参照)、Wは研削幅であ
る。なお、らせん溝を形成した比較例2の研削抵抗は、
実施例と同様の結果となったため、ここでは省略した。Table 1 shows a part of the results obtained for each of the uncut amount and the finished surface accuracy. Further, FIG. 4 shows changes in the grinding resistance in the present example and the comparative example 1. Here, Ft in FIG. 4 is the tangential grinding resistance, Fn
Is the grinding resistance in the vertical direction (see FIG. 3), and W is the grinding width. The grinding resistance of Comparative Example 2 in which the spiral groove is formed is
Since the result is similar to that of the example, it is omitted here.
【0017】[0017]
【表1】 [Table 1]
【0018】表1から明らかなように、本実施例の切り
残し量は、比較例1及び比較例2に比べ大幅に低減し、
設計通りの研削が行えることが分かる。さらに、仕上げ
面精度も大幅に改善され、ゴムのような弾性体であって
も、極めて高い加工精度が得られることが分かる。ま
た、本実施例は、図4に示したように、研削を繰り返し
行っても研削抵抗は小さい値でほとんど変化しないこと
から、目詰まりのない安定した研削が継続して行えるこ
とが分かる。即ち、θが65〜85゜、Lが20mm以
上の砥粒層を有する砥石を用いることにより、設計値通
りの寸法精度が得られるとともに、高い面精度の研削加
工が可能となる。また、これは研削時間を短縮すること
にもなり、生産性をより一層向上させることができる。As is clear from Table 1, the uncut amount in this example is significantly reduced as compared with Comparative Example 1 and Comparative Example 2,
It can be seen that grinding can be performed as designed. Furthermore, it can be seen that the finishing surface accuracy is also greatly improved and extremely high processing accuracy can be obtained even with an elastic body such as rubber. Further, in the present embodiment, as shown in FIG. 4, the grinding resistance is small and hardly changes even if the grinding is repeated, so that it is understood that stable grinding without clogging can be continuously performed. That is, by using a grindstone having an abrasive grain layer with θ of 65 to 85 ° and L of 20 mm or more, dimensional accuracy as designed can be obtained, and grinding with high surface accuracy becomes possible. In addition, this also shortens the grinding time and can further improve the productivity.
【0019】次に、参考のため、研削液(水)を供給し
た以外は、同じ条件で研削を行った結果を表2に示す。Next, for reference, Table 2 shows the results of grinding performed under the same conditions except that the grinding liquid (water) was supplied.
【表2】
湿式方式を用いた場合、乾式の場合と同様に、らせん溝
砥石を用いることにより加工精度は向上するものの、乾
式の場合に比べ、その精度は低いものであった。これ
は、研削液により砥粒とゴム表面との間で滑りが生じ、
ゴムの切り取りが行われ難くなるためと考えられる。即
ち、らせん溝付砥石を用いる場合には、乾式方式で行う
方がより高い加工精度が得られることが分かる。[Table 2] When the wet method is used, the processing accuracy is improved by using the spiral groove grindstone as in the dry method, but the accuracy is lower than that of the dry method. This is because the grinding fluid causes slippage between the abrasive grains and the rubber surface,
It is considered that it is difficult to cut the rubber. That is, when using a grindstone with a spiral groove, it is understood that a higher processing accuracy can be obtained by performing the dry method.
【0020】[0020]
【発明の効果】以上述べたように、本発明により、より
高い面精度及び寸法精度の研削が可能となるとともに、
研削時間の短縮化を達成することができる。また、目詰
まりが抑えられ、安定した精密研削を長期間安定して行
うことが可能となる。As described above, the present invention enables grinding with higher surface accuracy and dimensional accuracy, and
A reduction in grinding time can be achieved. Further, clogging is suppressed, and stable precision grinding can be stably performed for a long period of time.
【図1】本発明の研削砥石及び研削盤の一例を示す模式
図である。FIG. 1 is a schematic view showing an example of a grinding wheel and a grinder of the present invention.
【図2】本発明の研削砥石の他の例を示す模式図であ
る。FIG. 2 is a schematic view showing another example of the grinding wheel of the present invention.
【図3】ゴムローラの平面研削及びそのときの研削抵抗
の測定系を示す模式図である。FIG. 3 is a schematic view showing a surface grinding of a rubber roller and a grinding resistance measuring system at that time.
【図4】実施例1(a)及び比較例1(b)の砥石につ
いて、研削抵抗の変化を示すグラフである。FIG. 4 is a graph showing changes in grinding resistance for the grindstones of Example 1 (a) and Comparative example 1 (b).
【図5】従来の研削方法を示す模式図である。FIG. 5 is a schematic view showing a conventional grinding method.
1 砥石、 1a,1a’砥粒層、 1b 溝、 2 固定ジグ、 3 砥石主軸台、 5 ゴムローラ、 4 モータ、 6 ベアリング台、 7 支柱式2分力動力計。 1 whetstone, 1a, 1a 'abrasive grain layer, 1b groove, 2 fixed jig, 3 Grindstone headstock, 5 rubber roller, 4 motors, 6 bearing stand, 7 Post type 2 component force dynamometer.
───────────────────────────────────────────────────── フロントページの続き (72)発明者 劉 猛 神奈川県横浜市金沢区泥亀1−23−2− 107 Fターム(参考) 3C063 AA02 AB03 BA32 BA35 BB21 BC02 BG10 CC12 EE15 FF20 FF23 ─────────────────────────────────────────────────── ─── Continued front page (72) Inventor Takeshi Liu 1-23-2-Mudame, Kanazawa-ku, Yokohama-shi, Kanagawa 107 F-term (reference) 3C063 AA02 AB03 BA32 BA35 BB21 BC02 BG10 CC12 EE15 FF20 FF23
Claims (4)
方向外側に突出するらせん状の砥粒層が形成された砥石
であって、砥石主軸と砥粒層のなす角度θを65〜85
゜、円周方向に沿った砥粒層間の前記外周面上の距離L
を20mm以上としたことを特徴とする有機弾性体の研
削砥石。1. A grindstone in which a spiral abrasive grain layer protruding radially outward is formed on the outer peripheral surface of a disk or a columnar body, and an angle θ formed between the spindle of the stone and the abrasive grain layer is 65 to 85.
°, the distance L between the abrasive grain layers along the circumferential direction on the outer peripheral surface
Is 20 mm or more, and is an organic elastic body grinding wheel.
度の小さい第2の砥粒層を設けたことを特徴とする請求
項1に記載の有機弾性体の研削砥石。2. The grinding stone for an organic elastic body according to claim 1, wherein a second abrasive grain layer having a smaller abrasive grain density than the abrasive grain layer is provided between the abrasive grain layers.
の回転機構と、被研削有機弾性体と前記砥石とを相対的
に移動させる機構と、を備えたことを特徴とする有機弾
性体の研削盤。3. An organic material comprising: the grindstone according to claim 1 or 2, a rotating mechanism for the grindstone, and a mechanism for relatively moving the organic elastic body to be ground and the grindstone. An elastic body grinder.
あって、請求項1又は2に記載の砥石を回転させながら
有機弾性体に当接させることを特徴とする有機弾性体の
研削方法。4. A method of grinding an organic elastic body with a grinding stone, wherein the grinding stone according to claim 1 is brought into contact with the organic elastic body while rotating. .
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2002064652A JP2003266318A (en) | 2002-03-11 | 2002-03-11 | Grinding wheel, grinding method and grinder for organic elastic body |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2002064652A JP2003266318A (en) | 2002-03-11 | 2002-03-11 | Grinding wheel, grinding method and grinder for organic elastic body |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2003266318A true JP2003266318A (en) | 2003-09-24 |
Family
ID=29197331
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2002064652A Pending JP2003266318A (en) | 2002-03-11 | 2002-03-11 | Grinding wheel, grinding method and grinder for organic elastic body |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2003266318A (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2006054674A1 (en) * | 2004-11-19 | 2006-05-26 | Toyoda Van Moppes Ltd. | Grinding wheel |
JP2007237367A (en) * | 2006-03-10 | 2007-09-20 | Asahi Diamond Industrial Co Ltd | Grinding tool |
CN103806635A (en) * | 2014-03-05 | 2014-05-21 | 潘勇君 | Diamond hobbing cutter of dust-free ash planing machine and diamond hobbing cutter assembly |
CN112123225A (en) * | 2020-08-26 | 2020-12-25 | 南京航空航天大学 | Elastic milling and polishing tool for machining brittle workpiece and manufacturing method thereof |
-
2002
- 2002-03-11 JP JP2002064652A patent/JP2003266318A/en active Pending
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2006054674A1 (en) * | 2004-11-19 | 2006-05-26 | Toyoda Van Moppes Ltd. | Grinding wheel |
US7695353B2 (en) | 2004-11-19 | 2010-04-13 | Toyoda Van Moppes Ltd. | Grinding wheel |
JP2007237367A (en) * | 2006-03-10 | 2007-09-20 | Asahi Diamond Industrial Co Ltd | Grinding tool |
CN103806635A (en) * | 2014-03-05 | 2014-05-21 | 潘勇君 | Diamond hobbing cutter of dust-free ash planing machine and diamond hobbing cutter assembly |
CN112123225A (en) * | 2020-08-26 | 2020-12-25 | 南京航空航天大学 | Elastic milling and polishing tool for machining brittle workpiece and manufacturing method thereof |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7121928B2 (en) | High smoothness grinding process and apparatus for metal material | |
JP2007245337A (en) | Grinding wheel, machine tool with grinding wheel and method for grinding cutting tools | |
JP6679612B2 (en) | Method and grinder for grinding a workpiece having grooves | |
JP2007030119A (en) | Wafer chamfering device and wafer chamfering method | |
JP2003266318A (en) | Grinding wheel, grinding method and grinder for organic elastic body | |
JP6127657B2 (en) | Truing method for rotating wheel and grinding machine for carrying out the truing method | |
JP4284792B2 (en) | Super finishing method of ball bearing raceway surface | |
JP5206194B2 (en) | Truing method and truing device for grinding wheel | |
JP4929790B2 (en) | Truing method of grinding wheel | |
JP2003291069A (en) | Grinding wheel for grinder and grinding method using grinding wheel | |
JP4140841B2 (en) | Rubber roller polishing apparatus and rubber roller polishing method using the polishing apparatus | |
JP2003166539A (en) | Surface modification method of dynamic pressure generating groove of fluid dynamic bearing unit and tools used therefor | |
JP3857579B2 (en) | Chamfering method and chamfering apparatus | |
US2355345A (en) | Optical device and method of making same | |
JP2001071270A (en) | Rotary grindstone for grinding soft material | |
JP3261897B2 (en) | Honing head forming method and forming apparatus | |
JPH09277169A (en) | Grinding wheel dressing method and device for honing head | |
JP2006346762A (en) | Grinding stone forming method, grinding wheel manufacturing method, grinding method, and grinding device | |
JP7210307B2 (en) | Method for manufacturing metal parts | |
JP4007225B2 (en) | Grinding method | |
US7959495B2 (en) | Method and apparatus for finishing the surface of rubber covered rollers | |
JP2003089059A (en) | Dressing device for abrasive wheel for grinding | |
JPH09225791A (en) | Centerless grinding and polishing device | |
JP2580173B2 (en) | On-line grinding method for rolling rolls | |
JP2004136378A (en) | Precision polishing method to outer peripheral surface of elastic roller |