JP2003264266A - Semiconductor device - Google Patents

Semiconductor device

Info

Publication number
JP2003264266A
JP2003264266A JP2002064408A JP2002064408A JP2003264266A JP 2003264266 A JP2003264266 A JP 2003264266A JP 2002064408 A JP2002064408 A JP 2002064408A JP 2002064408 A JP2002064408 A JP 2002064408A JP 2003264266 A JP2003264266 A JP 2003264266A
Authority
JP
Japan
Prior art keywords
region
contact terminal
terminal body
gate
buffer region
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002064408A
Other languages
Japanese (ja)
Inventor
Takashi Fujii
岳志 藤井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP2002064408A priority Critical patent/JP2003264266A/en
Publication of JP2003264266A publication Critical patent/JP2003264266A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/02Bonding areas ; Manufacturing methods related thereto
    • H01L24/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L24/05Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/04042Bonding areas specifically adapted for wire connectors, e.g. wirebond pads
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/484Connecting portions
    • H01L2224/48475Connecting portions connected to auxiliary connecting means on the bonding areas, e.g. pre-ball, wedge-on-ball, ball-on-ball
    • H01L2224/48476Connecting portions connected to auxiliary connecting means on the bonding areas, e.g. pre-ball, wedge-on-ball, ball-on-ball between the wire connector and the bonding area
    • H01L2224/48491Connecting portions connected to auxiliary connecting means on the bonding areas, e.g. pre-ball, wedge-on-ball, ball-on-ball between the wire connector and the bonding area being an additional member attached to the bonding area through an adhesive or solder, e.g. buffer pad
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/13Discrete devices, e.g. 3 terminal devices
    • H01L2924/1304Transistor
    • H01L2924/1305Bipolar Junction Transistor [BJT]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/13Discrete devices, e.g. 3 terminal devices
    • H01L2924/1304Transistor
    • H01L2924/1305Bipolar Junction Transistor [BJT]
    • H01L2924/13055Insulated gate bipolar transistor [IGBT]

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Die Bonding (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To prevent the generation of eccentrically applied excessive pressure in the initial stage of pressure application to a contact terminal member in a semiconductor device, which has an insulated-gate structure and has a structure in which a contact terminal member is pressure-contacted. <P>SOLUTION: Pedestals 31, 32 are formed on a buffer region 4 so that the height of the surface of a second metal layer 19 on the buffer region 4 is higher than that on a gate region 3 before pressure is applied to a contact terminal member 6. The pedestals 31, 32 are so structured as to be squeezed by the pressure application to the contact terminal member 6. By applying pressure to the contact terminal member 6 to squeeze the pedestals 31, 32 to such an extent as the height of the surface of the second metal layer 19 on the buffer region 4 is equal to that on the gate region 3, the tilting of the contact terminal member 6 in the initial stage of the pressure application is eliminated, and the contact terminal member 6 is uniformly pressure-contacted to the second metal layer 19 on the buffer region 4 and on the gate region 3. <P>COPYRIGHT: (C)2003,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、半導体装置に関
し、特にIGBT(絶縁ゲート型バイポーラトランジス
タ)などのように絶縁ゲート構造を有し、コンタクト端
子体を加圧接触させた構造の半導体装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a semiconductor device, and more particularly to a semiconductor device having an insulated gate structure such as an IGBT (insulated gate bipolar transistor) and having a structure in which a contact terminal body is brought into pressure contact.

【0002】[0002]

【従来の技術】大きな電流容量をスイッチングする電力
用半導体装置として、半導体素子の主電極部分に金属製
のコンタクト端子体を加圧接触させた構造のものが知ら
れている。このような加圧接触型の半導体装置では、ワ
イヤボンディングの代わりにコンタクト端子体を介して
主電極との電気的な接続が確保されるとともに、コンタ
クト端子体を介して半導体素子の表面側からも放熱がお
こなわれるため、信頼性が高いという利点がある。
2. Description of the Related Art As a power semiconductor device for switching a large current capacity, one having a structure in which a metal contact terminal body is brought into pressure contact with a main electrode portion of a semiconductor element is known. In such a pressure contact type semiconductor device, electrical connection with the main electrode is secured through the contact terminal body instead of wire bonding, and also from the front surface side of the semiconductor element through the contact terminal body. Since it radiates heat, it has the advantage of high reliability.

【0003】ところで、モーター駆動用のインバータな
どではIGBTが広く使われている。IGBTには、電
圧駆動型で応用上扱いやすく、かつ高速スイッチングが
可能であるという利点がある。IGBTのような絶縁ゲ
ート構造を有する半導体素子にコンタクト端子体を加圧
接触させる場合、エミッタ電極側に多数形成されている
絶縁ゲート構造に直接加圧力がかからないようにする必
要がある。その理由は、チャネル上のゲート酸化膜に応
力が加わると、しきい値電圧等の電気的特性が変わって
しまうだけでなく、特性不良にいたる場合もあるからで
ある。
By the way, IGBTs are widely used in inverters for driving motors. The IGBT is advantageous in that it is a voltage-driven type and is easy to handle in application, and high-speed switching is possible. When the contact terminal body is brought into pressure contact with a semiconductor element having an insulated gate structure such as an IGBT, it is necessary to prevent the pressure from being directly applied to the insulated gate structure formed in large numbers on the emitter electrode side. The reason is that when stress is applied to the gate oxide film on the channel, not only the electrical characteristics such as the threshold voltage change but also the characteristics may be defective.

【0004】図4は従来の加圧接触型IGBTのエミッ
タ側の平面図である。図4に示すように、IGBTチッ
プ1の周辺部には耐圧構造部2が形成され、その内側に
絶縁ゲート構造を有するゲート領域3が設けられてい
る。ゲート領域3と耐圧構造部2との間には、ゲート領
域3を囲むバッファ領域4が設けられている。バッファ
領域4の外側には、ゲート電極に電気的に接続するゲー
トパット5が設けられている。なお、図4においてはコ
ンタクト端子体は省略されている。
FIG. 4 is a plan view of the conventional pressure contact type IGBT on the emitter side. As shown in FIG. 4, a breakdown voltage structure 2 is formed in the peripheral portion of the IGBT chip 1, and a gate region 3 having an insulated gate structure is provided inside the breakdown voltage structure 2. A buffer region 4 surrounding the gate region 3 is provided between the gate region 3 and the breakdown voltage structure portion 2. A gate pad 5 electrically connected to the gate electrode is provided outside the buffer region 4. The contact terminal body is omitted in FIG.

【0005】図5は図4の切断線A−A’における縦断
面図である。図5において、符号6はコンタクト端子
体、符号10は半導体基板、符号11はpウェル領域、
符号12はソース領域、符号13はゲート酸化膜、符号
14はゲート電極、符号15は層間絶縁膜、符号16は
pバッファ領域、符号17は第1金属層、符号18は台
座部、符号19は第2金属層である。
FIG. 5 is a vertical sectional view taken along the line AA 'in FIG. In FIG. 5, reference numeral 6 is a contact terminal body, reference numeral 10 is a semiconductor substrate, reference numeral 11 is a p-well region,
Reference numeral 12 is a source region, reference numeral 13 is a gate oxide film, reference numeral 14 is a gate electrode, reference numeral 15 is an interlayer insulating film, reference numeral 16 is a p-buffer region, reference numeral 17 is a first metal layer, reference numeral 18 is a pedestal portion, and reference numeral 19 is The second metal layer.

【0006】ゲート領域3では、ゲート酸化膜13上に
ゲート電極14が形成され、その上に層間絶縁膜15を
介して第1金属層17が積層され、さらにその上に第2
金属層19が積層されている。バッファ領域4では、p
バッファ領域16上に第1金属層17が積層され、その
上に台座部18が形成され、さらにその上に第2金属層
19が積層されている。台座部18の高さは、ゲート領
域3における第1金属層17の高さと同じである。した
がって、第2金属層19の高さはゲート領域3およびバ
ッファ領域4で同じになり、この第2金属層19にコン
タクト端子体6が加圧接触させられることになる。
In the gate region 3, the gate electrode 14 is formed on the gate oxide film 13, the first metal layer 17 is laminated on the gate electrode 14 with the interlayer insulating film 15 interposed therebetween, and the second metal layer 17 is further formed thereon.
The metal layer 19 is laminated. In the buffer area 4, p
A first metal layer 17 is stacked on the buffer region 16, a pedestal portion 18 is formed on the first metal layer 17, and a second metal layer 19 is further stacked thereon. The height of the pedestal portion 18 is the same as the height of the first metal layer 17 in the gate region 3. Therefore, the height of the second metal layer 19 is the same in the gate region 3 and the buffer region 4, and the contact terminal body 6 is brought into pressure contact with the second metal layer 19.

【0007】また、図6に示すように、ゲート領域3に
おいて、チャネル形成領域を避けて、第1金属層17の
上にゲート台座部21を形成し、その上に第2金属層1
9を積層することによって、図示しないコンタクト端子
体による加圧力を分散させて、チャネル形成領域に加圧
力が直接かからないようにした構造も採用されている
(特開2000−114525号)。
Further, as shown in FIG. 6, in the gate region 3, a gate pedestal portion 21 is formed on the first metal layer 17 while avoiding the channel formation region, and the second metal layer 1 is formed thereon.
A structure is also adopted in which the pressure applied by a contact terminal body (not shown) is dispersed by stacking 9 so that the pressure is not directly applied to the channel formation region (Japanese Patent Laid-Open No. 2000-114525).

【0008】また、さらに強化するため、図6に示すよ
うに、ゲート酸化膜13上にテラス状の酸化膜22を形
成し、その上にゲート電極14を形成した構造も採用さ
れている。このようにゲート台座部21やテラス状の酸
化膜22が設けられている場合には、バッファ領域4の
台座部18はその分高く形成される。
Further, for further strengthening, as shown in FIG. 6, a structure in which a terrace-shaped oxide film 22 is formed on the gate oxide film 13 and the gate electrode 14 is formed thereon is also adopted. When the gate pedestal portion 21 and the terrace-shaped oxide film 22 are thus provided, the pedestal portion 18 of the buffer region 4 is formed higher by that amount.

【0009】いずれの構造においても、コンタクト端子
体6の周縁部は最も偏加圧のかかりやすい部分である。
そのため、コンタクト端子体6の周縁部の下方に、絶縁
ゲート構造のないpバッファ領域16を設け、さらに台
座部18を介してpバッファ領域16に加圧力を分担さ
せることによって、IGBTのセル部分に過度の応力が
かかるのを防止している。
In any of the structures, the peripheral portion of the contact terminal body 6 is the portion that is most likely to be biased.
Therefore, the p buffer region 16 having no insulated gate structure is provided below the peripheral portion of the contact terminal body 6, and the pressing force is shared by the p buffer region 16 via the pedestal portion 18, whereby the cell portion of the IGBT is It prevents excessive stress.

【0010】また、pバッファ領域16の代わりに、ソ
ース領域12を形成しない領域をバッファ領域とした
り、pバッファ領域16に近いpウェル領域11にソー
ス領域12を形成しないようにした構造も提案されてい
る。
Instead of the p buffer region 16, a structure in which the source region 12 is not formed is used as a buffer region, or the source region 12 is not formed in the p well region 11 near the p buffer region 16 is also proposed. ing.

【0011】[0011]

【発明が解決しようとする課題】しかしながら、図7に
示すように、チップ1にコンタクト端子体6を注意深く
取り付けても、取り付け直後の段階ではコンタクト端子
体6はチップ1の素子表面に対して傾いてしまう。その
ため、この状態でコンタクト端子体6に加圧力を加える
と、バッファ領域を設けていても、コンタクト端子体周
辺の素子加圧面に過大な偏加圧力がかかり、素子不良を
招くという問題点があった。
However, as shown in FIG. 7, even if the contact terminal body 6 is carefully attached to the chip 1, the contact terminal body 6 is inclined with respect to the element surface of the chip 1 immediately after the attachment. Will end up. Therefore, if pressure is applied to the contact terminal body 6 in this state, there is a problem that even if the buffer region is provided, excessive biased pressure is applied to the element pressing surface around the contact terminal body, resulting in element failure. It was

【0012】本発明は、上記問題点に鑑みてなされたも
のであって、絶縁ゲート構造を有し、かつコンタクト端
子体を加圧接触させた構造の半導体装置において、コン
タクト端子体の加圧初期に過大な偏加圧力が発生するの
を防ぐことが可能な構造の半導体装置を提供することを
目的とする。
The present invention has been made in view of the above problems, and in a semiconductor device having an insulated gate structure and a structure in which a contact terminal body is brought into pressure contact, a contact terminal body is initially pressed. It is an object of the present invention to provide a semiconductor device having a structure capable of preventing an excessive biased pressure from being generated.

【0013】[0013]

【課題を解決するための手段】上記目的を達成するた
め、本発明にかかる半導体装置は、基板表面に選択的に
形成された、絶縁ゲート構造を有するゲート領域と、基
板表面の、前記ゲート領域以外の領域に選択的に形成さ
れたバッファ領域と、周縁部が前記バッファ領域上に位
置し、かつ前記ゲート領域上を覆うコンタクト端子体
と、前記バッファ領域上に形成され、前記コンタクト端
子体の未加圧状態において前記バッファ領域上の最表面
の高さを前記ゲート領域上の最表面の高さよりも高く
し、かつ前記コンタクト端子体の加圧により前記バッフ
ァ領域上の最表面の高さが前記ゲート領域上の最表面の
高さと同じになるまで潰れる台座部と、を具備し、加圧
により前記台座部が潰れて、前記コンタクト端子体が前
記バッファ領域および前記ゲート領域上の最表面に接触
していることを特徴とする。
In order to achieve the above object, a semiconductor device according to the present invention is provided with a gate region having an insulated gate structure selectively formed on a substrate surface, and the gate region on the substrate surface. A buffer region selectively formed in a region other than the above, a contact terminal body whose peripheral portion is located on the buffer region and covers the gate region, and a contact terminal body formed on the buffer region, In the unpressurized state, the height of the outermost surface on the buffer region is made higher than the height of the outermost surface on the gate region, and the pressure of the contact terminal body increases the height of the outermost surface on the buffer region. A pedestal portion that is crushed to the same height as the outermost surface on the gate region, the pedestal portion is crushed by pressurization, and the contact terminal body is crushed by the buffer region and the front portion. It characterized in that in contact with the outermost surface of the gate region.

【0014】この発明によれば、台座部が設けられてい
ることによって、コンタクト端子体の未加圧状態におい
ては、バッファ領域上の最表面の高さはゲート領域上の
最表面の高さよりも高くなる。そして、コンタクト端子
体の加圧により台座部が潰れることによって、バッファ
領域上の最表面の高さがゲート領域上の最表面の高さと
同じになるので、コンタクト端子体の傾きが補正され
て、コンタクト端子体がバッファ領域およびゲート領域
上の最表面に均一に加圧接触する。
According to the present invention, since the pedestal is provided, the height of the outermost surface on the buffer region is higher than the height of the outermost surface on the gate region when the contact terminal body is not pressurized. Get higher Then, since the pedestal portion is crushed by the pressurization of the contact terminal body, the height of the outermost surface on the buffer region becomes the same as the height of the outermost surface on the gate region, so that the inclination of the contact terminal body is corrected, The contact terminal body uniformly comes into pressure contact with the outermost surfaces on the buffer region and the gate region.

【0015】[0015]

【発明の実施の形態】以下に、本発明の実施の形態につ
いて図面を参照しつつ詳細に説明する。図1は、本発明
の実施の形態にかかる半導体装置を構成する加圧接触型
IGBTの一例を示す縦断面図であり、コンタクト端子
体が未加圧状態にあるときの図である。なお、図1に示
す断面構造は図4に示す平面図の切断線A−A’におけ
る断面構造に相当する。
BEST MODE FOR CARRYING OUT THE INVENTION Embodiments of the present invention will be described in detail below with reference to the drawings. FIG. 1 is a vertical cross-sectional view showing an example of a pressure contact type IGBT that constitutes a semiconductor device according to an embodiment of the present invention, and is a view when a contact terminal body is in a non-pressurized state. The sectional structure shown in FIG. 1 corresponds to the sectional structure taken along the line AA ′ in the plan view shown in FIG.

【0016】図1に示すように、半導体基板10の表面
層にpウェル領域11およびpバッファ領域16が選択
的に形成されている。ゲート領域3では、pウェル領域
11内に選択的にソース領域12が形成されている。p
ウェル領域11とその隣りのpバッファ領域16との
間、およびpウェル領域11とその隣りのpウェル領域
11との間には、ゲート酸化膜13を介してゲート電極
14が形成されている。ゲート電極14上には層間絶縁
膜15が設けられており、ゲート電極14はこの層間絶
縁膜15によりその上の第1金属層17から絶縁されて
いる。
As shown in FIG. 1, a p-well region 11 and a p-buffer region 16 are selectively formed in the surface layer of the semiconductor substrate 10. In the gate region 3, the source region 12 is selectively formed in the p well region 11. p
A gate electrode 14 is formed via a gate oxide film 13 between the well region 11 and its adjacent p buffer region 16 and between the p well region 11 and its adjacent p well region 11. An interlayer insulating film 15 is provided on the gate electrode 14, and the gate electrode 14 is insulated from the first metal layer 17 thereon by the interlayer insulating film 15.

【0017】バッファ領域4では、pバッファ領域16
上に直接第1金属層17が積層されており、その上に、
特にその材質を限定しないが、たとえばポリイミド膜よ
りなる下層台座部31が形成されている。さらに、この
下層台座部31の上には、特にその材質を限定しない
が、たとえばポリイミド膜よりなる上層台座部32が部
分的に形成されている。第2金属層19は、この上層台
座部32、下層台座部31およびゲート領域3の第1金
属層17の上全面に積層されている。
In the buffer area 4, the p buffer area 16
The first metal layer 17 is laminated directly on top of it, and on top of that,
Although the material is not particularly limited, a lower pedestal portion 31 made of, for example, a polyimide film is formed. Further, although not particularly limited in its material, an upper layer pedestal portion 32 made of, for example, a polyimide film is partially formed on the lower layer pedestal portion 31. The second metal layer 19 is laminated on the entire upper surface of the upper pedestal 32, the lower pedestal 31, and the first metal layer 17 of the gate region 3.

【0018】これら上層台座部32および下層台座部3
1は、コンタクト端子体6を加圧していない状態におい
て、第2金属層19の、バッファ領域4における表面
が、ゲート領域3における表面よりも高くなるような厚
さを有する。そして、コンタクト端子体6を加圧した状
態では、第2金属層19の、バッファ領域4における表
面が、ゲート領域3における表面と同じ高さになるま
で、上層台座部32および下層台座部31は潰れる。
The upper pedestal 32 and the lower pedestal 3
No. 1 has a thickness such that the surface of the second metal layer 19 in the buffer region 4 is higher than the surface in the gate region 3 when the contact terminal body 6 is not pressurized. Then, when the contact terminal body 6 is pressed, the upper pedestal portion 32 and the lower pedestal portion 31 are kept until the surface of the second metal layer 19 in the buffer region 4 becomes the same height as the surface of the gate region 3. Collapse.

【0019】ここで、pバッファ領域16の幅は、コン
タクト端子体6の加圧力が約80kgf/cm2のIG
BTチップでは250〜260μm程度であり、また、
加圧力が約120kgf/cm2のIGBTチップでは
300〜320μm程度であるのが適当である。また、
上層台座部32の幅は、ポリイミド製の場合、80〜1
10μm程度であるのが適当である。
Here, the width of the p buffer region 16 is IG at which the pressing force of the contact terminal body 6 is about 80 kgf / cm 2 .
In the BT chip, it is about 250 to 260 μm, and
It is suitable that the applied pressure is about 300 to 320 μm for the IGBT chip having a pressing force of about 120 kgf / cm 2 . Also,
The width of the upper pedestal portion 32 is 80 to 1 when it is made of polyimide.
About 10 μm is suitable.

【0020】その理由は、これらの幅が広すぎると、コ
ンタクト端子体6の加圧時の潰れ具合が不十分であり、
バッファ領域4とゲート領域3との境界付近で加圧力が
不足するおそれがあるからである。一方、幅が狭すぎる
と、加圧時に潰れすぎて所望の効果が得られなくなるか
らである。つまり、コンタクト端子体6の加圧により台
座部31,32が潰れて、バッファ領域4とゲート領域
3とで第2金属層19の表面高さが同じになるには上述
した範囲とするのが望ましい。
The reason is that if these widths are too wide, the crushing condition of the contact terminal body 6 at the time of pressurization is insufficient,
This is because the pressure may be insufficient near the boundary between the buffer region 4 and the gate region 3. On the other hand, if the width is too narrow, the desired effect cannot be obtained due to excessive crushing during pressing. That is, in order that the pedestal portions 31 and 32 are crushed by the pressure of the contact terminal body 6 and the surface height of the second metal layer 19 becomes the same in the buffer region 4 and the gate region 3, it is desirable to set the above range.

【0021】また、未加圧時の第2金属層19の、バッ
ファ領域4における表面高さと、ゲート領域3における
表面高さとの差は5μm以下であるのが適当である。つ
まり、上層台座部32および下層台座部31は、第2金
属層19の、バッファ領域4における表面が、ゲート領
域3における表面よりも5μm以下の範囲で高くなるよ
うな厚さに形成される。この高さの差が5μmを超える
と、コンタクト端子体6の加圧によって上層台座部32
および下層台座部31が潰れても、バッファ領域4とゲ
ート領域3とで第2金属層19の表面高さは同じになら
ないので、加圧不足が引き起こされる。
Further, it is suitable that the difference between the surface height of the second metal layer 19 in the buffer region 4 and the surface height of the gate region 3 in the unpressurized state is 5 μm or less. That is, the upper pedestal portion 32 and the lower pedestal portion 31 are formed to have a thickness such that the surface of the second metal layer 19 in the buffer region 4 is higher than the surface of the gate region 3 by 5 μm or less. If the difference in height exceeds 5 μm, the upper pedestal portion 32 is pressed by the pressure applied to the contact terminal body 6.
Even if the lower pedestal portion 31 is crushed, the buffer region 4 and the gate region 3 do not have the same surface height of the second metal layer 19, which causes insufficient pressurization.

【0022】図2は、本発明の実施の形態にかかる半導
体装置を構成する加圧接触型IGBTの他の例を示す縦
断面図であり、コンタクト端子体が未加圧状態にあると
きの図である。なお、図2に示す断面構造は図4に示す
平面図の切断線A−A’における断面構造に相当する。
FIG. 2 is a vertical cross-sectional view showing another example of the pressure contact type IGBT constituting the semiconductor device according to the embodiment of the present invention when the contact terminal body is in a non-pressurized state. Is. The sectional structure shown in FIG. 2 corresponds to the sectional structure taken along the section line AA ′ in the plan view shown in FIG.

【0023】図2に示す例では、図1に示す例と同様に
上層台座部32および下層台座部31が設けられている
のに加えて、図6に示す従来例と同様にテラス状の酸化
膜22および特にその材質を限定しないが、たとえばポ
リイミド膜よりなるゲート台座部21が設けられてい
る。すなわち、ゲート領域3において、チャネル形成領
域を避けて、ゲート酸化膜13上にテラス状の酸化膜2
2が形成されており、その上にゲート電極14が形成さ
れている。
In the example shown in FIG. 2, the upper pedestal portion 32 and the lower pedestal portion 31 are provided as in the example shown in FIG. 1, and in addition to the terrace-shaped oxidation as in the conventional example shown in FIG. Although the film 22 and the material thereof are not particularly limited, the gate pedestal portion 21 made of, for example, a polyimide film is provided. That is, in the gate region 3, avoiding the channel formation region, the terrace-shaped oxide film 2 is formed on the gate oxide film 13.
2 is formed, and the gate electrode 14 is formed thereon.

【0024】また、第1金属層17の上にゲート台座部
21が形成されており、その上に第2金属層19が積層
されている。この場合、上層台座部32および下層台座
部31の厚さは、テラス状の酸化膜22およびゲート台
座部21の厚さ分だけ厚くなる。
A gate pedestal portion 21 is formed on the first metal layer 17, and a second metal layer 19 is laminated on the gate pedestal portion 21. In this case, the upper pedestal 32 and the lower pedestal 31 are thicker by the thickness of the terrace-shaped oxide film 22 and the gate pedestal 21.

【0025】図1または図2に示す構成の加圧接触型I
GBTでは、まず、コンタクト端子体6の加圧初期に、
コンタクト端子体6が傾いているため、第2金属層19
の、バッファ領域4の表面部分にコンタクト端子体6の
周縁部が当接し、コンタクト端子体6の傾きが受け止め
られる(図3(a))。そして、その当たった部分の上
層台座部32および下層台座部31が加圧により潰れて
いく。それによって、コンタクト端子体6の傾きが補正
され、コンタクト端子体6が素子表面に対して平行に当
接するようになる(図3(b))。
A pressure contact type I having the structure shown in FIG. 1 or FIG.
In the GBT, first, at the initial stage of pressurizing the contact terminal body 6,
Since the contact terminal body 6 is inclined, the second metal layer 19
The peripheral portion of the contact terminal body 6 comes into contact with the surface portion of the buffer region 4 and the inclination of the contact terminal body 6 is received (FIG. 3A). Then, the hitting upper layer pedestal portion 32 and lower layer pedestal portion 31 are crushed by the pressure. As a result, the inclination of the contact terminal body 6 is corrected and the contact terminal body 6 comes into contact with the element surface in parallel (FIG. 3B).

【0026】さらにコンタクト端子体6が加圧される
と、バッファ領域4の全体において上層台座部32およ
び下層台座部31が均等に潰れていき、第2金属層19
の、バッファ領域4における表面の高さが、ゲート領域
3における表面の高さと同じになる。この時点でコンタ
クト端子体6は、バッファ領域4およびゲート領域3の
全面において、第2金属層19に加圧接触する(図3
(c))。このようにして、加圧初期のコンタクト端子
体6の傾きによる偏加圧が補正される。
When the contact terminal body 6 is further pressed, the upper pedestal portion 32 and the lower pedestal portion 31 are uniformly crushed in the entire buffer region 4, and the second metal layer 19 is crushed.
The height of the surface of the buffer region 4 becomes the same as the height of the surface of the gate region 3. At this point, the contact terminal body 6 comes into pressure contact with the second metal layer 19 on the entire surfaces of the buffer region 4 and the gate region 3 (FIG. 3).
(C)). In this way, the biased pressurization due to the inclination of the contact terminal body 6 in the initial stage of pressurization is corrected.

【0027】上述した実施の形態によれば、コンタクト
端子体6の加圧時にバッファ領域4上の台座部31,3
2が潰れて、第2金属層19の、バッファ領域4におけ
る表面高さとゲート領域3における表面高さとが同じに
なるので、コンタクト端子体6の加圧初期における傾き
が補正されて、コンタクト端子体6がバッファ領域4お
よびゲート領域3上の第2金属層19に均一に加圧接触
することになる。
According to the above-described embodiment, the pedestal portions 31, 3 on the buffer region 4 when the contact terminal body 6 is pressed.
Since the surface height of the second metal layer 19 in the buffer region 4 and the surface height of the gate region 3 become the same, the inclination of the contact terminal body 6 in the initial stage of pressurization is corrected, and the contact terminal body is corrected. 6 will come into uniform pressure contact with the second metal layer 19 on the buffer region 4 and the gate region 3.

【0028】したがって、コンタクト端子体6の加圧初
期に過大な偏加圧力が発生するのを防ぐことができ、過
大な偏加圧力を原因とする素子不良をなくすことができ
る。また、機械的衝撃やコンタクト端子体6のばり(機
械加工で発生する突起)などに対する信頼性を高めるこ
とができる。これにより、信頼性の高い加圧接触型半導
体素子を良品率よく作製することが可能となる。
Therefore, it is possible to prevent the excessive biased pressure from being generated in the initial stage of pressurization of the contact terminal body 6, and it is possible to eliminate the element failure due to the excessive biased pressure. Further, it is possible to enhance the reliability against mechanical shock and burrs of the contact terminal body 6 (protrusions generated by machining). This makes it possible to manufacture a highly reliable pressure contact type semiconductor element with a good yield rate.

【0029】また、図2に示す構成によれば、チャネル
形成領域に加圧力が直接かからないため、素子の特性を
向上させることができる。また、バッファ領域4上の台
座部31,32とゲート台座部21とが同じ材質、たと
えばポリイミドでできていれば、加圧時にこれらの台座
部31,32およびゲート台座部21にほぼ同様の変形
が起こることになる。そのため、より一層均一にコンタ
クト端子体6がバッファ領域4およびゲート領域3上の
第2金属層19に加圧接触するという効果が得られる。
Further, according to the structure shown in FIG. 2, since the pressure is not directly applied to the channel forming region, the characteristics of the element can be improved. Further, if the pedestal portions 31 and 32 on the buffer region 4 and the gate pedestal portion 21 are made of the same material, for example, polyimide, the pedestal portions 31 and 32 and the gate pedestal portion 21 undergo substantially the same deformation at the time of pressurization. Will happen. Therefore, the effect that the contact terminal body 6 comes into pressure contact with the second metal layer 19 on the buffer region 4 and the gate region 3 more uniformly can be obtained.

【0030】以上において本発明は、上述した実施の形
態に限らず、種々変更可能である。たとえばバッファ領
域4上の層構造が5層以上で構成されていてもよい。ま
た、バッファ領域4上の層構造が同一金属の膜または同
一絶縁体の膜を積層させた構造となっていてもよい。ゲ
ート領域上の層構造についても同様である。また、p型
およびn型の導電型を逆転させてもよい。
In the above, the present invention is not limited to the above-mentioned embodiment, but can be variously modified. For example, the layer structure on the buffer region 4 may be composed of five layers or more. Further, the layer structure on the buffer region 4 may be a structure in which films of the same metal or films of the same insulator are laminated. The same applies to the layer structure on the gate region. Also, the p-type and n-type conductivity types may be reversed.

【0031】[0031]

【発明の効果】本発明によれば、コンタクト端子体の未
加圧状態においては、バッファ領域上の最表面の高さは
ゲート領域上の最表面の高さよりも高くなり、コンタク
ト端子体の加圧時には台座部が潰れてバッファ領域上の
最表面の高さがゲート領域上の最表面の高さと同じにな
るので、コンタクト端子体の傾きが補正されて、コンタ
クト端子体がバッファ領域およびゲート領域上の最表面
に均一に加圧接触することになる。したがって、コンタ
クト端子体の加圧初期に過大な偏加圧力が発生するのを
防ぐことが可能な構造の半導体装置が得られる。
According to the present invention, in the unpressurized state of the contact terminal body, the height of the outermost surface on the buffer region is higher than the height of the outermost surface on the gate region. When pressure is applied, the pedestal is crushed and the height of the outermost surface on the buffer region becomes the same as the height of the outermost surface on the gate region, so the inclination of the contact terminal body is corrected, and the contact terminal body moves to the buffer region and the gate region. The uppermost surface is uniformly in pressure contact. Therefore, it is possible to obtain a semiconductor device having a structure capable of preventing an excessive biased pressure from being generated in the initial stage of pressurization of the contact terminal body.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施の形態にかかる加圧接触型IGB
Tの一例を示す縦断面図である。
FIG. 1 is a pressure contact type IGB according to an embodiment of the present invention.
It is a longitudinal section showing an example of T.

【図2】本発明の実施の形態にかかる加圧接触型IGB
Tの他の例を示す縦断面図である。
FIG. 2 is a pressure contact type IGB according to an embodiment of the present invention.
It is a longitudinal section showing other examples of T.

【図3】図1または図2に示す加圧接触型IGBTにお
いてコンタクト端子体の組み立て時の作用を説明するた
めの模式図である。
FIG. 3 is a schematic diagram for explaining an action at the time of assembling a contact terminal body in the pressure contact type IGBT shown in FIG. 1 or FIG.

【図4】従来の加圧接触型IGBTのエミッタ側の構成
を示す平面図である。
FIG. 4 is a plan view showing a structure on a side of an emitter of a conventional pressure contact type IGBT.

【図5】図4の切断線A−A’における構成を示す縦断
面図である。
5 is a vertical cross-sectional view showing the configuration taken along the section line AA ′ in FIG.

【図6】図4の切断線A−A’におけるゲート領域の他
の構成例を示す縦断面図である。
6 is a vertical cross-sectional view showing another configuration example of the gate region taken along the section line AA ′ in FIG.

【図7】コンタクト端子体の組み立て時の不具合を説明
するための模式図である。
FIG. 7 is a schematic diagram for explaining a problem at the time of assembling the contact terminal body.

【符号の説明】[Explanation of symbols]

3 ゲート領域 4 バッファ領域 6 コンタクト端子体 10 半導体基板 13 ゲート酸化膜 14 ゲート電極 16 pバッファ領域 31 下層台座部 32 上層台座部 3 gate area 4 buffer area 6 Contact terminal body 10 Semiconductor substrate 13 Gate oxide film 14 Gate electrode 16p buffer area 31 Lower pedestal 32 Upper pedestal

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 基板表面に選択的に形成された、絶縁ゲ
ート構造を有するゲート領域と、 基板表面の、前記ゲート領域以外の領域に選択的に形成
されたバッファ領域と、 周縁部が前記バッファ領域上に位置し、かつ前記ゲート
領域上を覆うコンタクト端子体と、 前記バッファ領域上に形成され、前記コンタクト端子体
の未加圧状態において前記バッファ領域上の最表面の高
さを前記ゲート領域上の最表面の高さよりも高くし、か
つ前記コンタクト端子体の加圧により前記バッファ領域
上の最表面の高さが前記ゲート領域上の最表面の高さと
同じになるまで潰れる台座部と、 を具備し、 加圧により前記台座部が潰れて、前記コンタクト端子体
が前記バッファ領域および前記ゲート領域上の最表面に
接触していることを特徴とする半導体装置。
1. A gate region having an insulated gate structure selectively formed on a substrate surface; a buffer region selectively formed on a region other than the gate region on the substrate surface; and a peripheral portion of the buffer region. A contact terminal body located on a region and covering the gate region; and a contact terminal body formed on the buffer region, wherein the height of the outermost surface on the buffer region is the gate region in the unpressurized state of the contact terminal body. A pedestal portion that is higher than the height of the uppermost surface and is crushed until the height of the outermost surface on the buffer region becomes equal to the height of the outermost surface on the gate region due to the pressure of the contact terminal body, The semiconductor device according to claim 1, wherein the pedestal portion is crushed by pressurization, and the contact terminal body is in contact with the outermost surface on the buffer region and the gate region.
【請求項2】 前記台座部は金属の単層膜、絶縁体の単
層膜、または金属と絶縁体とを組み合わせた積層膜でで
きていることを特徴とする請求項1に記載の半導体装
置。
2. The semiconductor device according to claim 1, wherein the pedestal portion is made of a metal single layer film, an insulator single layer film, or a laminated film in which a metal and an insulator are combined. .
JP2002064408A 2002-03-08 2002-03-08 Semiconductor device Pending JP2003264266A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002064408A JP2003264266A (en) 2002-03-08 2002-03-08 Semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002064408A JP2003264266A (en) 2002-03-08 2002-03-08 Semiconductor device

Publications (1)

Publication Number Publication Date
JP2003264266A true JP2003264266A (en) 2003-09-19

Family

ID=29197217

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002064408A Pending JP2003264266A (en) 2002-03-08 2002-03-08 Semiconductor device

Country Status (1)

Country Link
JP (1) JP2003264266A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020075549A1 (en) * 2018-10-09 2020-04-16 ローム株式会社 Semiconductor device and method for manufacturing semiconductor device
DE112019007008T5 (en) 2019-03-12 2021-11-18 Mitsubishi Electric Corporation PRESSURE CONTACT SEMICONDUCTOR UNIT

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020075549A1 (en) * 2018-10-09 2020-04-16 ローム株式会社 Semiconductor device and method for manufacturing semiconductor device
JPWO2020075549A1 (en) * 2018-10-09 2021-09-09 ローム株式会社 Semiconductor devices and manufacturing methods for semiconductor devices
US11710705B2 (en) 2018-10-09 2023-07-25 Rohm Co., Ltd. Semiconductor device and method for manufacturing semiconductor device
JP7322054B2 (en) 2018-10-09 2023-08-07 ローム株式会社 Semiconductor device and method for manufacturing semiconductor device
DE112019007008T5 (en) 2019-03-12 2021-11-18 Mitsubishi Electric Corporation PRESSURE CONTACT SEMICONDUCTOR UNIT
US11742313B2 (en) 2019-03-12 2023-08-29 Mitsubishi Electric Corporation Pressure-contact semiconductor device

Similar Documents

Publication Publication Date Title
US7554210B2 (en) Semiconductor device with semiconductor chip mounted in package
US7408251B2 (en) Semiconductor packaging device comprising a semiconductor chip including a MOSFET
US6734551B2 (en) Semiconductor device
JP2001332687A (en) Semiconductor device and manufacturing method thereof
JP2016139635A (en) Power semiconductor device
US8759987B2 (en) Semiconductor device and method of manufacturing the semiconductor device
JP4073876B2 (en) Semiconductor device
US5366932A (en) Semi-conductor chip packaging method and semi-conductor chip having interdigitated gate runners with gate bonding pads
JP4058007B2 (en) Semiconductor device
JP3709713B2 (en) Semiconductor device
JP2003264266A (en) Semiconductor device
CN114008775A (en) Semiconductor device and method for manufacturing the same
JP2004153234A (en) Semiconductor device
JP2009152364A (en) Semiconductor device and method of manufacturing the same
JP4293272B2 (en) Semiconductor device
JPH07254699A (en) Insulated gate semiconductor device and power converter using the same
WO2021235020A1 (en) Power semiconductor element
JP7419781B2 (en) semiconductor module
JP3226088B2 (en) Semiconductor device
JP3265894B2 (en) Semiconductor device
US5821616A (en) Power MOS device chip and package assembly
US5798287A (en) Method for forming a power MOS device chip
JP2000114525A (en) Semiconductor device and manufacture thereof
JPH08186258A (en) Semiconductor device and its production
JP2810626B2 (en) Semiconductor device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040713

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070604

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070703

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20071030