JP2003258042A - Method for wire bonding - Google Patents

Method for wire bonding

Info

Publication number
JP2003258042A
JP2003258042A JP2002057597A JP2002057597A JP2003258042A JP 2003258042 A JP2003258042 A JP 2003258042A JP 2002057597 A JP2002057597 A JP 2002057597A JP 2002057597 A JP2002057597 A JP 2002057597A JP 2003258042 A JP2003258042 A JP 2003258042A
Authority
JP
Japan
Prior art keywords
bonding
capillary
wire
ball
electrode pad
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002057597A
Other languages
Japanese (ja)
Inventor
Takaharu Amano
貴晴 天野
Koichi Mitarai
幸一 御手洗
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2002057597A priority Critical patent/JP2003258042A/en
Publication of JP2003258042A publication Critical patent/JP2003258042A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/74Apparatus for manufacturing arrangements for connecting or disconnecting semiconductor or solid-state bodies
    • H01L24/78Apparatus for connecting with wire connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/45001Core members of the connector
    • H01L2224/4501Shape
    • H01L2224/45012Cross-sectional shape
    • H01L2224/45015Cross-sectional shape being circular
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/45001Core members of the connector
    • H01L2224/45099Material
    • H01L2224/451Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
    • H01L2224/45138Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/45144Gold (Au) as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4807Shape of bonding interfaces, e.g. interlocking features
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48245Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • H01L2224/48247Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/484Connecting portions
    • H01L2224/4845Details of ball bonds
    • H01L2224/48451Shape
    • H01L2224/48453Shape of the interface with the bonding area
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/484Connecting portions
    • H01L2224/48463Connecting portions the connecting portion on the bonding area of the semiconductor or solid-state body being a ball bond
    • H01L2224/48465Connecting portions the connecting portion on the bonding area of the semiconductor or solid-state body being a ball bond the other connecting portion not on the bonding area being a wedge bond, i.e. ball-to-wedge, regular stitch
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/485Material
    • H01L2224/48505Material at the bonding interface
    • H01L2224/48599Principal constituent of the connecting portion of the wire connector being Gold (Au)
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/74Apparatus for manufacturing arrangements for connecting or disconnecting semiconductor or solid-state bodies and for methods related thereto
    • H01L2224/78Apparatus for connecting with wire connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/74Apparatus for manufacturing arrangements for connecting or disconnecting semiconductor or solid-state bodies and for methods related thereto
    • H01L2224/78Apparatus for connecting with wire connectors
    • H01L2224/7825Means for applying energy, e.g. heating means
    • H01L2224/783Means for applying energy, e.g. heating means by means of pressure
    • H01L2224/78301Capillary
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/85Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a wire connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/85Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a wire connector
    • H01L2224/85009Pre-treatment of the connector or the bonding area
    • H01L2224/8503Reshaping, e.g. forming the ball or the wedge of the wire connector
    • H01L2224/85035Reshaping, e.g. forming the ball or the wedge of the wire connector by heating means, e.g. "free-air-ball"
    • H01L2224/85045Reshaping, e.g. forming the ball or the wedge of the wire connector by heating means, e.g. "free-air-ball" using a corona discharge, e.g. electronic flame off [EFO]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/85Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a wire connector
    • H01L2224/852Applying energy for connecting
    • H01L2224/85201Compression bonding
    • H01L2224/85205Ultrasonic bonding
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01004Beryllium [Be]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01005Boron [B]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01006Carbon [C]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01033Arsenic [As]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01043Technetium [Tc]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01073Tantalum [Ta]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01079Gold [Au]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01082Lead [Pb]

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Wire Bonding (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for wire bonding in which the sealability of a connecting point is favorable by preventing a foreign matter such as a squeeze-out or the like generated at a connecting time using an ultrasonic vibration method from occurring and being scattered. <P>SOLUTION: The method for wire bonding comprises a first step of pressing a metal wire 2 on the surface of an electrode pad 5 by bringing a capillary 1 for bonding into contact with the connecting surface of a bonding position by predetermined pressure and vibrating the capillary 1 in a predetermined amplitude; and a second step of pressing the wire 2 on the electrode pad 5 by different pressure from that of the first step by vibrating the capillary 1 in a different amplitude from that of the first step so that in the second step, the pressure applied to the pad 5 is set larger than the pressure of the first step and the vibrating amplitude is smaller than that of the first step. <P>COPYRIGHT: (C)2003,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、半導体装置の製造
工程において半導体チップの電極パッドとリードフレー
ムのインナーリードとを金属ワイヤで接続するワイヤボ
ンディング方法に関し、特に超音波による金属の塑性変
形効果によって接合する、超音波ボンディング方法に関
する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a wire bonding method for connecting an electrode pad of a semiconductor chip and an inner lead of a lead frame with a metal wire in a manufacturing process of a semiconductor device. The present invention relates to an ultrasonic bonding method for bonding.

【0002】[0002]

【従来の技術】一般的な半導体製造プロセスにおいて、
電極パッドとボンディングワイヤーとのボンディング表
面電極パッドのボンディング表面、あるいはインナーリ
ード部とボンディングワイヤーとのボンディング表面電
極パッドのボンディング表面には、プロセスの過程にお
いて有機物が付着したり、酸化物が形成される。一方、
最近の高集積化に対応した多層リードフレームを使用し
た半導体製造装置では、多層リードフレームの製造上、
接着剤等の有機材料からの低分子成分等の微量な有機物
の電極パッドあるいはインナーリード部への付着や、大
気などからの酸素による電極パッド表面あるいはインナ
ーリード部表面への表面酸化膜の形成が避けられない上
に、半導体チップ上のボンディングパッド面積が小さく
なっていくことが避けられない。前記有機物が付着した
り酸化物が形成されてしまうと、ワイヤーボンド接続時
に、ボンディング表面とボンディングワイヤーとの接合
面における電極パッドあるいはインナーリード部とボン
ディングワイヤーとの合金形成が阻害される結果、ボン
ディング強度が低下し、ボンディング歩留まりが低下し
てしまうという問題点があった。
2. Description of the Related Art In a general semiconductor manufacturing process,
Bonding surface of electrode pad and bonding wire Organic matter adheres to the bonding surface of electrode pad or bonding surface of bonding pad of inner lead portion and bonding wire, or an oxide is formed on the bonding surface of electrode pad. . on the other hand,
In the recent semiconductor manufacturing equipment using a multilayer lead frame corresponding to high integration, in manufacturing the multilayer lead frame,
A small amount of organic substances such as low molecular weight components from organic materials such as adhesives may adhere to the electrode pad or the inner lead part, or surface oxide film may be formed on the electrode pad surface or the inner lead part surface by oxygen from the atmosphere. In addition to being inevitable, it is inevitable that the bonding pad area on the semiconductor chip becomes smaller. When the organic matter is adhered or an oxide is formed, the formation of an alloy between the electrode pad or the inner lead portion and the bonding wire at the bonding surface between the bonding surface and the bonding wire is hindered during wire bond connection, resulting in bonding. There is a problem that the strength is lowered and the bonding yield is lowered.

【0003】係る問題点を解決するためにボンディング
用のツールとは全く異なるボンディング表面残渣除去の
ためのツールを用いて突起部を所定の圧力で押し付け
て、接触させた状態ですり合わせるスクラブ動作を予め
行って当該接合表面上の異物を除去するボンディング表
面残渣除去工程を有する装置もあるが、装置が高価であ
ると共に、ボンディング表面残渣除去工程が必要な為
に、ボンディング時間が長くなる。
In order to solve such a problem, a scrubbing operation is carried out by pressing a protrusion with a predetermined pressure using a tool for removing a residue on a bonding surface, which is completely different from a bonding tool, and contacting each other. Although there is an apparatus that has a bonding surface residue removing step that removes foreign matter on the bonding surface in advance, the apparatus is expensive and the bonding time becomes long because the bonding surface residue removing step is required.

【0004】一方、近年のボンディング方法には超音波
振動式と呼ばれる接合方法がある。該超音波を用いる接
合方法では針状に形成された細径のキャピラリを用い、
このキャピラリを超音波発振源から導出された超音波ホ
ーンの先端に保持することで、上記キャピラリに超音波
振動を伝達するようにしている。前記の超音波振動式の
接合方法では、前記スクラブ動作をボンディングの際に
行なう。係る方法では超音波振動を印加する際にボンデ
ィング位置接合表面と金属ワイヤが接触して擦れ合い、
その結果スクイズアウトと呼ばれる鉋屑状のチリが発生
する。その結果、前記スクイズアウトなどの異物が飛散
して半導体に付着した場合、半導体の動作不良などが発
生し、信頼性を著しく低減させるいう問題点があった。
On the other hand, as a recent bonding method, there is a bonding method called ultrasonic vibration type. In the joining method using the ultrasonic wave, a needle-shaped thin capillary is used,
By holding this capillary at the tip of the ultrasonic horn led out from the ultrasonic oscillating source, the ultrasonic vibration is transmitted to the capillary. In the ultrasonic vibration type joining method, the scrubbing operation is performed at the time of bonding. In such a method, when the ultrasonic vibration is applied, the bonding position bonding surface and the metal wire contact and rub against each other,
As a result, squeeze-out dust like dust is generated. As a result, when the foreign matter such as the squeeze-out scatters and adheres to the semiconductor, a malfunction of the semiconductor occurs and the reliability is remarkably reduced.

【0005】又、ボンディング位置にこの異物が不純物
として混入した場合、このような不純物が混入した状態
でワイヤーボンド接続を行ってしまうと、ボンディング
表面とボンディングワイヤーとの接合面における電極パ
ッドあるいはインナーリード部とボンディングワイヤー
との合金形成が阻害される結果、ボンディング強度が低
下し、ボンディング歩留まりが低下してしまうという問
題点もあった。
Further, when the foreign matter is mixed in as an impurity at the bonding position, if the wire bond connection is performed in the state where such an impurity is mixed, an electrode pad or an inner lead on the bonding surface between the bonding surface and the bonding wire is formed. There is also a problem that as a result of the formation of an alloy between the bonding portion and the bonding wire being hindered, the bonding strength is reduced and the bonding yield is reduced.

【0006】又、上記キャピラリは、上述したように超
音波ホーンを介して支持されいるので、この超音波ホー
ンに撓み等が生じることにより面検出に時間的な遅れが
生じるということがある。また、接合を高速で行おうと
すると、第1のボンディング点と第2のボンディング点
との間に形成されるワイヤが最適なループ形状にならな
いということがある。すなわち、ループ形状の成形は、
上記キャピラリからワイヤを繰り出しつつ行うので、こ
のキャピラリ内における上記ワイヤの挿通抵抗が問題と
なる。
Further, since the capillaries are supported via the ultrasonic horn as described above, there is a case where surface detection is delayed due to bending of the ultrasonic horn. In addition, if the bonding is attempted at a high speed, the wire formed between the first bonding point and the second bonding point may not have an optimum loop shape. That is, the loop-shaped molding is
Since the wire is fed out from the capillary, the insertion resistance of the wire in the capillary becomes a problem.

【0007】更に又、上述した接合を繰り返すと、上記
スクイズアウトやワイヤの「かす」等によってキャピラ
リの内部が汚れ、これが挿通抵抗の増大につながるとい
うことがある。すなわち、このような「かす」がキャピ
ラリ内に付着している状態で、上記キャピラリを高速駆
動しようとすると、上記ワイヤがキャピラリ内でひっか
かり、適当なループ形状が得られなかったりワイヤが切
れたりするということがある。このため、ループ形状を
良好にするために第1のボンディング点から第2のボン
ディング点までのキャピラリの移動を高速で行うことに
は限界があり、その分ワイヤボンディングに時間がかか
っているということがある。
Furthermore, when the above-mentioned joining is repeated, the inside of the capillary may be contaminated by the squeezeout or the wire "smear", which may increase the insertion resistance. That is, when trying to drive the capillary at a high speed in a state in which such "dust" is attached to the capillary, the wire is caught in the capillary, and an appropriate loop shape cannot be obtained or the wire is cut. There is a thing. Therefore, there is a limit to moving the capillary from the first bonding point to the second bonding point at high speed in order to improve the loop shape, and it takes time to wire-bond accordingly. There is.

【0008】前記問題点を解決する前記超音波振動式の
ボンディング方法として、特開平8−181175号公
報に開示されている「ワイヤボンディング方法」があ
る。係る発明は、キャピラリ内にワイヤを挿通し、該キ
ャピラリの押圧面で上記ワイヤを第1のボンディング点
と第2のボンディング点とに順に押し付け接合する際、
上記第1のボンディング点に対するワイヤの押し付け前
から上記キャピラリに超音波振動を与え、少なくとも第
2のボンディング点に対するワイヤの接合が終了するま
で上記ワイヤに超音波振動を印加し続けるボンディング
方法である。即ち、前記発明は、挿通抵抗の増大を防止
してボンディング速度の向上と、第1のボンディング点
と第2のボンディング点とのワイヤのループ形状を良好
にすることを目的としてなされた発明である。発明の問
題点の理解を容易にするために、その動作を図5、図6
及び図7を用いて以下に説明する。
As the ultrasonic vibration type bonding method for solving the above problems, there is a "wire bonding method" disclosed in Japanese Patent Laid-Open No. 8-181175. According to the invention, when the wire is inserted into the capillary and the wire is pressed by the pressing surface of the capillary to the first bonding point and the second bonding point in order,
This is a bonding method in which ultrasonic vibration is applied to the capillary before the wire is pressed against the first bonding point, and ultrasonic vibration is continuously applied to the wire at least until the bonding of the wire to the second bonding point is completed. That is, the invention is made for the purpose of preventing an increase in insertion resistance, improving a bonding speed, and improving a wire loop shape between the first bonding point and the second bonding point. . In order to facilitate understanding of the problems of the invention, the operation thereof will be described with reference to FIGS.
And FIG. 7 will be described below.

【0009】図5は、従来のボンディング装置の説明図
である。半導体チップ4の表面に形成されている電極パ
ッド5及びインナーリード部6の各々にキャピラリ1を
接触させワイヤボンディングを行なう装置である。キャ
ピラリ1の先端からクランパ7を介して金属ワイヤ2を
突出させ、該金属ワイヤ2の先端部に球状のボールを形
成し、第1ボンディングである電極パッド5への接続と
第2ボンディングであるインナーリード部6への接続を
行なう。
FIG. 5 is an explanatory view of a conventional bonding apparatus. In this device, the capillary 1 is brought into contact with each of the electrode pad 5 and the inner lead portion 6 formed on the surface of the semiconductor chip 4 to perform wire bonding. The metal wire 2 is projected from the tip of the capillary 1 through the clamper 7, a spherical ball is formed at the tip of the metal wire 2, and the connection to the electrode pad 5 which is the first bonding and the inner bonding which is the second bonding. Connection to the lead portion 6 is made.

【0010】図6はキャピラリ1の動作を説明する図で
あって、図6(a)は、前記キャピラリ1の上下方向の
動作を時間との関係で示すものである。キャピラリ1
は、図6(a)に示すように、上記電極パッド5の直上
約0.2〜0.3mmの高さ(点Aで示す)まで高速で
下降駆動され、それ以後は速度を落として等速で下降駆
動される。一方、図6(b)は、キャピラリ1に振動を
与える、図示していない超音波振動子に対する電圧印加
のゲイン切替により発生する超音波振動の振幅を示す図
であり、図6(c)は、前記ゲイン切替を示す図であ
る。この超音波振動の振幅は、前記超音波振動子に設け
られた図示しないセンサあるいはこの超音波振動子に接
続された図示しない超音波発振器に設けられた図示しな
いセンサにより検出するようにする。
FIG. 6 is a diagram for explaining the operation of the capillary 1, and FIG. 6 (a) shows the vertical operation of the capillary 1 in relation to time. Capillary 1
6 is driven at a high speed to a height of about 0.2 to 0.3 mm (shown by point A) immediately above the electrode pad 5 as shown in FIG. Driven downward at high speed. On the other hand, FIG. 6B is a diagram showing the amplitude of the ultrasonic vibration generated by the gain switching of the voltage application to the ultrasonic vibrator (not shown) that gives vibration to the capillary 1, and FIG. FIG. 4 is a diagram showing the gain switching. The amplitude of this ultrasonic vibration is detected by a sensor (not shown) provided on the ultrasonic oscillator or a sensor (not shown) provided on an ultrasonic oscillator (not shown) connected to the ultrasonic oscillator.

【0011】前記図6(b)および(c)に示すよう
に、上記キャピラリ1が点Aに達したならば、第1のゲ
インG1(超音波振動がない状態)が第2のゲインG2
に切替えられ、ボール8は、半導体チップ4の電極パッ
ド5に押し付けられる前から超音波域で振幅AV9で振
動することとなる。図6(a)に示す点Bの高さでボー
ル8と半導体チップ4の電極パッド5とが当接される。
この点B以後、上記ボール8は電極パッド5への押し付
けを開始され、当接した部位から接合されていく。ボー
ル8が電極パッド5に押し付けられ、接合が開始される
と、図6(b)に示すように上記超音波振動の振幅(波
形)が振幅AV9から振幅AV10に減少する。そし
て、図示しない制御部は、この信号に基づいて、図6
(c)に示すように第2のゲイン切替を行い、第2のゲ
インG2は第3のゲインG3に切替えられ超音波振動の
出力を上げる。
As shown in FIGS. 6 (b) and 6 (c), when the capillary 1 reaches the point A, the first gain G1 (the state without ultrasonic vibration) is the second gain G2.
Then, the ball 8 vibrates with an amplitude AV9 in the ultrasonic range before being pressed against the electrode pad 5 of the semiconductor chip 4. The ball 8 and the electrode pad 5 of the semiconductor chip 4 are brought into contact with each other at the height of a point B shown in FIG.
After this point B, the ball 8 is started to be pressed against the electrode pad 5, and is joined from the abutted portion. When the ball 8 is pressed against the electrode pad 5 and the bonding is started, the amplitude (waveform) of the ultrasonic vibration decreases from the amplitude AV9 to the amplitude AV10 as shown in FIG. 6B. Then, the control unit not shown in FIG.
As shown in (c), the second gain switching is performed, the second gain G2 is switched to the third gain G3, and the output of ultrasonic vibration is increased.

【0012】超音波による接合を開始した後、上記キャ
ピラリ1は若干量ではあるが、下降を続け(図6(a)
B〜C間で示す部位)上記ボール8が押し潰されて行
く。なお、ボール8は、押し潰されることによって、上
記電極パッド5との接触面積を次第に広げていく。前記
図6(a)B〜C間で示す間、キャピラリ1の圧力とボ
ール8からの反発力によりボール8には圧力P1が加わ
り、またこの間では図6(b)に示すように点Bでゲイ
ンを第3のゲインG3に切替えてもその振幅AV10は
小さい。ボール8が押し潰されたならば(図6(a)に
示す点Cに相当)上記キャピラリ1の下降は停止し、図
にC〜D間に示すように高さ一定の状態で保持される。
この間も、上記キャピラリ1は上記ボール8に超音波振
動を印加しつづけ、このボール8と電極パッド5との接
合を行う。
After the ultrasonic bonding is started, the capillary 1 continues to descend, albeit with a slight amount (see FIG. 6A).
(Part indicated between B and C) The ball 8 is crushed. The ball 8 gradually expands the contact area with the electrode pad 5 by being crushed. During the period shown in FIGS. 6A to 6C, the pressure P1 is applied to the ball 8 due to the pressure of the capillary 1 and the repulsive force from the ball 8, and during this period, at the point B as shown in FIG. 6B. Even if the gain is switched to the third gain G3, the amplitude AV10 is small. When the ball 8 is crushed (corresponding to the point C shown in FIG. 6A), the lowering of the capillary 1 is stopped and is held at a constant height as shown between C and D in the figure. .
During this time, the capillary 1 continues to apply ultrasonic vibration to the ball 8 to bond the ball 8 and the electrode pad 5 together.

【0013】点Bでゲインを第3のゲインG3に切替え
た効果が点Cになると現れて、振幅AV10が増加して
振幅AV11になる。そしてボール8に圧力P1を加え
てから一定時間が経過し、上記ボール8と電極パッド5
とが完全に接合されたならば、上記キャピラリ1は上昇
駆動される(点Dに相当)。キャピラリ1が上昇駆動さ
れたならば、ボール8に印加される圧力が低下して上記
超音波振動子を駆動する図示しない超音波発振器の負荷
が軽減し、超音波振動の振幅(波形)は更に増加して振
幅AV12になるから、これに基づいて上記超音波振動
子に印加する第3のゲイン切替がなされ、第2のゲイン
G2の大きさに戻される。以上の如く、ボール8が電極
パッド5に押し付けられ、接合が開始されると、図6
(a)B〜C間で示す間、キャピラリ1の振動振幅は振
幅AV10に減少する。また、キャピラリ1の下降が停
止している図6(a)C〜D間ではキャピラリ1の振動
振幅はAV11に増加する。
The effect of switching the gain to the third gain G3 at the point B appears at the point C, and the amplitude AV10 increases to the amplitude AV11. Then, after a certain period of time has passed since the pressure P1 was applied to the ball 8, the ball 8 and the electrode pad 5
When and are completely joined, the capillary 1 is driven upward (corresponding to point D). When the capillary 1 is driven upward, the pressure applied to the ball 8 is reduced, the load of the ultrasonic oscillator (not shown) that drives the ultrasonic vibrator is reduced, and the amplitude (waveform) of ultrasonic vibration is further increased. Since the amplitude is increased to AV12, the third gain applied to the ultrasonic transducer is switched based on this, and the magnitude is returned to the magnitude of the second gain G2. As described above, when the ball 8 is pressed against the electrode pad 5 and the bonding is started, as shown in FIG.
(A) During the period shown between B and C, the vibration amplitude of the capillary 1 decreases to the amplitude AV10. In addition, the vibration amplitude of the capillary 1 increases to AV11 between C and D in FIG. 6A where the lowering of the capillary 1 is stopped.

【0014】図7は、前述のワイヤボンディング方法に
おける接合部の接合状態を説明する図であって、図7
(a)は前記ボール8が電極パッド5に圧着された時の
圧着方向の断面図、図7(b)と図7(c)は、ボール
8と電極パッド5の接合点における、ボール8への圧力
方向と接合面方向の圧力分布を、それぞれ説明する図で
ある。
FIG. 7 is a diagram for explaining the bonding state of the bonding portion in the wire bonding method described above.
7A is a cross-sectional view in the crimping direction when the ball 8 is crimped to the electrode pad 5, and FIGS. 7B and 7C show the ball 8 at the joining point between the ball 8 and the electrode pad 5. It is a figure which respectively explains the pressure distribution of the pressure direction of and the joint surface direction.

【0015】半導体素子4には電極パッド5が形成され
ていて、該電極パッド5にはその先端がボール状になっ
ている金属ワイヤ2がキャピラリ1により前記ボール8
が所定の圧力で図7(a)の如く圧着される。その結
果、キャピラリ1の形状により、前記ボール8に印加さ
れる圧力が異なる箇所が図7(b)、図7(c)に示す
ように発生する。即ち、キャピラリ1の先端の形状によ
りボール8と電極パッド5の接合点における圧力は、キ
ャピラリ1の先端により圧着される中心から外れた部分
8bが最も圧力が高く、その周辺部分8aと中心部分8
cは圧力が低くなる。その結果、中心から外れた部分8
bと、周辺部分8a及び中心部分8cとの密着力は異な
り、周辺部分8a及び中心部分8cは、密着力が中心か
ら外れた部分8bよりも低くなる。
An electrode pad 5 is formed on the semiconductor element 4, and a metal wire 2 having a ball-shaped tip is formed on the electrode pad 5 by means of a capillary 1 to form the ball 8.
Is pressed with a predetermined pressure as shown in FIG. As a result, a portion where the pressure applied to the ball 8 differs depending on the shape of the capillary 1 is generated as shown in FIGS. 7B and 7C. That is, due to the shape of the tip of the capillary 1, the pressure at the junction between the ball 8 and the electrode pad 5 is highest at the portion 8b decentered from the center of the capillary 1 which is crimped, and the peripheral portion 8a and the central portion 8 thereof.
c has a low pressure. As a result, the off-center part 8
Adhesion between the peripheral portion 8a and the central portion 8c is different from that of the peripheral portion 8a.

【0016】[0016]

【発明が解決しようとする課題】前述の特開平8−18
1175号公報に開示されている「ワイヤボンディング
方法」では、図7に示したように、ボール8と電極パッ
ド5の接合点では、キャピラリ1の真下になる箇所での
接合状態がよく、ボール8と電極パッド5との密着力が
強い。しかし、それ以外の周辺8aと中心8cではキャ
ピラリ1からの圧力が小さく接合状態が悪い。この結
果、ボール8の外周部8aと中心部8cとでは、ボール
8と電極パッド5との密着力が弱い。
DISCLOSURE OF THE INVENTION Problems to be Solved by the Invention
In the “wire bonding method” disclosed in Japanese Patent No. 1175, as shown in FIG. 7, at the bonding point between the ball 8 and the electrode pad 5, the bonding state is good at a position directly below the capillary 1 and the ball 8 And the electrode pad 5 have strong adhesion. However, the pressure from the capillary 1 is small and the bonding state is poor in the other peripheral portions 8a and the center 8c. As a result, the adhesion between the ball 8 and the electrode pad 5 is weak between the outer peripheral portion 8a and the central portion 8c of the ball 8.

【0017】一方、前記ボール8と電極パッド5の接合
点においては、半導体素子4や電極パッド5の温度変化
などにより応力が発生する。その応力は前記ボール8の
外周部8aに集中する。かかる応力の発生によりボール
8と電極パッド5との密着力が強いキャピラリ1の真下
になる箇所8bにクラックが発生すると、ボール8全体
の密着力は急激に減少して、半導体素子4の動作の信頼
性が著しく低下する問題点がある。また、ボール8が電
極パッド5に押し付けられ、接合が開始されると、図6
(a)B〜C間で示す間、振幅AV10に減少する。そ
して、キャピラリ1の下降が停止している図6(a)C
〜D間では振幅はAV11に増加する。その結果、ボン
ディング速度の向上と、第1のボンディング点と第2の
ボンディング点とのワイヤのループ形状を良好にするこ
とはできるが、図6(a)B〜C間で示す間、ボンディ
ング位置接合表面と金属ワイヤが接触して擦れ合って発
生する、スクイズアウトと呼ばれる鉋屑状のチリの発生
防止はできない。
On the other hand, at the junction between the ball 8 and the electrode pad 5, stress is generated due to temperature changes of the semiconductor element 4 and the electrode pad 5. The stress is concentrated on the outer peripheral portion 8a of the ball 8. When a crack is generated in the portion 8b directly below the capillary 1 where the adhesive force between the ball 8 and the electrode pad 5 is strong due to the generation of such stress, the adhesive force of the ball 8 as a whole suddenly decreases, and the operation of the semiconductor element 4 is reduced. There is a problem that the reliability is significantly reduced. Further, when the ball 8 is pressed against the electrode pad 5 and the bonding is started, as shown in FIG.
(A) The amplitude decreases to AV10 during the period shown between B and C. The lowering of the capillary 1 is stopped in FIG. 6 (a) C.
The amplitude increases to AV11 between D. As a result, although the bonding speed can be improved and the wire loop shape between the first bonding point and the second bonding point can be improved, the bonding position can be increased during the period shown in FIGS. 6A to 6C. It is not possible to prevent the generation of squeezeout-like dust, which is caused by the contact between the bonding surface and the metal wire and rubbing against each other.

【0018】更にまた、図6(a)C〜D間での振幅は
AV11に増加し、前記スクイズアウトなどの異物がキ
ャピラリの振動振幅の増加により飛散して半導体に付着
して、半導体の動作不良などが発生し、信頼性を著しく
低減させるいう問題点があった。更に、図6(a)B〜
C間で示す間はキャピラリの振動振幅は振幅AV10に
減少しているので、接合表面と金属ワイヤとの密着力が
強い接合面が小さく、その小さい接合面の周辺に前記ス
クイズアウトなどの異物が発生してい、図6(a)C〜
D間では、前記接合表面と金属ワイヤとの密着力の強い
接合面が小さいまま、金属ワイヤを接合してしまう問題
点があった。
Furthermore, the amplitude between C and D in FIG. 6 (a) increases to AV11, and the foreign matter such as the squeeze out scatters due to the increase in the vibration amplitude of the capillary and adheres to the semiconductor, thereby operating the semiconductor. There has been a problem that defects are generated and the reliability is significantly reduced. Further, FIG.
Since the vibration amplitude of the capillary is reduced to the amplitude AV10 during the period indicated by C, the joint surface where the adhesive force between the joint surface and the metal wire is strong is small, and foreign matter such as the squeezeout is present around the small joint surface. Has occurred, and FIG.
Between D, there is a problem that the metal wire is bonded while the bonding surface having strong adhesion between the bonding surface and the metal wire is small.

【0019】前記問題点が残されているのは、ボンディ
ング工程において、挿通抵抗の増大を防止してボンディ
ング速度の向上と、第1のボンディング点と第2のボン
ディング点とのワイヤのループ形状を良好にするため
に、ワイヤに超音波振動を印加し続け、その振動振幅の
出力のみを調整し、ボンディング時の圧力を考慮してい
ないボンディング方法に起因するものである。
The above-mentioned problems remain, in the bonding process, in order to prevent an increase in insertion resistance, improve the bonding speed, and to improve the wire loop shape between the first bonding point and the second bonding point. This is due to a bonding method in which ultrasonic vibration is continuously applied to the wire, only the output of the vibration amplitude is adjusted, and the pressure at the time of bonding is not taken into consideration in order to improve the quality.

【0020】本発明は、係る問題を解決して超音波振動
式の接合時に発生するスクイズアウトなどの異物の発生
を抑制すると共に、発生した前記異物の飛散を防止し、
接合点の密着度の良好なワイヤボンディング方法を提供
し、合わせてこの方法により製造された半導体の信頼性
を向上することを目的としてなされたものである。
The present invention solves the above problems and suppresses the generation of foreign matter such as squeezeout that occurs during ultrasonic vibration type joining, and prevents the generated foreign matter from scattering.
The present invention has been made for the purpose of providing a wire bonding method having good adhesion at a bonding point and also improving the reliability of a semiconductor manufactured by this method.

【0021】[0021]

【課題を解決するための手段】本願発明は、上記目的を
達成するために、ボンディング工程に金属ワイヤの圧力
と振動振幅とをそれぞれ制御する工程を設けたワイヤボ
ンディング方法である。更に詳しくは、請求項1に記載
されたワイヤボンディング方法では、半導体チップの電
極パッドと前記半導体チップを載置するリードフレーム
のインナーリード部とを金属ワイヤを用いて接続するワ
イヤボンディング方法において、ボンディング位置の接
合表面にボンディング用のツールを所定の圧力で接触さ
せて金属ワイヤを所定の振幅で振動させて金属ワイヤを
押圧する第1工程と、該第1工程の後に前記第1の工程
より大きい圧力で前記金属ワイヤを押圧する第2工程と
を有することを特徴とする。
In order to achieve the above object, the present invention is a wire bonding method in which a step of controlling the pressure and vibration amplitude of a metal wire is provided in the bonding step. More specifically, the wire bonding method according to claim 1, wherein the electrode pad of the semiconductor chip and the inner lead portion of the lead frame on which the semiconductor chip is mounted are connected using a metal wire. A first step in which a bonding tool is brought into contact with the bonding surface at a position at a predetermined pressure to vibrate the metal wire at a predetermined amplitude to press the metal wire, and after the first step, the first step is larger than the first step. A second step of pressing the metal wire with pressure.

【0022】又、請求項2に記載された発明は、請求項
1に記載のワイヤボンディング方法において、前記第2
工程における金属ワイヤの振動振幅を、前記第1工程に
おける金属ワイヤの振動振幅より小さくすることを特徴
とする。
According to a second aspect of the present invention, in the wire bonding method according to the first aspect, the second
The vibration amplitude of the metal wire in the step is smaller than the vibration amplitude of the metal wire in the first step.

【0023】さらに、請求項3に記載された発明は、請
求項1に記載のワイヤボンディング方法において、前記
金属ワイヤの振動振幅の変化は、超音波振動子駆動装置
により前記超音波振動子に印加する印加電圧を切り替え
てボンディング用のツールを振動することを特徴とす
る。
Further, in the invention described in claim 3, in the wire bonding method according to claim 1, a change in the vibration amplitude of the metal wire is applied to the ultrasonic vibrator by an ultrasonic vibrator driving device. The application voltage is changed to vibrate the bonding tool.

【0024】本発明のワイヤボンディング方法によれ
ば、ボンディング用のツール(キャピラリ)の圧力と振
動振幅とを変更する第1工程と第2工程とを設けたこと
により、従来問題であったボール8と電極パッド5との
密着力が強い箇所を、前記キャピラリ1の真下になる箇
所8bからボール8の中心部8cにすることができる。
また、前記キャピラリ1の振動、又は所定の圧力で押圧
されたボール8の振動によって発生するスクイズアウト
の抑制ができる。そして、前記第2工程において、接合
表面に印加される圧力は前記第1工程における圧力より
大きく、好ましくは更にその振動振幅は前記第1工程に
おける振動振幅より小さくする。これにより、前記第1
工程で発生したスクイズアウトを第2工程によりボール
8の外周部8aで押さえ込む。その結果、従来問題であ
ったスクイズアウトなどの異物が飛散して半導体に付着
した場合、半導体の動作不良などが発生し、信頼性を著
しく低減させるいう問題点をなくすことができる。
According to the wire bonding method of the present invention, by providing the first step and the second step of changing the pressure and the vibration amplitude of the bonding tool (capillary), the ball 8 which has been a problem in the prior art. It is possible to set the portion having a strong adhesion between the electrode pad 5 and the electrode pad 5 from the portion 8b directly below the capillary 1 to the central portion 8c of the ball 8.
Further, squeeze-out that occurs due to the vibration of the capillary 1 or the vibration of the ball 8 pressed by a predetermined pressure can be suppressed. Then, in the second step, the pressure applied to the bonding surface is higher than the pressure in the first step, and preferably the vibration amplitude thereof is smaller than the vibration amplitude in the first step. Thereby, the first
The squeezeout generated in the process is pressed down by the outer peripheral portion 8a of the ball 8 in the second process. As a result, when a foreign matter such as a squeeze-out is scattered and adheres to the semiconductor, which is a conventional problem, a malfunction of the semiconductor occurs and the reliability is significantly reduced.

【0025】[0025]

【発明の実施の形態】以下、本発明のワイヤボンディン
グ方法の一実施例について図面を参照して説明する。図
1は、ワイヤボンディング方法の工程を示す概略工程図
であって、その工程は、図1の符号乃至に示す順序
である。図2は、図1の工程及びにおけるボンディ
ング点における接合状態を拡大して示す図であって、図
2(a)、図2(b)は、それぞれ図1の工程及び工
程に対応した図である。図3は接合部の接合状態を説
明する図であって、図3(a)は前記ボール8が電極パ
ッド5に圧着された時の圧着方向の断面図、図3(b)
はボール8と電極パッド5の接合点に置ける断面図、図
3(c)は図3(a)でのボール8の圧力分布を説明す
る図である。
BEST MODE FOR CARRYING OUT THE INVENTION An embodiment of the wire bonding method of the present invention will be described below with reference to the drawings. FIG. 1 is a schematic process drawing showing the steps of the wire bonding method, and the steps are in the order shown by the reference numerals in FIG. FIG. 2 is an enlarged view showing a bonding state at a bonding point in the step of FIG. 1, and FIGS. 2A and 2B are views corresponding to the step of FIG. 1 and the step, respectively. is there. 3A and 3B are views for explaining the bonding state of the bonding portion, and FIG. 3A is a sectional view in the pressure bonding direction when the ball 8 is pressure bonded to the electrode pad 5, FIG. 3B.
FIG. 3C is a cross-sectional view at the junction between the ball 8 and the electrode pad 5, and FIG. 3C is a diagram illustrating the pressure distribution of the ball 8 in FIG. 3A.

【0026】図4はキャピラリ1の加圧制御および超音
波振動の振幅制御を示す図であって、図4(a)、図4
(b)、図4(c)は、それぞれ加圧制御と振幅制御及
びキャピラリ1の位置を示す図であって、図4(a)
は、超音波振動子駆動装置内に設けられた図示しない超
音波振動子に印加する加圧制御における圧力の切替を示
す図である。また、図4(b)は、振幅制御における超
音波振動の振幅を示すグラフであり、図4(c)は、こ
のキャピラリ1の上下方向の動作t時間との関係で示す
図である。上記キャピラリ1は、この図4(c)に示す
ように、上記半導体チップ4の電極パッドの直上点Aま
で下降駆動され、それ以後は速度を落として下降駆動さ
れる。なお、図4(a)、図4(b)、図4(c)は、
それぞれ時間軸上で同一時刻には同一符号を付してあ
り、また図4(b)の超音波振動周波数は、通常のワイ
ヤボンディング装置に用いられる超音波周波数である。
FIG. 4 is a diagram showing pressurization control of the capillary 1 and amplitude control of ultrasonic vibration.
4 (b) and 4 (c) are diagrams showing the pressurization control, the amplitude control, and the position of the capillary 1, respectively.
FIG. 6 is a diagram showing pressure switching in pressurization control applied to an ultrasonic transducer (not shown) provided in the ultrasonic transducer driving device. 4 (b) is a graph showing the amplitude of ultrasonic vibration in amplitude control, and FIG. 4 (c) is a diagram showing the relationship with the vertical operation time t of the capillary 1. As shown in FIG. 4 (c), the capillary 1 is driven downward to a point A directly above the electrode pad of the semiconductor chip 4, and thereafter, is driven at a reduced speed. 4 (a), 4 (b) and 4 (c)
The same symbol is given to the same time on each time axis, and the ultrasonic vibration frequency in FIG. 4B is an ultrasonic frequency used in a normal wire bonding apparatus.

【0027】前記各図において、図5と同一部分につい
ては同一符号を付して説明する。まず、工程の図(図
1)を参照し、ワイヤボンディング装置の構成について
簡単に説明する。工程の図(図1)において、ワイヤ
ボンディング動作を行うキャピラリ1は、先端が細径に
形成されてなる針状をなし、内部には金属ワイヤ(例え
ば金ワイヤ)2が挿通される挿通孔1aが上下方向全長
に亘って形成されている。前記キャピラリ1は、図示し
ていない周知の超音波ホーンの先端に軸線を略垂直にし
た状態で保持されている。そして、前記超音波ホーンの
他端側は、図示していない周知の超音波振動子駆動装置
に接続されており、超音波振動子に印加する印加電圧が
切り替えられることによりその振動振幅が変化される。
したがって、前記超音波振動子に電圧を印加し、超音波
振動を発振させることで、上記超音波ホーンを介して、
上記キャピラリ1に超音波振動が伝達され、その内部に
挿通されている金属ワイヤ2が振動されるようになって
いる。また、前記超音波振動子駆動装置は図示していな
い回動軸(水平軸)によって揺動自在に設けられてお
り、該回胴軸が揺動することで、上記キャピラリ1を上
下させることができるように構成されている。
In each of the above-mentioned drawings, the same parts as those in FIG. First, the configuration of the wire bonding apparatus will be briefly described with reference to the process diagram (FIG. 1). In the process diagram (FIG. 1), a capillary 1 for performing a wire bonding operation has a needle-like shape with a tip having a small diameter, and a metal wire (for example, a gold wire) 2 is inserted through the insertion hole 1a. Are formed over the entire length in the vertical direction. The capillary 1 is held at the tip of a well-known ultrasonic horn (not shown) with its axis substantially vertical. The other end of the ultrasonic horn is connected to a well-known ultrasonic vibrator driving device (not shown), and its vibration amplitude is changed by switching the applied voltage applied to the ultrasonic vibrator. It
Therefore, by applying a voltage to the ultrasonic transducer to oscillate the ultrasonic vibration, through the ultrasonic horn,
Ultrasonic vibration is transmitted to the capillary 1 so that the metal wire 2 inserted therein is vibrated. Further, the ultrasonic transducer driving device is swingably provided by a rotary shaft (horizontal shaft) (not shown), and the capillary 1 can be moved up and down by swinging the rotating body shaft. It is configured to be able to.

【0028】なお、前記回動軸は図示しないモータに連
結され、前記モータが作動することで、上記キャピラリ
1は所定の速度、加速度、圧力で上下駆動されるように
なっている。さらに、上記キャピラリ1は図示していな
いXYテーブルが作動することにより水平方向にも駆動
位置決めができるようになっている。前記キャピラリ1
の横には電気トーチ9が設けられていて、該電気トーチ
9は放電により上記金属ワイヤ2を加熱し、後述するよ
うにして上記金属ワイヤ2の先端部を溶融させて、そこ
にボール状のボール8が形成される。一方、プリント基
板10は、図示していない上面は略平坦に形成されてい
る周知のボンディングステージに保持固定されている。
なお、前記ボンディングステージ内には、図示しないヒ
ータが埋設されており、ボンディングを行う際には、所
定の温度に昇温制御されるようになっている。前記プリ
ント基板10上には半導体チップ4が周知のダイボンデ
ィングにより搭載されている。また、上記プリント基板
10の上面と上記半導体チップ4の上面には、それぞれ
電極パッド11、電極パッド5が形成されている。
The rotary shaft is connected to a motor (not shown), and when the motor is operated, the capillary 1 is vertically driven at a predetermined speed, acceleration and pressure. Further, the capillary 1 can be driven and positioned in the horizontal direction by operating an XY table (not shown). The capillary 1
An electric torch 9 is provided on the side of the electric torch 9, and the electric torch 9 heats the metal wire 2 by electric discharge, melts the tip of the metal wire 2 as described later, and forms a ball-like shape there. The ball 8 is formed. On the other hand, the printed circuit board 10 is held and fixed on a well-known bonding stage whose upper surface (not shown) is formed to be substantially flat.
A heater (not shown) is embedded in the bonding stage so that the temperature is controlled to a predetermined temperature when bonding is performed. A semiconductor chip 4 is mounted on the printed board 10 by known die bonding. Further, an electrode pad 11 and an electrode pad 5 are formed on the upper surface of the printed board 10 and the upper surface of the semiconductor chip 4, respectively.

【0029】このワイヤボンディング装置は、上記キャ
ピラリ1を、順次上記半導体チップ4の電極パッド5
(第1のボンディング点)とプリント基板10の電極パ
ッド11(第2のボンディング点)とに対向させ、これ
らの間を、上記金属ワイヤ2を用いて接続するものであ
る。なお、接続に用いられる金属ワイヤ2は、上記キャ
ピラリ1の上方に設けられた図示しないワイヤスプール
から導出され、上記キャピラリ1の挿通孔1aに上下方
向に挿通された後、先端部が上記キャピラリ1の下端面
から所定寸法だけ露出されていて、前述のように電気ト
ーチ9により、金属ワイヤ2の先端部に球状のボール8
が形成されている。また、上記キャピラリ1の上方に
は、該キャピラリ1と共に上下するワイヤクランパ7が
設けられている。該ワイヤクランパ7は、必要に応じて
作動し、前記金属ワイヤ2を保持または開放するように
なっている。
In this wire bonding apparatus, the capillaries 1 are sequentially connected to the electrode pads 5 of the semiconductor chip 4.
The (first bonding point) and the electrode pad 11 (second bonding point) of the printed board 10 are opposed to each other, and the metal wires 2 are used to connect them. The metal wire 2 used for the connection is drawn out from a wire spool (not shown) provided above the capillary 1 and is vertically inserted into the insertion hole 1a of the capillary 1, and then the tip portion is connected to the capillary 1. A predetermined size is exposed from the lower end surface of the metal wire 2, and the spherical ball 8 is attached to the tip of the metal wire 2 by the electric torch 9 as described above.
Are formed. A wire clamper 7 that moves up and down together with the capillary 1 is provided above the capillary 1. The wire clamper 7 is operated as required to hold or release the metal wire 2.

【0030】次に、このキャピラリ1および金属ワイヤ
2を用いたワイヤボンディングの工程について、図1、
図2、図3及び図4を参照して説明する。まず、前記キ
ャピラリ1は、図示していないXYテーブルが作動する
ことで半導体チップ4における所定の電極パッド5(第
1のボンディング点)の上方に対向位置決めされる。つ
いで、電気トーチ9が作動し、放電による加熱により上
記金属ワイヤ2の先端部を溶融させ、この金属ワイヤ2
の先端部に球状のボール8を形成する。ボール8が形成
されたならば、上記キャピラリ1は所定量だけ下降駆動
され、図1の工程に示すように、上記ボール8を上記
キャピラリ1の下端に保持する。上記キャピラリ1は、
これ以後、以下に説明するように駆動されワイヤボンデ
ィング動作を行う。
Next, a wire bonding process using the capillary 1 and the metal wire 2 will be described with reference to FIG.
This will be described with reference to FIGS. 2, 3 and 4. First, the capillary 1 is positioned facing above a predetermined electrode pad 5 (first bonding point) on the semiconductor chip 4 by operating an XY table (not shown). Then, the electric torch 9 is operated, and the tip portion of the metal wire 2 is melted by heating by electric discharge.
A spherical ball 8 is formed at the tip of the. When the ball 8 is formed, the capillary 1 is driven downward by a predetermined amount to hold the ball 8 at the lower end of the capillary 1 as shown in the process of FIG. The capillary 1 is
After that, the wire bonding operation is performed by driving as described below.

【0031】前記図4(b)および図4(c)に示すよ
うに、キャピラリ1が点B(時刻tb)に達したなら
ば、キャピラリ1は超音波振動を開始する。このこと
で、上記キャピラリ1の下端に保持されたボール8は、
上記半導体チップ4の電極パッド5の押し付けられる前
から超音波域で振動することとなる。なお、前記キャピ
ラリ1の超音波振動の開始は、前記以外に、点A(時刻
ta)に達した時から予め開始してもよい。このキャピ
ラリ1は、点A以後、緩やかに下降し、図4(c)に示
す点Bで上記ボール8を上記半導体チップ4の電極パッ
ド5に当接させる。図1の工程に示すのが、このとき
の状態である。
As shown in FIGS. 4 (b) and 4 (c), when the capillary 1 reaches the point B (time tb), the capillary 1 starts ultrasonic vibration. As a result, the ball 8 held at the lower end of the capillary 1 is
Before the electrode pad 5 of the semiconductor chip 4 is pressed, it vibrates in the ultrasonic range. In addition to the above, the ultrasonic vibration of the capillary 1 may be started in advance when the point A (time ta) is reached. The capillary 1 descends gently after the point A, and brings the ball 8 into contact with the electrode pad 5 of the semiconductor chip 4 at the point B shown in FIG. The state at this time is shown in the process of FIG.

【0032】上記キャピラリ1は、この点B以後、ボー
ル8が図4(a)に示す圧力P1、及び図4(b)に示
すキャピラリ1の振動振幅AV1で電極パッド5への押
し付けを開始する。その結果、図4(c)時刻tb〜時
刻t1で示す間ボール8が押し潰され、超音波による接
合を開始した後、上記キャピラリ1は若干量ではある
が、点Bから点Cまで下降する。そして、キャピラリ1
は、点Cの時刻t1から時刻t2まで圧力P1、振動振
幅AV1でボール8を電極パッド5に押圧する。この結
果、上記超音波振動により、ボール8は電極パッド5に
当接した中心の部位から接合されていく。
After this point B, the capillary 1 starts pressing the ball 8 against the electrode pad 5 with the pressure P1 shown in FIG. 4A and the vibration amplitude AV1 of the capillary 1 shown in FIG. 4B. . As a result, the ball 8 is crushed during the period from time tb to time t1 in FIG. 4C, and after the ultrasonic bonding is started, the capillary 1 descends from the point B to the point C although the amount is a little. . And the capillary 1
Presses the ball 8 against the electrode pad 5 with pressure P1 and vibration amplitude AV1 from time t1 to time t2 at point C. As a result, due to the ultrasonic vibration, the ball 8 is joined from the central portion in contact with the electrode pad 5.

【0033】図2(a)は、前記図1の工程(第1の
工程)におけるボンディング点における接合状態を拡大
して示す図である。図示するように、図4(c)の時刻
tbからt1で示す間、ボンディング位置接合表面と金
属ワイヤ2が接触して擦れ合ってスクイズアウト12が
前記ボール8の周辺に発生する場合がある。上記ボール
8が電極パッド5に押し付けられ、接合が開始され、所
定時間の間(時刻tbからt1で示す間、)小さい圧力
P1と大きな振動振幅AV1でボール8を電極パッド5
に押圧する。圧力P1が小さい結果、ボンディング位置
の接合面の接触面積が小さく、従ってボンディング位置
接合表面の傷が少なく、スクイズアウト12の発生が少
ない。また、振動振幅AV1が大きい結果、ボンディン
グ位置接合表面と金属ワイヤ2が超音波振動により広範
囲のスクラブ動作が行なわれ、ボンディング表面とボン
ディングワイヤーとの接合面の異物を広範囲に除去でき
る。
FIG. 2A is an enlarged view showing a bonding state at a bonding point in the step (first step) of FIG. As shown in the figure, during the period from the time tb to the time t1 in FIG. 4C, the squeeze-out 12 may occur around the ball 8 due to contact between the bonding position bonding surface and the metal wire 2 and rubbing against each other. The ball 8 is pressed against the electrode pad 5 to start the bonding, and the ball 8 is pressed against the electrode pad 5 with a small pressure P1 and a large vibration amplitude AV1 for a predetermined time (between time tb and t1).
Press on. As a result of the small pressure P1, the contact area of the bonding surface at the bonding position is small, and therefore the scratches on the bonding surface at the bonding position are small and the squeezeout 12 is less likely to occur. Further, as a result of the large vibration amplitude AV1, the bonding position bonding surface and the metal wire 2 are scrubbed in a wide range by ultrasonic vibration, and foreign matter on the bonding surface between the bonding surface and the bonding wire can be removed in a wide range.

【0034】上記キャピラリ1は、点Dの時刻t2から
時刻t3まで圧力P2、振動振幅AV2でボール8を電
極パッド5に押圧する。前記図1の工程(第2の工
程)に示すのが、このときの状態である。なお、前記図
1の工程で示した圧力P2と振動振幅AV2と、前記
図1の工程で示した圧力P1と振動振幅AV1とは、
それぞれP2>P1、AV2<AV1の関係がある。圧
力P2が圧力P1に比べて大きい結果、図4(c)時刻
t2〜時刻tcで示すボール8が押し潰される間、上記
キャピラリ1は若干量ではあるが、点Dから点Eまで下
降する。そして、キャピラリ1は、点Dの時刻t2から
時刻t3まで圧力P2、振動振幅AV2でボール8を電
極パッド5に押圧する。この結果、上記超音波振動によ
り、ボール8は電極パッド5に当接した周辺の部位まで
接合されていく。
The capillary 1 presses the ball 8 against the electrode pad 5 with a pressure P2 and a vibration amplitude AV2 from time t2 at point D to time t3. The state at this time is shown in the step (second step) of FIG. The pressure P2 and the vibration amplitude AV2 shown in the process of FIG. 1 and the pressure P1 and the vibration amplitude AV1 shown in the process of FIG.
There is a relationship of P2> P1 and AV2 <AV1, respectively. As a result of the pressure P2 being larger than the pressure P1, while the ball 8 shown at time t2 to time tc in FIG. Then, the capillary 1 presses the ball 8 against the electrode pad 5 with the pressure P2 and the vibration amplitude AV2 from the time t2 at the point D to the time t3. As a result, due to the ultrasonic vibration, the ball 8 is joined to the peripheral portion in contact with the electrode pad 5.

【0035】図4(c)の時刻t2からt3で示す間、
ボンディング位置接合表面と金属ワイヤ2が接触して、
圧力P2により上記電極パッド5との接触面積を次第に
広げていく。このように圧力が前記図1の工程で示し
た圧力P1より増加することにより、ボール8、電極パ
ッド5に接触した部位(中央部)から周辺部に向かって
順に上記超音波エネルギによってこの電極パッド5に接
合されていく。
During the period from time t2 to t3 in FIG. 4 (c),
Bonding position The contact between the bonding surface and the metal wire 2,
The contact area with the electrode pad 5 is gradually expanded by the pressure P2. By increasing the pressure above the pressure P1 shown in the step of FIG. 1, the ultrasonic wave energy is applied to the electrode pad in order from the portion (center portion) in contact with the ball 8 and the electrode pad 5 toward the peripheral portion. It will be joined to 5.

【0036】図3は、前記図1の工程(第2の工程)
での接合部の接合状態を説明する図である。図3(a)
は前記ボール8が電極パッド5に最終的に圧力P2で圧
着された時の圧着方向の断面図である。図3(b)は、
図3(a)のボール8と電極パッド5の接合点における
断面における圧力分布を、図3(c)は圧着方向のボー
ル8の圧力分布を、それぞれ説明する図である。
FIG. 3 shows the process of FIG. 1 (second process).
It is a figure explaining the joining state of the joining part in FIG. Figure 3 (a)
FIG. 6 is a sectional view in the pressure bonding direction when the ball 8 is finally pressure bonded to the electrode pad 5 with pressure P2. Figure 3 (b) shows
3A is a diagram for explaining the pressure distribution in the cross section at the junction between the ball 8 and the electrode pad 5 of FIG. 3A, and FIG. 3C is a diagram for explaining the pressure distribution of the ball 8 in the pressure bonding direction.

【0037】図3に示すように、ボール8と電極パッド
5の接合面において、ボール8は中心点部分8cの密着
力は第1の工程で大きな振動振幅AV1により表面に付
着した有機物、酸化物が取り除かれ、第2の工程での大
きな圧力P2で押圧される結果、密着力が高く、その周
辺8a、8bでの密着力は前記スクイズアウト12を押
さえ込むために前記中心点部分8cの密着力より低くな
る。前述のように、第1の工程での圧力P1より大きい
第2の工程での圧力P2によりボール8が押し潰される
ことによって、前記第1の工程で発生した僅かなスクイ
ズアウト12が図2(b)に示すようにボール8の下部
周辺に押さえ込まれ、発生したスクイズアウト12の周
囲への飛散が防止される。その結果、異物の除去工程及
び除去ツールを必要としない。
As shown in FIG. 3, in the bonding surface of the ball 8 and the electrode pad 5, the adhesion force of the center point portion 8c of the ball 8 is the organic substance or oxide adhered to the surface by the large vibration amplitude AV1 in the first step. Are removed and pressed by the large pressure P2 in the second step, resulting in high adhesion, and the adhesion at the periphery 8a, 8b is the adhesion of the central point portion 8c for pressing down the squeezeout 12. Will be lower. As described above, the ball 8 is crushed by the pressure P2 in the second step, which is larger than the pressure P1 in the first step, so that the slight squeeze-out 12 generated in the first step is shown in FIG. As shown in b), the ball 8 is pressed down around the lower part of the ball 8 to prevent the generated squeeze-out 12 from scattering around. As a result, there is no need for a foreign matter removal step and removal tool.

【0038】また、前記図1の工程における振動振幅
AV2は工程における振動振幅AV1よりも小さいこ
とから、たまたまボール8の下部周辺に押さえ込まれな
かったスクイズアウト12の飛散も少なくて済む。更
に、振幅が減少することによって工程で圧着された接
合面が過大な振幅で振動されることがなくなり、既に密
着された中心部における密着度を低下することもない。
また、前記図1の工程における圧力P2は工程にお
ける圧力P1よりも大きいことから、中心における接合
面の密着度は、より強固になる。そして一定時間が経過
し、上記ボール8完全に接合されたならば、第2の工程
を終了し、上記キャピラリ1は超音波振動が停止され時
刻t3から上昇駆動される。なお、前記キャピラリ1の
超音波振動の停止は、キャピラリ1が上昇駆動された後
に停止するようにしてもよい。
Further, since the vibration amplitude AV2 in the step of FIG. 1 is smaller than the vibration amplitude AV1 in the step, the squeeze-out 12 which is not pressed down around the lower portion of the ball 8 is less likely to be scattered. Further, since the amplitude is reduced, the joining surface crimped in the process is not vibrated with an excessive amplitude, and the degree of adhesion at the already adhered central portion is not reduced.
Further, since the pressure P2 in the step of FIG. 1 is larger than the pressure P1 in the step, the adhesion of the joint surface at the center becomes stronger. Then, when the ball 8 is completely joined after a lapse of a certain time, the second step is ended, the ultrasonic vibration of the capillary 1 is stopped, and the capillary 1 is driven to rise from time t3. The ultrasonic vibration of the capillary 1 may be stopped after the capillary 1 is driven upward.

【0039】上記キャピラリ1は図1の工程から図1
の工程に示すように、上記金属ワイヤ2を繰り出しつ
つ上昇駆動されると共に水平方向に駆動され、第2のボ
ンディング点であるプリント基板10の電極パッド11
上に対向位置決めされる。そして、上記キャピラリ1は
再び下降駆動され、上述した第1のボンディング点に対
する動作と同様の動作により、上記金属ワイヤ2を上記
プリント基板10の電極パッド11に押し付け、超音波
振動を印加することで接合を行っていく。この場合は、
上記第1のボンディング点の場合と異なり、金属ワイヤ
2自体を押し潰すことで、この金属ワイヤ2を接合す
る。この場合も、上記ワイヤ2の一部が上記電極パッド
10に接触した時点から接合が開始され、図4(a)、
(b)、(c)に示すように圧力と振動振幅とを切り替
える第1工程、第2工程を有するようにしても良く、ま
たは、前記第1工程、又は第2工程のみであってもよ
い。
The above-mentioned capillary 1 is formed from the process of FIG.
As shown in the process (1), the metal wire 2 is raised and driven in the horizontal direction while being fed out, and the electrode pad 11 of the printed circuit board 10, which is the second bonding point, is driven.
Positioned opposite to above. Then, the capillary 1 is driven down again, and the metal wire 2 is pressed against the electrode pad 11 of the printed circuit board 10 by the same operation as the operation for the first bonding point described above, and ultrasonic vibration is applied. Joining is done. in this case,
Unlike the case of the first bonding point, the metal wire 2 is joined by crushing the metal wire 2 itself. Also in this case, the bonding is started from the time when a part of the wire 2 comes into contact with the electrode pad 10, and as shown in FIG.
As shown in (b) and (c), there may be provided a first step and a second step for switching the pressure and the vibration amplitude, or only the first step or the second step. .

【0040】図1の工程の後に、工程において、上
記ワイヤクランパ7を作動させ上記金属ワイヤ2を保持
した後、キャピラリ1およびワイヤクランパ7を上昇さ
せることで前記金属ワイヤ2を上方に引上げる。このこ
とで図1の工程に示すように、金属ワイヤ2は、接合
された部位の直上で切断される。金属ワイヤ2が最初に
キャピリ1に通された時以降、図1の工程の後に、工
程で述べたのと同様にして、工程では、電気トーチ
9が作動し、放電による加熱により上記金属ワイヤ2の
先端部を溶融させ、この金属ワイヤ2の先端部に球状の
ボール8を形成する。そして、新たなボール8が形成さ
れたならば図1の工程に戻り、他の接合部の接合が同
様にしてなされる。なお、かかる場合、図1の工程で
のボールの形成工程は省略する。
After the step of FIG. 1, in the step, the wire clamper 7 is operated to hold the metal wire 2, and then the capillary 1 and the wire clamper 7 are raised to pull the metal wire 2 upward. As a result, as shown in the process of FIG. 1, the metal wire 2 is cut immediately above the joined portion. After the metal wire 2 is first passed through the capillary 1, after the step of FIG. 1, the electric torch 9 is operated in the same manner as described in the step, and the metal wire 2 is heated by electric discharge. The tip of the metal wire 2 is melted to form a spherical ball 8 at the tip of the metal wire 2. Then, when a new ball 8 is formed, the process returns to the step of FIG. 1 and the other joints are joined in the same manner. In this case, the ball forming process in the process of FIG. 1 is omitted.

【0041】[0041]

【発明の効果】以上述べたように、この発明は、ボンデ
ィング工程に金属ワイヤの圧力と振動振幅をそれぞれ制
御する工程を設けたワイヤボンディング方法である。即
ち、半導体チップの電極パッドと前記半導体チップを載
置するリードフレームのインナーリード部とを金属ワイ
ヤを用いて接続するワイヤボンディング方法において、
ボンディング位置の接合表面にボンディング用のツール
を所定の圧力で接触させて金属ワイヤを所定の振幅で振
動させて金属ワイヤを押圧する第1工程と、該第1工程
の後に前記第1の工程より大きい圧力で前記金属ワイヤ
を押圧する第2工程とを有することを特徴とする。
As described above, the present invention is a wire bonding method in which a step of controlling the pressure and vibration amplitude of a metal wire is provided in the bonding step. That is, in the wire bonding method of connecting the electrode pad of the semiconductor chip and the inner lead portion of the lead frame on which the semiconductor chip is mounted by using a metal wire,
A first step of pressing a metal wire by bringing a bonding tool into contact with a bonding surface at a bonding position at a predetermined pressure to vibrate the metal wire at a predetermined amplitude, and from the first step after the first step. A second step of pressing the metal wire with a large pressure.

【0042】このように圧力を変化する2つの工程を設
けて、圧力P1より大きい圧力P2によりボール8が押
し潰されることによって、第1の工程で発生した僅かな
スクイズアウト12がボール8の下部周辺に押さえ込ま
れ、発生したスクイズアウト12の周囲への飛散が防止
され、半導体素子の信頼性を向上する効果がある。ま
た、その結果、異物の除去工程及び除去ツールを必要と
せず、装置の低価格化に寄与する効果もある。
By providing the two steps for changing the pressure in this way, and the ball 8 is crushed by the pressure P2 larger than the pressure P1, the slight squeeze-out 12 generated in the first step causes the slight squeezeout 12 to occur in the lower portion of the ball 8. The squeezeout 12 that is pressed down to the periphery is prevented from scattering around and the reliability of the semiconductor element is improved. In addition, as a result, there is no need for a step of removing foreign matter and a removal tool, which also contributes to cost reduction of the apparatus.

【0043】また、前記第2の工程における振動振幅A
V2は、前記第1の工程における振動振幅AV1よりも
小さいことから、たまたまボール8の下部周辺に押さえ
込まれなかったスクイズアウト12の飛散も少なくて済
み、半導体素子の信頼性を向上する効果がある。
Further, the vibration amplitude A in the second step
Since V2 is smaller than the vibration amplitude AV1 in the first step, scattering of the squeeze-out 12 which is not pressed down around the lower portion of the ball 8 by chance is small, and the reliability of the semiconductor element is improved. .

【0044】更に、前記第1の工程における振動振幅A
V1よりも第2の工程における振動振幅AV2が減少す
ることによって前記第1の工程で圧着された接合面が過
大な振幅で振動されることがなくなり、既に密着された
中心部における密着度を低下することもなく、同様にし
て半導体素子の信頼性を向上する効果を有する。更にま
た、前記第2の工程における圧力P2は前記第1の工程
における圧力P1よりも大きいことから、中心における
接合面の密着度は、より強固になる効果がある。
Further, the vibration amplitude A in the first step
Since the vibration amplitude AV2 in the second step is smaller than V1, the joining surface crimped in the first step is not vibrated with an excessive amplitude, and the degree of adhesion in the already adhered central portion is reduced. Similarly, it has the effect of improving the reliability of the semiconductor element. Furthermore, since the pressure P2 in the second step is larger than the pressure P1 in the first step, there is an effect that the degree of adhesion of the joint surface at the center becomes stronger.

【0045】又、振動振幅の変化は、超音波振動子駆動
装置により該超音波振動子に印加する印加電圧を切り替
えて行なうことにより簡単にボンディング工程の制御が
できる。以上述べたように、本発明では、従来の超音波
振動式のボンディング方法では得られなかった、超音波
振動式の接合時に発生するスクイズアウトなどの異物の
発生を抑制、発生した前記異物の飛散を防止、接合点の
密着度の向上が可能になり、この方法により製造された
半導体の信頼性を向上できると共に、合わせて装置の低
減化を可能にすることができる。
Further, the change of the vibration amplitude can be easily controlled by switching the applied voltage applied to the ultrasonic vibrator by the ultrasonic vibrator driving device. As described above, in the present invention, the generation of foreign matter such as squeeze out that occurs during ultrasonic vibration type bonding, which cannot be obtained by the conventional ultrasonic vibration type bonding method, is suppressed, and the generated foreign matter scatters. It is possible to improve the reliability of the semiconductor manufactured by this method, and also to reduce the number of devices.

【図面の簡単な説明】[Brief description of drawings]

【図1】ワイヤボンディング方法の工程を示す概略工程
図であって、その工程は、符号乃至に示す順序であ
る。
FIG. 1 is a schematic process diagram showing the steps of a wire bonding method, which steps are in the order shown by reference numerals.

【図2】図1の工程及びにおけるボンディング点に
おける接合状態を拡大して示す図であって、図2
(a)、図2(b)は、それぞれ図1の工程工程及び
に対応した図である。
2 is an enlarged view showing a bonding state at a bonding point in the step of FIG. 1 and FIG.
FIG. 2A and FIG. 2B are views corresponding to the process steps of FIG.

【図3】接合部の接合状態を説明する図であって、図3
(a)は前記ボールが電極パッドに圧着された時の圧着
方向の断面図である。図3(b)は、図3(a)のボー
ルと電極パッドの接合点における断面における圧力分布
を、図3(c)は圧着方向のボールの圧力分布を、それ
ぞれ説明する図である。
FIG. 3 is a diagram for explaining a joined state of a joined portion, and FIG.
FIG. 7A is a sectional view in the pressure bonding direction when the ball is pressure bonded to the electrode pad. 3B is a diagram for explaining the pressure distribution in the cross section at the junction between the ball and the electrode pad of FIG. 3A, and FIG. 3C is a diagram for explaining the pressure distribution of the ball in the pressure bonding direction.

【図4】キャピラリの加圧制御および超音波振動の振幅
制御を示す図であって、図4(a)、図4(b)、図4
(c)は、それぞれ加圧制御と振幅制御及びキャピラリ
の位置を示す図である。
FIG. 4 is a diagram showing pressure control of the capillaries and amplitude control of ultrasonic vibrations, and FIG. 4 (a), FIG. 4 (b), and FIG.
(C) is a figure which shows pressurization control, amplitude control, and the position of a capillary, respectively.

【図5】従来のワイヤボンディング装置の説明図であ
る。
FIG. 5 is an explanatory diagram of a conventional wire bonding device.

【図6】図6はキャピラリの動作を説明する図であっ
て、図6(a)は、キャピラリの上下方向の動作を時間
との関係で示す図、図6(b)は、ゲイン切替により発
生する超音波振動の振幅を示す図、図6(c)は、キャ
ピラリに振動を与える、超音波振動子に対する電圧印加
のゲイン切替を示す図である。
FIG. 6 is a diagram for explaining the operation of the capillary, FIG. 6 (a) is a diagram showing the vertical operation of the capillary in relation to time, and FIG. FIG. 6C is a diagram showing the amplitude of the ultrasonic vibration generated, and FIG. 6C is a diagram showing the gain switching of the voltage application to the ultrasonic vibrator, which gives the capillary vibration.

【図7】各種のボンディング方法における接合部の接合
状態を説明する図であって、図7(a)はボールが電極
パッドに圧着された時の圧着方向の断面図、図7(b)
と図7(c)は、それぞれボールと電極パッドの接合点
における、ボールへの圧力分布を説明する図である。
7A and 7B are views for explaining a bonding state of a bonding portion in various bonding methods, FIG. 7A is a sectional view in a pressure bonding direction when a ball is pressure bonded to an electrode pad, and FIG.
FIG. 7C is a diagram for explaining the pressure distribution on the ball at the junction between the ball and the electrode pad.

【符号の説明】[Explanation of symbols]

1 キャピラリ 2 金属ワイヤ 4 半導体チップ 5 電極パッド 6 インナーリード部 7 クランパ 8 ボール 9 電気トーチ 10 プリント基板 11 電極パッド11 12 スクイズアウト 1 capillary 2 metal wire 4 semiconductor chips 5 electrode pads 6 Inner lead part 7 clamper 8 balls 9 electric torch 10 printed circuit boards 11 electrode pad 11 12 Squeeze out

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】半導体チップの電極パッドと前記半導体チ
ップを載置するリードフレームのインナーリード部とを
金属ワイヤを用いて接続するワイヤボンディング方法に
おいて、ボンディング位置の接合表面にボンディング用
のツールを所定の圧力で接触させて金属ワイヤを所定の
振幅で振動させて金属ワイヤを押圧する第1工程と、該
第1工程の後に前記第1の工程より大きい圧力で前記金
属ワイヤを押圧する第2工程とを有することを特徴とす
るワイヤボンディング方法。
1. In a wire bonding method for connecting an electrode pad of a semiconductor chip and an inner lead portion of a lead frame on which the semiconductor chip is mounted by using a metal wire, a bonding tool is predetermined on a bonding surface at a bonding position. Step of pressing the metal wire by vibrating the metal wire at a predetermined amplitude by contacting the metal wire with a predetermined pressure, and a second step of pressing the metal wire with a pressure higher than the first step after the first step A wire bonding method comprising:
【請求項2】前記第2工程における金属ワイヤの振動振
幅を、前記第1工程における金属ワイヤの振動振幅より
小さくすることを特徴とする請求項1に記載のワイヤボ
ンディング方法。
2. The wire bonding method according to claim 1, wherein the vibration amplitude of the metal wire in the second step is smaller than the vibration amplitude of the metal wire in the first step.
【請求項3】前記金属ワイヤの振動振幅の変化は、超音
波振動子駆動装置により前記超音波振動子に印加する印
加電圧を切り替えてボンディング用のツールを振動する
ことを特徴とする請求項1に記載のワイヤボンディング
方法。
3. The change in the vibration amplitude of the metal wire causes the bonding tool to vibrate by switching the applied voltage applied to the ultrasonic vibrator by the ultrasonic vibrator driving device. The wire bonding method described in.
JP2002057597A 2002-03-04 2002-03-04 Method for wire bonding Pending JP2003258042A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002057597A JP2003258042A (en) 2002-03-04 2002-03-04 Method for wire bonding

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002057597A JP2003258042A (en) 2002-03-04 2002-03-04 Method for wire bonding

Publications (1)

Publication Number Publication Date
JP2003258042A true JP2003258042A (en) 2003-09-12

Family

ID=28667818

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002057597A Pending JP2003258042A (en) 2002-03-04 2002-03-04 Method for wire bonding

Country Status (1)

Country Link
JP (1) JP2003258042A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006156795A (en) * 2004-11-30 2006-06-15 Toyota Motor Corp Method of joining semiconductor device
CN102723319A (en) * 2012-07-13 2012-10-10 日月光半导体制造股份有限公司 Semiconductor wire bonding structure and method

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006156795A (en) * 2004-11-30 2006-06-15 Toyota Motor Corp Method of joining semiconductor device
JP4656921B2 (en) * 2004-11-30 2011-03-23 トヨタ自動車株式会社 Semiconductor element bonding method
CN102723319A (en) * 2012-07-13 2012-10-10 日月光半导体制造股份有限公司 Semiconductor wire bonding structure and method
CN105957852A (en) * 2012-07-13 2016-09-21 日月光半导体制造股份有限公司 Semiconductor wire bonding structure and method

Similar Documents

Publication Publication Date Title
JP2004088005A (en) Capillary for wire bonding and wire-bonding method using same
WO2018110417A1 (en) Wire bonding device and wire bonding method
JPH1032230A (en) Method and apparatus for bonding wire interconnecting part to semiconductor device
JPH08264540A (en) Bump structure, method for forming bump and capillary being employed therein
JPH11284028A (en) Bonding method and its device
JP2003258042A (en) Method for wire bonding
JPH08181175A (en) Wire bonding method
JP2006135207A (en) Flip-chip jointing method
JP2000036519A (en) Bump bonding device and method thereof and semiconductor part manufacturing device
JP2000357705A (en) Electronic component connection method
JPH11186315A (en) Wire-bonding device and manufacture of semiconductor device using thereof
JP3391234B2 (en) Bump forming capillary, bump forming apparatus and bump forming method
JP2004014715A (en) Method for chip bonding and chip bonding apparatus
JPH11288960A (en) Wire-bonding connection and tool for bonding surface removal removal
JP2001291734A (en) Method and apparatus of wire bonding
JP2001068499A (en) Device and method for wire bonding
JPS62123728A (en) Wire bonding method and device therefor
JPH04372146A (en) Wire bonding device
JPH09326411A (en) Wire bonding device
JP2004241712A (en) Ultrasonic bonding method
JP2006147842A (en) Capillary for stud bump and method of forming stud bump using same
JPH10199913A (en) Wire-bonding method
JP2004158583A (en) Method and apparatus for forming metal electrode
JPH09330944A (en) Wire bonding
JPH118258A (en) Chuck for both absorption and pressurization and manufacture of semiconductor device using the chuck