JP2003257703A - Resistor unit - Google Patents

Resistor unit

Info

Publication number
JP2003257703A
JP2003257703A JP2002101903A JP2002101903A JP2003257703A JP 2003257703 A JP2003257703 A JP 2003257703A JP 2002101903 A JP2002101903 A JP 2002101903A JP 2002101903 A JP2002101903 A JP 2002101903A JP 2003257703 A JP2003257703 A JP 2003257703A
Authority
JP
Japan
Prior art keywords
resistor
lead
glass
free
bismuth
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002101903A
Other languages
Japanese (ja)
Other versions
JP3630144B2 (en
Inventor
Atsushi Nishino
西野  敦
Yasuhiro Shindo
泰宏 進藤
Yasuhiro Sudo
泰博 須藤
Masao Iwasaki
正雄 岩崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kojima Chemicals Co Ltd
Original Assignee
Kojima Chemicals Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kojima Chemicals Co Ltd filed Critical Kojima Chemicals Co Ltd
Priority to JP2002101903A priority Critical patent/JP3630144B2/en
Priority to AU2003211482A priority patent/AU2003211482A1/en
Priority to PCT/JP2003/002322 priority patent/WO2003073442A1/en
Priority to KR10-2004-7013364A priority patent/KR20040084940A/en
Priority to EP03743065A priority patent/EP1480233A4/en
Publication of JP2003257703A publication Critical patent/JP2003257703A/en
Application granted granted Critical
Publication of JP3630144B2 publication Critical patent/JP3630144B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To solve the problem about the fact that a lead-free material or a lead-free electronic component is required to be used at present for conserving the global environment, and it is difficult for paste used for forming a printing- type thick-film resistor to dispense with lead. <P>SOLUTION: An electrode where a lead-free bismuth glass is used as a binder and a resistor overlapping partially with the electrode are provided on the surface of a high-purity alumina board, and the resistor is formed of a ruthenium oxide and bismuth rutheniumate or a mixture of a ruthenium oxide, bismuth rutheniumate, and a lead-free bismuth binder glass and covered with a lead-free bismuth glass film for the formation of a lead-fully free printing-type thick-film resistor unit. In Figure, the high-purity alumina board, the silver electrode where the lead-free bismuth binder glass is used as a binder, the resistor of the lead- free bismuth binder glass, and the lead-free bismuth glass film covering the resistor for protection are represented by 1, 2, 3, and 4 respectively. The materials forming the above component elements are all kept free from lead as mentioned above, so that the printing-type thick-film resistor coping completely with environmental protection can be provided. <P>COPYRIGHT: (C)2003,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【発明の属する技術分野】 本発明は印刷型厚膜抵抗器
に関し、電極、抵抗体、抵抗体の保護を目的とした保護
ガラス膜全てを鉛フリー材料で構成し、且つ、抵抗器の
電極形成、抵抗体形成及び保護ガラス膜形成の各焼成工
程が同時焼成可能な抵抗器に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a printing type thick film resistor, in which all electrodes, resistors, and protective glass films for the purpose of protecting the resistors are made of lead-free material, and electrodes of resistors are formed. The present invention relates to a resistor in which the firing steps of resistor formation and protective glass film formation can be performed simultaneously.

【従来の技術】 従来の印刷型厚膜抵抗器は耐熱性絶縁
基板上に電極、抵抗体及び抵抗体保護ガラス膜で構成さ
れていた。それらの各々の材料として、高純度アルミナ
基板、電極用ペースト、抵抗用ペースト及び保護ガラス
ペーストが用いられており、それら何れのペーストにも
鉛系ガラスフリットが使用されていた。また、抵抗器の
抵抗材料には主として酸化ルテニウム(RuO)及び
ルテニウム酸鉛(PbRU)が使用されてい
た。また、印刷型厚膜抵抗器の構成で、電極形成、抵抗
形成及び保護ガラス膜形成の各々の形成に対し印刷、乾
燥及び焼成をおこなうため、工程数が多く省エネと低コ
スト化の観点からも課題を有していた。
2. Description of the Related Art A conventional printing type thick film resistor is composed of an electrode, a resistor and a resistor protective glass film on a heat resistant insulating substrate. A high-purity alumina substrate, an electrode paste, a resistor paste, and a protective glass paste are used as the respective materials, and a lead-based glass frit is used in any of these pastes. Further, ruthenium oxide (RuO 2 ) and lead ruthenate (Pb 2 RU 2 O 6 ) were mainly used as the resistance material of the resistor. Further, in the configuration of the printing type thick film resistor, printing, drying and firing are performed for each of the formation of the electrode, the formation of the resistance and the formation of the protective glass film, so that the number of steps is large and energy saving and cost reduction are also taken into consideration. Had challenges.

【発明が解決しようとする課題】 現在、地球環境保全
が叫ばれ、省エネで、持続可能な経済発展が掲げられる
中、エレクトロニクス分野にも着実に改善対策が要求さ
れる段階に入ってきた。電子部品である印刷型厚膜抵抗
器は電子機器の使用部品の中で、量的には大きな比重を
占めている。その印刷型厚膜抵抗器の電極、抵抗体及び
被覆ガラス膜の材料にそれぞれ電極用ペースト、抵抗用
ペースト及び保護ガラスペーストが用いられており、そ
れらのいずれのペーストにも鉛系ガラスフリットが使用
されている。また、抵抗器の抵抗材料には主として酸化
ルテニウム(RuO)及びルテニウム酸鉛(Pb
)が使用されている。一方、地球環境保全の面
より鉛フリーの材料や電子部品が望まれており、印刷型
厚膜抵抗器に使用するペーストの鉛フリー化に問題点を
有していた。また、他方では印刷型厚膜抵抗器の構成
で、電極形成、抵抗形成及び保護ガラス膜形成のそれぞ
れに対し印刷、乾燥及び焼成をおこなうため、工程数が
多く省エネと低コスト化の観点からも問題点を有してい
た。本発明は上記従来の問題点を解決するもので、電極
用ペースト、抵抗用ペースト及び保護ガラスペーストの
各々に鉛フリーペーストを用い、しかも焼成工程を単純
化でき、地球環境にも貢献できる抵抗器を提供すること
を目的とするものである。
[Problems to be Solved by the Invention] Nowadays, as the global environment protection is being sought, energy saving and sustainable economic development are being promoted, the electronics field has reached a stage where steady improvement measures are required. The printed type thick film resistor, which is an electronic component, occupies a large specific weight quantitatively among the components used in electronic devices. An electrode paste, a resistance paste, and a protective glass paste are used for the electrodes of the printing type thick film resistor, the resistor, and the material of the coated glass film, respectively, and a lead-based glass frit is used for any of these pastes. Has been done. Moreover, ruthenium oxide (RuO 2 ) and lead ruthenate (Pb 2 R) are mainly used as the resistance material of the resistor.
U 2 O 6 ) has been used. On the other hand, lead-free materials and electronic components have been desired from the viewpoint of global environmental protection, and there has been a problem in making the lead-free paste used for printing type thick film resistors. On the other hand, in the configuration of the printing type thick film resistor, printing, drying and firing are performed for each of the electrode formation, the resistance formation and the protective glass film formation, so that the number of steps is large and energy saving and cost reduction are also taken into consideration. I had a problem. The present invention solves the above-mentioned conventional problems, and uses a lead-free paste for each of the electrode paste, the resistance paste, and the protective glass paste, and further, the firing process can be simplified and the resistor can contribute to the global environment. It is intended to provide.

【課題を解決するための手段】 上記目的を達成するた
めに、本発明は以下の構成を有する。本発明の請求項1
に記載の発明は、特に耐熱性絶縁基板の表面に鉛フリー
ビスマス系ガラスをバインダーとした電極と前記電極に
一部が重なる抵抗体を有し、前記抵抗体は酸化ルテニウ
ムまたはルテニウム酸ビスマスまたは酸化ルテニウムお
よびルテニウム酸ビスマスの混合物と鉛フリービスマス
系バインダーガラスで構成され、これにより前記電極及
び前記抵抗体のバインダーガラスに鉛フリービスマス系
ガラスを用いており、前記抵抗体は鉛元素を含有しない
酸化ルテニウムおよびルテニウム酸ビスマスを使用し、
また、耐熱性絶縁基板には高純度アルミナを使用してい
るために完全なる鉛フリー抵抗器を得るという作用効果
が得られる。本発明の請求項2に記載の発明は、特に鉛
フリービスマス系バインダーガラスの主成分がSi
、BaO、ZnO、Al及びBiとい
う構成を有しており、これによりSiOおよびAl
はガラスネットワークを構成する骨格材料である。
また、BaO及びZnOはガラス軟化点を抵抗器の製造
工程の焼成温度に合わせる調整の役割とガラスの安定化
のために使用されている。Bi含有ガラスは抵抗
材料であるルテニウム酸ビスマス(BiRu
との界面で相互拡散層を形成し、抵抗体の電気伝導を安
定化させるという作用効果が得られる。本発明の請求項
3に記載の発明は、鉛フリービスマス系ガラスをバイン
ダーとした電極の導電剤が金、銀、白金、パラジウム、
又は前記金属の合金または混合物であるという構成を有
しており、これにより電極焼成後の重量%で前記それぞ
れの金属が60%以上90以下を含有させることにより
面積抵抗値は50mΩ以下の鉛フリーの安定した抵抗用
導電電極を得ることができる。本発明の請求項4に記載
の発明は、抵抗体を鉛フリーであるSiO、BaO、
ZnO、Al及びBiを主成分としたビス
マス系ガラス膜で被覆するという構成を有しており、こ
れにより前記ビスマス系ガラスは耐酸性に優れており、
また、抵抗体の鉛フリービスマス系ガラスと同系のガラ
スであり、焼成時に抵抗体と保護ガラス膜の界面が相互
拡散層を形成するため、強度の密着力が得られ抵抗体を
完全に密封状態に置くことができ、抵抗器の信頼性の向
上及び環境保護に貢献できる構造にするという作用効果
が得られる。
Means for Solving the Problems In order to achieve the above object, the present invention has the following configurations. Claim 1 of the present invention
The invention described in, in particular, has a resistor on the surface of the heat-resistant insulating substrate, the electrode using a lead-free bismuth glass as a binder, and a resistor partially overlapping the electrode, wherein the resistor is ruthenium oxide or bismuth ruthenate or oxide. It is composed of a mixture of ruthenium and bismuth ruthenate and a lead-free bismuth-based binder glass, whereby a lead-free bismuth-based glass is used for the electrodes and the binder glass of the resistor, and the resistor does not contain lead element. Using ruthenium and bismuth ruthenate,
Further, since high-purity alumina is used for the heat-resistant insulating substrate, it is possible to obtain the effect of obtaining a completely lead-free resistor. In the invention according to claim 2 of the present invention, particularly, the main component of the lead-free bismuth-based binder glass is Si.
It has a structure of O 2 , BaO, ZnO, Al 2 O 3 and Bi 2 O 3 , and thereby SiO 2 and Al 2
O 3 is a skeleton material forming a glass network.
Further, BaO and ZnO are used for the role of adjusting the glass softening point to the firing temperature in the resistor manufacturing process and for stabilizing the glass. Bi 2 O 3 -containing glass is a resistance material bismuth ruthenate (Bi 2 Ru 2 O 7 ).
An interdiffusion layer is formed at the interface with and the effect of stabilizing the electrical conduction of the resistor is obtained. In the invention according to claim 3 of the present invention, the conductive agent of the electrode using lead-free bismuth glass as a binder is gold, silver, platinum, palladium,
Alternatively, it has a constitution of being an alloy or a mixture of the above-mentioned metals, whereby the area resistance value is 50 mΩ or less by containing 60% or more and 90 or less of the respective metals in the weight% after electrode firing. It is possible to obtain a stable conductive electrode for resistance. In the invention according to claim 4 of the present invention, the resistor is made of lead-free SiO 2 , BaO,
It has a structure of coating with a bismuth-based glass film containing ZnO, Al 2 O 3 and Bi 2 O 3 as main components, whereby the bismuth-based glass is excellent in acid resistance,
In addition, it is a glass similar to the lead-free bismuth-based glass of the resistor, and since the interface between the resistor and the protective glass film forms an interdiffusion layer during firing, strong adhesion is obtained and the resistor is completely sealed. It is possible to obtain a function and effect that the structure can contribute to improvement of reliability of the resistor and environmental protection.

【発明の実施の形態】(実施の形態1)以下、実施の形
態1を用いて、本発明の請求項1〜4に記載の発明につ
いて説明する。図1(a)は本発明の実施の形態におけ
る抵抗器の平面図、図1(b)はA−Aでの断面図であ
る。図2は本発明の抵抗器の製造工程図で従来工程と新
工程の比較図である。図1において、1は高純度アルミ
ナ基板(今後はアルミナ基板と記述する)、2は鉛フリ
ービスマス系バインダーガラスの銀電極(新電極と記述
する)、3は鉛フリービスマス系バインダーガラスの抵
抗体(新抵抗体と記述する)、4は抵抗体を保護する為
に被覆した鉛フリーのビスマス系ガラス膜(新ガラス膜
と記述する)である。以上のような構成において、本発
明の抵抗器の製造工程を図2に従って、順を追って説明
する。まず、従来の工程の第1工程はアルミナ基板1を
準備する。第2工程は前記アルミナ基板1上に鉛フリー
ビスマス系バインダーガラスの銀電極ペーストを電極用
スクリーンマスクを使って電極印刷を行う。第3工程は
前記印刷済電極を100℃〜150℃で指触乾燥を行
う。第4工程は前記指触乾燥済電極を850℃で電極焼
成を行い、新電極2が形成される。第5工程は前記新電
極2に一部が重なるように、鉛フリービスマス系バイン
ダーガラスの抵抗ペーストを抵抗体用スクリーンマスク
を使って抵抗体印刷を行う。第6工程は前記印刷済抵抗
体を前記印刷済電極と同様の方法で指触乾燥を行う。第
7工程は前記指触乾燥済抵抗体を800℃で焼成を行
い、新抵抗体3が形成される。第8工程は前記新抵抗体
3の全面を覆うように鉛フリービスマス系ガラスペース
トをガラス用スクリーンマスクを使って保護ガラス膜印
刷を行う。第9工程は前記印刷済保護ガラス膜を前記印
刷済電極と同様の方法で指触乾燥を行う。第10工程は
前記指触済保護ガラス膜を650℃で焼成を行い、新ガ
ラス膜4が形成され、本発明の抵抗器を得ることができ
る。次に、新工程の説明を同じく図2に従って順に行
う。但し、従来の工程と同条件の場合は説明を省略す
る。第1工程の基板の準備、第2工程の電極印刷及び第
3工程の指触乾燥は従来の工程と同じ材料を使用し、か
つ、同じ方法でおこなう。しかし、従来工程で第4工程
の電極焼成を削除し、新工程で第4工程の抵抗印刷をお
こなう、当該工程は前記指触乾燥済電極に一部が重なる
ように、鉛フリービスマス系バインダーガラスの抵抗ペ
ーストを抵抗体用スクリーンマスクを使って抵抗体印刷
をおこなう。第5工程の指触乾燥は第3工程の指触乾燥
と同じ方法でおこなう。しかし、また、従来工程で第7
工程の抵抗焼成を削除し、新工程の第6工程に流れて行
く、当該工程は前記指触乾燥済抵抗体の全面を覆うよう
に鉛フリービスマス系ガラスペーストをガラス用スクリ
ーンマスクを使って保護ガラス膜印刷を行う。第7工程
の指触乾燥は第3工程の指触乾燥と同じ方法で行う。第
8工程の電極・抵抗・保護ガラス膜同時焼成は、新工程
の第1工程〜第7工程では一度も焼成を行っておらず、
当該工程で初めて電極、抵抗体及び保護ガラス膜を同時
に850℃で焼成を行い、本発明の抵抗器を得ることが
できる。以上で説明してきたように本発明の抵抗器は、
従来の工程及び新工程の双方で生産することができる。
しかし、新工程は焼成工程が最後の工程で同時に一度で
焼成ができるため、従来の工程で必要としていた中間工
程での電極焼成及び抵抗焼成の2工程が削減できる。特
に、焼成工程は高温を必要としているため、省エネ効果
は大なるものである。次に、実際に鉛フリービスマス系
ガラスバインダーを使用して、前記図2の従来工程と新
工程で製造した本開発の抵抗体の特性値を以下に示す。 (1)以下、新電極材料として、主成分はSiO
8%、BaO 31%、ZnO 6%、Al
%、Bi 24%、その他 5%の鉛フリーガラ
スバインダーで、導電材料として銀微粉末が重量%で6
0%〜90%含有の電極ペーストで図2の従来の工程で
電極を形成した場合、面積抵抗値は50mΩ以下にな
る。また、焼成後の表面状態も良好であり、アルミナ基
板との密着強度も充分であった。印刷用厚膜抵抗器の電
極として満足できるものである。なお、前記導電材料は
ここでは銀微粉末を用いているが、貴金属である金、白
金、パラジウム又は前記金属の合金又は混合物でも前記
同様の使用法であれば問題ないことを別途確認済であ
る。 (2)以下、前記(1)の電極を用い、新抵抗材料中の
鉛フリービスマス系ガラスバインダーのBi含有
量を変化させて本開発の抵抗器を作成した。前記鉛フリ
ービスマス系ガラスバインダーの主成分は以下に示すも
のである。 SiO BaO ZnO Al Bi 13%品 41% 31% 6% 6% Bi2O 21%品 41 24 6 6 Bi 25%品 29 31 6 6 Bi 30%品 25 28 7 7 なお、保護ガラス膜のガラス材料は前記鉛フリービスマ
ス系ガラスバインダーのBi含有率が25%のも
のを用いた。導電材料はRuOのみでRuO/ビス
マス系バインダーガラス=20/80一定とした。以上
の材料を使用して作成した本発明の抵抗器の抵抗特性は
表1(a)に示す。この結果より抵抗値はBi
有率が増加すれば抵抗値は低くなる。これは焼成時にR
uOとBiが反応し、低比率であるがBi
を形成するためと考えられる。また、新工程の
方が抵抗値は高くなる。この理由は従来工程と新工程の
熱履歴が異なる為と考えられる。しかし、Bi
有率が13%〜30%の範囲であれば抵抗値の安定性、
抵抗体の表面状態は良好で鉛フリー印刷型厚膜抵抗器と
しては充分満足できるものであることが確認できた。 (3)以下、前記(1)の電極を用い、新抵抗材料中の
ビスマス系ガラスバインダーは前記(2)のBi
含有率が25%のもので、導電材料はBiRu
のみを用い、BiRu/ビスマス系ガラスバイ
ンダー比率を変化させ、図2の新工程を使って本発明の
抵抗器を作成した。以上のようにして作成した本発明の
抵抗器の抵抗特性を表1(b)に示す。この結果より抵
抗値は上記ビスマス系ガラスバインダー中のBiRu
含有率が減少すれば抵抗値は高くなり、Bi
/ビスマス系ガラスバインダー比率を変化する
ことにより、抵抗値範囲を広く確保することが可能にな
る。また、BiRuの含有率が20%〜50%
の範囲であれば抵抗値の安定性、抵抗体の表面状態は良
好で鉛フリー印刷型厚膜抵抗器としては充分満足できる
ものであることが確認できた。 (4)以下、前記(1)の電極を用い、新抵抗材料中の
ガラスバインダーは前記(2)のBi含有率が2
5%のもので、導電材料はRuOとBiRu
を混合した材料を用い、RuO/BiRu
比率を変化させ、図2の新工程を使って本発明の抵抗器
を作成した。但し、RuO/BiRu=Rと
したとき、R/ビスマス系ガラスバインダー=30/7
0と一定にした。以上のようにして作成した本発明の抵
抗器の抵抗特性を表1(c)に示す。この結果より抵抗
値はRuO比率を減少させれば抵抗値は高くなる。ま
た、本発明の抵抗器は、上記導電材料中のRu金属含有
率を計算すると、RuO/BiRu=100
/0(RU金属含有量率=23%)で19Ω、RuO
/BiRu=20/80(Ru金属含有量率=
11%)で58Ωであり、Ru金属含有量率が約1/2
に減少しても抵抗値は19Ωから58Ωと抵抗値が極少
高くなるのみで、同一抵抗値の抵抗器を作成する時には
貴金属であるRu金属が少なくて済み、材料費が安価に
なり、環境保護にも対応できるものである。また、Ru
/BiRu中のRuO含有率が20%以
上であれば抵抗値の安定性、抵抗体の表面状態は良好で
鉛フリー印刷型厚膜抵抗器としては充分満足できるもの
であることが確認できた。 (5)以下、前記(1)の電極を用い、新抵抗材料中の
ビスマス系ガラスバインダーは前記(2)のBi
含有率が25%のもので、導電材料はRuOとBi
Ruを混合させた材料を用い、RuO/Bi
Ruの=50/50(=R50とする)比率を一
定とし、R50/Bi系ガラス比率を変化させ、図2の
新工程を使って本発明の抵抗器を作成した。以上のよう
にして作成した本発明の抵抗器の抵抗特性を表1(d)
に示す。この結果より抵抗値は上記Bi系ガラスバイン
ダー中のBiRu含有率が減少すれば抵抗値は
高くなり、R/Bi系ガラス比率を変化することによ
り、抵抗値範囲を広く確保することが可能になる。ま
た、抵抗値の安定性、抵抗体の表面状態は良好で鉛フリ
ー印刷型厚膜抵抗器としては充分満足できるものである
ことが確認できた。 (6)以下、前記(1)の電極を用い、新抵抗材料中の
ビスマス系ガラスバインダーは前記(2)のBi
含有率が25%のもので、導電材料はRuOのみを用
い、RuO/ビスマス系バインダーガラス=20/8
0とした。新ガラス膜材料は前記(2)のビスマス系ガ
ラスバインダーの組成と同じBi含有率で13%
〜30%の範囲で4種類の変化をさせた。前記各々の材
料を使用し、図2の新工程で本発明の抵抗器を作成し
た。以上のようにして作成した本発明の抵抗器の抵抗特
性、耐酸テスト及び外観判定結果を表1(e)に示す。
この結果より新ガラス膜中のBi含有率が増加す
ると抵抗値は低くなる。これはバインダーガラス中のB
と導電材料のRuOが接触界面で熱反応が起
こり相互拡散層を作り、BiRuが微量生成す
ることにより抵抗値に影響を与えていると考えられる。
耐酸テストは前記抵抗器を50℃ 5%硫酸溶液中に5
時間放置し、抵抗値変化を調べる方法である。前記抵抗
値変化が±5%以内であれば抵抗器の性能として問題は
ないとされているが、特にBi含有率が25%〜
34%で抵抗値変化率が低い。これは当該新ガラス膜の
ビスマス系ガラスの耐酸性が優れていることを表してい
るものである。また、耐酸テスト後のガラス表面の外観
判定(目視)はどれも問題になるような状態ではない
が、特に25%〜34%で優れている。このように耐酸
性の優れた鉛レスビスマス系ガラスで新抵抗体の表面を
被覆することにより、本発明の抵抗器の信頼性を向上さ
せることができ、鉛フリー印刷型厚膜抵抗器としては充
分満足できるものであることが確認できた。
BEST MODE FOR CARRYING OUT THE INVENTION (Embodiment 1) Hereinafter, the invention described in claims 1 to 4 of the present invention will be described using Embodiment 1. 1A is a plan view of a resistor according to an embodiment of the present invention, and FIG. 1B is a sectional view taken along line AA. FIG. 2 is a manufacturing process diagram of the resistor of the present invention, which is a comparison diagram of the conventional process and the new process. In FIG. 1, 1 is a high-purity alumina substrate (hereinafter referred to as an alumina substrate), 2 is a silver electrode of lead-free bismuth-based binder glass (described as a new electrode), and 3 is a resistor of lead-free bismuth-based binder glass. (Described as a new resistor) 4 is a lead-free bismuth-based glass film (described as a new glass film) coated to protect the resistor. The manufacturing process of the resistor of the present invention having the above structure will be described step by step with reference to FIG. First, in the first step of the conventional steps, the alumina substrate 1 is prepared. In the second step, electrode printing is performed on the alumina substrate 1 with a silver electrode paste of lead-free bismuth-based binder glass using a screen mask for electrodes. In the third step, the printed electrode is dried by touch at 100 ° C to 150 ° C. In the fourth step, the electrode that has been dried by touch is baked at 850 ° C. to form a new electrode 2. In the fifth step, a resistor paste of lead-free bismuth-based binder glass is printed using a resistor screen mask so that the new electrode 2 is partially overlapped. In the sixth step, the printed resistor is touch-dried in the same manner as the printed electrode. In the seventh step, the resistance-dried resistor is fired at 800 ° C. to form a new resistor 3. In the eighth step, lead-free bismuth glass paste is printed on the protective glass film so as to cover the entire surface of the new resistor 3 using a glass screen mask. In the ninth step, the printed protective glass film is touch-dried in the same manner as the printed electrode. In the tenth step, the finger-protected protective glass film is baked at 650 ° C. to form a new glass film 4, and the resistor of the present invention can be obtained. Next, the new process will be sequentially described with reference to FIG. However, the description is omitted when the conditions are the same as those in the conventional process. The preparation of the substrate in the first step, the electrode printing in the second step, and the touch-free drying in the third step are performed using the same material as the conventional step and by the same method. However, the electrode firing in the fourth step is deleted in the conventional step, and the resistance printing in the fourth step is performed in the new step. In this step, the lead-free bismuth-based binder glass is partially overlapped with the touch-dried electrode. The resistor paste is printed using a resistor screen mask. The touch drying in the fifth step is performed by the same method as the touch drying in the third step. However, in the conventional process,
The resistance firing of the process is deleted, and the process proceeds to the 6th process of the new process. In this process, the lead-free bismuth glass paste is protected by using a screen mask for glass so as to cover the entire surface of the touch-dried resistor. Perform glass film printing. The touch drying in the seventh step is performed by the same method as the touch drying in the third step. Simultaneous firing of the electrode, resistance, and protective glass film in the eighth step has not been performed in the first to seventh steps of the new step,
For the first time in this step, the electrode, the resistor and the protective glass film are simultaneously fired at 850 ° C. to obtain the resistor of the present invention. As described above, the resistor of the present invention is
It can be produced in both conventional and new processes.
However, in the new step, since the firing step is the last step and firing can be performed at the same time at the same time, two steps of electrode firing and resistance firing, which are required in the conventional steps, in the intermediate step can be reduced. Especially, since the firing process requires high temperature, the energy saving effect is great. Next, the characteristic values of the resistor of the present development manufactured by the conventional process and the new process of FIG. 2 using the lead-free bismuth glass binder are shown below. (1) Hereinafter, as a new electrode material, the main component is SiO 2 2
8%, BaO 31%, ZnO 6%, Al 2 O 3 6
%, Bi 2 O 3 24%, other 5% lead-free glass binder, and silver fine powder as a conductive material is 6% by weight.
When the electrode is formed by the conventional process of FIG. 2 with the electrode paste containing 0% to 90%, the sheet resistance value is 50 mΩ or less. The surface condition after firing was also good, and the adhesion strength with the alumina substrate was sufficient. It is a satisfactory electrode for printing thick film resistors. The conductive material used here is fine silver powder, but it has been separately confirmed that noble metals such as gold, platinum, palladium, or alloys or mixtures of the above metals will cause no problem if they are used in the same manner as described above. . (2) Hereinafter, using the electrode of (1), the content of Bi 2 O 3 in the lead-free bismuth-based glass binder in the new resistance material was changed to prepare a resistor of the present development. The main components of the lead-free bismuth glass binder are shown below. SiO 2 BaO ZnO Al 2 O 3 Bi 2 O 3 13% product 41% 31% 6% 6% Bi2O 3 21% product 41 24 6 6 Bi 2 O 3 25% product 29 31 6 6 Bi 2 O 3 30% product 25 28 7 7 The glass material for the protective glass film was the lead-free bismuth-based glass binder having a Bi 2 O 3 content of 25%. The conductive material was RuO 2 alone, and RuO 2 / bismuth-based binder glass was constant at 20/80. The resistance characteristics of the resistor of the present invention made by using the above materials are shown in Table 1 (a). From this result, the resistance value decreases as the Bi 2 O 3 content increases. This is R when firing
uO 2 reacts with Bi 2 O 3 and Bi 2 R
This is considered to be for forming u 2 O 7 . In addition, the new process has a higher resistance value. It is considered that this is because the thermal history of the conventional process is different from that of the new process. However, if the Bi 2 O 3 content is in the range of 13% to 30%, the stability of the resistance value,
It was confirmed that the surface condition of the resistor was good and that it was sufficiently satisfactory as a lead-free printing type thick film resistor. (3) Hereinafter, the electrode of (1) is used, and the bismuth-based glass binder in the new resistance material is Bi 2 O 3 of (2).
The content is 25%, and the conductive material is Bi 2 Ru 2 O 7
Only, the Bi 2 Ru 2 O 7 / bismuth glass binder ratio was changed, and the resistor of the present invention was prepared using the new process of FIG. The resistance characteristics of the resistor of the present invention produced as described above are shown in Table 1 (b). From this result, the resistance value is Bi 2 Ru in the bismuth glass binder.
If the 2 O 7 content decreases, the resistance value increases, and Bi 2 R
By changing the ratio of u 2 O 7 / bismuth glass binder, it becomes possible to secure a wide resistance value range. The content of Bi 2 Ru 2 O 7 20% 50%
It was confirmed that the stability of the resistance value and the surface condition of the resistor were good in the range of 10 and the lead-free printing type thick film resistor was sufficiently satisfactory. (4) Hereinafter, the electrode of (1) above is used, and the glass binder in the new resistance material has a Bi 2 O 3 content of 2 above (2).
5% and conductive materials are RuO 2 and Bi 2 Ru 2 O 7
The material of the present invention was used to change the ratio of RuO 2 / Bi 2 Ru 2 O 7 and the resistor of the present invention was manufactured using the new process of FIG. However, when RuO 2 / Bi 2 Ru 2 O 7 = R, R / bismuth-based glass binder = 30/7
It was fixed at 0. The resistance characteristics of the resistor of the present invention produced as described above are shown in Table 1 (c). From this result, the resistance value increases as the RuO 2 ratio decreases. Further, in the resistor of the present invention, when the Ru metal content rate in the conductive material is calculated, RuO 2 / Bi 2 Ru 2 O 7 = 100.
/ 0 (RU metal content rate = 23%) 19Ω, RuO 2
/ Bi 2 Ru 2 O 7 = 20/80 (Ru metal content rate =
11%) is 58Ω, and the Ru metal content rate is about 1/2.
Even if the resistance value is reduced to 1, the resistance value is only extremely high from 19Ω to 58Ω, and when making a resistor with the same resistance value, Ru metal, which is a precious metal, is small, the material cost is low, and the environment is protected. It can also correspond to. Also, Ru
If the content of RuO 2 in O 2 / Bi 2 Ru 2 O 7 is 20% or more, the stability of the resistance value and the surface condition of the resistor are good, and the lead-free printing type thick film resistor is sufficiently satisfactory. It was confirmed that (5) Hereinafter, the electrode of (1) is used, and the bismuth-based glass binder in the new resistance material is Bi 2 O 3 of (2).
The content is 25%, and the conductive materials are RuO 2 and Bi 2.
RuO 2 / Bi 2 was used with a material mixed with Ru 2 O 7.
The resistor of the present invention was produced by using the new process of FIG. 2 while keeping the ratio of Ru 2 O 7 = 50/50 (= R 50 ) constant and changing the R 50 / Bi glass ratio. The resistance characteristics of the resistor of the present invention produced as described above are shown in Table 1 (d).
Shown in. From this result, the resistance value increases as the Bi 2 Ru 2 O 7 content in the Bi type glass binder decreases, and the R / Bi type glass ratio is changed to secure a wide resistance value range. It will be possible. It was also confirmed that the stability of the resistance value and the surface condition of the resistor were good, and the lead-free printing type thick film resistor was sufficiently satisfactory. (6) Hereinafter, the electrode of (1) is used, and the bismuth-based glass binder in the new resistance material is Bi 2 O 3 of (2).
Those content of 25%, the conductive material using only RuO 2, RuO 2 / bismuth binder glass = 20/8
It was set to 0. The new glass film material has a Bi 2 O 3 content of 13%, which is the same as the composition of the bismuth-based glass binder in (2) above.
Four kinds of changes were made in the range of -30%. Using each of the above materials, the resistor of the present invention was produced in the new process of FIG. Table 1 (e) shows the resistance characteristics, the acid resistance test, and the appearance determination result of the resistor of the present invention produced as described above.
From this result, the resistance value becomes lower as the Bi 2 O 3 content in the new glass film increases. This is B in the binder glass
It is considered that i 2 O 3 and RuO 2 of the conductive material cause a thermal reaction at the contact interface to form an interdiffusion layer, and a small amount of Bi 2 Ru 2 O 7 is produced to affect the resistance value.
The acid resistance test was carried out by placing the resistor in a 5% sulfuric acid solution at 50 ° C.
It is a method of examining the change in resistance value after leaving it for a while. It is said that there is no problem in the performance of the resistor if the change in the resistance value is within ± 5%, but in particular, the Bi 2 O 3 content is 25% to
The resistance change rate is low at 34%. This shows that the bismuth glass of the new glass film has excellent acid resistance. Further, the appearance judgment (visual observation) of the glass surface after the acid resistance test is not in any state in which it causes a problem, but it is particularly excellent at 25% to 34%. Thus, by coating the surface of the new resistor with the lead-free bismuth-based glass having excellent acid resistance, the reliability of the resistor of the present invention can be improved, and as a lead-free printing type thick film resistor, It was confirmed to be sufficiently satisfactory.

【表1】 [Table 1]

【発明の効果】以上のように、本発明によれば、本発明
の抵抗器は基板に高純度アルミナを用い、新電極、新抵
抗体および新ガラス膜は全て鉛フリービスマス系ガラス
バインダーを使用しており、完全鉛排除型抵抗器として
構成し、電極、抵抗体及びガラス膜を同時に一度で焼成
をおこなうことができる環境保護に対応した効果を奏す
るものである。
As described above, according to the present invention, the resistor of the present invention uses high-purity alumina for the substrate, and the new electrode, new resistor and new glass film all use the lead-free bismuth-based glass binder. Therefore, it is configured as a completely lead-excluded type resistor, and the electrode, the resistor, and the glass film can be simultaneously fired at the same time, and an effect corresponding to environmental protection can be obtained.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の抵抗器の平面図(a)およびA−Aの
断面図(b)ある。
FIG. 1 is a plan view (a) and a cross-sectional view (b) taken along line AA of a resistor according to the present invention.

【図2】本発明の抵抗器の製造工程図で従来の工程と新
工程の比較図である。
FIG. 2 is a manufacturing process diagram of a resistor according to the present invention, which is a comparison diagram of a conventional process and a new process.

【符号の説明】[Explanation of symbols]

1、高純度アルミナ基板 2 鉛フリービスマス系バインダーガラスの銀電極 3 鉛フリービスマス系バインダーガラスの抵抗体 4 抵抗体を保護する為に被覆した鉛フリービスマスガ
ラス膜
1, high-purity alumina substrate 2 lead-free bismuth-based binder glass silver electrode 3 lead-free bismuth-based binder glass resistor 4 lead-free bismuth glass film coated to protect the resistor

フロントページの続き (72)発明者 岩崎 正雄 埼玉県狭山市柏原337番26 小島化学薬品 株式会社内 Fターム(参考) 5E033 AA11 AA18 AA22 BA01 BB02 BB06 BC01 BD01 BE01 BG02 BH01 Continued front page    (72) Inventor Masao Iwasaki             337 26 Kashiwara, Sayama City, Saitama Prefecture Kojima Chemical             Within the corporation F-term (reference) 5E033 AA11 AA18 AA22 BA01 BB02                       BB06 BC01 BD01 BE01 BG02                       BH01

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 耐熱性絶縁基板の表面に鉛フリービスマ
ス系ガラスをバインダーとした電極と前記電極に一部が
重なる抵抗体を有し、前記抵抗体は酸化ルテニウムまた
はルテニウム酸ビスマスまたは酸化ルテニウム及びルテ
ニウム酸ビスマスの混合物と鉛フリービスマス系バイン
ダーガラスで構成されたことを特徴とする抵抗器。
1. A surface of a heat-resistant insulating substrate is provided with an electrode using a lead-free bismuth glass as a binder and a resistor partially overlapping the electrode, the resistor being ruthenium oxide, bismuth ruthenate, or ruthenium oxide. A resistor comprising a mixture of bismuth ruthenate and a lead-free bismuth-based binder glass.
【請求項2】 鉛フリービスマス系バインダーガラスは
主成分がSiO、BaO、ZnO、Al及びB
であることを特徴とした請求項1に記載の抵抗
器。
2. A lead-free bismuth-based binder glass whose main components are SiO 2 , BaO, ZnO, Al 2 O 3 and B.
The resistor according to claim 1, wherein the resistor is i 2 O 3 .
【請求項3】 鉛フリービスマス系ガラスをバインダー
とした電極の導電剤は金、銀、白金、パラジウム、又は
前記金属の合金または混合物であることを特徴とした請
求項1に記載の抵抗器。
3. The resistor according to claim 1, wherein the conductive agent of the electrode using the lead-free bismuth glass as a binder is gold, silver, platinum, palladium, or an alloy or mixture of the metals.
【請求項4】 請求項1記載の抵抗体を鉛フリーである
SiO、BaO、ZnO、Al及びBi
を主成分としたビスマス系ガラス膜で被覆したことを特
徴とした抵抗器。
4. The lead according to claim 1, wherein the resistor is lead-free SiO 2 , BaO, ZnO, Al 2 O 3 and Bi 2 O 3.
A resistor characterized by being coated with a bismuth-based glass film containing as a main component.
JP2002101903A 2002-02-28 2002-02-28 Resistor Expired - Fee Related JP3630144B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2002101903A JP3630144B2 (en) 2002-02-28 2002-02-28 Resistor
AU2003211482A AU2003211482A1 (en) 2002-02-28 2003-02-28 Resistor
PCT/JP2003/002322 WO2003073442A1 (en) 2002-02-28 2003-02-28 Resistor
KR10-2004-7013364A KR20040084940A (en) 2002-02-28 2003-02-28 Resistor
EP03743065A EP1480233A4 (en) 2002-02-28 2003-02-28 Resistor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002101903A JP3630144B2 (en) 2002-02-28 2002-02-28 Resistor

Publications (2)

Publication Number Publication Date
JP2003257703A true JP2003257703A (en) 2003-09-12
JP3630144B2 JP3630144B2 (en) 2005-03-16

Family

ID=28672140

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002101903A Expired - Fee Related JP3630144B2 (en) 2002-02-28 2002-02-28 Resistor

Country Status (1)

Country Link
JP (1) JP3630144B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1770721A2 (en) * 2005-10-03 2007-04-04 Shoei Chemical Inc. Resistor composition and thick film resistor
JP2007208033A (en) * 2006-02-02 2007-08-16 Nagoya Institute Of Technology Resistor paste and method for manufacturing thick film resistor
JP2010501988A (en) * 2006-09-01 2010-01-21 エプコス アクチエンゲゼルシャフト Heating element

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60262401A (en) * 1984-05-30 1985-12-25 ヴエー・ツエー・ヘレウス・ゲゼルシヤフト・ミツト・ベシユレンクター・ハフツング Electric resistance element producing composition and methodof producing electric resistance element
JPH11251105A (en) * 1998-03-04 1999-09-17 Sumitomo Metal Electronics Devices Inc Thick-film resistance paste and its manufacture
JP2002025802A (en) * 2000-07-10 2002-01-25 Rohm Co Ltd Chip resistor
JP2002367806A (en) * 2001-06-05 2002-12-20 Tdk Corp Resistor paste and method of manufacturing thick film resistor using the same
JP2002367804A (en) * 2001-06-11 2002-12-20 K-Tech Devices Corp Resistor
JP2003007517A (en) * 2001-06-19 2003-01-10 Tdk Corp Method of manufacturing resistor paste and thick film resistor

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60262401A (en) * 1984-05-30 1985-12-25 ヴエー・ツエー・ヘレウス・ゲゼルシヤフト・ミツト・ベシユレンクター・ハフツング Electric resistance element producing composition and methodof producing electric resistance element
JPH11251105A (en) * 1998-03-04 1999-09-17 Sumitomo Metal Electronics Devices Inc Thick-film resistance paste and its manufacture
JP2002025802A (en) * 2000-07-10 2002-01-25 Rohm Co Ltd Chip resistor
JP2002367806A (en) * 2001-06-05 2002-12-20 Tdk Corp Resistor paste and method of manufacturing thick film resistor using the same
JP2002367804A (en) * 2001-06-11 2002-12-20 K-Tech Devices Corp Resistor
JP2003007517A (en) * 2001-06-19 2003-01-10 Tdk Corp Method of manufacturing resistor paste and thick film resistor

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1770721A2 (en) * 2005-10-03 2007-04-04 Shoei Chemical Inc. Resistor composition and thick film resistor
EP1770721A3 (en) * 2005-10-03 2007-10-03 Shoei Chemical Inc. Resistor composition and thick film resistor
US7476342B2 (en) 2005-10-03 2009-01-13 Shoei Chemical Inc. Resistor composition and thick film resistor
JP2007208033A (en) * 2006-02-02 2007-08-16 Nagoya Institute Of Technology Resistor paste and method for manufacturing thick film resistor
JP2010501988A (en) * 2006-09-01 2010-01-21 エプコス アクチエンゲゼルシャフト Heating element
US8373100B2 (en) 2006-09-01 2013-02-12 Epcos Ag Heating element

Also Published As

Publication number Publication date
JP3630144B2 (en) 2005-03-16

Similar Documents

Publication Publication Date Title
US4016525A (en) Glass containing resistor having a sub-micron metal film termination
JPH0227803B2 (en)
JPH11195505A (en) Thick-film resistor and manufacture thereof
JP3611160B2 (en) Thick film resistor paste
JP2001243836A (en) Conductive paste and printed circuit board using it
JP2006294589A (en) Resistance paste and resistor
JP2000048642A (en) Conductive paste and glass circuit substrate
JPH01273305A (en) Ceramic multilayer capacitor and its manufacture
JP2002270035A (en) Conductor paste, powder material for preparing it, and manufacturing method for ceramic electronic component
JP2003257703A (en) Resistor unit
JP2003257242A (en) Thick membrane resistor paste
US20200189960A1 (en) Thick-film resistive element paste and use of thick-film resistive element paste in resistor
JP2001196201A (en) Thick film resistor
JP4397279B2 (en) Resistive composition and resistor using the same
JPH11135303A (en) Thick-film thermistor composition
JP2717054B2 (en) Thick film thermistors and compositions for thick film thermistors
JP3964342B2 (en) Conductive paste
JP2004088019A (en) Electrode composite and electronic component
JP7245418B2 (en) Composition for thick film resistor, paste for thick film resistor, and thick film resistor
JP2004214643A (en) Laminated chip varistor and manufacturing method therefor
US20220238261A1 (en) High Adhesion Resistive Composition
JP2006066475A (en) Composition for forming thick film resistor, process for forming thick film resistor, and thick film resistor
JP2644017B2 (en) Resistance paste
JP3862119B2 (en) Resistance paste
JP2006054061A (en) Conductive paste

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040615

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040727

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20041109

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20041207

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071224

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081224

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081224

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091224

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091224

Year of fee payment: 5

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091224

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091224

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101224

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101224

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111224

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111224

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121224

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121224

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121224

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121224

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131224

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees