JP2003254089A - Combined cycle generating plant - Google Patents

Combined cycle generating plant

Info

Publication number
JP2003254089A
JP2003254089A JP2002059959A JP2002059959A JP2003254089A JP 2003254089 A JP2003254089 A JP 2003254089A JP 2002059959 A JP2002059959 A JP 2002059959A JP 2002059959 A JP2002059959 A JP 2002059959A JP 2003254089 A JP2003254089 A JP 2003254089A
Authority
JP
Japan
Prior art keywords
temperature
cooling steam
flow rate
gas turbine
control valve
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002059959A
Other languages
Japanese (ja)
Inventor
Yoichi Sugimori
洋一 杉森
Takeyoshi Sato
豪芳 佐藤
Shiro Hino
史郎 日野
Shunji Hosaka
俊二 保坂
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2002059959A priority Critical patent/JP2003254089A/en
Publication of JP2003254089A publication Critical patent/JP2003254089A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/16Combined cycle power plant [CCPP], or combined cycle gas turbine [CCGT]

Landscapes

  • Engine Equipment That Uses Special Cycles (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a combined cycle generating plant which properly supplies cooling steam as a cooling medium fro cooling a gas turbine high temperature part. <P>SOLUTION: At startup, cooling steam from a first startup cool steam supply system for supplying high-temperature cooling steam from an exhaust heat recovery boiler and cooling steam from a second startup cooling steam supply system for supplying low-temperature cooling steam are mixed by a mixing system and the cooling steam is supplied to the entrance of the gas turbine high temperature part via the cooling steam supply systems. Using a temperature regulating valve provided in the first startup cooling steam supply system, a control device regulates the temperature of the cooling steam after mixing by the mixing system, and a flow regulating valve provided in the mixing system regulates the flow of the cooling steam after mixing by the mixing system. Thus, the cooling steam supplied from the exhaust heat recovery boiler to the gas turbine high temperature part has its temperature and flow controlled to predetermined values which match the operating condition of the gas turbine. <P>COPYRIGHT: (C)2003,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、ガスタービンの排
熱で発生させた蒸気で蒸気タービンを駆動するコンバイ
ンドサイクル発電プラントに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a combined cycle power plant for driving a steam turbine with steam generated by exhaust heat of a gas turbine.

【0002】[0002]

【従来の技術】最近の火力発電プラントでは、プラント
熱効率の向上を図るために、ガスタービン設備と蒸気タ
ービン設備とを組み合せたコンバインドサイクル発電プ
ラントが数多く実機として運転されている。
2. Description of the Related Art In recent thermal power plants, many combined cycle power plants, in which gas turbine equipment and steam turbine equipment are combined, are operated as actual equipment in order to improve the thermal efficiency of the plant.

【0003】このコンバインドサイクル発電プラント
は、ガスタービンで仕事を終えた排ガスの排熱を排熱回
収ボイラに導き、排熱回収ボイラで蒸気を発生させて、
その蒸気を蒸気タービンに導き蒸気タービンを駆動する
ように構成されている。
In this combined cycle power plant, exhaust heat of exhaust gas that has finished work in a gas turbine is guided to an exhaust heat recovery boiler, and steam is generated in the exhaust heat recovery boiler.
It is configured to guide the steam to the steam turbine and drive the steam turbine.

【0004】コンバインドサイクル発電プラントのプラ
ント熱効率は、ガスタービン設備および蒸気タービン設
備の各設備の入熱の総和に対する各設備の出熱の総和の
比率から算出される。プラント熱効率の向上の観点から
蒸気タービン設備およびガスタービン設備を見直した場
合、蒸気タービンおよび排熱回収ボイラは、既に限界に
達しており、ガスタービン設備の熱効率の改善がコンバ
インドサイクル発電プラントのプラント熱効率の向上に
つながると期待されている。
The plant thermal efficiency of the combined cycle power plant is calculated from the ratio of the total heat output of each facility to the total heat input of each facility of the gas turbine facility and the steam turbine facility. When reviewing steam turbine equipment and gas turbine equipment from the perspective of improving plant thermal efficiency, the steam turbine and exhaust heat recovery boiler have already reached their limits, and the improvement in gas turbine equipment thermal efficiency is due to the improvement of combined cycle power plant plant thermal efficiency. It is expected to lead to improvement of.

【0005】ガスタービン設備は、ガスタービンの入口
燃焼ガス温度が高いほど熱効率を向上させることがで
き、最近の耐熱材料の開発と相俟って冷却技術の進歩に
より、ガスタービンの入口燃焼ガス温度は1000℃か
ら1300℃を経て1500℃以上に移行しつつある。
In the gas turbine equipment, the higher the temperature of the combustion gas at the inlet of the gas turbine, the higher the thermal efficiency can be improved. Due to the recent development of refractory materials and the progress of cooling technology, the temperature of the combustion gas at the inlet of the gas turbine can be increased. Is about to shift from 1000 ° C to 1300 ° C to 1500 ° C or higher.

【0006】ガスタービンの入口燃焼ガス温度を150
0℃以上にする場合、ガスタービン高温部の温度を許容
メタル温度以内に維持することが必要となる。ガスター
ビン高温部、例えば燃焼ガスに直接曝されるガスタービ
ン静翼、ガスタービン動翼、燃焼器のライナ・トラジシ
ョンピース等の許容メタル温度は、既に限界に達してお
り、起動・停止回数の多い運転や長時間に亘る連続運転
のときに材料の破損・溶融など事故につながる危険性が
ある。
The inlet combustion gas temperature of the gas turbine is set to 150
When the temperature is 0 ° C. or higher, it is necessary to maintain the temperature of the high temperature part of the gas turbine within the allowable metal temperature. The allowable metal temperature of the high temperature part of the gas turbine, such as the gas turbine stationary blade directly exposed to the combustion gas, the gas turbine moving blade, and the liner / transition piece of the combustor, has already reached the limit, and There is a risk of accidents such as damage or melting of materials during heavy operation or continuous operation for a long time.

【0007】そこで、ガスタービンの入口燃焼ガス温度
を上昇させても、ガスタービン高温部の各部品の温度を
許容メタル温度以内に維持できるようにするため、耐熱
材料の開発と並行して、空気を用いてガスタービン高温
部を冷却する開発が進められ既に実用機として実現され
ている。
Therefore, in order to maintain the temperature of each part of the high temperature part of the gas turbine within the allowable metal temperature even if the temperature of the combustion gas at the inlet of the gas turbine is raised, in parallel with the development of the heat-resistant material, The development of cooling the high temperature part of the gas turbine by using the has been advanced and has already been realized as a practical machine.

【0008】空気を用いてガスタービン高温部を冷却す
る場合、その冷却空気の供給源はガスタービンに直結し
た空気圧縮機から供給するようにしているので、空気圧
縮機からガスタービンに供給される数十%の高圧空気が
ガスタービン高温部の冷却用に廻され、また、冷却空気
はタービン翼の冷却後に高温ガス中に吹き出されるの
で、作動ガスの温度低下やミキシングロスが生じ、プラ
ント熱効率の改善上好ましくない。
When the high temperature part of the gas turbine is cooled with air, the supply source of the cooling air is supplied from the air compressor directly connected to the gas turbine. Therefore, the cooling air is supplied from the air compressor to the gas turbine. Several tens of percent of high-pressure air is used to cool the high-temperature part of the gas turbine, and the cooling air is blown into the high-temperature gas after cooling the turbine blades. Is not preferable for improvement.

【0009】最近、ガスタービン高温部に冷却媒体とし
て蒸気の活用が見直されており、既にアメリカ機械学会
誌(ASME論文、92−GT−240)や特開平5−
163961号公報などに示されている。蒸気は空気に
比較し、比熱が約2倍で伝熱性能も優れるので閉ループ
の冷却が可能となり、作動ガスの温度低下やミキシング
ロスがなくなる。このため、プラント効率の改善に寄与
するため実用機への適用が期待されており、その基本的
な系統構成は特開平9−112292号公報などに示さ
れている。
Recently, the utilization of steam as a cooling medium in the high temperature part of the gas turbine has been reconsidered, and it has already been reviewed by the American Society of Mechanical Engineers (ASME paper, 92-GT-240) and Japanese Patent Application Laid-Open No. 5-205.
It is disclosed in Japanese Patent No. 163961 and the like. Compared with air, steam has twice the specific heat and excellent heat transfer performance, so closed-loop cooling is possible, and there is no decrease in working gas temperature or mixing loss. Therefore, it is expected to be applied to a practical machine in order to contribute to the improvement of plant efficiency, and its basic system configuration is disclosed in Japanese Patent Laid-Open No. 9-112292.

【0010】[0010]

【発明が解決しようとする課題】ところが、ガスタービ
ン設備のガスタービン高温部の冷却媒体として、蒸気タ
ービン設備の高圧蒸気タービン排気蒸気を供給する場
合、プラント起動時は蒸気タービンの通気後でないとガ
スタービン冷却蒸気を確保できず、蒸気タービンの通気
前は、ガスタービンを空冷で冷却することになるので、
ガスタービンの負荷を空冷で運転可能な負荷以上に上げ
ることができない。
However, when the high-pressure steam turbine exhaust steam of the steam turbine equipment is supplied as the cooling medium for the high temperature part of the gas turbine of the gas turbine equipment, the gas must be supplied after the aeration of the steam turbine when the plant is started. Since the turbine cooling steam cannot be secured, the gas turbine will be cooled by air cooling before the steam turbine is ventilated.
The load on the gas turbine cannot be increased beyond the load that can be operated by air cooling.

【0011】一方、ガスタービンの負荷を上げないとガ
スタービンの排ガスエネルギーが増加せず排熱回収ボイ
ラから発生する蒸気の蒸気圧力や温度が上昇しないの
で、蒸気タービンの通気条件が整わず、蒸気タービンに
通気することができない。
On the other hand, unless the load on the gas turbine is increased, the exhaust gas energy of the gas turbine does not increase and the steam pressure and temperature of the steam generated from the exhaust heat recovery boiler do not rise, so the ventilation conditions of the steam turbine cannot be adjusted and Cannot vent the turbine.

【0012】このような相反する条件をクリアするため
に、特開2000−161014号公報においては、排
熱回収ボイラの過熱器を分割し、温度の異なる蒸気を取
り出し、混合することで上記条件を満たす起動時の冷却
蒸気を確保するようにしている。この場合、温度調節弁
と流量調節弁とがお互いに並行に設置されているのでハ
ンチングしてしまい制御性を悪化させている。
In order to clear such contradictory conditions, in Japanese Unexamined Patent Publication No. 2000-161014, the above condition is satisfied by dividing the superheater of the exhaust heat recovery boiler and taking out and mixing vapors having different temperatures. It is designed to secure the cooling steam to be satisfied at startup. In this case, since the temperature control valve and the flow rate control valve are installed in parallel with each other, hunting occurs and controllability deteriorates.

【0013】図8は、従来のコンバインドサイクル発電
プラントの構成図である。コンバインドサイクル発電プ
ラントは、排熱回収ボイラ1を別置きにし、ガスタービ
ン設備2、蒸気タービン設備3、発電機4を同一の回転
軸5に直結したものである。
FIG. 8 is a block diagram of a conventional combined cycle power plant. In the combined cycle power generation plant, the exhaust heat recovery boiler 1 is separately placed, and the gas turbine equipment 2, the steam turbine equipment 3, and the generator 4 are directly connected to the same rotary shaft 5.

【0014】ガスタービン設備2は、空気圧縮機6で吸
込んだ大気を高圧化して燃焼器7に案内し、その高圧空
気に燃料を加えて燃焼ガスを生成し、その燃焼ガスをガ
スタービン8に案内して膨張仕事をさせ、膨張仕事後の
排ガス(排熱)を排熱回収ボイラ1に供給するようになっ
ている。排熱回収ボイラ1は、ケーシング9内に燃焼ガ
スの流れに沿って順に第3高圧過熱器10、第2高圧過
熱器11、再熱器12、第1高圧過熱器13、高圧蒸発
器14等が設置されている。
The gas turbine equipment 2 increases the pressure of the atmosphere sucked by the air compressor 6 and guides it to the combustor 7, adds fuel to the high pressure air to generate combustion gas, and the combustion gas to the gas turbine 8. The exhaust gas (exhaust heat) after the expansion work is supplied to the exhaust heat recovery boiler 1 by guiding the expansion work. The exhaust heat recovery boiler 1 includes a third high-pressure superheater 10, a second high-pressure superheater 11, a reheater 12, a first high-pressure superheater 13, a high-pressure evaporator 14, and the like in order along the flow of the combustion gas in the casing 9. Is installed.

【0015】通常運転時においては、排熱回収ボイラ1
の高圧ドラム21の蒸気は第1高圧過熱器13で過熱さ
れ第2高圧過熱器11または減温器27を介して第3高
圧過熱器10に導かれる。第3高温過熱器10からの過
熱蒸気は高圧タービン15に導かれ、高圧タービン15
で膨張仕事をする。膨張仕事をした後の排気蒸気は低温
再熱蒸気管22を経て再熱器12に導かれる。
During normal operation, the exhaust heat recovery boiler 1
The steam of the high-pressure drum 21 is superheated by the first high-pressure superheater 13 and guided to the third high-pressure superheater 10 via the second high-pressure superheater 11 or the temperature reducer 27. The superheated steam from the third high temperature superheater 10 is guided to the high pressure turbine 15 and
Do expansion work with. The exhaust steam after the expansion work is guided to the reheater 12 through the low temperature reheat steam pipe 22.

【0016】ガスタービン8には冷却蒸気を供給する冷
却蒸気供給系統25および冷却蒸気回収系統26からな
る冷却蒸気系統24が設けられており、高圧タービン1
5で仕事を終えた排気蒸気の一部は低温再熱蒸気管22
より分岐した冷却蒸気供給系統25により、ガスタービ
ン高温部23、例えばガスタービン静翼、ガスタービン
動翼等に導かれる。そして、ガスタービン高温部23を
冷却した後に、その蒸気は冷却蒸気回収系統26を経由
し低温再熱蒸気管22に合流し再熱器12を経て蒸気サ
イクルへ回収される。
The gas turbine 8 is provided with a cooling steam system 24 comprising a cooling steam supply system 25 for supplying cooling steam and a cooling steam recovery system 26.
Part of the exhaust steam that finished work at 5 was the low-temperature reheat steam pipe 22.
The branched cooling steam supply system 25 guides the gas turbine high temperature part 23, for example, a gas turbine stationary blade, a gas turbine moving blade and the like. Then, after cooling the high temperature part of the gas turbine 23, the steam merges into the low temperature reheat steam pipe 22 via the cooling steam recovery system 26 and is recovered in the steam cycle via the reheater 12.

【0017】再熱器12で再熱された蒸気は中圧タービ
ン16に導かれ、中圧タービン16で仕事を終えた蒸気
はさらに低圧タービン17に導かれて、復水器18で水
に戻される。そして、復水ポンプ19および給水ポンプ
20により排熱回収ボイラ1に戻される。
The steam reheated in the reheater 12 is guided to the intermediate pressure turbine 16, and the steam that has finished the work in the intermediate pressure turbine 16 is further guided to the low pressure turbine 17 and returned to water in the condenser 18. Be done. Then, it is returned to the exhaust heat recovery boiler 1 by the condensate pump 19 and the water supply pump 20.

【0018】一方、起動時においては、蒸気タービン3
に通気する前にガスタービン高温部23への冷却蒸気の
供給が必要な場合は、第1起動用冷却蒸気供給系統28
および第2起動用冷却蒸気供給系統30から起動時のガ
スタービン冷却蒸気を供給する。第1起動冷却蒸気供給
系統28は、第3高圧過熱器10から温度調節弁31を
介して冷却蒸気供給系統25に起動時のガスタービン冷
却蒸気を供給する。また、第2起動冷却蒸気供給系統3
0は、第1高圧過熱器13から流量調節弁29を介して
冷却蒸気供給系統25に起動時のガスタービン冷却蒸気
を供給する。このように、ガスタービン高温部23への
起動用冷却蒸気は冷却蒸気供給系統25で合流して供給
され、その温度制御は第1起動冷却蒸気供給系統28に
設置された温度調節弁31で制御され、また、その流量
制御は第2起動用冷却蒸気供給系統30に設置された流
量調節弁29で制御される。
On the other hand, at startup, the steam turbine 3
If it is necessary to supply the cooling steam to the high temperature part 23 of the gas turbine before ventilating to the air, the first starting cooling steam supply system 28
And the gas turbine cooling steam at the time of starting is supplied from the second starting cooling steam supply system 30. The first startup cooling steam supply system 28 supplies the gas turbine cooling steam at startup from the third high pressure superheater 10 to the cooling steam supply system 25 via the temperature control valve 31. In addition, the second startup cooling steam supply system 3
0 supplies the gas turbine cooling steam at the time of start-up to the cooling steam supply system 25 from the first high pressure superheater 13 via the flow rate control valve 29. As described above, the cooling steam for start-up to the high temperature part 23 of the gas turbine is merged and supplied by the cooling steam supply system 25, and its temperature control is controlled by the temperature control valve 31 installed in the first starting cooling steam supply system 28. The flow rate control is controlled by the flow rate control valve 29 installed in the second starting cooling steam supply system 30.

【0019】すなわち、ガスタービン高温部23への起
動用冷却蒸気は、第1起動冷却蒸気供給系統28に設置
された温度調節弁31で合流後の温度が制御され、同様
に、第2起動用冷却蒸気供給系統30に設置された流量
調節弁29で合流後の流量が制御されるので、互いにハ
ンチングしてしまうことがあり制御性を悪化させること
がある。
That is, the temperature of the cooling steam for start-up to the high temperature part of the gas turbine 23 after the merging is controlled by the temperature control valve 31 installed in the first start-up cooling steam supply system 28. Since the flow rate after merging is controlled by the flow rate control valve 29 installed in the cooling steam supply system 30, hunting may occur and controllability may deteriorate.

【0020】本発明の目的は、ガスタービン高温部の冷
却に冷却媒体として冷却蒸気を適正に供給できるコンバ
インドサイクル発電プラントを提供することである。
An object of the present invention is to provide a combined cycle power plant capable of appropriately supplying cooling steam as a cooling medium for cooling a high temperature part of a gas turbine.

【0021】[0021]

【課題を解決するための手段】請求項1の発明に係るコ
ンバインドサイクル発電プラントは、ガスタービンの排
ガスを利用して蒸気を発生させる排熱回収ボイラと、前
記排熱回収ボイラで発生した蒸気を駆動源とする蒸気タ
ービンと、前記ガスタービン高温部の入口に接続され前
記蒸気タービンからの蒸気を冷却蒸気として供給する冷
却蒸気供給系統と、起動時に前記排熱回収ボイラから高
温の冷却蒸気を前記ガスタービン高温部に供給する第1
起動用冷却蒸気供給系統と、起動時に前記排熱回収ボイ
ラから低温の冷却蒸気を前記ガスタービン高温部に供給
する第2起動用冷却蒸気供給系統と、前記第1起動用冷
却蒸気供給系統からの高温の冷却蒸気と前記第2起動用
冷却蒸気供給系統からの低温の冷却蒸気とを混合して前
記冷却蒸気供給系統に供給する合流系統と、前記第1起
動用冷却蒸気供給系統または前記第2起動用冷却蒸気供
給系統のいずれか一方に設けられ混合後の冷却蒸気温度
を調節する温度調節弁と、前記合流系統に設けられ混合
後の冷却蒸気流量を調節する流量調節弁と、前記温度調
節弁および前記流量調節弁の開度を調節し前記排熱回収
ボイラから供給される前記ガスタービン高温部への冷却
蒸気の温度および流量をガスタービンの運転状態に応じ
た所定値に制御する制御装置とを備えたことを特徴とす
る。
A combined cycle power plant according to a first aspect of the present invention uses an exhaust heat recovery boiler for generating steam using exhaust gas of a gas turbine, and a steam generated in the exhaust heat recovery boiler. A steam turbine serving as a drive source, a cooling steam supply system connected to the inlet of the gas turbine high temperature section for supplying steam from the steam turbine as cooling steam, and a high temperature cooling steam from the exhaust heat recovery boiler at startup. First supply to high temperature part of gas turbine
A starting cooling steam supply system, a second starting cooling steam supply system for supplying a low temperature cooling steam from the exhaust heat recovery boiler to the high temperature part of the gas turbine at the time of starting, and a first starting cooling steam supply system. A merging system that mixes the high-temperature cooling steam and the low-temperature cooling steam from the second startup cooling steam supply system and supplies the mixture to the cooling steam supply system, and the first startup cooling steam supply system or the second system. A temperature control valve provided in either one of the starting cooling steam supply system for adjusting the cooling steam temperature after mixing, a flow rate control valve provided in the merging system for adjusting the cooling steam flow rate after mixing, and the temperature adjustment Valve and the opening degree of the flow rate control valve to control the temperature and flow rate of the cooling steam supplied from the exhaust heat recovery boiler to the high temperature part of the gas turbine to a predetermined value according to the operating state of the gas turbine. Characterized by comprising a control device.

【0022】請求項1の発明に係るコンバインドサイク
ル発電プラントにおいては、起動時には、排熱回収ボイ
ラから高温の冷却蒸気を供給する第1起動用冷却蒸気供
給系統と低温の冷却蒸気を供給する第2起動用冷却蒸気
供給系統からの冷却蒸気とを合流系統で混合する。合流
系統は、ガスタービン高温部の入口に冷却蒸気を供給す
る冷却蒸気供給系統に接続されている。そして、第1起
動用冷却蒸気供給系統または第2起動用冷却蒸気供給系
統のいずれか一方に設けられた温度調節弁にて合流系統
で混合後の冷却蒸気温度を調整する。また、合流系統に
設けられた流量調節弁により合流系統で混合後の冷却蒸
気流量を調節する。制御装置は、温度調節弁および流量
調節弁の開度を調節し排熱回収ボイラから供給されるガ
スタービン高温部への冷却蒸気の温度および流量をガス
タービンの運転状態に応じた所定値に制御する。
In the combined cycle power plant according to the first aspect of the present invention, at the time of startup, the first startup cooling steam supply system for supplying the high-temperature cooling steam from the exhaust heat recovery boiler and the second for supplying the low-temperature cooling steam. The cooling steam from the starting cooling steam supply system is mixed in the confluent system. The merging system is connected to a cooling steam supply system that supplies cooling steam to the inlet of the high temperature part of the gas turbine. Then, the temperature of the cooling steam after mixing is adjusted in the merging system by the temperature control valve provided in either the first starting cooling steam supply system or the second starting cooling steam supply system. Moreover, the flow rate of the cooling steam after mixing is adjusted in the merging system by the flow rate control valve provided in the merging system. The controller adjusts the opening of the temperature control valve and flow rate control valve to control the temperature and flow rate of the cooling steam supplied from the exhaust heat recovery boiler to the high temperature part of the gas turbine to a predetermined value according to the operating state of the gas turbine. To do.

【0023】請求項2の発明に係るコンバインドサイク
ル発電プラントは、請求項1の発明において、前記温度
調節弁、前記第1起動用冷却蒸気供給系統からの高温の
冷却蒸気と前記第2起動用冷却蒸気供給系統からの低温
の冷却蒸気との合流部に三方弁を設けたことを特徴とす
る。
The combined cycle power plant according to a second aspect of the present invention is the combined cycle power plant according to the first aspect of the invention, wherein the high temperature cooling steam from the temperature control valve and the first starting cooling steam supply system and the second starting cooling are used. It is characterized in that a three-way valve is provided at the junction with the low-temperature cooling steam from the steam supply system.

【0024】請求項2の発明に係るコンバインドサイク
ル発電プラントにおいては、請求項1の発明の作用に加
え、第1起動用冷却蒸気供給系統からの高温の冷却蒸気
と第2起動用冷却蒸気供給系統からの低温の冷却蒸気と
は、三方弁により調節され合流後の冷却蒸気温度がガス
タービンの運転状態に応じた所定値になるように合流系
統に供給される。
In the combined cycle power plant according to the invention of claim 2, in addition to the operation of the invention of claim 1, high-temperature cooling steam from the first starting cooling steam supply system and second cooling steam supply system The low-temperature cooling steam is supplied to the merging system so that the temperature of the cooling steam after merging is adjusted to a predetermined value according to the operating state of the gas turbine, which is regulated by a three-way valve.

【0025】請求項3の発明に係るコンバインドサイク
ル発電プラントは、請求項1または請求項2の発明にお
いて、前記制御装置は、前記合流系統の冷却蒸気温度が
ガスタービンの運転状態に応じた所定温度になるように
前記温度調節弁または前記三方弁を制御する温度制御器
と、前記合流系統の冷却蒸気流量がガスタービンの運転
状態に応じた所定流量になるように前記流量調節弁を制
御する流量制御器とを備えたことを特徴とする。
A combined cycle power plant according to a third aspect of the present invention is the combined cycle power plant according to the first or second aspect of the invention, wherein the controller controls the cooling steam temperature of the merging system to a predetermined temperature according to the operating state of the gas turbine. So as to control the temperature control valve or the three-way valve, and a flow rate for controlling the flow rate control valve so that the flow rate of the cooling steam in the merging system becomes a predetermined flow rate according to the operating state of the gas turbine. And a controller.

【0026】請求項3の発明に係るコンバインドサイク
ル発電プラントにおいては、請求項1または請求項2の
発明の発明の作用に加え、制御装置の温度制御部は、合
流系統の冷却蒸気温度がガスタービンの運転状態に応じ
た所定温度になるように温度調節弁または三方弁を制御
し、流量制御器は、合流系統の冷却蒸気流量がガスター
ビンの運転状態に応じた所定流量になるように流量調節
弁を制御する。
In the combined cycle power plant according to the invention of claim 3, in addition to the operation of the invention of claim 1 or 2, the temperature control part of the control device is such that the cooling steam temperature of the merging system is the gas turbine. The temperature control valve or the three-way valve is controlled so that the temperature becomes a predetermined temperature according to the operating state of the, and the flow rate controller adjusts the flow rate so that the flow rate of cooling steam in the merging system becomes the predetermined flow rate according to the operating state of the gas turbine. Control the valve.

【0027】請求項4の発明に係るコンバインドサイク
ル発電プラントは、請求項1または請求項2の発明にお
いて、前記制御装置は、前記合流系統の冷却蒸気温度が
ガスタービンの運転状態に応じた所定温度になるように
前記温度調節弁または前記三方弁を制御する第1温度制
御器と、前記合流系統の冷却蒸気流量に基づいて前記合
流系統の冷却蒸気温度がガスタービンの運転状態に応じ
た所定温度になるように前記温度調節弁または前記三方
弁を制御する第2温度制御器と、前記合流系統の冷却蒸
気流量がガスタービンの運転状態に応じた所定流量にな
るように前記流量調節弁を制御する第1流量制御器と、
前記合流系統の冷却蒸気温度に基づいて前記合流系統の
冷却蒸気流量がガスタービンの運転状態に応じた所定流
量になるように前記流量調節弁を制御する第2流量制御
器とを備えたことを特徴とする。
A combined cycle power plant according to a fourth aspect of the present invention is the combined cycle power plant according to the first or second aspect, wherein the controller controls the cooling steam temperature of the merging system to a predetermined temperature according to the operating state of the gas turbine. A first temperature controller for controlling the temperature control valve or the three-way valve so that the cooling steam temperature of the merging system is a predetermined temperature according to the operating state of the gas turbine based on the cooling steam flow rate of the merging system. And a second temperature controller for controlling the temperature control valve or the three-way valve so that the flow rate of the cooling steam of the merging system becomes a predetermined flow rate according to the operating state of the gas turbine. A first flow controller for
A second flow rate controller that controls the flow rate control valve so that the flow rate of the cooling steam in the merging system becomes a predetermined flow rate according to the operating state of the gas turbine based on the cooling steam temperature in the merging system. Characterize.

【0028】請求項4の発明に係るコンバインドサイク
ル発電プラントにおいては、請求項1または請求項2の
発明の作用に加え、制御装置の第1温度制御器は、合流
系統の冷却蒸気温度がガスタービンの運転状態に応じた
所定温度になるように温度調節弁または三方弁を制御
し、第2温度制御器は、合流系統の冷却蒸気流量に基づ
いて合流系統の冷却蒸気温度がガスタービンの運転状態
に応じた所定温度になるように温度調節弁または前記三
方弁を制御する。一方、第1流量制御器は、合流系統の
冷却蒸気流量がガスタービンの運転状態に応じた所定流
量になるように流量調節弁を制御し、第2流量制御器
は、合流系統の冷却蒸気温度に基づいて合流系統の冷却
蒸気流量がガスタービンの運転状態に応じた所定流量に
なるように流量調節弁を制御する。
In the combined cycle power plant according to the invention of claim 4, in addition to the operation of the invention of claim 1 or 2, the first temperature controller of the control device is such that the cooling steam temperature of the merging system is the gas turbine. The temperature control valve or the three-way valve is controlled so that the temperature becomes a predetermined temperature according to the operating state of, and the second temperature controller controls the cooling steam temperature of the merging system based on the cooling steam flow rate of the merging system to operate the gas turbine. The temperature control valve or the three-way valve is controlled so as to reach a predetermined temperature according to the above. On the other hand, the first flow rate controller controls the flow rate control valve so that the flow rate of the cooling steam in the merging system becomes a predetermined flow rate according to the operating state of the gas turbine, and the second flow rate controller controls the cooling steam temperature in the merging system. Based on the above, the flow rate control valve is controlled so that the flow rate of the cooling steam in the merging system becomes a predetermined flow rate according to the operating state of the gas turbine.

【0029】請求項5の発明に係るコンバインドサイク
ル発電プラントは、請求項1または請求項2の発明にお
いて、前記制御装置は、前記第1起動用冷却蒸気供給系
統の冷却蒸気温度と前記第2起動用冷却蒸気供給系統の
冷却蒸気温度と前記合流系統の冷却蒸気流量とに基づい
て前記合流系統の冷却蒸気温度がガスタービンの運転状
態に応じた所定温度となるための前記温度調節弁または
三方弁を通過する冷却蒸気流量を演算する流量演算器
と、前記温度調節弁または三方弁を通過する冷却蒸気流
量が前記流量演算器で演算された冷却蒸気流量となるよ
うに前記流量調節弁または三方弁を制御する温度制御器
と、前記合流系統の冷却蒸気流量がガスタービンの運転
状態に応じた所定流量になるように前記流量調節弁を制
御する流量制御器とを備えたことを特徴とする。
A combined cycle power plant according to a fifth aspect of the present invention is the combined cycle power plant according to the first or second aspect, wherein the control device controls the cooling steam temperature of the first startup cooling steam supply system and the second startup. Temperature control valve or three-way valve for making the cooling steam temperature of the merging system a predetermined temperature according to the operating state of the gas turbine based on the cooling steam temperature of the cooling steam supply system for cooling and the cooling steam flow rate of the merging system A flow rate calculator for calculating the flow rate of cooling steam passing through the temperature control valve or the three-way valve so that the flow rate of the cooling steam passing through the temperature control valve or the three-way valve becomes the cooling steam flow rate calculated by the flow rate calculator. A temperature controller for controlling the flow rate, and a flow rate controller for controlling the flow rate control valve so that the flow rate of the cooling steam in the merging system becomes a predetermined flow rate according to the operating state of the gas turbine. Characterized by comprising.

【0030】請求項5の発明に係るコンバインドサイク
ル発電プラントにおいては、請求項1または請求項2の
発明の作用に加え、制御装置の流量演算器は、第1起動
用冷却蒸気供給系統の冷却蒸気温度と第2起動用冷却蒸
気供給系統の冷却蒸気温度と合流系統の冷却蒸気流量と
に基づいて、合流系統の冷却蒸気温度がガスタービンの
運転状態に応じた所定温度となるための温度調節弁また
は三方弁を通過する冷却蒸気流量を演算する。そして、
温度制御器は、温度調節弁または三方弁を通過する冷却
蒸気流量が流量演算器で演算された冷却蒸気流量となる
ように流量調節弁または三方弁を制御する。また、流量
制御器は、合流系統の冷却蒸気流量がガスタービンの運
転状態に応じた所定流量になるように流量調節弁を制御
する。これにより、流量調節弁または三方弁と流量調節
弁とが互いにハンチングしてしまうことを抑制できる。
In the combined cycle power plant according to the fifth aspect of the present invention, in addition to the operation of the first or second aspect of the invention, the flow rate calculator of the control device is the cooling steam of the first starting cooling steam supply system. Based on the temperature, the cooling steam temperature of the second starting cooling steam supply system, and the cooling steam flow rate of the merging system, a temperature control valve for making the cooling steam temperature of the merging system a predetermined temperature according to the operating state of the gas turbine. Alternatively, the flow rate of cooling steam passing through the three-way valve is calculated. And
The temperature controller controls the flow rate control valve or the three-way valve so that the flow rate of the cooling steam passing through the temperature control valve or the three-way valve becomes the cooling steam flow rate calculated by the flow rate calculator. The flow rate controller controls the flow rate control valve so that the flow rate of the cooling steam in the merging system becomes a predetermined flow rate according to the operating state of the gas turbine. This can prevent the flow rate control valve or the three-way valve and the flow rate control valve from hunting each other.

【0031】請求項6の発明に係るコンバインドサイク
ル発電プラントは、請求項1または請求項2の発明にお
いて、前記制御装置は、前記第1起動用冷却蒸気供給系
統の冷却蒸気温度が温度制御上必要とされる温度を超え
たか否かを判定する温度判定演算器と、前記温度判定演
算器が温度制御上必要とされる温度を超えたと判定した
ときは前記合流系統の冷却蒸気温度がガスタービンの運
転状態に応じた所定温度になるように前記温度調節弁ま
たは前記三方弁を制御する温度制御器と、前記合流系統
の冷却蒸気流量がガスタービンの運転状態に応じた所定
流量になるように前記流量調節弁を制御する流量制御器
とを備えたことを特徴とする。
A combined cycle power plant according to a sixth aspect of the present invention is the combined cycle power plant according to the first or second aspect of the invention, wherein the controller requires a cooling steam temperature of the first starting cooling steam supply system for temperature control. And a temperature determination calculator for determining whether or not the temperature exceeds the temperature, and when the temperature determination calculator determines that the temperature exceeds the temperature required for temperature control, the cooling steam temperature of the merging system is the gas turbine temperature. A temperature controller that controls the temperature control valve or the three-way valve to a predetermined temperature according to the operating state, and the cooling steam flow rate of the merging system so as to be a predetermined flow rate according to the operating state of the gas turbine. And a flow rate controller for controlling the flow rate control valve.

【0032】請求項6の発明に係るコンバインドサイク
ル発電プラントにおいては、請求項1または請求項2の
発明の作用に加え、制御装置の温度判定演算器は、第1
起動用冷却蒸気供給系統の冷却蒸気温度が温度制御上必
要とされる温度を超えたか否かを判定し、温度判定演算
器で第1起動用冷却蒸気供給系統の冷却蒸気温度が温度
制御上必要とされる温度を超えたと判定したときは、温
度制御器は、合流系統の冷却蒸気温度がガスタービンの
運転状態に応じた所定温度になるように温度調節弁また
は三方弁を制御する。また、流量制御器は、合流系統の
冷却蒸気流量がガスタービンの運転状態に応じた所定流
量になるように流量調節弁を制御する。
In the combined cycle power generation plant according to the invention of claim 6, in addition to the operation of the invention of claim 1 or 2, the temperature judgment calculator of the controller is the first
It is determined whether the cooling steam temperature of the starting cooling steam supply system exceeds the temperature required for temperature control, and the temperature judgment calculator requires the cooling steam temperature of the first starting cooling steam supply system for temperature control. When it is determined that the temperature exceeds the predetermined temperature, the temperature controller controls the temperature control valve or the three-way valve so that the cooling steam temperature of the merging system becomes a predetermined temperature according to the operating state of the gas turbine. The flow rate controller controls the flow rate control valve so that the flow rate of the cooling steam in the merging system becomes a predetermined flow rate according to the operating state of the gas turbine.

【0033】請求項7の発明に係るコンバインドサイク
ル発電プラントは、請求項1または請求項2の発明にお
いて、前記制御装置は、前記合流系統の冷却蒸気温度が
ガスタービンの運転状態に応じた所定温度になるように
前記温度調節弁または前記三方弁を制御する温度制御器
と、前記合流系統の冷却蒸気流量がガスタービンの運転
状態に応じた所定流量になるように前記流量調節弁を制
御する流量制御器と、ガスタービンの運転状態に応じた
所定温度および所定流量に基づいて前記温度制御器の出
力信号と前記流量制御器の出力信号との分配比を演算す
る分配演算器とを備えたことを特徴とする。
A combined cycle power plant according to a seventh aspect of the present invention is the combined cycle power plant according to the first or the second aspect, wherein the controller controls the cooling steam temperature of the merging system to a predetermined temperature according to the operating state of the gas turbine. So as to control the temperature control valve or the three-way valve, and a flow rate for controlling the flow rate control valve so that the flow rate of the cooling steam in the merging system becomes a predetermined flow rate according to the operating state of the gas turbine. A controller and a distribution calculator for calculating a distribution ratio between the output signal of the temperature controller and the output signal of the flow controller based on a predetermined temperature and a predetermined flow rate according to the operating state of the gas turbine. Is characterized by.

【0034】請求項7の発明に係るコンバインドサイク
ル発電プラントにおいては、請求項1または請求項2の
発明の作用に加え、制御装置の分配演算器は、ガスター
ビンの運転状態に応じた所定温度および所定流量に基づ
いて温度制御器の出力信号と流量制御器の出力信号との
分配比を演算する。温度制御器は、分配演算器で演算さ
れた分配比に基づき温度調節弁または三方弁を制御し、
流量制御器と、分配演算器で演算された分配比に基づき
流量調節弁を制御する。
In the combined cycle power plant according to the invention of claim 7, in addition to the operation of the invention of claim 1 or 2, the distribution computing unit of the control device has a predetermined temperature according to the operating state of the gas turbine. The distribution ratio between the output signal of the temperature controller and the output signal of the flow controller is calculated based on the predetermined flow rate. The temperature controller controls the temperature control valve or the three-way valve based on the distribution ratio calculated by the distribution calculator,
The flow rate control valve is controlled based on the distribution ratio calculated by the flow rate controller and the distribution calculator.

【0035】[0035]

【発明の実施の形態】以下、本発明の実施の形態を説明
する。図1は本発明の第1の実施の形態に係るコンバイ
ンド発電プラントの構成図である。この第1の実施の形
態は、図8に示した従来例に対し、第2起動用冷却蒸気
供給系統30に代えて、合流系統32に流量調節弁29
を設けたものであり、制御装置43は、温度検出器41
で検出された合流系統32の冷却蒸気温度、および流量
検出器42で検出された合流系統32の冷却蒸気流量が
ガスタービンの運転状態に応じた所定値になるように流
量調節弁29や温度調節弁31を制御するようにしたも
のである。図8に示した従来例と同一要素には同一符号
を付し重複する記載は省略する。
BEST MODE FOR CARRYING OUT THE INVENTION Embodiments of the present invention will be described below. FIG. 1 is a configuration diagram of a combined power generation plant according to a first embodiment of the present invention. The first embodiment is different from the conventional example shown in FIG. 8 in that instead of the second starting cooling steam supply system 30, a flow rate control valve 29 is provided in a merging system 32.
And the control device 43 controls the temperature detector 41.
The flow control valve 29 and the temperature control so that the cooling steam temperature of the merging system 32 detected by the flow rate detector 42 and the cooling steam flow rate of the merging system 32 detected by the flow rate detector 42 become a predetermined value according to the operating state of the gas turbine. The valve 31 is controlled. The same elements as those of the conventional example shown in FIG. 8 are designated by the same reference numerals, and duplicate description will be omitted.

【0036】図1において、第3高圧過熱器10からの
冷却蒸気を導く第1起動用冷却蒸気供給系統28には温
度調節弁31が設けられている。また、この第1起動用
冷却蒸気系統28と第2起動用冷却蒸気供給系統30と
の合流系統32には流量調節弁29が設置されている。
温度調節弁31は、コンバインド発電プラントの起動時
に、合流系統32における冷却蒸気温度を調節するもの
であり、流量調節弁29は合流系統32の冷却蒸気流量
を調節するものである。
In FIG. 1, a temperature control valve 31 is provided in the first starting cooling steam supply system 28 for guiding the cooling steam from the third high pressure superheater 10. Further, a flow rate control valve 29 is installed in a confluent system 32 of the first starting cooling steam system 28 and the second starting cooling steam supply system 30.
The temperature control valve 31 controls the cooling steam temperature in the merging system 32 when the combined power generation plant is started, and the flow rate control valve 29 regulates the cooling steam flow rate in the merging system 32.

【0037】コンバインド発電プラントの起動時には、
まず、ガスタービン設備2を起動する。そして、その燃
料ガスが発生することにより排熱回収ボイラ1に排ガス
を供給し蒸気を発生させる。
When the combined power generation plant is started,
First, the gas turbine equipment 2 is started. When the fuel gas is generated, exhaust gas is supplied to the exhaust heat recovery boiler 1 to generate steam.

【0038】排熱回収ボイラの過熱器は複数に分割され
ており、図1では、第1高圧過熱器13、第2高圧過熱
器11、第3高圧過熱器10の3基の高圧過熱器を有し
ている。そして、第1高圧過熱器13と第3高圧過熱器
10とから冷却蒸気を送出するようにしている。すなわ
ち、第1高圧過熱器13から低温の冷却蒸気を送出し、
第3高圧過熱器10から高温の冷却蒸気を送出する。
The superheater of the exhaust heat recovery boiler is divided into a plurality of parts. In FIG. 1, the three high pressure superheaters, that is, the first high pressure superheater 13, the second high pressure superheater 11, and the third high pressure superheater 10 are shown. Have Then, the cooling steam is sent out from the first high pressure superheater 13 and the third high pressure superheater 10. That is, low-temperature cooling steam is sent from the first high-pressure superheater 13,
The high-temperature cooling steam is delivered from the third high-pressure superheater 10.

【0039】ガスタービン高温部23を冷却する冷却蒸
気は、ガスタービン8の各負荷において必要とされる条
件(流量・温度)が異なるので、上述のように、少なく
とも2つ以上の温度の異なる冷却蒸気を送出して合流系
統32で混合し、冷却蒸気の温度および流量をガスター
ビン側の要求値を満たすようにしている。
The conditions (flow rate / temperature) required for each load of the gas turbine 8 are different for the cooling steam for cooling the high temperature part 23 of the gas turbine. Therefore, as described above, at least two different cooling temperatures are used. The steam is sent out and mixed in the merging system 32 so that the temperature and flow rate of the cooling steam satisfy the required values on the gas turbine side.

【0040】そして、温度の異なる冷却蒸気を供給する
起動用冷却蒸気供給系統のうちの第1の起動用冷却蒸気
供給系統28に温度調節弁31を設置し、合流系統32
での合流後の冷却蒸気温度を調整する。また、合流系統
32に流量調節弁29を設置し、合流系統32での合流
後の冷却蒸気流量を調整する。これら温度調節弁31お
よび流量調節弁29は制御装置43により制御される。
すなわち、制御装置43は温度検出器41により検出さ
れた合流系統32の冷却蒸気温度および流量検出器42
で検出された合流系統32の冷却蒸気流量がガスタービ
ン8側の要求値を満たすように温度調節弁31および流
量調節弁29を制御する。
Then, a temperature control valve 31 is installed in the first starting cooling steam supply system 28 of the starting cooling steam supply system for supplying the cooling steams having different temperatures, and the merging system 32 is provided.
Adjust the cooling steam temperature after merging in. Further, a flow rate control valve 29 is installed in the merging system 32 to adjust the cooling steam flow rate after merging in the merging system 32. The temperature control valve 31 and the flow rate control valve 29 are controlled by the control device 43.
That is, the control device 43 controls the cooling steam temperature of the merging system 32 detected by the temperature detector 41 and the flow rate detector 42.
The temperature control valve 31 and the flow rate control valve 29 are controlled so that the flow rate of the cooling steam of the merging system 32 detected in step 3 satisfies the required value on the gas turbine 8 side.

【0041】このように、コンバインドサイクル発電プ
ラントの起動時には、排熱回収ボイラ1で発生した蒸気
は、第1起動用冷却蒸気供給系統28および第2起動用
冷却蒸気供給系統30により、ガスタービン8の冷却蒸
気として、蒸気タービン設備3の高圧タービン15を介
さずに、直接的にガスタービン高温部23の冷却蒸気と
して供給される。
As described above, when the combined cycle power plant is started, the steam generated in the exhaust heat recovery boiler 1 is supplied to the gas turbine 8 by the first starting cooling steam supply system 28 and the second starting cooling steam supply system 30. Is directly supplied as the cooling steam for the high temperature part 23 of the gas turbine without going through the high pressure turbine 15 of the steam turbine equipment 3.

【0042】この第1の実施の形態によれば、温度の異
なる2系統からの起動用冷却蒸気の合流後の温度を合流
前の系統に設けられた温度調節弁31によって制御し、
合流後の流量を合流後の合流系統32に設置された流量
調節弁29で制御するので、温度調節弁31と流量調節
弁29とのハンチングが生じにくくなり、冷却蒸気の温
度および流量の制御を安定して行うことが可能となる。
According to the first embodiment, the temperature after the merging of the cooling steam for start-up from the two systems having different temperatures is controlled by the temperature control valve 31 provided in the system before the merging,
Since the flow rate after merging is controlled by the flow rate control valve 29 installed in the merging system 32 after merging, hunting between the temperature control valve 31 and the flow rate control valve 29 is less likely to occur, and the temperature and flow rate of the cooling steam can be controlled. It becomes possible to carry out stably.

【0043】つまり、温度調節弁31と流量調節弁29
とを直列に設置することで、冷却蒸気の温度を制御した
後の流量変化を、その下流に設置した流量調節弁29で
制御することができるので、冷却蒸気の流量および温度
を精度良く制御して供給することが可能となる。
That is, the temperature control valve 31 and the flow rate control valve 29
By installing and in series, the flow rate change after controlling the temperature of the cooling steam can be controlled by the flow rate control valve 29 installed downstream thereof, so that the flow rate and temperature of the cooling steam can be accurately controlled. It becomes possible to supply it.

【0044】次に、本発明の第2の実施の形態を説明す
る。図2は本発明の第2の実施の形態に係るコンバイン
ド発電プラントの構成図である。この第2の実施の形態
は、図1に示した第1の実施の形態に対し、温度調節弁
31に代えて、第1起動用冷却蒸気供給系統28からの
高温の冷却蒸気と第2起動用冷却蒸気供給系統30から
の低温の冷却蒸気との合流部に三方弁33を設けたもの
である。図1に示した同一構成要素には同一符号を付し
重複する説明は省略する。
Next, a second embodiment of the present invention will be described. FIG. 2 is a configuration diagram of a combined power generation plant according to a second embodiment of the present invention. The second embodiment differs from the first embodiment shown in FIG. 1 in that instead of the temperature control valve 31, the high-temperature cooling steam from the first starting cooling steam supply system 28 and the second starting are used. A three-way valve 33 is provided at a confluence portion with the low temperature cooling steam from the cooling steam supply system 30 for use. The same components as those shown in FIG. 1 are designated by the same reference numerals, and duplicate description will be omitted.

【0045】図2において、第1起動用冷却蒸気供給系
統28と第2起動用冷却蒸気供給系統30との合流部に
は、温度調節弁31に代えて三方弁33が設置されてい
る。
In FIG. 2, a three-way valve 33 is installed in place of the temperature control valve 31 at the confluence of the first starting cooling steam supply system 28 and the second starting cooling steam supply system 30.

【0046】また、合流後の合流系統32には合流後の
冷却蒸気流量を調節する流量調節弁29が設置されてい
る。三方弁33は、第1起動用冷却蒸気供給系統28か
らの冷却蒸気と第2起動用冷却蒸気供給系統30からの
冷却蒸気とを合流して合流系統32に供給するものであ
り、第1起動用冷却蒸気供給系統28からの冷却蒸気と
第2起動用冷却蒸気供給系統30からの冷却蒸気との混
合比率を調節する。
A flow rate control valve 29 for adjusting the flow rate of the cooling steam after the merging is installed in the merging system 32 after the merging. The three-way valve 33 joins the cooling steam from the first starting cooling steam supply system 28 and the cooling steam from the second starting cooling steam supply system 30 and supplies them to the merging system 32. The mixing ratio of the cooling steam from the cooling steam supply system 28 for cooling and the cooling steam from the second starting cooling steam supply system 30 is adjusted.

【0047】すなわち、制御装置43は温度検出器41
により検出された合流系統32の冷却蒸気温度および流
量検出器42で検出された合流系統32の冷却蒸気流量
がガスタービン8側の要求値を満たすように温度調節弁
31および流量調節弁29制御する。
That is, the controller 43 controls the temperature detector 41.
The temperature control valve 31 and the flow control valve 29 are controlled so that the cooling steam temperature of the merging system 32 detected by and the cooling steam flow rate of the merging system 32 detected by the flow rate detector 42 satisfy the required value on the gas turbine 8 side. .

【0048】この第2の実施の形態によれば、温度の異
なる第1起動用冷却蒸気供給系統28と第2起動用冷却
蒸気供給系統30との2系統の蒸気流量を確実に制御す
ることができるので、合流後の冷却蒸気温度を確実に制
御することができる。従って、起動用冷却蒸気の安定し
た温度および流量の制御が可能である。また、三方弁3
2と流量調節弁29とを直列に設置しているので、冷却
蒸気の温度を制御した後の流量変化を、その下流に設置
した流量調節弁29で制御することができるので、冷却
蒸気の流量および温度を精度良く制御して供給すること
が可能となる。
According to the second embodiment, it is possible to reliably control the steam flow rate of the two systems of the first starting cooling steam supply system 28 and the second starting cooling steam supply system 30 having different temperatures. Therefore, it is possible to reliably control the temperature of the cooling steam after the merging. Therefore, it is possible to control the stable temperature and flow rate of the starting cooling steam. Also, three-way valve 3
2 and the flow rate control valve 29 are installed in series, the flow rate change after controlling the temperature of the cooling steam can be controlled by the flow rate control valve 29 installed downstream of the cooling steam. It is possible to control and supply the temperature with high accuracy.

【0049】次に、本発明の第3の実施の形態を説明す
る。図3は本発明の第3の実施の形態に係るコンバイン
ドサイクル発電プラントにおける制御装置のブロック構
成図であり、第1の実施の形態または第2の実施の形態
における制御装置43に適用される場合のブロック構成
図を示している。
Next, a third embodiment of the present invention will be described. FIG. 3 is a block configuration diagram of a control device in a combined cycle power plant according to a third embodiment of the present invention, and when applied to the control device 43 in the first embodiment or the second embodiment. FIG.

【0050】図3に示すように、制御装置43は温度制
御器44と流量制御器45とから構成される。温度制御
器44は、合流系統32に設けられた温度検出器41で
検出された合流系統32の冷却蒸気温度を入力し、その
冷却蒸気温度がガスタービンの運転状態に応じた所定温
度になるように温度調節弁31または三方弁33を制御
する。また、流量制御器45は、合流系統32に設けら
れた流量検出器42で検出された合流系統32の冷却蒸
気流量を入力し、その冷却蒸気流量がガスタービンの運
転状態に応じた所定流量になるように流量調節弁29を
制御する。
As shown in FIG. 3, the control device 43 comprises a temperature controller 44 and a flow rate controller 45. The temperature controller 44 inputs the cooling steam temperature of the merging system 32 detected by the temperature detector 41 provided in the merging system 32 so that the cooling steam temperature becomes a predetermined temperature according to the operating state of the gas turbine. Then, the temperature control valve 31 or the three-way valve 33 is controlled. Further, the flow rate controller 45 inputs the cooling steam flow rate of the merging system 32 detected by the flow rate detector 42 provided in the merging system 32, and the cooling steam flow rate becomes a predetermined flow rate according to the operating state of the gas turbine. The flow control valve 29 is controlled so that

【0051】ガスタービン高温部23を冷却する冷却蒸
気は、ガスタービン8の各負荷において必要とされる条
件(流量・温度)が異なるので、その各負荷に応じた目
標値を予め温度制御器44および流量制御器45に設定
しておく。これにより、排熱回収ボイラ1から供給され
るガスタービン8への冷却蒸気の温度および流量をガス
タービン8側の要求値を満たすように制御することが可
能となる。
Since the cooling steam for cooling the high temperature part of the gas turbine 23 has different conditions (flow rate and temperature) required for each load of the gas turbine 8, a target value corresponding to each load is set in advance in the temperature controller 44. And the flow rate controller 45 is set. As a result, the temperature and flow rate of the cooling steam supplied from the exhaust heat recovery boiler 1 to the gas turbine 8 can be controlled so as to satisfy the required value on the gas turbine 8 side.

【0052】この第3の実施の形態においては、コンバ
インドサイクル発電プラントの起動時に、ガスタービン
高温部23に供給される冷却蒸気の流量および温度を計
測し、温度制御器44により温度調節弁31または三方
弁33を調節して冷却蒸気の温度を制御し、温度制御さ
れた冷却蒸気に対して流量制御器45により流量調節弁
29を調節して冷却蒸気の流量を制御するので、冷却蒸
気の流量および温度を精度良く安定して制御できる。
In the third embodiment, when the combined cycle power plant is started, the flow rate and temperature of the cooling steam supplied to the gas turbine high temperature section 23 are measured, and the temperature controller 44 controls the temperature control valve 31 or Since the temperature of the cooling steam is controlled by adjusting the three-way valve 33 and the flow rate controller 45 adjusts the flow rate of the cooling steam with respect to the temperature-controlled cooling steam, the flow rate of the cooling steam is controlled. And the temperature can be controlled accurately and stably.

【0053】次に、本発明の第4の実施の形態を説明す
る。図4は本発明の第4の実施の形態に係るコンバイン
ドサイクル発電プラントにおける制御装置のブロック構
成図であり、第1の実施の形態または第2の実施の形態
における制御装置43に適用される場合のブロック構成
図を示している。
Next, a fourth embodiment of the present invention will be described. FIG. 4 is a block configuration diagram of a control device in a combined cycle power plant according to a fourth embodiment of the present invention, and when applied to the control device 43 in the first embodiment or the second embodiment. FIG.

【0054】図4に示すように、制御装置43は、第1
温度制御器44a、第2温度制御器44b、第1流量制
御器45a、第2流量制御器45bから構成される。第
1温度制御器44aは、合流系統32に設けられた温度
検出器41で検出された合流系統32の冷却蒸気温度を
入力し、その冷却蒸気温度がガスタービンの運転状態に
応じた所定温度になるように温度調節弁31または三方
弁33を制御する。第2温度制御器44bは、合流系統
32に設けられた流量検出器42で検出された合流系統
32の冷却蒸気流量を入力し、その合流系統32の冷却
蒸気流量に基づいて、合流系統32の冷却蒸気温度がガ
スタービンの運転状態に応じた所定温度になるように温
度調節弁31または三方弁33を制御する。
As shown in FIG. 4, the control device 43 has a first
It is composed of a temperature controller 44a, a second temperature controller 44b, a first flow rate controller 45a, and a second flow rate controller 45b. The first temperature controller 44a inputs the cooling steam temperature of the merging system 32 detected by the temperature detector 41 provided in the merging system 32, and the cooling steam temperature becomes a predetermined temperature according to the operating state of the gas turbine. The temperature control valve 31 or the three-way valve 33 is controlled so that. The second temperature controller 44b inputs the cooling steam flow rate of the merging system 32 detected by the flow rate detector 42 provided in the merging system 32, and based on the cooling steam flow rate of the merging system 32, the second temperature controller 44b The temperature control valve 31 or the three-way valve 33 is controlled so that the cooling steam temperature becomes a predetermined temperature according to the operating state of the gas turbine.

【0055】また、第1流量制御器45aは、合流系統
32に設けられた流量検出器42で検出された合流系統
32の冷却蒸気流量を入力し、その冷却蒸気流量がガス
タービンの運転状態に応じた所定流量になるように流量
調節弁29を制御する。第2流量制御器45bは、合流
系統32に設けられた温度検出器41で検出された合流
系統32の冷却蒸気温度を入力し、その合流系統32の
冷却蒸気温度に基づいて、合流系統32の冷却蒸気流量
がガスタービンの運転状態に応じた所定流量になるよう
に温度調節弁31または三方弁33を制御する。
Further, the first flow rate controller 45a inputs the cooling steam flow rate of the merging system 32 detected by the flow rate detector 42 provided in the merging system 32, and the cooling steam flow rate is set to the operating state of the gas turbine. The flow rate control valve 29 is controlled so that the flow rate becomes a predetermined flow rate. The second flow rate controller 45b inputs the cooling steam temperature of the merging system 32 detected by the temperature detector 41 provided in the merging system 32, and based on the cooling steam temperature of the merging system 32, The temperature control valve 31 or the three-way valve 33 is controlled so that the cooling steam flow rate becomes a predetermined flow rate according to the operating state of the gas turbine.

【0056】例えば、合流系統32の冷却蒸気温度が目
標値より高い場合には、第1温度制御器44は温度調節
弁31または三方弁33を閉じる方向に調節することに
なる。これにより、合流系統32の冷却蒸気流量が減少
するので、第1流量制御器45aは流量調節弁29を開
く方向に操作し冷却蒸気流量が目標値になるように制御
する。
For example, when the cooling steam temperature of the merging system 32 is higher than the target value, the first temperature controller 44 adjusts the temperature control valve 31 or the three-way valve 33 in the closing direction. As a result, the cooling steam flow rate of the merging system 32 decreases, so that the first flow rate controller 45a operates the flow rate control valve 29 in the opening direction to control the cooling steam flow rate to the target value.

【0057】この場合、温度に対する流量の変化量が大
きい場合には、第1流量制御器45aによる流量調節弁
29の操作に遅れが生じるので、それを補償するために
第2流量制御器45bは、合流系統32の冷却蒸気温度
が目標値より高い場合には、流量調節弁29に対し開く
方向の操作指令を出力する。これにより、冷却蒸気の温
度と流量との干渉を低減する。
In this case, when the amount of change in the flow rate with respect to temperature is large, there is a delay in the operation of the flow rate adjusting valve 29 by the first flow rate controller 45a, so the second flow rate controller 45b is compensated for in order to compensate for this. If the cooling steam temperature of the merging system 32 is higher than the target value, an operation command for opening the flow rate control valve 29 is output. This reduces the interference between the cooling steam temperature and the flow rate.

【0058】このように、第4の実施の形態において
は、冷却蒸気温度の制御にあたって、温度による第1温
度制御器44aと流量による第2温度制御器44bとを
組み合わせて行い、同様に、冷却蒸気流量の制御にあた
って、流量による第1流量制御器45aと温度による第
2流量制御器45bとを組み合わせて行う。このため、
冷却蒸気の温度と流量の干渉を低減する。従って、起動
用冷却蒸気の安定した温度および流量の制御が可能であ
る。なお、温度から流量、流量から温度への影響度合い
により、どちらかが少ない場合には、温度に基づく第2
流量制御器45bあるいは流量に基づく第2温度制御器
44bのどちらかがなくとも問題ない。
As described above, in the fourth embodiment, the cooling steam temperature is controlled by combining the first temperature controller 44a based on the temperature and the second temperature controller 44b based on the flow rate, and the cooling is performed in the same manner. The control of the steam flow rate is performed by combining the first flow rate controller 45a based on the flow rate and the second flow rate controller 45b based on the temperature. For this reason,
Reduce the interference between cooling steam temperature and flow rate. Therefore, it is possible to control the stable temperature and flow rate of the starting cooling steam. It should be noted that depending on the degree of influence from the temperature to the flow rate and from the flow rate to the temperature, if either of them is smaller, the second
There is no problem even if either the flow rate controller 45b or the second temperature controller 44b based on the flow rate is not provided.

【0059】次に、本発明の第5の実施の形態を説明す
る。図5は本発明の第5の実施の形態に係るコンバイン
ドサイクル発電プラントにおける制御装置のブロック構
成図であり、第1の実施の形態または第2の実施の形態
における制御装置43に適用される場合のブロック構成
図を示している。
Next explained is the fifth embodiment of the invention. FIG. 5 is a block configuration diagram of a control device in a combined cycle power generation plant according to a fifth embodiment of the present invention, and when applied to the control device 43 in the first embodiment or the second embodiment. FIG.

【0060】この第5の実施の形態は、図3に示した第
3の実施の形態に対し、合流系統32の冷却蒸気温度が
ガスタービンの運転状態に応じた所定温度となるための
温度調節弁31(三方弁33)を通過する冷却蒸気流量
を演算する流量演算器51を設けたものであり、温度制
御器44は温度調節弁31(三方弁33)を通過する冷
却蒸気流量が流量演算器45で演算された冷却蒸気流量
となるように流量調節弁31または三方弁33を制御す
るようにしたものである。つまり、合流系統の冷却蒸気
温度が所定温度となる高温の冷却蒸気流量を流量演算器
51で演算し、高温の冷却蒸気流量を温度調節弁41
(三方弁33)で調整するようにしたものである。
The fifth embodiment differs from the third embodiment shown in FIG. 3 in that the cooling steam temperature of the merging system 32 is adjusted to a predetermined temperature according to the operating state of the gas turbine. A flow rate calculator 51 for calculating the flow rate of the cooling steam passing through the valve 31 (three-way valve 33) is provided. The temperature controller 44 calculates the flow rate of the cooling steam passing through the temperature control valve 31 (three-way valve 33). The flow rate control valve 31 or the three-way valve 33 is controlled so that the cooling steam flow rate calculated by the device 45 is obtained. That is, the flow rate calculator 51 calculates a high temperature cooling steam flow rate at which the cooling steam temperature of the merging system reaches a predetermined temperature, and the high temperature cooling steam flow rate is calculated by the temperature control valve 41.
(Three-way valve 33) is used for adjustment.

【0061】温度検出器34は第1起動用冷却蒸気供給
系統28に設けられ、第1起動用冷却蒸気供給系統28
の冷却蒸気温度を検出する。同様に、温度検出器35は
第2起動用冷却蒸気供給系統30に設けられ、第2起動
用冷却蒸気供給系統30の冷却蒸気温度を検出する。
The temperature detector 34 is provided in the first starting cooling steam supply system 28, and the first starting cooling steam supply system 28 is provided.
Detects the cooling steam temperature of. Similarly, the temperature detector 35 is provided in the second starting cooling steam supply system 30 and detects the cooling steam temperature of the second starting cooling steam supply system 30.

【0062】温度検出器34で検出された第1起動用冷
却蒸気供給系統28の冷却蒸気温度および温度検出器3
5で検出された第2起動用冷却蒸気供給系統30の冷却
蒸気温度は、制御装置43の流量演算器51に入力され
る。流量演算器51には合流系統32に設けられた流量
検出器42からの冷却蒸気流量も入力される。
Cooling steam temperature of the first starting cooling steam supply system 28 detected by the temperature detector 34 and the temperature detector 3
The cooling steam temperature of the second starting cooling steam supply system 30 detected in 5 is input to the flow rate calculator 51 of the control device 43. The cooling steam flow rate from the flow rate detector 42 provided in the merging system 32 is also input to the flow rate calculator 51.

【0063】制御装置43の流量演算器51は、第1起
動用冷却蒸気供給系統28の冷却蒸気温度、第2起動用
冷却蒸気供給系統30の冷却蒸気温度、および合流系統
32の冷却蒸気流量に基づいて、合流系統32の冷却蒸
気温度がガスタービンの運転状態に応じた所定温度とな
るための温度調節弁31(三方弁33)を通過すべき冷
却蒸気流量を演算する。
The flow rate calculator 51 of the control device 43 determines the cooling steam temperature of the first starting cooling steam supply system 28, the cooling steam temperature of the second starting cooling steam supply system 30, and the cooling steam flow rate of the merging system 32. Based on this, the flow rate of cooling steam that should pass through the temperature control valve 31 (three-way valve 33) so that the cooling steam temperature of the merging system 32 reaches a predetermined temperature according to the operating state of the gas turbine is calculated.

【0064】そして、温度制御器44は温度調節弁31
(三方弁33)を通過する冷却蒸気流量(高温の冷却蒸
気流量)を流量検出器36で検出し、その流量検出器3
6で検出した冷却蒸気流量が流量演算器51で演算され
た冷却蒸気流量となるように流量調節弁31または三方
弁33を制御する。また、流量制御器45は合流系統3
2の冷却蒸気流量がガスタービンの運転状態に応じた所
定流量になるように流量調節弁29を制御する。
The temperature controller 44 is the temperature control valve 31.
The flow rate detector 36 detects the flow rate of the cooling steam (high-temperature flow rate of the cooling steam) passing through the (three-way valve 33), and the flow rate detector 3
The flow rate control valve 31 or the three-way valve 33 is controlled so that the cooling steam flow rate detected in 6 becomes the cooling steam flow rate calculated by the flow rate calculator 51. In addition, the flow rate controller 45 is the merging system 3
The flow rate control valve 29 is controlled so that the cooling steam flow rate of 2 becomes a predetermined flow rate according to the operating state of the gas turbine.

【0065】第5の実施の形態によれば、合流系統32
の冷却蒸気流量と、排熱回収ボイラ1から供給される第
1起動用冷却蒸気供給系統28と第2起動用冷却蒸気供
給系統30の各系統の蒸気温度とから、温度調節弁31
(三方弁33)を介して供給する必要蒸気量を流量演算
器51で計算し、その計算された必要蒸気量を温度調節
弁31(三方弁33)の制御目標値とするので、排熱回
収ボイラ1から供給するガスタービン高温部23への冷
却蒸気温度を適正にガスタービン側の要求値を満たすよ
うに制御することが可能となる。
According to the fifth embodiment, the merging system 32
Cooling steam flow rate and the steam temperature of each system of the first starting cooling steam supply system 28 and the second starting cooling steam supply system 30 supplied from the exhaust heat recovery boiler 1 from the temperature control valve 31.
The required amount of steam supplied via the (three-way valve 33) is calculated by the flow rate calculator 51, and the calculated required amount of steam is used as the control target value of the temperature control valve 31 (three-way valve 33). It is possible to control the temperature of the cooling steam supplied from the boiler 1 to the high temperature part 23 of the gas turbine so as to properly satisfy the required value on the gas turbine side.

【0066】次に、本発明の第6の実施の形態を説明す
る。図6は本発明の第6の実施の形態に係るコンバイン
ドサイクル発電プラントにおける制御装置のブロック構
成図であり、第1の実施の形態または第2の実施の形態
における制御装置43に適用される場合のブロック構成
図を示している。
Next, a sixth embodiment of the present invention will be described. FIG. 6 is a block configuration diagram of a control device in a combined cycle power plant according to a sixth embodiment of the present invention, and when applied to the control device 43 in the first embodiment or the second embodiment. FIG.

【0067】この第6の実施の形態は、図3に示した第
3の実施の形態に対し、第1起動用冷却蒸気供給系統2
8の冷却蒸気温度が温度制御上必要とされる温度を超え
たか否かを判定する温度判定演算器52と、温度判定演
算器52が温度制御上必要とされる温度を超えたと判定
したときは温度制御器44からの操作指令を温度調節弁
31または三方弁33に出力するゲート回路54とを追
加して設けたものである。図3と同一要素には同一符号
を付し重複する説明は省略する。
The sixth embodiment is different from the third embodiment shown in FIG. 3 in that the first starting cooling steam supply system 2 is used.
8 for determining whether the temperature of the cooling steam exceeds the temperature required for temperature control, and when the temperature determination calculator 52 determines that the temperature exceeds the temperature required for temperature control. A gate circuit 54 that outputs an operation command from the temperature controller 44 to the temperature control valve 31 or the three-way valve 33 is additionally provided. The same elements as those in FIG. 3 are denoted by the same reference numerals, and overlapping description will be omitted.

【0068】図6において、第1起動用冷却蒸気供給系
統28に設けられた温度検出器34で検出された第1起
動用冷却蒸気供給系統28の冷却蒸気温度は、制御装置
43の温度判定演算器52に入力される。温度判定演算
手段52は、第1起動用冷却蒸気供給系統28の冷却蒸
気温度が温度制御上必要とされる温度を超えたか否かを
判定し、第1起動用冷却蒸気供給系統28の冷却蒸気温
度が温度制御上必要とされる温度を超えたと判定したと
きは、ゲート回路54を動作させる。すなわち、温度制
御器44からの操作指令を温度調節弁31または三方弁
33に出力することを許可する。
In FIG. 6, the cooling steam temperature of the first starting cooling steam supply system 28 detected by the temperature detector 34 provided in the first starting cooling steam supply system 28 is the temperature judgment calculation of the controller 43. Input to the container 52. The temperature determination calculation means 52 determines whether or not the cooling steam temperature of the first startup cooling steam supply system 28 exceeds the temperature required for temperature control, and the cooling steam of the first startup cooling steam supply system 28 is determined. When it is determined that the temperature exceeds the temperature required for temperature control, the gate circuit 54 is operated. That is, the operation command from the temperature controller 44 is permitted to be output to the temperature control valve 31 or the three-way valve 33.

【0069】このように、第6の実施の形態では、第1
起動用冷却蒸気供給系統28の蒸気温度を温度検出器3
4により検出し、第1起動用冷却蒸気供給系統28の蒸
気温度が温度制御上必要とされる温度を超過したことを
温度判定演算器52で判定し、第1起動用冷却蒸気供給
系統28の蒸気温度が温度制御上必要とされる温度を超
過した場合に温度調節弁13(三方弁33)の制御を開
始する。
As described above, in the sixth embodiment, the first
The temperature detector 3 measures the steam temperature of the cooling steam supply system 28 for startup.
4, the temperature determination calculator 52 determines that the steam temperature of the first startup cooling steam supply system 28 exceeds the temperature required for temperature control, and the first startup cooling steam supply system 28 When the steam temperature exceeds the temperature required for temperature control, control of the temperature control valve 13 (three-way valve 33) is started.

【0070】第6の実施の形態によれば、第1起動用冷
却蒸気供給系統28の蒸気温度が温度制御上必要とされ
る温度を超過してから温度制御を開始するので、排熱回
収ボイラ1から供給される冷却蒸気温度は温度制御開始
時点から適正に保たれる。なお、温度検出器34で検出
される第1起動用冷却蒸気供給系統28の冷却蒸気温度
代わりに、ガスタービン負荷、ガスタービン回転数、排
熱回収ボイラ蒸気圧力、排熱回収ボイラ蒸気温度等を用
いても良い。
According to the sixth embodiment, the temperature control is started after the steam temperature of the first starting cooling steam supply system 28 exceeds the temperature required for temperature control. Therefore, the exhaust heat recovery boiler The temperature of the cooling steam supplied from No. 1 is kept proper from the start of temperature control. In place of the cooling steam temperature of the first starting cooling steam supply system 28 detected by the temperature detector 34, the gas turbine load, the gas turbine speed, the exhaust heat recovery boiler steam pressure, the exhaust heat recovery boiler steam temperature, etc. You may use.

【0071】次に、本発明の第7の実施の形態を説明す
る。図7は本発明の第7の実施の形態に係るコンバイン
ドサイクル発電プラントにおける制御装置のブロック構
成図であり、第1の実施の形態または第2の実施の形態
における制御装置43に適用される場合のブロック構成
図を示している。
Next, a seventh embodiment of the present invention will be described. FIG. 7 is a block configuration diagram of a control device in a combined cycle power plant according to a seventh embodiment of the present invention, and when applied to the control device 43 in the first embodiment or the second embodiment. FIG.

【0072】この第7の実施の形態は、図3に示した第
3の実施の形態に対し、ガスタービンの運転状態に応じ
た所定温度および所定流量に基づいて温度制御器44の
出力信号と流量制御器45の出力信号との分配比を演算
する分配演算器を設けたものである。図3と同一要素に
は同一符号を付し重複する説明は省略する。
The seventh embodiment differs from the third embodiment shown in FIG. 3 in that the output signal of the temperature controller 44 is based on the predetermined temperature and the predetermined flow rate according to the operating state of the gas turbine. A distribution calculator for calculating a distribution ratio with the output signal of the flow rate controller 45 is provided. The same elements as those in FIG. 3 are denoted by the same reference numerals, and overlapping description will be omitted.

【0073】分配演算器55では、冷却蒸気流量を多く
流す必要がある場合は、流量調節弁29および温度調節
弁31(三方弁33)とを同時に開方向に動かすよう
に、温度制御器44の出力信号と流量制御器45の出力
信号との分配比を演算する。
In the distribution computing unit 55, when it is necessary to flow a large amount of cooling steam, the temperature controller 44 of the temperature controller 44 is operated so as to simultaneously move the flow rate adjusting valve 29 and the temperature adjusting valve 31 (three-way valve 33) in the opening direction. The distribution ratio between the output signal and the output signal of the flow rate controller 45 is calculated.

【0074】また、冷却蒸気温度を高くしたい場合に
は、温度調節弁31(三方弁33)を開側に動かすとと
もに流量調節弁29を閉側に動かすように、温度制御器
44の出力信号と流量制御器45の出力信号との分配比
を演算する。
When it is desired to raise the cooling steam temperature, the output signal of the temperature controller 44 is set so that the temperature control valve 31 (three-way valve 33) is moved to the open side and the flow rate control valve 29 is moved to the closed side. The distribution ratio with the output signal of the flow rate controller 45 is calculated.

【0075】いま、温度制御器44からの制御信号U
t、流量制御器45からの制御信号温度Uf、温度調節
弁31(三方弁33)への信号Yt、分配演算後の流量
調節弁29への信号Ytとすると、例えば、この分配演
算器55での演算は、下記の式のように演算され分配さ
れる。
Now, the control signal U from the temperature controller 44
t, a control signal temperature Uf from the flow rate controller 45, a signal Yt to the temperature control valve 31 (three-way valve 33), and a signal Yt to the flow rate control valve 29 after the distribution calculation, for example, the distribution calculation unit 55 The calculation of is calculated and distributed according to the following equation.

【0076】 Yt=Ut・Uf、Yf=(1−Ut)・Uf この第7の実施の形態においては、合流系統32の冷却
蒸気の流量および温度を計測し、温度制御器44および
流量制御器45により確実に制御することができるの
で、起動用冷却蒸気の安定した温度および流量の制御が
可能である。
Yt = Ut · Uf, Yf = (1−Ut) · Uf In the seventh embodiment, the flow rate and temperature of the cooling steam in the merging system 32 are measured, and the temperature controller 44 and the flow rate controller are measured. Since it can be surely controlled by 45, it is possible to control the stable temperature and flow rate of the starting cooling steam.

【0077】[0077]

【発明の効果】以上説明したように、本発明によれば、
蒸気タービンに通気前においてもガスタービンの冷却蒸
気を適正に確保することができる。従って、蒸気タービ
ンの通気条件にとらわれることなく、ガスタービンの負
荷を設定できコンバインド発電プラントの円滑な起動が
可能となる。
As described above, according to the present invention,
It is possible to properly secure the cooling steam for the gas turbine even before ventilating the steam turbine. Therefore, the load of the gas turbine can be set regardless of the ventilation conditions of the steam turbine, and the combined power generation plant can be smoothly started.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の第1の実施の形態に係るコンバインド
発電プラントの構成図。
FIG. 1 is a configuration diagram of a combined power generation plant according to a first embodiment of the present invention.

【図2】本発明の第2の実施の形態に係るコンバインド
発電プラントの構成図。
FIG. 2 is a configuration diagram of a combined power generation plant according to a second embodiment of the present invention.

【図3】本発明の第3の実施の形態に係るコンバインド
サイクル発電プラントにおける制御装置のブロック構成
図。
FIG. 3 is a block configuration diagram of a control device in a combined cycle power generation plant according to a third embodiment of the present invention.

【図4】本発明の第4の実施の形態に係るコンバインド
サイクル発電プラントにおける制御装置のブロック構成
図。
FIG. 4 is a block configuration diagram of a control device in a combined cycle power generation plant according to a fourth embodiment of the present invention.

【図5】本発明の第5の実施の形態に係るコンバインド
サイクル発電プラントにおける制御装置のブロック構成
図。
FIG. 5 is a block configuration diagram of a control device in a combined cycle power generation plant according to a fifth embodiment of the present invention.

【図6】本発明の第6の実施の形態に係るコンバインド
サイクル発電プラントにおける制御装置のブロック構成
図。
FIG. 6 is a block configuration diagram of a control device in a combined cycle power generation plant according to a sixth embodiment of the present invention.

【図7】本発明の第7の実施の形態に係るコンバインド
サイクル発電プラントにおける制御装置のブロック構成
図。
FIG. 7 is a block configuration diagram of a control device in a combined cycle power generation plant according to a seventh embodiment of the present invention.

【図8】従来のコンバインドサイクル発電プラントの構
成図。
FIG. 8 is a configuration diagram of a conventional combined cycle power generation plant.

【符号の説明】[Explanation of symbols]

1…排熱回収ボイラ、2…ガスタービン設備、3…蒸気
タービン設備、4…発電機、5…回転軸、6…空気圧縮
機、7…燃焼器、8…ガスタービン、9…ケーシング、
10…第3高圧過熱器、11…第2高圧過熱器、12…
再熱器、13…第1高温過熱器、14…高圧蒸発器、1
5…高圧タービン、16…中圧タービン、17…低圧タ
ービン、18…復水器、19…復水ポンプ、20…給水
ポンプ、21…、22…低温再熱蒸気管、23…ガスタ
ービン高温部、24…冷却蒸気系統、25…冷却蒸気供
給系統、26…冷却蒸気回収系統、27…減温器、28
…第1起動用冷却蒸気供給系統、29…流量調節弁、3
0…第2起動用冷却蒸気供給系統、31…温度調節弁、
32…合流系統、33…三方弁、34、35…温度検出
器、36…流量検出器、41…温度検出器、42…流量
検出器、43…制御装置、44…温度制御器、45…流
量制御器、51…流量演算器、52…温度判定演算器、
53…、54…ゲート回路、55…分配演算器
1 ... Exhaust heat recovery boiler, 2 ... Gas turbine equipment, 3 ... Steam turbine equipment, 4 ... Generator, 5 ... Rotating shaft, 6 ... Air compressor, 7 ... Combustor, 8 ... Gas turbine, 9 ... Casing,
10 ... 3rd high pressure superheater, 11 ... 2nd high pressure superheater, 12 ...
Reheater, 13 ... First high temperature superheater, 14 ... High-pressure evaporator, 1
5 ... High-pressure turbine, 16 ... Medium-pressure turbine, 17 ... Low-pressure turbine, 18 ... Condenser, 19 ... Condensate pump, 20 ... Water supply pump, 21 ..., 22 ... Low temperature reheat steam pipe, 23 ... Gas turbine high temperature section , 24 ... Cooling steam system, 25 ... Cooling steam supply system, 26 ... Cooling steam recovery system, 27 ... Desuperheater, 28
... 1st starting cooling steam supply system, 29 ... Flow control valve, 3
0 ... Second startup cooling steam supply system, 31 ... Temperature control valve,
32 ... Merge system, 33 ... Three-way valve, 34, 35 ... Temperature detector, 36 ... Flow rate detector, 41 ... Temperature detector, 42 ... Flow rate detector, 43 ... Control device, 44 ... Temperature controller, 45 ... Flow rate Controller, 51 ... Flow rate calculator, 52 ... Temperature determination calculator,
53 ..., 54 ... Gate circuit, 55 ... Distribution computing unit

───────────────────────────────────────────────────── フロントページの続き (72)発明者 日野 史郎 東京都港区芝浦一丁目1番1号 株式会社 東芝本社事務所内 (72)発明者 保坂 俊二 東京都港区芝浦一丁目1番1号 株式会社 東芝本社事務所内 Fターム(参考) 3G081 BA04 BA15 BB00 BC07 BD00 DA06 DA23    ─────────────────────────────────────────────────── ─── Continued front page    (72) Inventor Shiro Hino             1-1 Shibaura, Minato-ku, Tokyo Co., Ltd.             Toshiba headquarters office (72) Inventor Shunji Hosaka             1-1 Shibaura, Minato-ku, Tokyo Co., Ltd.             Toshiba headquarters office F-term (reference) 3G081 BA04 BA15 BB00 BC07 BD00                       DA06 DA23

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】 ガスタービンの排ガスを利用して蒸気を
発生させる排熱回収ボイラと、前記排熱回収ボイラで発
生した蒸気を駆動源とする蒸気タービンと、前記ガスタ
ービン高温部の入口に接続され前記蒸気タービンからの
蒸気を冷却蒸気として供給する冷却蒸気供給系統と、起
動時に前記排熱回収ボイラから高温の冷却蒸気を前記ガ
スタービン高温部に供給する第1起動用冷却蒸気供給系
統と、起動時に前記排熱回収ボイラから低温の冷却蒸気
を前記ガスタービン高温部に供給する第2起動用冷却蒸
気供給系統と、前記第1起動用冷却蒸気供給系統からの
高温の冷却蒸気と前記第2起動用冷却蒸気供給系統から
の低温の冷却蒸気とを混合して前記冷却蒸気供給系統に
供給する合流系統と、前記第1起動用冷却蒸気供給系統
または前記第2起動用冷却蒸気供給系統のいずれか一方
に設けられ混合後の冷却蒸気温度を調節する温度調節弁
と、前記合流系統に設けられ混合後の冷却蒸気流量を調
節する流量調節弁と、前記温度調節弁および前記流量調
節弁の開度を調節し前記排熱回収ボイラから供給される
前記ガスタービン高温部への冷却蒸気の温度および流量
をガスタービンの運転状態に応じた所定値に制御する制
御装置とを備えたことを特徴とするコンバインドサイク
ル発電プラント。
1. An exhaust heat recovery boiler for generating steam using exhaust gas of a gas turbine, a steam turbine driven by steam generated in the exhaust heat recovery boiler, and an inlet of the high temperature part of the gas turbine. A cooling steam supply system for supplying steam from the steam turbine as cooling steam, and a first starting cooling steam supply system for supplying high-temperature cooling steam from the exhaust heat recovery boiler to the gas turbine high-temperature part at startup, A second startup cooling steam supply system that supplies low-temperature cooling steam from the exhaust heat recovery boiler to the gas turbine high-temperature part at startup, and high-temperature cooling steam from the first startup cooling steam supply system and the second A merging system that mixes low-temperature cooling steam from the startup cooling steam supply system and supplies the cooling steam to the cooling steam supply system, and the first startup cooling steam supply system or the second startup Temperature control valve installed in either one of the cooling steam supply systems for adjusting the cooling steam temperature after mixing, a flow rate control valve installed in the merging system for adjusting the cooling steam flow rate after mixing, and the temperature control valve And a control device that adjusts the opening degree of the flow rate control valve to control the temperature and flow rate of the cooling steam to the high temperature part of the gas turbine supplied from the exhaust heat recovery boiler to a predetermined value according to the operating state of the gas turbine. Combined cycle power plant characterized by having.
【請求項2】 前記温度調節弁、前記第1起動用冷却蒸
気供給系統からの高温の冷却蒸気と前記第2起動用冷却
蒸気供給系統からの低温の冷却蒸気との合流部に三方弁
を設けたことを特徴とする請求項1記載のコンバインド
サイクル発電プラント。
2. A three-way valve is provided at the junction of the temperature control valve and the high-temperature cooling steam from the first starting cooling steam supply system and the low-temperature cooling steam from the second starting cooling steam supply system. The combined cycle power plant according to claim 1.
【請求項3】 前記制御装置は、前記合流系統の冷却蒸
気温度がガスタービンの運転状態に応じた所定温度にな
るように前記温度調節弁または前記三方弁を制御する温
度制御器と、前記合流系統の冷却蒸気流量がガスタービ
ンの運転状態に応じた所定流量になるように前記流量調
節弁を制御する流量制御器とを備えたことを特徴とする
請求項1または請求項2記載のコンバインドサイクル発
電プラント。
3. The temperature controller for controlling the temperature control valve or the three-way valve so that the cooling steam temperature of the merging system becomes a predetermined temperature according to the operating state of the gas turbine, and the merging unit. The combined cycle according to claim 1 or 2, further comprising: a flow rate controller that controls the flow rate adjusting valve so that a cooling steam flow rate of the system becomes a predetermined flow rate according to an operating state of the gas turbine. Power plant.
【請求項4】 前記制御装置は、前記合流系統の冷却蒸
気温度がガスタービンの運転状態に応じた所定温度にな
るように前記温度調節弁または前記三方弁を制御する第
1温度制御器と、前記合流系統の冷却蒸気流量に基づい
て前記合流系統の冷却蒸気温度がガスタービンの運転状
態に応じた所定温度になるように前記温度調節弁または
前記三方弁を制御する第2温度制御器と、前記合流系統
の冷却蒸気流量がガスタービンの運転状態に応じた所定
流量になるように前記流量調節弁を制御する第1流量制
御器と、前記合流系統の冷却蒸気温度に基づいて前記合
流系統の冷却蒸気流量がガスタービンの運転状態に応じ
た所定流量になるように前記流量調節弁を制御する第2
流量制御器とを備えたことを特徴とする請求項1または
請求項2記載のコンバインドサイクル発電プラント。
4. The first temperature controller for controlling the temperature control valve or the three-way valve such that the cooling steam temperature of the merging system becomes a predetermined temperature according to the operating state of the gas turbine, A second temperature controller that controls the temperature control valve or the three-way valve so that the cooling steam temperature of the merging system becomes a predetermined temperature according to the operating state of the gas turbine based on the cooling steam flow rate of the merging system; A first flow rate controller that controls the flow rate control valve so that the cooling steam flow rate of the merging system becomes a predetermined flow rate according to the operating state of the gas turbine, and the cooling system of the merging system based on the cooling steam temperature of the merging system. A second control for controlling the flow rate control valve so that the flow rate of the cooling steam becomes a predetermined flow rate according to the operating state of the gas turbine.
The combined cycle power plant according to claim 1 or 2, further comprising a flow controller.
【請求項5】 前記制御装置は、前記第1起動用冷却蒸
気供給系統の冷却蒸気温度と前記第2起動用冷却蒸気供
給系統の冷却蒸気温度と前記合流系統の冷却蒸気流量と
に基づいて前記合流系統の冷却蒸気温度がガスタービン
の運転状態に応じた所定温度となるための前記温度調節
弁または三方弁を通過する冷却蒸気流量を演算する流量
演算器と、前記温度調節弁または三方弁を通過する冷却
蒸気流量が前記流量演算器で演算された冷却蒸気流量と
なるように前記流量調節弁または三方弁を制御する温度
制御器と、前記合流系統の冷却蒸気流量がガスタービン
の運転状態に応じた所定流量になるように前記流量調節
弁を制御する流量制御器とを備えたことを特徴とする請
求項1または請求項2記載のコンバインドサイクル発電
プラント。
5. The controller controls the cooling steam temperature of the first starting cooling steam supply system, the cooling steam temperature of the second starting cooling steam supply system, and the cooling steam flow rate of the merging system. A flow rate calculator for calculating the flow rate of the cooling steam passing through the temperature control valve or the three-way valve for the cooling steam temperature of the merging system to reach a predetermined temperature according to the operating state of the gas turbine, and the temperature control valve or the three-way valve. A temperature controller that controls the flow rate control valve or the three-way valve so that the passing cooling steam flow rate becomes the cooling steam flow rate calculated by the flow rate calculator, and the cooling steam flow rate of the merging system is in the operating state of the gas turbine. The combined cycle power plant according to claim 1 or 2, further comprising: a flow rate controller that controls the flow rate control valve so that a predetermined flow rate corresponding to the flow rate is obtained.
【請求項6】 前記制御装置は、前記第1起動用冷却蒸
気供給系統の冷却蒸気温度が温度制御上必要とされる温
度を超えたか否かを判定する温度判定演算器と、前記温
度判定演算器が温度制御上必要とされる温度を超えたと
判定したときは前記合流系統の冷却蒸気温度がガスター
ビンの運転状態に応じた所定温度になるように前記温度
調節弁または前記三方弁を制御する温度制御器と、前記
合流系統の冷却蒸気流量がガスタービンの運転状態に応
じた所定流量になるように前記流量調節弁を制御する流
量制御器とを備えたことを特徴とする請求項1または請
求項2記載のコンバインドサイクル発電プラント。
6. The temperature determination calculation unit for determining whether or not the cooling steam temperature of the first startup cooling steam supply system exceeds a temperature required for temperature control, and the temperature determination calculation. When it is determined that the temperature of the reactor exceeds the temperature required for temperature control, the temperature control valve or the three-way valve is controlled so that the cooling steam temperature of the merging system becomes a predetermined temperature according to the operating state of the gas turbine. A temperature controller, and a flow rate controller that controls the flow rate control valve so that the flow rate of the cooling steam in the merging system becomes a predetermined flow rate according to the operating state of the gas turbine. The combined cycle power plant according to claim 2.
【請求項7】 前記制御装置は、前記合流系統の冷却蒸
気温度がガスタービンの運転状態に応じた所定温度にな
るように前記温度調節弁または前記三方弁を制御する温
度制御器と、前記合流系統の冷却蒸気流量がガスタービ
ンの運転状態に応じた所定流量になるように前記流量調
節弁を制御する流量制御器と、ガスタービンの運転状態
に応じた所定温度および所定流量に基づいて前記温度制
御器の出力信号と前記流量制御器の出力信号との分配比
を演算する分配演算器とを備えたことを特徴とする請求
項1または請求項2記載のコンバインドサイクル発電プ
ラント。
7. The temperature controller for controlling the temperature control valve or the three-way valve so that the cooling steam temperature of the merging system becomes a predetermined temperature according to the operating state of the gas turbine, and the merging unit. A flow rate controller that controls the flow rate control valve so that the cooling steam flow rate of the system becomes a predetermined flow rate according to the operating state of the gas turbine, and a predetermined temperature according to the operating state of the gas turbine and the temperature based on the predetermined flow rate. The combined cycle power plant according to claim 1 or 2, further comprising: a distribution calculator that calculates a distribution ratio between an output signal of the controller and an output signal of the flow rate controller.
JP2002059959A 2002-03-06 2002-03-06 Combined cycle generating plant Pending JP2003254089A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002059959A JP2003254089A (en) 2002-03-06 2002-03-06 Combined cycle generating plant

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002059959A JP2003254089A (en) 2002-03-06 2002-03-06 Combined cycle generating plant

Publications (1)

Publication Number Publication Date
JP2003254089A true JP2003254089A (en) 2003-09-10

Family

ID=28669466

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002059959A Pending JP2003254089A (en) 2002-03-06 2002-03-06 Combined cycle generating plant

Country Status (1)

Country Link
JP (1) JP2003254089A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010255527A (en) * 2009-04-24 2010-11-11 Toshiba Corp Combined cycle power generation system

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010255527A (en) * 2009-04-24 2010-11-11 Toshiba Corp Combined cycle power generation system

Similar Documents

Publication Publication Date Title
US6089012A (en) Steam cooled gas turbine system
KR100592144B1 (en) Apparatus and methods for supplying auxiliary steam in a combined cycle system
US20100281877A1 (en) Single shaft combined cycle power plant start-up method an single shaft combined cycle power plant
JP2000161014A (en) Combined power generator facility
JP2012167571A (en) Uniaxial combined cycle power generation plant, and method of operating the same
EP0933505B1 (en) Steam cooled system in combined cycle power plant
EP1698763A1 (en) Gas turbine combined plant
EP2270317B1 (en) Apparatus for control of gas turbine in uniaxial combined-cycle plant, and method therefor
JP2010121598A (en) Gas turbine operation control device and method
JP2692973B2 (en) Steam cycle startup method for combined cycle plant
WO2018096757A1 (en) Heat exchange system and operating method therefor, cooling system and cooling method for gas turbine, and gas turbine system
JP2000130108A (en) Starting method for combined cycle power plant
JP5835949B2 (en) Turbine cooling control apparatus and method, program, and gas turbine plant using the same
JPH05222906A (en) Controller for power plant utilizing exhaust heat
GB2166198A (en) Improved steam turbine load control in a combined cycle electrical power plant
JP2003254089A (en) Combined cycle generating plant
JP2915885B1 (en) Gas turbine combined cycle system
EP2460983B1 (en) Steam-driven power plant
JPH0486308A (en) Steam-cooling gas turbine combined plant
JP2823342B2 (en) Steam temperature controller for superheater / reheater in combined cycle power plant
JPH10131716A (en) Method and device for controlling steam cooling system of gas turbine
CN117386511A (en) TCA cooling water control method and system
JP3641518B2 (en) Steam temperature control method and apparatus for combined cycle plant
JP2013142357A (en) Combined cycle power generation plant
JP2003254011A (en) Operating method for multi-shaft type combined cycle power generating plant