JP2003251541A - Guide device using ultrasonic motor as drive source of movable body - Google Patents

Guide device using ultrasonic motor as drive source of movable body

Info

Publication number
JP2003251541A
JP2003251541A JP2002052242A JP2002052242A JP2003251541A JP 2003251541 A JP2003251541 A JP 2003251541A JP 2002052242 A JP2002052242 A JP 2002052242A JP 2002052242 A JP2002052242 A JP 2002052242A JP 2003251541 A JP2003251541 A JP 2003251541A
Authority
JP
Japan
Prior art keywords
ultrasonic motor
guide device
stage
movable body
dust removing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002052242A
Other languages
Japanese (ja)
Inventor
Sachiko Azuma
祥子 東
Koji Akashi
幸治 明石
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP2002052242A priority Critical patent/JP2003251541A/en
Publication of JP2003251541A publication Critical patent/JP2003251541A/en
Pending legal-status Critical Current

Links

Landscapes

  • Auxiliary Devices For Machine Tools (AREA)
  • General Electrical Machinery Utilizing Piezoelectricity, Electrostriction Or Magnetostriction (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide stable drive property produced by an ultrasonic motor by preventing the abrasion powder produced by the friction drive between the ultrasonic motor and a movable body from being caught into the gap between the ultrasonic motor and the movable body of a guide device. <P>SOLUTION: In a guide device to move a stage 63 as a movable body by the friction drive between the ultrasonic motor and the stage 63 as a movable body, a dust removing means 1 having injection holes 4 for compressed gas and exhaust grooves 6 and 7, which are arranged around the injection holes 4, is arranged in the gap provided at a position near the faces where the stage 63 and the ultrasonic motor abut on each other. In the guide device, the abrasion powder attached to the faces where the stage 63 and the ultrasonic motor abut on each other is blown off by injecting compressed gas from the injection hole 4 of the dust removing means 1 and the abrasion powder is also collected from the exhaust grooves 6 and 7 of the dust removing means 1. <P>COPYRIGHT: (C)2003,JPO

Description

【発明の詳細な説明】 【0001】 【発明の属する技術分野】本発明は、直線運動や回転運
動する可動体を超音波モータにて駆動させる案内装置に
関するものであり、特に精密加工機械、精密測定装置、
半導体製造装置に用いられる案内装置として好適なもの
である。 【0002】 【従来の技術及び発明が解決しようとする課題】超音波
モータは、最小振幅がナノメートルオーダーと小さく、
高分解能の位置決めが可能であり、しかも同サイズの他
の電磁モータと比較して駆動力が大きいといった特徴を
有するため、これまでカメラのレンズズーム機構や腕時
計のバイブレーションアラームなど回転運動系への実用
化が行われており、最近では直線運動系への適用もなさ
れている。 【0003】図8に超音波モータを可動体の駆動源とす
る従来の案内装置の一例を示すように、この案内装置
は、ベース盤61上にクロスローラガイドの如き一対の
ガイド部材62を備え、これらのガイド部材62によっ
て可動体としてのステージ63を直線的に案内するよう
になっている。 【0004】また、ステージ63の一方の側面には、ガ
イド部材62に対して平行に駆動力伝達部材64が、ス
テージ63の他方の側面には、上記駆動力伝達部材64
と平行にリニアスケール65がそれぞれ設置されてお
り、このリニアスケール65と対向する位置には測定ヘ
ッド66を設けて位置検出手段67を構成するととも
に、上記駆動力伝達部材64と対向する位置には超音波
モータ(不図示)を設置し、超音波モータの摩擦部材5
6を上記駆動力伝達部材64の当接面64aに対して垂
直に当接させてある。 【0005】なお、図中、57は超音波モータを収容す
るケース、68は位置検出手段67より得られた位置情
報を基にステージ63の駆動条件を制御する制御部、6
9は制御部68から出力された信号を基に超音波モータ
を駆動させるための指令信号を出力するドライバーであ
る。 【0006】また、図9に図8の案内装置に用いる超音
波モータをケース内に収容した状態を示すように、超音
波モータ51は、圧電セラミック板52の一方の主面に
4分割された電極膜53a,53b,53c,53dを
有し、対角に位置する電極膜53aと電極膜53dを結
線するとともに、対角に位置する電極膜53bと電極膜
53cを結線し、かつ他方の主面には、ほぼ全面に共通
電極膜(不図示)を形成した振動体55と、この振動体
55の一方端面に設けたセラミックスやガラスからなる
摩擦部材56とからなり、上記共通電極膜をアースする
とともに、電極膜53bと電極膜53dにそれぞれ位相
を異ならせた電圧を印加することにより、圧電セラミッ
ク板52に縦振動と横振動を発生させ、これらの振動の
合力によって摩擦部材56を楕円運動させるようになっ
ていた。 【0007】また、超音波モータ51は、ケース57内
においてその両側面をスプリング58を介して保持され
ており、スプリング59の押圧力によって超音波モータ
51をステージ63の駆動力伝達部材64に押し付けて
予圧を与えるようになっていた。 【0008】その為、この超音波モータ51を駆動させ
ると、超音波モータ51の摩擦部材56との摩擦駆動に
よってステージ63をガイド部材62に沿って移動させ
ることができ、ステージ63の移動に伴う位置検出手段
67からの位置情報と、予め設定してあるステージ63
の基準位置情報との偏差に応じて変化するパラメータを
基に制御部68にて例えばPID演算処理を行ってドラ
イバー69に超音波モータ51への指令信号を出力する
フィードバック制御を行うことにより、ステージ63を
移動、位置決めするようになっていた。 【0009】ところが、超音波モータ51の摩擦部材5
6やステージ63の駆動力伝達部材64は互いに摩耗
し、その摩耗粉が駆動力伝達部材64の当接面64aに
付着したり、周囲の雰囲気からのダストが駆動力伝達部
材64の当接面64aに付着するため、この摩耗粉やダ
ストが超音波モータ51の摩擦部材56とステージ63
の駆動力伝達部材64との間に噛み込むと接触状態が変
化することから、ステージ63の駆動特性を不安定にさ
せるとともに、超音波モータ51の摩擦部材56やステ
ージ63の駆動力伝達部材64の摩耗が促進され、短期
間の使用で超音波モータ51や駆動力伝達部材64を交
換しなければならないといった課題があった。 【0010】また、超音波モータ51の摩擦部材56や
ステージ63の駆動力伝達部材64は互いに摩耗し、そ
の摩耗粉が飛散するため、周囲の雰囲気を汚染するとい
った課題があった。 【0011】その為、これらの課題に対し、特開平11
−18446号公報には、駆動力伝達部材64に付着し
た摩耗粉やダストを除去するため、ブラシやローラある
いはフェルトや剥離爪等を駆動力伝達部材64に当接さ
せて摩耗粉やダストを除去する技術が開示されている。 【0012】しかしながら、ブラシ、ローラ、フェル
ト、剥離爪等を用いて摩耗粉やダストを除去しようとし
ても、掻き残しが生じたり、掻き取った摩耗粉やダスト
が駆動力伝達部材64に再付着したり、接触式のために
駆動力伝達部材64の面状態が変化し案内装置の運動性
能に影響を与えるといった課題があり、確実に摩耗粉や
ダストを除去することができなかった。 【0013】また、特開平11−18446号公報に
は、摩耗粉の再付着を防止するためにクリーニング溶液
を塗布することが開示されているが、このクリーニング
溶液が駆動力伝達部材64に付着すると、超音波モータ
51の摩擦部材56とステージ63の駆動力伝達部材6
4との間にすべりが発生し、ステージ63の駆動特性に
悪影響を与えるといった課題もあった。 【0014】 【課題を解決するための手段】そこで、本発明は上記課
題に鑑み、楕円運動する振動体と、この振動体の楕円運
動を伝達する摩擦部材とからなる超音波モータと、超音
波モータの摩擦部材との摩擦駆動により可動する可動体
とを有する超音波モータを可動体の駆動源とする案内装
置において、圧縮気体の噴射孔と、この噴射孔の周囲に
配置された排気溝とを有する粉塵除去手段を、上記可動
体の超音波モータとの当接面近傍に隙間を設けて配置
し、上記粉塵除去手段の噴射孔より圧縮気体を噴射して
上記可動体の超音波モータとの当接面に付着する摩耗粉
を吹き飛ばすとともに、上記粉塵除去手段の排気溝より
上記摩耗粉を回収するようにしたことを特徴とする。 【0015】 【発明の実施の形態】以下、本発明の実施形態について
説明する。 【0016】図1に超音波モータを可動体の駆動源とす
る本発明の案内装置の一例を示す。なお、従来例と同一
部分については同一符号で示す。 【0017】この案内装置は、ベース盤61上にクロス
ローラガイドの如き一対のガイド部材62を備え、これ
らガイド部材62によって可動体としてのステージ63
を直線的に案内するようになっている。 【0018】また、ステージ63の一方の側面には、ガ
イド部材62に対して平行に駆動力伝達部材64を、ス
テ―ジ63の他方の側面には、上記駆動力伝達部材64
と平行にリニアスケール65をそれぞれ設置してあり、
このリニアスケール65と対向する位置には測定ヘッド
66を設けて位置検出手段67を構成するとともに、上
記駆動力伝達部材64と対向する位置には超音波モータ
(不図示)を配置し、超音波モータの摩擦部材56を上
記駆動力伝達部材64の当接面64aに対して垂直に当
接させてある。 【0019】なお、図中、68は位置検出手段67より
得られた位置情報を基にステージ63の駆動条件を制御
する制御部、69は上記制御部68から出力された信号
を基に超音波モータを駆動させるための指令信号を出力
するドライバーであり、57は超音波モータを収容する
ケースである。 【0020】また、図1に示す超音波モータの構造及び
超音波モータの取付構造は、図8に示したものと同一と
したため、ここでは説明を省略する。 【0021】さらに、本発明の案内装置は、超音波モー
タを挟んでその両側に、圧縮気体の噴射孔と、この噴射
孔の周囲に配置された排気溝とを有する粉塵除去手段1
を、駆動力伝達部材64の当接面近傍に隙間を設けて配
置したことを特徴とする。 【0022】ここで、粉塵除去手段の詳細について図2
(a)(b)を基に説明する。 【0023】図2(a)(b)に示す粉塵除去手段1
は、駆動力伝達部材64と略同等の幅を持った平坦面3
を有するベース部材2の中央部に、圧縮気体を噴出する
ための噴射孔4を備え、この噴射孔4の開口部近傍には
エアパッド5を設けてある。この際、エアーパッド5の
表面は上記ベース部材2の平坦面3と同一平面となるよ
うに設置してある。 【0024】また、噴射孔4の周囲には、この噴射孔4
を囲むように二重の環状排気溝6,7がベーシ部材2の
平坦面3に形成してあり、この排気溝6,7は不図示の
バキュームポンプと接続されるようになっている。 【0025】次に、本発明の案内装置の駆動状態につい
て説明する。 【0026】まず、ドライバー69より指令信号を出力
して超音波モータ51の摩擦部材56を楕円運動させる
と、駆動力伝達部材64との摩擦駆動によってステージ
63をガイド部材62に沿って移動させることができ、
ステージ63の移動に伴う位置検出手段67からの位置
情報と、予め設定してあるステージ63の基準位置情報
との偏差に応じて変化するパラメータを基に制御部68
にて例えばPID演算処理を行ってドライバー69に超
音波モータ51への指令信号を出力するフィードバック
制御を行うことにより、ステージ63を所定の条件で移
動させることができる。 【0027】この時、駆動力伝達部材64の当接面64
aには、超音波モータ51との摩擦駆動によって発生し
た摩耗粉が付着するのであるが、本発明の案内装置によ
れば、粉塵除去手段1の噴射孔4より圧縮気体を駆動力
伝達部材64の当接面64aに向けて噴出させることに
より、当接面64aに付着する摩耗粉を吹き飛ばすよう
にしたことから、駆動力伝達部材64の超音波モータ5
1との当接面64aに摩耗粉が殆ど残らないようにする
ことができるとともに、駆動力伝達部材64と粉塵除去
手段1との隙間に飛散した摩耗粉や周囲に浮遊するダス
トを噴射孔4の周囲に設けた排気溝6,7より吸引して
回収することができるため、摩耗粉やダストを周囲に飛
散させないようにすることができる。 【0028】その為、本発明の案内装置によれば、駆動
力伝達部材64の当接面64aと超音波モータの摩擦部
材56との隙間に摩耗粉が噛み込むのを大幅に低減する
ことができるため、常に安定した接触状態を得ることが
でき、超音波モータの駆動によってステージ63を安定
して駆動させることができるため、可動中における精度
が1μm、位置決め精度が0.1μmといった高精度が要
求されるような場合でも精度良く移動、位置決めするこ
とができる。 【0029】ところで、このような効果を奏するために
は、駆動力伝達部材64の当接面から粉塵除去手段1の
平坦面3までの距離Tは0.5〜10μmとすることが
好ましい。 【0030】即ち、両者の距離Tが0.5μm未満であ
ると、粉塵が駆動力伝達部材64の当接面と粉塵除去手
段1の平坦面との隙間に噛み込み、ステージ63が動か
なくなる恐れがあるからであり、逆に距離Tが10μm
を超えると、駆動力伝達部材64の当接面64aから粉
塵除去手段1の平坦面3までの距離が離れすぎるため、
圧縮気体によって飛散した摩耗粉を排気溝6,7によっ
て十分に回収することができずにその周囲にまき散ら
し、使用環境を汚染したり、ステージ63のガイド部材
62等に噛み込むと、ステージ63の移動精度に悪影響
を与えるからである。 【0031】なお、粉塵除去手段1の噴射孔4及び排気
溝6,7の配置パターンについては、図2(a)(b)
に示すパターン形状だけに限定されるものではなく、必
要に応じて図3(a)(b)乃至図5(a)(b)のよ
うな配置パターンを有するものを用いることもでき、少
なくとも一つの圧縮気体の噴射孔4と、この噴射孔4を
取り囲む少なくとも一つの排気溝6を有するものであれ
ば構わない。 【0032】以上、本実施形態では、可動体が直線運動
する案内装置を例にとって説明したが、可動体が回転運
動する案内装置にも適用できることは言う迄もなく、さ
らに、可動体を駆動させる超音波モータについても、多
重モード型のものに限らず、単一振動モードの定在波型
や進行波、複数振動モードのモード変換型、複合振動型
の超音波モータであっても構わない。 【0033】このように、本発明の要旨を逸脱しない範
囲であれば、種々改良や変更したものにも適用できるこ
とはいう迄もない。 【0034】 【実施例】(実施例1)ここで、図2(a)(b)乃至
図5(a)(b)の配置パターンを有する粉塵除去手段
1を備えた図1に示す本発明の案内装置と、粉塵除去手
段を備えていない図8に示す従来の案内装置を用意し、
各案内装置のステージ63を1時間移動させた後の超音
波モータ51の摩耗部材56とステージ63の駆動力伝
達部材64に付着する摩耗粉の付着量について比較する
実験を行った。 【0035】以下、実験に使用する案内装置の仕様につ
いて説明する。 【0036】案内装置を構成するガイド部材62には、
ストロークが100mmのクロスローラガイドを用い、
上記ガイド部材62によって5kgの重さを有するステ
ージ63を移動させるようにした。また、ステージ63
の一方の側面にはアルミナセラミック製の駆動力伝達部
材64を配置し、超音波モータ51との当接面64aの
表面粗さを算術平均粗さ(Ra)で0.05μmとし
た。 【0037】一方、ステージ63の駆動源である超音波
モータ51は、振動体55を、長さ30mm、幅7.5
mm、厚み3mmの直方体をしたチタン酸ジルコン酸鉛
系の圧電セラミック体52により形成し、振動体55の
端面に、長さ4.2mm、直径3mmの円柱状をしたア
ルミナセラミック製の摩擦部材56を接合したものを用
いた。なお、摩擦部材56の駆動力伝達部材64との当
接面は、曲率半径が7mmの球面とした。 【0038】また、本発明の案内装置に用いる粉塵除去
手段1には、アルミナセラミック製のエアパッド5を備
えたものを用い、駆動力伝達部材64の当接面から5μ
m離れた位置に設置した。そして、噴射孔4からは0.
1MPaの圧力で圧縮空気を噴出するとともに、排気溝
6,7はバキュームポンプに接続して排気するようにし
た。 【0039】実験にあたっては、制御部18に予め設定
しておくステージ63の移動プロファイルとして、移動
距離100mm、加減速度0.03G、最高速度100
mm/sに設定した台形制御とし、超音波モータ51を
40kHzの駆動周波数で駆動させるようにした。 【0040】そして、この条件にてステージ63を1時
間駆動させ、走行試験後に超音波モータの摩擦部材56
とステージ63の駆動力伝達部材64に付着する摩耗粉
の量を測定した。なお、摩耗粉の付着量については、1
mm2当たりに粒径0.1μm以上の摩耗粉が付着する
量をパーティクルカウンターで測定した。 【0041】結果は図6に示す通りである。この結果、
粉塵除去手段を持たない従来の案内装置では、摩耗粉の
付着量が1000個程度と多かったのに対し、図2乃至
図5に示す粉塵除去手段1を有する本発明の案内装置で
は、最も多いものでも10個程度であり、摩耗粉の付着
を効果的に抑えられることが確認できた。 【0042】(実施例2)次に、図2(a)(b)に示
す粉塵除去手段1を備えた図1に示す本発明の案内装置
と、図8に示す従来の案内装置を用い、実施例1と同じ
駆動条件にてステージを移動させ、その時の位置検出手
段67からの位置情報と予め設定してある基準位置情報
との偏差を測定し、この偏差が1μmを越えた時をステ
ージ63の駆動特性が不安定であるとし、そのときの移
動距離を測定した。 【0043】結果は図7に示す通りである。この結果、
従来の案内装置は、200kmの移動で位置決め精度が
1μmを越え、ステージ63の駆動特性が不安定になっ
た。また、この時、ステージ63の駆動力伝達部材64
を観察してみると、小さな摩耗粉が多数付着していた。
その結果、500km移動後の超音波モータ51の摩擦
部材56とステージ63の駆動力伝達部材64の合計摩
耗量を測定したところ0.1mm3と多かった。 【0044】これに対し、図1に示す粉塵除去手段を備
えた本発明の案内装置は、ステージ63を500km移
動させる途中において偏差が1μmを越えることはな
く、ステージ63を安定して駆動させることができた。
また、500km移動後の超音波モータ51の摩擦部材
56とステージ63の駆動力伝達部材64の合計摩耗量
を測定したところ0.01mm3と極めて少なくするこ
とができ、優れていた。 【0045】 【発明の効果】以上のように、本発明によれば、超音波
モータとの摩擦駆動によって可動体を動かす案内装置に
おいて、圧縮気体の噴射孔と、この噴射孔の周囲に配置
された排気溝とを有する粉塵除去手段を、可動体の超音
波モータとの当接面近傍に隙間を設けて配置し、上記粉
塵除去手段の噴射孔より圧縮気体を噴射して上記可動体
の超音波モータとの当接面に付着する摩耗粉を吹き飛ば
すとともに、上記粉塵除去手段の排気溝より上記摩耗粉
を回収するようにしたことから、可動体の超音波モータ
との当接面に摩耗粉が殆ど残らないようにすることがで
きるとともに、可動体と粉塵除去手段との隙間に飛散し
た摩耗粉や浮遊するダストを周囲に飛散させるようなこ
とがない。 【0046】その為、本発明の案内装置を用いれば、可
動体と超音波モータとの隙間に摩耗粉が噛み込むのを大
幅に低減することができるため、常に安定した接触状態
を得ることができ、超音波モータの駆動によって可動体
を安定して駆動させることができるため、可動中におけ
る精度が1μm、位置決め精度が0.1μmといった高精
度が要求されるような場合でも精度良く移動、位置決め
することができる。
Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a guide device for driving a movable body that moves linearly or rotationally by an ultrasonic motor, and particularly to a precision machining machine and a precision machine. measuring device,
It is suitable as a guide device used in a semiconductor manufacturing apparatus. 2. Description of the Related Art Ultrasonic motors have a minimum amplitude as small as on the order of nanometers.
High resolution positioning is possible, and it has the feature that the driving force is larger than other electromagnetic motors of the same size, so it has been practically used for rotary motion systems such as camera lens zoom mechanism and wristwatch vibration alarm. Has recently been applied to linear motion systems. FIG. 8 shows an example of a conventional guide device using an ultrasonic motor as a drive source of a movable body. This guide device includes a pair of guide members 62 such as a cross roller guide on a base board 61. The stage 63 as a movable body is linearly guided by these guide members 62. A driving force transmitting member 64 is provided on one side surface of the stage 63 in parallel with the guide member 62, and the driving force transmitting member 64 is provided on the other side surface of the stage 63.
The linear scales 65 are respectively installed in parallel with the linear scale 65. A measuring head 66 is provided at a position facing the linear scale 65 to constitute a position detecting means 67, and at a position facing the driving force transmitting member 64, An ultrasonic motor (not shown) is installed, and a friction member 5 of the ultrasonic motor is provided.
6 is vertically contacted with the contact surface 64 a of the driving force transmitting member 64. [0005] In the drawing, 57 is a case accommodating an ultrasonic motor, 68 is a controller for controlling the driving conditions of the stage 63 based on the position information obtained from the position detecting means 67, and 6.
Reference numeral 9 denotes a driver that outputs a command signal for driving the ultrasonic motor based on a signal output from the control unit 68. [0008] As shown in FIG. 9, the ultrasonic motor 51 used in the guide device of FIG. 8 is accommodated in a case, and the ultrasonic motor 51 is divided into four main surfaces of a piezoelectric ceramic plate 52. It has electrode films 53a, 53b, 53c, and 53d, connects the diagonally located electrode films 53a and 53d, connects the diagonally located electrode films 53b and 53c, and connects the other main film. A vibrator 55 having a common electrode film (not shown) formed on substantially the entire surface thereof, and a friction member 56 made of ceramics or glass provided on one end surface of the vibrator 55, and the common electrode film is grounded. At the same time, by applying voltages having different phases to the electrode films 53b and 53d, longitudinal vibration and transverse vibration are generated in the piezoelectric ceramic plate 52, and the frictional force is generated by the resultant force of these vibrations. The wood 56 was adapted to elliptical motion. The ultrasonic motor 51 is held on both sides in a case 57 via a spring 58, and the ultrasonic motor 51 is pressed against the driving force transmitting member 64 of the stage 63 by the pressing force of the spring 59. To give a preload. Therefore, when the ultrasonic motor 51 is driven, the stage 63 can be moved along the guide member 62 by the friction driving of the ultrasonic motor 51 with the friction member 56, and the movement of the stage 63 is caused. The position information from the position detecting means 67 and the preset stage 63
The controller 68 performs, for example, a PID calculation process based on a parameter that changes in accordance with the deviation from the reference position information, and performs feedback control to output a command signal to the ultrasonic motor 51 to the driver 69, thereby making the stage 63 was moved and positioned. However, the friction member 5 of the ultrasonic motor 51
The driving force transmitting members 64 of the stage 6 and the stage 63 wear each other, and the abrasion powder adheres to the contact surface 64 a of the driving force transmitting member 64, and dust from the surrounding atmosphere contacts the driving force transmitting member 64. The abrasion powder and dust are attached to the friction member 56 of the ultrasonic motor 51 and the
Since the contact state changes when it is engaged with the driving force transmitting member 64, the driving characteristics of the stage 63 are made unstable, and the frictional member 56 of the ultrasonic motor 51 and the driving force transmitting member 64 of the stage 63 are changed. Of the ultrasonic motor 51 and the driving force transmission member 64 must be replaced after a short period of use. Further, the friction member 56 of the ultrasonic motor 51 and the driving force transmitting member 64 of the stage 63 wear each other, and the wear powder is scattered, thereby contaminating the surrounding atmosphere. [0011] To solve these problems, Japanese Unexamined Patent Application Publication No.
Japanese Patent No. -18446 discloses that in order to remove abrasion powder and dust adhering to the driving force transmission member 64, a brush, a roller, a felt, a peeling claw or the like is brought into contact with the driving force transmission member 64 to remove the abrasion powder and dust. A technique for performing this is disclosed. However, even if an attempt is made to remove abrasion powder or dust using a brush, a roller, a felt, a peeling claw, or the like, an unscraped residue occurs, or the abraded dust or dust is re-adhered to the driving force transmitting member 64. Also, there is a problem that the surface state of the driving force transmitting member 64 changes due to the contact type, which affects the kinetic performance of the guide device, so that abrasion powder and dust cannot be reliably removed. Japanese Patent Application Laid-Open No. 11-18446 discloses that a cleaning solution is applied to prevent re-adhesion of abrasion powder. , The frictional member 56 of the ultrasonic motor 51 and the driving force transmitting member 6 of the stage 63
There is also a problem that a slip occurs between the stage 63 and the stage 4 and the driving characteristics of the stage 63 are adversely affected. SUMMARY OF THE INVENTION In view of the above-mentioned problems, the present invention provides an ultrasonic motor including an oscillator that performs elliptical motion, a friction member that transmits the elliptical motion of the oscillator, and an ultrasonic motor. In a guide device using an ultrasonic motor having a movable body that is movable by friction driving with a friction member of the motor as a driving source of the movable body, an injection hole for compressed gas and an exhaust groove arranged around the injection hole are provided. Dust removing means having a gap provided in the vicinity of the contact surface of the movable body with the ultrasonic motor, a compressed gas is injected from an injection hole of the dust removing means and the ultrasonic motor of the movable body. The abrasion powder adhering to the contact surface is blown off, and the abrasion powder is collected from an exhaust groove of the dust removing means. Hereinafter, embodiments of the present invention will be described. FIG. 1 shows an example of a guide device of the present invention using an ultrasonic motor as a drive source of a movable body. The same parts as those in the conventional example are denoted by the same reference numerals. This guide device has a pair of guide members 62 such as cross roller guides on a base board 61, and a stage 63 as a movable body is provided by these guide members 62.
Is guided in a straight line. A driving force transmitting member 64 is provided on one side surface of the stage 63 in parallel with the guide member 62, and the driving force transmitting member 64 is provided on the other side surface of the stage 63.
The linear scales 65 are installed in parallel with
A measuring head 66 is provided at a position facing the linear scale 65 to constitute a position detecting means 67, and an ultrasonic motor (not shown) is arranged at a position facing the driving force transmitting member 64. The friction member 56 of the motor is vertically contacted with the contact surface 64a of the driving force transmission member 64. In the drawing, reference numeral 68 denotes a control unit for controlling the driving conditions of the stage 63 based on the position information obtained by the position detection means 67, and 69 denotes an ultrasonic wave based on the signal output from the control unit 68. A driver 57 outputs a command signal for driving the motor. Reference numeral 57 denotes a case that accommodates an ultrasonic motor. The structure of the ultrasonic motor shown in FIG. 1 and the structure for mounting the ultrasonic motor are the same as those shown in FIG. 8, and a description thereof will be omitted. Further, the guide device of the present invention has a dust removing means 1 having a compressed gas injection hole and an exhaust groove disposed around the injection hole on both sides of the ultrasonic motor.
Are arranged with a gap provided in the vicinity of the contact surface of the driving force transmitting member 64. Here, details of the dust removing means are shown in FIG.
A description will be given based on (a) and (b). The dust removing means 1 shown in FIGS. 2A and 2B
Is a flat surface 3 having substantially the same width as the driving force transmitting member 64.
An injection hole 4 for ejecting a compressed gas is provided at a central portion of the base member 2 having an air hole, and an air pad 5 is provided near an opening of the injection hole 4. At this time, the surface of the air pad 5 is set so as to be flush with the flat surface 3 of the base member 2. Further, around the injection hole 4,
Are formed on the flat surface 3 of the base member 2 so that the exhaust grooves 6, 7 are connected to a vacuum pump (not shown). Next, the driving state of the guide device of the present invention will be described. First, when a command signal is output from the driver 69 to cause the friction member 56 of the ultrasonic motor 51 to perform an elliptical motion, the stage 63 is moved along the guide member 62 by friction driving with the driving force transmission member 64. Can be
The control unit 68 is based on a parameter that changes according to the deviation between the position information from the position detection unit 67 accompanying the movement of the stage 63 and the preset reference position information of the stage 63.
For example, by performing PID calculation processing and performing feedback control for outputting a command signal to the ultrasonic motor 51 to the driver 69, the stage 63 can be moved under predetermined conditions. At this time, the contact surface 64 of the driving force transmitting member 64
The abrasion powder generated by the friction drive with the ultrasonic motor 51 adheres to a. According to the guide device of the present invention, the compressed gas is transmitted from the injection hole 4 of the dust removing means 1 to the driving force transmitting member 64. The abrasion powder adhering to the abutment surface 64a is blown off by being ejected toward the abutment surface 64a of the ultrasonic motor 5 of the driving force transmission member 64.
In addition to making it possible to prevent the wear powder from remaining on the contact surface 64a with the driving force transmitting member 64, the wear powder scattered in the gap between the driving force transmitting member 64 and the dust removing means 1 and the dust floating around the injection hole 4a. Can be sucked and collected from the exhaust grooves 6 and 7 provided around the periphery, so that abrasion powder and dust can be prevented from scattering around. Therefore, according to the guide device of the present invention, it is possible to greatly reduce the abrasion powder from being caught in the gap between the contact surface 64a of the driving force transmitting member 64 and the friction member 56 of the ultrasonic motor. Therefore, a stable contact state can be obtained at all times, and the stage 63 can be driven stably by driving the ultrasonic motor. As a result, a high accuracy of 1 μm and a positioning accuracy of 0.1 μm while moving is achieved. Even when required, it can be moved and positioned with high accuracy. In order to obtain such an effect, the distance T from the contact surface of the driving force transmitting member 64 to the flat surface 3 of the dust removing means 1 is preferably 0.5 to 10 μm. That is, if the distance T between them is less than 0.5 μm, the dust may bite into the gap between the contact surface of the driving force transmitting member 64 and the flat surface of the dust removing means 1 and the stage 63 may not move. On the contrary, if the distance T is 10 μm
Is exceeded, the distance from the contact surface 64a of the driving force transmission member 64 to the flat surface 3 of the dust removing means 1 is too large.
If the wear powder scattered by the compressed gas cannot be sufficiently collected by the exhaust grooves 6 and 7 and is scattered around the exhaust gas, thereby contaminating the use environment or biting into the guide member 62 of the stage 63, etc. This is because the movement accuracy is adversely affected. The arrangement pattern of the injection holes 4 and the exhaust grooves 6, 7 of the dust removing means 1 is shown in FIGS.
However, the present invention is not limited to only the pattern shapes shown in FIGS. 3A and 3B, and it is also possible to use one having an arrangement pattern as shown in FIGS. 3A, 3B to 5A, 5B if necessary. What is necessary is just to have two compressed gas injection holes 4 and at least one exhaust groove 6 surrounding the injection holes 4. As described above, in the present embodiment, the guide device in which the movable body moves linearly has been described as an example. However, it is needless to say that the present invention can be applied to a guide device in which the movable body rotates, and further, the movable body is driven. The ultrasonic motor is not limited to the multi-mode type, and may be a standing wave type or traveling wave of a single vibration mode, a mode conversion type of a plurality of vibration modes, or a composite vibration type. As described above, it goes without saying that the present invention can be applied to various improvements and modifications without departing from the gist of the present invention. (Embodiment 1) Here, the present invention shown in FIG. 1 provided with a dust removing means 1 having the arrangement patterns of FIGS. 2 (a) (b) to 5 (a) (b). And a conventional guide device shown in FIG. 8 which is not provided with the dust removing means,
An experiment was conducted to compare the amount of abrasion powder adhered to the abrasion member 56 of the ultrasonic motor 51 and the driving force transmission member 64 of the stage 63 after the stage 63 of each guide device was moved for one hour. Hereinafter, the specifications of the guide device used in the experiment will be described. The guide member 62 constituting the guide device includes:
Using a cross roller guide with a stroke of 100 mm,
The stage 63 having a weight of 5 kg was moved by the guide member 62. Also, stage 63
A driving force transmission member 64 made of alumina ceramic is arranged on one side surface of the first member, and the surface roughness of the contact surface 64a with the ultrasonic motor 51 is set to 0.05 μm in arithmetic average roughness (Ra). On the other hand, the ultrasonic motor 51, which is the drive source of the stage 63, moves the vibrator 55 to a length of 30 mm and a width of 7.5.
A friction member 56 made of a columnar alumina ceramic having a length of 4.2 mm and a diameter of 3 mm is formed on the end face of a vibrating body 55 by a piezoelectric ceramic body 52 of lead zirconate titanate having a rectangular parallelepiped shape having a thickness of 3 mm and a thickness of 3 mm. Was used. The contact surface of the friction member 56 with the driving force transmission member 64 was a spherical surface having a radius of curvature of 7 mm. As the dust removing means 1 used in the guide device of the present invention, one having an air pad 5 made of alumina ceramic is used.
m. And, from the injection hole 4, 0.1.
The compressed air is blown out at a pressure of 1 MPa, and the exhaust grooves 6 and 7 are connected to a vacuum pump to exhaust air. In the experiment, the moving profile of the stage 63 set in advance in the control unit 18 includes a moving distance of 100 mm, an acceleration / deceleration of 0.03 G, and a maximum speed of 100 mm.
The trapezoidal control was set to mm / s, and the ultrasonic motor 51 was driven at a drive frequency of 40 kHz. The stage 63 is driven under these conditions for one hour, and after the running test, the friction member 56 of the ultrasonic motor is driven.
And the amount of abrasion powder adhering to the driving force transmitting member 64 of the stage 63 was measured. The amount of abrasion powder attached was 1
The amount of abrasion powder having a particle size of 0.1 μm or more per mm 2 was measured with a particle counter. The results are as shown in FIG. As a result,
In the conventional guide device having no dust removing means, the amount of abrasion powder attached was as large as about 1000 pieces, whereas in the guide device of the present invention having the dust removing means 1 shown in FIGS. The number was about 10 pieces, and it was confirmed that the attachment of abrasion powder could be effectively suppressed. (Embodiment 2) Next, using the guide device of the present invention shown in FIG. 1 provided with the dust removing means 1 shown in FIGS. 2A and 2B and the conventional guide device shown in FIG. The stage is moved under the same driving conditions as in the first embodiment, and the deviation between the position information from the position detecting means 67 at that time and the preset reference position information is measured. When the deviation exceeds 1 μm, the stage is moved. Assuming that the driving characteristics of 63 were unstable, the moving distance at that time was measured. The results are as shown in FIG. As a result,
In the conventional guide device, the positioning accuracy exceeds 1 μm with a movement of 200 km, and the driving characteristics of the stage 63 become unstable. At this time, the driving force transmitting member 64 of the stage 63
When observed, many small abrasion powders adhered.
As a result, the total wear of the friction member 56 of the ultrasonic motor 51 and the driving force transmitting member 64 of the stage 63 after moving 500 km was as large as 0.1 mm 3 . On the other hand, in the guide device of the present invention provided with the dust removing means shown in FIG. 1, the deviation does not exceed 1 μm during the movement of the stage 63 for 500 km, and the stage 63 can be driven stably. Was completed.
Further, when the total wear of the friction member 56 of the ultrasonic motor 51 and the driving force transmitting member 64 of the stage 63 after the movement of 500 km was measured, it was as small as 0.01 mm 3 , which was excellent. As described above, according to the present invention, in the guide device for moving the movable body by friction drive with the ultrasonic motor, the compressed gas injection hole and the periphery of the compressed gas injection hole are arranged. Dust removing means having an exhaust groove and a gap provided in the vicinity of a contact surface of the movable body with the ultrasonic motor, and injecting compressed gas from an injection hole of the dust removing means to remove the superfluid of the movable body. Since the wear powder adhering to the contact surface with the ultrasonic motor is blown off and the wear powder is collected from the exhaust groove of the dust removing means, the wear powder is attached to the movable body in contact with the ultrasonic motor. Can be prevented from remaining, and abrasion powder or floating dust scattered in a gap between the movable body and the dust removing means does not scatter around. Therefore, when the guide device of the present invention is used, it is possible to greatly reduce the abrasion powder from being caught in the gap between the movable body and the ultrasonic motor, so that a stable contact state can always be obtained. The movable body can be driven stably by driving the ultrasonic motor. Therefore, even when high accuracy such as 1 μm in accuracy during movement and 0.1 μm in positioning accuracy is required, movement and positioning can be performed with high accuracy. can do.

【図面の簡単な説明】 【図1】超音波モータを可動体の駆動源とする本発明の
案内装置の一例を示す斜視図である。 【図2】本発明の案内装置に備える粉塵除去手段の一例
を示す図で、(a)はその断面図、(b)はその正面図
である。 【図3】本発明の案内装置に備える粉塵除去手段の他の
例を示す図で、(a)はその断面図、(b)はその正面
図である。 【図4】本発明の案内装置に備える粉塵除去手段の他の
例を示す図で、(a)はその断面図、(b)はその正面
図である。 【図5】本発明の案内装置に備える粉塵除去手段の他の
例を示す図で、(a)はその断面図、(b)はその正面
図である。 【図6】本発明の案内装置と従来の案内装置における摩
耗粉の付着量の関係を示すグラフである。 【図7】本発明の案内装置と従来の案内装置におけるス
テージの移動距離と偏差との関係を示すグラフである。 【図8】超音波モータを可動体の駆動源とする従来の案
内装置の一例を示す斜視図である。 【図9】案内装置に用いる超音波モータをケース内に収
容した状態を示す一部を破断した平面図である。 【符号の説明】 1:粉塵除去手段 2:ベース部材 3:ベース部材の
平坦面 4:噴射孔 5:エアパッド 6,7:排気溝 61:ベース盤 62:ガイド部材 63:ステージ 64:駆動力伝達部材 65:リニアモータ 66:測
定ヘッド 67:位置検出手段 68:制御部 69:ドライバー
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a perspective view showing an example of a guide device of the present invention using an ultrasonic motor as a drive source of a movable body. FIGS. 2A and 2B are views showing an example of dust removing means provided in the guide device of the present invention, wherein FIG. 2A is a cross-sectional view and FIG. 3A and 3B are diagrams showing another example of the dust removing means provided in the guide device of the present invention, wherein FIG. 3A is a cross-sectional view and FIG. 3B is a front view. 4A and 4B are diagrams showing another example of the dust removing means provided in the guide device of the present invention, wherein FIG. 4A is a cross-sectional view and FIG. 4B is a front view. 5A and 5B are diagrams showing another example of the dust removing means provided in the guide device of the present invention, wherein FIG. 5A is a cross-sectional view and FIG. 5B is a front view. FIG. 6 is a graph showing the relationship between the amount of abrasion powder adhering between the guide device of the present invention and a conventional guide device. FIG. 7 is a graph showing a relationship between a moving distance of a stage and a deviation between the guide device of the present invention and a conventional guide device. FIG. 8 is a perspective view showing an example of a conventional guide device using an ultrasonic motor as a drive source of a movable body. FIG. 9 is a partially broken plan view showing a state in which an ultrasonic motor used for the guide device is housed in a case. [Description of Signs] 1: Dust removing means 2: Base member 3: Flat surface of base member 4: Injection hole 5: Air pad 6, 7: Exhaust groove 61: Base plate 62: Guide member 63: Stage 64: Driving force transmission Member 65: Linear motor 66: Measuring head 67: Position detecting means 68: Control unit 69: Driver

───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 3C011 BB15 5H680 AA06 AA12 BB01 BB13 BC01 BC02 BC10 CC02 DD01 DD15 DD23 DD34 DD65 DD82 DD83 FF24 FF30 FF31 GG01 GG41   ────────────────────────────────────────────────── ─── Continuation of front page    F-term (reference) 3C011 BB15                 5H680 AA06 AA12 BB01 BB13 BC01                       BC02 BC10 CC02 DD01 DD15                       DD23 DD34 DD65 DD82 DD83                       FF24 FF30 FF31 GG01 GG41

Claims (1)

【特許請求の範囲】 【請求項1】楕円運動する振動体と、該振動体の楕円運
動を伝達する摩擦部材とからなる超音波モータと、該超
音波モータの摩擦部材との摩擦駆動により可動する可動
体とを有する案内装置において、圧縮気体の噴射孔と、
該噴射孔の周囲に配置された排気溝とを有する粉塵除去
手段を、上記可動体の超音波モータとの当接面近傍に隙
間を設けて配置し、上記粉塵除去手段の噴射孔より圧縮
気体を噴射して上記可動体の超音波モータとの当接面に
付着する摩耗粉を吹き飛ばすとともに、上記粉塵除去手
段の排気溝より上記摩耗粉を回収するようにしたことを
特徴とする超音波モータを可動体の駆動源とする案内装
置。
Claims: 1. An ultrasonic motor comprising an oscillating body that performs an elliptical motion, a friction member that transmits the elliptical motion of the oscillating body, and a movable member that is driven by friction driving the friction member of the ultrasonic motor. In the guide device having a movable body that performs, the injection hole of the compressed gas,
A dust removing means having an exhaust groove arranged around the injection hole, a gap provided near a contact surface of the movable body with the ultrasonic motor, and a compressed gas is supplied from the injection hole of the dust removal means. An ultrasonic motor, which blows away wear powder adhering to an abutting surface of the movable body with the ultrasonic motor and collects the wear powder from an exhaust groove of the dust removing means. A guide device that uses as a drive source of a movable body.
JP2002052242A 2002-02-27 2002-02-27 Guide device using ultrasonic motor as drive source of movable body Pending JP2003251541A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002052242A JP2003251541A (en) 2002-02-27 2002-02-27 Guide device using ultrasonic motor as drive source of movable body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002052242A JP2003251541A (en) 2002-02-27 2002-02-27 Guide device using ultrasonic motor as drive source of movable body

Publications (1)

Publication Number Publication Date
JP2003251541A true JP2003251541A (en) 2003-09-09

Family

ID=28663992

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002052242A Pending JP2003251541A (en) 2002-02-27 2002-02-27 Guide device using ultrasonic motor as drive source of movable body

Country Status (1)

Country Link
JP (1) JP2003251541A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007121084A (en) * 2005-10-27 2007-05-17 Kyocera Corp Guide device
JP2014124011A (en) * 2012-12-20 2014-07-03 Toyota Industries Corp Drive unit for vibration actuator with oscillator and moving element

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007121084A (en) * 2005-10-27 2007-05-17 Kyocera Corp Guide device
JP4707534B2 (en) * 2005-10-27 2011-06-22 京セラ株式会社 Guide device
JP2014124011A (en) * 2012-12-20 2014-07-03 Toyota Industries Corp Drive unit for vibration actuator with oscillator and moving element

Similar Documents

Publication Publication Date Title
JP2005096057A (en) Guiding device
JP2004519346A (en) Device for gripping and holding objects in a non-contact manner
JP6919275B2 (en) Piezoelectric drive devices, piezoelectric motors, robots, electronic component transfer devices and printers
JP2005051836A (en) Guiding device
Asumi et al. High speed, high resolution ultrasonic linear motor using V-shape two bolt-clamped Langevin-type transducers
US20030173869A1 (en) Ultrasonic motor and guide apparatus having the same as driving source of movable body
JP2003251541A (en) Guide device using ultrasonic motor as drive source of movable body
JP2002036001A (en) Cutting method, cutting device, tool holding device, optical element, and molding die for optical element
CN108696178B (en) Piezoelectric driving device, electronic component conveying device, robot, and projector
US7877835B2 (en) Method and apparatus for cleaning master disk
JP4707534B2 (en) Guide device
JP4475937B2 (en) Guide device
JP2006129587A (en) Guiding means
JP2000308939A (en) Guide device with ultrasonic motor as drive source for mobile body
JP2006272531A (en) Guide device
JP3827554B2 (en) Guide device using ultrasonic motor as drive source of movable body
JP2002027768A (en) Ultrasonic motor and guide apparatus using ultrasonic motor as driving source for movable body
JP2006280030A (en) Guide device
JP4126453B2 (en) Driving method of guide device
Helin et al. A mechanical model for energy transfer in linear ultrasonic micromotors using Lamb and Rayleigh waves
JP4522055B2 (en) Driving method and driving apparatus for ultrasonic motor
JP4268421B2 (en) Driving device and positioning method using the same
JP4731146B2 (en) Management control method of apparatus having movable part and precision driving apparatus using the same
Helin et al. Linear ultrasonic motors using surface acoustic waves mechanical model for energy transfer
JP2002330597A (en) Guide device making ultrasonic motor drive source for moving body

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040810

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20051207

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20051213

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060210

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20060801