JP3827554B2 - Guide device using ultrasonic motor as drive source of movable body - Google Patents

Guide device using ultrasonic motor as drive source of movable body Download PDF

Info

Publication number
JP3827554B2
JP3827554B2 JP2001330084A JP2001330084A JP3827554B2 JP 3827554 B2 JP3827554 B2 JP 3827554B2 JP 2001330084 A JP2001330084 A JP 2001330084A JP 2001330084 A JP2001330084 A JP 2001330084A JP 3827554 B2 JP3827554 B2 JP 3827554B2
Authority
JP
Japan
Prior art keywords
ultrasonic motor
movable body
guide device
friction member
contact surface
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001330084A
Other languages
Japanese (ja)
Other versions
JP2002233172A (en
Inventor
康司 加藤
幸志 足立
裕作 石峯
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP2001330084A priority Critical patent/JP3827554B2/en
Publication of JP2002233172A publication Critical patent/JP2002233172A/en
Application granted granted Critical
Publication of JP3827554B2 publication Critical patent/JP3827554B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • General Electrical Machinery Utilizing Piezoelectricity, Electrostriction Or Magnetostriction (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、直線運動や回転運動する可動体を超音波モータにて駆動させる案内装置に関するものであり、特に精密加工機械、精密測定装置、半導体製造装置に用いられる案内装置として好適なものである。
【0002】
【従来の技術及び発明が解決しようとする課題】
超音波モータは、最小振幅がナノオーダーと小さく、高分解能の位置決めが可能であり、しかも摩擦駆動であるために駆動力が大きいといった特徴を有するため、これまでカメラのレンズズーム機構や腕時計のバイブレーションアラームなど回転運動系への実用化が行われており、最近では直線運動系への適用が試みられている。
【0003】
図8に超音波モータを可動体の駆動源とする従来の案内装置の一例を示すように、この案内装置は、ベース盤61上にクロスローラガイドの如き一対のガイド部材62を備え、これらのガイド部材62によって可動体としてのステージ63を直線的に案内するようになっている。
【0004】
また、ステージ63の一方の側面には、ガイド部材62に対して平行に駆動力伝達部材64が、ステージ63の他方の側面には、上記駆動力伝達部材64と平行にリニアスケール65がそれぞれ設置されており、該リニアスケール65と対向する位置には測定ヘッド66を設けて位置検出手段67を構成するとともに、上記駆動力伝達部材64と対向する位置には一つの超音波モータ(不図示)を設置し、超音波モータの摩擦部材56を上記駆動力伝達部材64の当接面64aに対して垂直に当接させてある。
【0005】
なお、図中、57は超音波モータ51を収容するケース、68は位置検出手段67より得られた位置情報を基にステージ63の駆動条件を制御する制御部、69は制御部68から出力された信号を基に超音波モータを駆動させるための指令信号を出力するドライバーである。
【0006】
また、図9に図8の案内装置に用いる超音波モータをケース57内に収容した状態を示すように、超音波モータ51は、圧電セラミック板52の一方の主面に4分割された電極膜53a,53b,53c,53dを有し、対角に位置する電極膜53aと電極膜53dを結線するとともに、対角に位置する電極膜53bと電極膜53cを結線し、かつ他方の主面には、ほぼ全面に電極膜(不図示)を形成した振動体55と、上記圧電セラミック板52の端面に設けたセラミックスやガラスからなる摩擦部材56とからなり、上記他方の主面に形成された電極膜をアースするとともに、一方の主面に形成された電極膜53bと電極膜53dにそれぞれ位相を異ならせた電圧を印加することにより、圧電セラミック板52に縦振動と横振動を発生させ、これらの振動の合力によって摩擦部材56を楕円運動させるようになっていた。
【0007】
また、超音波モータ51は、ケース57内において両側面をスプリング58を介して保持してあり、スプリング59の押圧力によって超音波モータ51をステージ63の駆動力伝達部材64に押圧するようになっていた。
【0008】
その為、この超音波モータ51を駆動させると、超音波モータ51の摩擦部材56との摩擦駆動によってステージ63をガイド部材62に沿って移動させることができ、ステージ63の移動に伴う位置検出手段67からの位置情報と、予め設定してあるステージ63の基準位置情報との偏差に応じて変化するパラメータを基に制御部68にて例えばPID演算処理を行ってドライバー69に超音波モータ51への指令信号を出力するフィードバック制御を行うことにより、ステージ63を移動・位置決めするようになっていた。
【0009】
ところが、超音波モータ51の摩擦部材56やステージ63の駆動力伝達部材64は互いに摩耗し、その摩耗粉が駆動力伝達部材64の当接面64aに付着するため、この摩耗粉が超音波モータ51の摩擦部材56とステージ63の駆動力伝達部材64との間に噛み込むと接触状態が変化することから、ステージ63の駆動特性を不安定にさせるとともに、超音波モータ51の摩擦部材56やステージ63の駆動力伝達部材64の摩耗が促進され、短期間の使用で超音波モータ51や駆動力伝達部材64を交換しなければならないといった課題があった。
【0010】
その為、これらの課題に対し、特開平11−18446号公報には、駆動力伝達部材64に付着した摩耗粉を除去するため、ブラシやローラあるいはフェルトや剥離爪等を駆動力伝達部材64に当接させて摩耗粉を除去する技術が開示されている。
【0011】
しかしながら、ブラシ、ローラ、フェルト、剥離爪等を用いて摩耗粉を除去しようとしても、掻き残しが生じたり、掻き取った摩耗粉が駆動力伝達部材64に再付着するといった課題があり、確実に摩耗粉を除去することができなかった。
【0012】
また、特開平11−18446号公報には、摩耗粉の再付着を防止するためにクリーニング溶液を塗布することが開示されているが、このクリーニング溶液が駆動力伝達部材64に付着すると、超音波モータ51の摩擦部材56とステージ63の駆動力伝達部材64との間にすべりが発生し、ステージ63の駆動特性に悪影響を与えるといった課題があった。
【0013】
【課題を解決するための手段】
そこで、本発明は上記課題に鑑み、楕円運動を発生させる振動体と、該振動体の楕円運動を伝達する摩擦部材とからなる超音波モータと、該超音波モータの摩擦部材と当接し、摩擦駆動により可動する可動体とから成る超音波モータを可動体の駆動源とする案内装置において、上記超音波モータと上記可動体との当接面に付着する摩耗粉を、上記可動体の当接面における上記超音波モータの摩擦部材との接触領域近傍で、上記可動体の当接面と隙間を設けて、絶縁材料からなる基板上に、それぞれ正負に帯電させる一対の櫛歯状の吸着用電極を形成するとともに、該吸着用電極上に絶縁保護膜を被着してなる少なくとも一つの吸着部材と、該吸着部材の吸着用電極に電圧を印加する高圧電源とからなる吸着手段により、静電気力により集塵することを特徴とする。
【0014】
また、上記絶縁保護膜は、チタン酸バリウム、チタン酸ジルコン酸鉛(PZT)、ランタンチタン酸ジルコン酸鉛、マグネシウムニオブ酸鉛あるいはこれらの混合物を主成分とするセラミック膜からなることを特徴とする。
【0015】
さらには、上記可動体の当接面に上記超音波モータの摩擦部材よりも小さな幅を有する溝を形成し、吸着手段として上記溝底面に設けた吸着用電極と、この吸着用電極に電荷を帯電させるために電圧を印加する高圧電源とからなるものを用いることが好ましい。
【0016】
【発明の実施の形態】
以下、本発明の実施形態について説明する。
【0017】
図1は超音波モータを可動体の駆動源とする本発明の案内装置の参考例を示す斜視図である。なお、従来例と同一部分については同一符号で示す。
【0018】
この案内装置は、ベース盤61上にクロスローラガイドの如き一対のガイド部材62を備え、これらガイド部材62によって可動体としてのステージ63を直線的に案内するようになっている。
【0019】
また、ステージ63の一方の側面には、ガイド部材62に対して平行に駆動力伝達部材64を、ステ―ジ63の他方の側面には、上記駆動力伝達部材64と平行にリニアスケール65をそれぞれ設置してあり、このリニアスケール65と対向する位置には測定ヘッド66を設けて位置検出手段67を構成するとともに、上記駆動力伝達部材64と対向する位置には一つの超音波モータ(不図示)を配置し、超音波モータの摩擦部材56を上記駆動力伝達部材64の当接面に対して垂直に当接させてある。
【0020】
なお、図中、68は位置検出手段67より得られた位置情報を基にステージ63の駆動条件を制御する制御部、69は上記制御部68から出力された信号を基に超音波モータを駆動させるための指令信号を出力するドライバーであり、57は超音波モータを収容するケースである。また、図1に示す超音波モータの構造及び超音波モータの取付構造は、図9に示した超音波モータ51の構造及び超音波モータ51の取付構造と同一であるため、ここでは説明を省略する。
【0021】
また、駆動力伝達部材64の当接面64aには、点線で示す超音波モータの摩擦部材56との接触領域Sの近傍上下に吸着用電極1をそれぞれ設けてあり、各吸着用電極1は高圧電源2と接続することにより、上記超音波モータの摩擦部材56と上記ステージ63に備える駆動力伝達部材64との摩擦駆動によって発生し、駆動力伝達部材64の当接面64aにおける接触領域Sに付着する摩耗粉を静電気力により集塵する吸着手段を構成してある。
【0022】
即ち、本件発明者らは、摩耗粉に着目し研究を行っていたところ、摩擦部材56と駆動力伝達部材64との摺動によって発生した摩耗粉は帯電しており、この摩耗粉の帯電状態と異なる極性に帯電させたものを駆動力伝達部材64の当接面64aにおける接触領域Sの近傍に配置すれば、摩耗粉を静電気力によって接触領域S外へ移動させることができるため、駆動力伝達部材64と摩擦部材56との間に摩耗粉が噛み込むことを防止できることを見出し、本発明に至った。
【0023】
具体的には、摩擦部材56や駆動力伝達部材64がセラミックスやサファイヤあるいはガラスによって形成されている場合、これらの材料の摩耗粉は正に帯電することから、このような時には吸着用電極1を負に帯電させるようにすれば良く、また、摩擦部材56や駆動力伝達部材64が金属や樹脂によって形成されている場合、これらの材料の摩耗粉は負に帯電することから、このような時には吸着用電極1を正に帯電させるようにすれば良い。
【0024】
その為、ドライバー69より指令信号を出力して超音波モータの摩擦部材56を楕円運動させると、駆動力伝達部材64との摩擦駆動によってステージ63をガイド部材62に沿って移動させることができ、ステージ63の移動に伴う位置検出手段67からの位置情報と、予め設定してあるステージ63の基準位置情報との偏差に応じて変化するパラメータを基に制御部68にて例えばPID演算処理を行ってドライバー69に超音波モータへの指令信号を出力するフィードバック制御を行うことにより、ステージ63を所定の条件で移動させることができる。
【0025】
そして、本発明の案内装置によれば、超音波モータの摩擦部材56とステージ63に備える駆動力伝達部材64との摩擦駆動によって発生した摩耗粉を静電気力によって吸着用電極1に吸着させ、駆動力伝達部材64の当接面64aにおける接触領域Sに摩耗粉が殆ど残らないようにすることができるため、駆動力伝達部材64と摩擦部材56との間に摩耗粉が噛み込むことがなく、常に安定した接触状態を得ることができるため、超音波モータの駆動によってステージ63を安定して駆動させることができ、1μm程度の移動精度や1μm以下の位置決め精度が要求されるような場合でも精度良く移動・位置決めすることができる。
【0026】
なお、吸着用電極1の形態としては特に限定するものではなく、例えば、金属箔、金属薄板、導線、導体膜を用いることができ、駆動力伝達部材64の当接面64aへの取り付けにあたっては、駆動力伝達部材64の材質との相性を考慮して接着やメタライズ等を用いれば良い。また、図1では接触領域Sを挟むように2つの吸着用電極1を設けた例を示したが、少なくとも何れか一方にのみ形成してあれば良い。
【0027】
ところで、摩耗粉の帯電状態は、j.Henniker:Nature,196(1962)474等によって確認された素材の帯電特性結果を用いたり、実際に摩擦させてその帯電量を測定すれば良い。また、吸着用電極1を帯電させる電荷量は、摩耗粉の大きさや接触領域Sとの距離に依存するが、予め摩耗粉の吸着できる電荷量を確認して決定すれば良い。
【0028】
また、摩耗粉の帯電状態が判断し難い場合、一方の吸着用電極1を正に帯電させ、他方の吸着用電極1を負に帯電させることにより、摩耗粉の帯電状態に関係なく、いずれか一方の吸着用電極1に摩耗粉を吸着させることができる。
【0029】
次に、本発明の他の様々な実施形態について説明する。
【0030】
図2に示す実施形態は、吸着手段を、吸着用電極を具備した吸着部材10と、吸着部材10の吸着用電極に電荷を帯電させるために電圧を印加する高圧電源2とから構成する以外は図1に示す案内装置と同様の構造をしたもので、上記吸着部材10は、点線で示す駆動力伝達部材64の当接面64aにおける接触領域Sの近傍で、駆動力伝達部材64の当接面64aと約0.5mm以下の隙間を設け、吸着用電極が当接面64aと対向するように設置してあり、上記吸着部材10は、超音波モータを挟んで両側にそれぞれ一つずつ設けてある。
【0031】
この実施形態によれば、吸着部材10の吸着用電極を、駆動力伝達部材64と摩擦部材56との摩擦駆動によって発生した摩擦粉の帯電状態と異なる極性に帯電させておくことにより、ステージ63の移動によって駆動力伝達部材64の当接面64aに付着する摩耗粉が吸着部材10と対向する位置に来たときに、上記摩耗粉を静電気力によって吸着部材10に吸着させることができるため、駆動力伝達部材64の当接面64aにおける接触領域Sに付着する摩耗粉を除去し、駆動力伝達部材64と摩擦部材56との間に摩耗粉が噛み込むことを防止することができるため、常に安定した接触状態を得ることができ、超音波モータの駆動によって1μm程度の移動精度や1μm以下の位置決め精度が要求されるような場合でもステージ63を精度良く移動・位置決めすることができる。
【0032】
ところで、上記吸着部材10としては、図3(a)に示すように、セラミックス等の絶縁材料からなる基板12上に、金属箔、金属薄板、導体膜等からなる吸着用電極11を形成し、さらにこの吸着用電極11上に、絶縁保護膜13としてポリイミドテープ等の樹脂膜、又はチタン酸バリウム、チタン酸ジルコン酸鉛(PZT)、ランタンチタン酸ジルコン酸鉛、マグネシウムニオブ酸鉛あるいはこれらの混合物を主成分とするセラミック膜を被着したものを用いることができる。特に、チタン酸バリウム、チタン酸ジルコン酸鉛(PZT)、ランタンチタン酸ジルコン酸鉛、マグネシウムニオブ酸鉛あるいはこれらの混合物を主成分とするセラミック膜は、上記樹脂膜と比較して誘電率が高いため、大きな静電気力を得ることができるため、摩耗粉の吸着力を大幅に向上させることができる。なお、このようなセラミック膜を有する吸着部材10を製作するには、例えば、チタン酸ジルコン酸鉛(PZT)、ランタンチタン酸ジルコン酸鉛、マグネシウムニオブ酸鉛あるいはこれらの混合物に溶媒やバインダーを添加混合してスラリーを形成し、テープ成形にて製作した厚み数百μm〜数mmのシートを複数枚用意し、数枚のシートを重ねた後、吸着用電極11を設け、さらにセラミック膜となる残りのシートを積み重ね、加熱しながら加圧することにより吸着用電極11が埋設された積層体を形成し、しかる後、焼成することにより得ることができる。
【0033】
また、摩耗粉の帯電状態が判断し難い場合、図3(b)に示すように、吸着用電極1のパターン形状を一対の櫛歯状とし、一方の櫛歯状をした吸着用電極11を正に帯電させ、他方の櫛歯状をした吸着用電極11を負に帯電させることにより、摩耗粉の帯電状態に関係なく、摩耗粉を吸着部材10に吸着させることができる。
【0034】
図4に示す実施形態は、吸着手段を、シート状の吸着用電極21を2つのローラ22で張架したコンベア機構によって駆動させることができる吸着部材20と、吸着部材20の吸着用電極21に電荷を帯電させるために電圧を印加する高圧電源2とから構成する以外は図1に示す案内装置と同様の構造をしたもので、上記吸着部材20は、点線で示す駆動力伝達部材64の当接面64aにおける接触領域Sの近傍で、駆動力伝達部材64の当接面64aと約0.5mm以下の隙間を設け、吸着用電極21が当接面64aと対向するように設置してあり、上記吸着部材20は、超音波モータを挟んで両側にそれぞれ一つずつ設けてある。
【0035】
この実施形態によれば、吸着部材20の吸着用電極21を、駆動力伝達部材64と摩擦部材56との摩擦駆動によって発生した摩擦粉の帯電状態と異なる極性に帯電させておくことにより、ステージ63の移動によって駆動力伝達部材64の当接面64aに付着する摩耗粉が吸着部材20と対向する位置に来たときに、上記摩耗粉を静電気力によって吸着部材20に吸着させることができるため、駆動力伝達部材64の当接面64aにおける接触領域Sに付着する摩耗粉を除去し、駆動力伝達部材64と摩擦部材56との間に摩耗粉が噛み込むことを防止することができるため、常に安定した接触状態を得ることができ、超音波モータの駆動によって1μm程度の移動精度や1μm以下の位置決め精度が要求されるような場合でもステージ63を精度良く移動・位置決めすることができる。
【0036】
また、この吸着部材20は、シート状の吸着用電極21を2つのローラ22で張架したコンベア機構によって回転させることができるため、シート状をした吸着用電極21の駆動力伝達部材64の当接面64aと対向する領域に摩耗粉が付着し、摩耗粉の吸着能力が低下した場合、コンベア機構によってシート状をした吸着用電極21を移動させ、摩耗粉が吸着されていない新しい面を駆動力伝達部材64の当接面64aと順次対向させることができるため、図1や図2に示す実施形態と比較して長期間にわたって案内装置を駆動させることができる。
【0037】
ところで、上記吸着部材20を形成する吸着用電極21としては、例えば、金属箔をポリイミドシートで挟み込んだものを用いれば良い。なお、吸着用電極21への通電は、入電端子からスリップリングを用いて行えば良い。また、駆動力伝達部材64と反対側の吸着用電極21には分離つめを当接させておくことにより、吸着用電極21に吸着させた摩耗粉を分離つめで掻き落とし、吸着用電極21の再生を行うようにしても構わない。ただし、分離つめで摩耗粉を掻き落とす場合、その近傍に摩耗粉の回収機構を設けることが好ましく、このような回収機構を設けることで摩耗粉を周囲にまき散らすことがなく、半永久的に使用することができる。
【0038】
図5に示す実施形態は、ステージ63に備える駆動力伝達部材64の当接面64aに超音波モータの摩擦部材56よりも小さな幅を有する溝32を複数個刻設するとともに、吸着手段として図6(a)に示すように各溝底部32aに設けた吸着用電極31と、これらの吸着用電極31に電荷を帯電させるために電圧を印加する高圧電源2とから構成する以外は図1に示す案内装置と同様の構造をしたものである。
【0039】
ここで、駆動力伝達部材64の当接面64aに形成する溝32のパターン形状としては特に限定するものではなく、例えば、図7(a)に示すように、ステージ63の移動方向に沿って延びる溝32をステージ63の移動方向に対して垂直な方向に複数個平行に並設したものや、図7(b)に示すように、ステージ63の移動方向に対して斜め方向に延びる溝32をステージ63の移動方向に複数個平行に並設したもの、あるいは図7(c)に示すように、ステージ63の移動方向に対して斜めに延びる溝32をクロス状に配置したものなど、様々なパターン形状を採用することができる。
【0040】
この実施例によれば、駆動力伝達部材64の当接面64aに溝32を形成したことから、駆動力伝達部材64と摩擦部材56との摩擦駆動によって発生し、駆動力伝達部材64の当接面64aや摩擦部材56に付着する摩擦粉を溝32内に欠き落とすことができるため、駆動力伝達部材64と摩擦部材56との間に摩耗粉が噛み込むことを効果的に防止することができる。
【0041】
また、溝底面32aには吸着用電極31を設けてあり、この吸着用電極31を摩耗粉の帯電状態と異なる極性に帯電させておくことにより、溝32内に欠き落とされた摩耗粉を静電気力によって吸着用電極31に吸着させて集塵することができるため、溝32内に付着した摩耗粉が再度摩擦部材56や駆動力伝達部材64の当接面64aに付着することを防止することができる。
【0042】
その為、駆動力伝達部材64の当接面64aにおける接触領域Sに付着する摩耗粉を効率良く除去し、駆動力伝達部材64と摩擦部材56との間に摩耗粉が噛み込むことを効果的に防止することができるため、常に安定した接触状態を得ることができ、超音波モータの駆動によって1μm程度の移動精度や1μm以下の位置決め精度が要求されるような場合でもステージ63を精度良く移動・位置決めすることができる。
【0043】
ところで、このような効果を得るには、溝32の幅を超音波モータの摩擦部材56よりも小さくする必要であり、好ましくは0.03mm〜1mmの幅とすることが好ましい。即ち、溝32の幅Wが超音波モータの摩擦部材56と同等又は大きくなると、摩擦部材56と駆動力伝達部材64との接触状態が変化し、ステージ63の駆動特性に悪影響を及ぼしたり、摩擦部材56の摩耗を促進させ、さらには摩擦部材56によって溝32のエッジ部を破損させるといった不都合があり、特に溝32の幅Wが1mmを超えると、上述した問題が顕著に現れ始めるからであり、逆に、溝32の幅Wが0.03mm未満となると、溝底面32aに吸着用電極31を設けることが難しいからである。
【0044】
また、溝32の深さLが1mmを超えると、溝32の開口部付近に付着する摩耗粉と溝底面32aの吸着用電極31との距離は離れすぎ、摩耗粉に作用する静電吸着力が小さくなりすぎるため、摩耗粉を溝32内に保持することが難しくなる。一方、溝32の深さLが、0.05mm未満となると、溝32内に欠き落とされた摩耗粉の集塵量が著しく低下する。その為、溝32の深さLは0.05〜1mmとすることが好ましい。
【0045】
なお、溝32は駆動力伝達部材64の当接面64aのうち、少なくとも超音波モータの摩擦部材56との接触領域Sに形成してあれば良い。
【0046】
以上、本実施形態では、可動体が直線運動する案内装置を例にとって説明したが、可動体が回転運動する案内装置にも適用できることは言う迄もなく、さらに、可動体を駆動させる超音波モータについても、多重モード型のものに限らず、単一振動モードの定在波型や進行波、複数振動モードのモード変換型、複合振動型の超音波モータであっても構わない。
【0047】
このように、本発明の要旨を逸脱しない範囲であれば、種々改良や変更したものでも構わない。
【0048】
【実施例】
(実施例1)ここで、図1に示す案内装置(参考例)と、図8に示す従来の案内装置(従来例1)、及び図8に示す従来の案内装置に、摩耗粉を掻き取るためのブラシを備えたもの(従来例2)をそれぞれ用意し、各案内装置を駆動させ、超音波モータ51の摩擦部材56の摩耗量と、案内装置の寿命について調べる実験を行った。
【0049】
本実験にあたっては、超音波モータ51の振動体55の寸法を長さ30mm、幅7.5mm、厚み3mmとし、チタン酸ジルコン酸鉛系の圧電セラミックスにより形成したものを用いるとともに、振動体55に接合する摩擦部材56にアルミナセラミックスを用い、その寸法を長さ4.2mm、直径3mmの円柱とし、かつ当接面を曲率半径が7mmの球面とした。
【0050】
また、案内装置を構成するガイド部材62には、ストロークが100mmのクロスローラーガイドを用い、上記ガイド部材62を介して5kgの重さを有するステージ63を移動させるようにした。また、超音波モータの摩擦部材56と当接する駆動力伝達部材64にはアルミナセラミックスを用い、かつ摩擦部材56との当接面64aを算術平均粗さ(Ra)で0.05μmとした。
【0051】
そして、本発明の案内装置においては、駆動力伝達部材64の当接面64aにおける摩擦部材56との接触領域Sの軸線より1mm離れた位置に、吸着用電極1として、直径が1mmの銅線を2本接着剤にて当接面64aに固定した。
また、高圧電源2により吸着用電極1に通電することにより、吸着用電極1に1kVの負の電荷が帯電するようにした。
【0052】
また、摩耗粉を掻き取るためのブラシを備えた従来の案内装置は、超音波モータを挟んで両側に、駆動力伝達部材64の当接面64aと当接するようブラシを配置した。
【0053】
そして、制御部68に予め設定しておくステージ13のプロファイルとして移動距離100mm、加減速度0.03G、最高速度100mm/sに設定した台形制御とし、超音波モータ51は40kHzの駆動周波数で駆動させるようにした。そして、この条件でステージ63を500km駆動させた後の摩耗粉の除去状態と、摩擦部材56の摩耗量をそれぞれ測定するとともに、案内装置の寿命を測定した。なお、案内装置の寿命については、位置検出手段67から得られる実際の位置信号と基準位置信号との偏差が1μmを超えると、ステージ63を安定して駆動させることができなくなるため、偏差が1μmを超えたステージ63の移動距離を寿命とした。
【0054】
それぞれの結果は表1に示す通りである。
【0055】
【表1】

Figure 0003827554
【0056】
この結果、摩耗粉の除去手段を備えていない従来例1の案内装置は、摩耗粉の噛み込みにより、摩擦部材56の摩耗量が多く、また、ステージ63の移動距離が200kmで偏差が1μmを超え、寿命が短かった。
【0057】
また、摩耗粉の除去手段としてブラシを備えた従来例2の案内装置は、摩擦部材56の摩耗量は少なかったものの、ステージ63の移動距離が300kmをすぎたところから、ところどころで偏差が1μmを超えた。この理由について調べて見ると、ブラシにより取り除いた摩耗粉が駆動力伝達部材64の当接面64aに再付着し、再付着した摩耗粉の噛み込みによるものであった。
【0058】
これに対し、本発明の案内装置は、摩耗粉を吸着用電極1に付着させることができ、駆動力伝達部材64の当接面64における摩擦部材56との接触領域Sには殆ど摩耗粉が残っていないため、摩擦部材56の摩耗量が極めて少なく、また、ステージ63を500km駆動させても偏差が1μmを超えることがないため、長時間安定して駆動させることができ、優れていた。
(実施例2)
次に、図2に示す本発明の案内装置を用い、実施例1と同様の実験を行った。
【0059】
なお、吸着手段を構成する吸着部材10には、吸着用電極11として縦23mm、横28mmの銅箔を、縦25mm、横30mmのセラミック板12に張り付け、その上に絶縁保護膜13としてポリイミドテープを張り付けたものを用い、超音波モータ51の両端に2箇所配置した。ただし、吸着部材10と駆動力伝達部材64との隙間は0.5mmに設定した。そして、高圧電源2により吸着用電極11に通電し、吸着用電極11に1kVの負の電荷が帯電するようにした。
【0060】
結果は表2に示す通りである。
【0061】
【表2】
Figure 0003827554
【0062】
この結果、図2に示す本発明の案内装置は、駆動力伝達部材64に付着する摩耗粉を吸着部材10に付着させることができるため、駆動力伝達部材64の当接面64における摩擦部材56との接触領域Sには殆ど摩耗粉が残っておらず、摩擦部材56の摩耗量が極めて少なく、また、ステージ63を500km駆動させても偏差が1μmを超えることがないため、長時間安定して駆動させることができた。
(実施例3)
次に、図4に示す本発明の案内装置を用い、実施例1と同様の実験を5000kmにわたって行った。
【0063】
なお、吸着手段を構成する吸着部材20は、銅箔をポリイミドシートで挟み込んだ、幅30mmのシート状の吸着用電極21を、一対のローラ22によって張架したコンベア構造とし、この吸着部材20を超音波モータ51の両端に2箇所配置した。ただし、吸着部材20と駆動力伝達部材64との隙間は0.5mmに設定した。そして、高圧電源2により吸着用電極21に通電し、吸着用電極21に1kVの負の電荷が帯電するようにした。
【0064】
また、吸着用電極21を挟んで駆動力伝達部材64と反対側には、樹脂製の分離つめを50gの力で押しつけ、分離つめで掻き落とした摩耗粉を回収トレーにて集塵するようにした。
【0065】
ただし、吸着部材20の吸着用電極21は、ステージ63が500km移動する毎に一回転するようにし、10段階にわけてステップ送りさせた。
【0066】
この結果、超音波モータ51の摩擦部材56の摩耗量は、ステージ63の移動距離に比例した定常的な摩耗であり、偏摩耗はみられず、駆動中ステージ63を安定して駆動させることができ、また、摩耗粉の回収機能を有することから、クリーンな環境を要求される半導体製造装置にも適用可能であった。
(実施例4)
次に、図5に示す本発明の案内装置を用い、実施例1と同様の実験を5000kmにわたって行った。
【0067】
なお、駆動力伝達部材64の摩擦部材56との当接面64aに形成する溝32は、ステージ63の移動方向に対して45度の角度をもつ斜めの溝32とし、1mmピッチで形成するとともに、溝32の幅Wを50μm、溝32の深さLを100μmとした。また、各溝底面32aには厚さ3μmの銀膜を被着して吸着用電極21を形成した。
【0068】
そして、高圧電源2により吸着用電極21に通電し、吸着用電極21に1kVの負の電荷が帯電するようにした。
【0069】
この結果、駆動力伝達部材64の当接面64における摩擦部材56との接触領域Sには殆ど摩耗粉が残っておらず、溝32内に保持されていた。その為、摩擦部材56の摩耗量が極めて少なく、ステージ63を5000km駆動させても偏差が1μmを超えることなく、長時間安定して駆動させることができた。しかも、この実施形態においては、駆動力伝達部材64の当接面64に付着する摩耗粉だけでなく、超音波モータ51の摩擦部材56に付着する摩耗粉も溝32内に欠き落とすことができるため、図1乃至図4に示す本発明の他の実施形態と比較して摩擦部材56に付着する摩耗量を極めて少なくすることができ、駆動力伝達部材64と摩擦部材56との接触状態の変化を小さくできるため、ステージ63の移動中における挙動も安定させることができる。
【0070】
【発明の効果】
以上のように、本発明によれば、楕円運動を発生させる振動体と、該振動体の楕円運動を伝達する摩擦部材とからなる超音波モータと、該超音波モータの摩擦部材と当接し、摩擦駆動により可動する可動体とから成る超音波モータを可動体の駆動源とする案内装置において、上記超音波モータと上記可動体との摩擦駆動により上記可動体の当接面に付着する摩耗粉を静電気力により集塵する吸着手段を設け、この吸着手段として、可動体の当接面における超音波モータの摩擦部材との接触領域近傍に備える少なくとも一つの吸着用電極と、この吸着用電極に電荷を帯電させるために電圧を印加する高圧電源とからなるものを用いるか、あるいは可動体の当接面における超音波モータの摩擦部材との接触領域近傍で、且つ可動体の当接面と隙間を設けて設置した吸着用電極を備える少なくとも一つの吸着部材と、この吸着部材の吸着用電極に電荷を帯電させるために電圧を印加する高圧電源とからなるものか、さらには可動体の当接面における超音波モータの摩擦部材との接触領域に、摩擦部材よりも小さな幅を有する複数個の溝を形成するとともに、この溝底面に配置した吸着電極と、この吸着用電極に電荷を帯電させるために電圧を印加する高圧電源とからなるものを用いることによって、摩擦駆動によって発生した摩耗粉を、可動体の当接面における摩擦部材との接触領域より除去することができるため、超音波モータと可動体との接触面間に摩耗粉が噛み込むことを防止することができ、可動体を安定して駆動させることができ、可動中における精度が1μm、位置決め精度が0.1μmといった高精度が要求される場合でも精度良く可動体を可動、位置決めすることができるとともに、さらには周囲の雰囲気を汚染することがないため、真空雰囲気等で使用する場合でも好適に使用することができる。
【図面の簡単な説明】
【図1】超音波モータを可動体の駆動源とする本発明の案内装置の一例を示す斜視図である。
【図2】超音波モータを可動体の駆動源とする本発明の案内装置の他の例を示す斜視図である。
【図3】(a)(b)はそれぞれ図3の案内装置に備える吸着部材の構造を示す一部を破断した斜視図である。
【図4】超音波モータを可動体の駆動源とする本発明の案内装置のさらに他の例を示す斜視図である。
【図5】超音波モータを可動体の駆動源とする本発明の案内装置のさらに他の例を示す斜視図である。
【図6】図5の案内装置に備える要部の一部を拡大した断面図である。
【図7】(a)(b)(c)はそれぞれ図5の案内装置に備える溝のパターン形状を示す平面図である。
【図8】超音波モータを可動体の駆動源とする従来の案内装置の一例を示す斜視図である。
【図9】ケース内における超音波モータの取付構造を示す一部を破断した断面図である。
【符号の説明】
1,11,21,31:吸着用電極 2:高圧電源 10,20:吸着部材
12:基板 13:絶縁保護膜 22:ローラ 32:溝 32a:溝底面
51:超音波モータ 52:圧電セラミック体
53a,53b,53c,53d:電極膜
55:振動体 56:摩擦部材 57:ケース 58:スプリング
59:スプリング 61:ベース盤 62:ガイド部材 63:ステージ
64:駆動力伝達部材 65:リニアスケール 66:測定ヘッド
67:位置検出手段 68:制御部 69:ドライバー[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a guide device that drives a movable body that moves linearly or rotationally with an ultrasonic motor, and is particularly suitable as a guide device used in precision processing machines, precision measurement devices, and semiconductor manufacturing devices. .
[0002]
[Prior art and problems to be solved by the invention]
Ultrasonic motors have the characteristics that the minimum amplitude is as small as nano-order, high-resolution positioning is possible, and the driving force is large due to frictional drive. It has been put to practical use in rotary motion systems such as alarms, and recently it has been tried to apply to linear motion systems.
[0003]
As shown in FIG. 8 as an example of a conventional guide device using an ultrasonic motor as a driving source for a movable body, this guide device includes a pair of guide members 62 such as a cross roller guide on a base board 61. A stage 63 as a movable body is linearly guided by the guide member 62.
[0004]
A driving force transmission member 64 is installed on one side surface of the stage 63 in parallel with the guide member 62, and a linear scale 65 is installed on the other side surface of the stage 63 in parallel with the driving force transmission member 64. A measuring head 66 is provided at a position facing the linear scale 65 to constitute a position detecting means 67, and a single ultrasonic motor (not shown) is disposed at a position facing the driving force transmitting member 64. The friction member 56 of the ultrasonic motor is brought into contact with the contact surface 64a of the driving force transmission member 64 perpendicularly.
[0005]
In the figure, 57 is a case for accommodating the ultrasonic motor 51, 68 is a control unit for controlling the driving conditions of the stage 63 based on the position information obtained from the position detecting means 67, and 69 is output from the control unit 68. The driver outputs a command signal for driving the ultrasonic motor based on the received signal.
[0006]
Further, as shown in FIG. 9, the ultrasonic motor 51 used in the guide device of FIG. 8 is housed in the case 57, the ultrasonic motor 51 is divided into four electrode films on one main surface of the piezoelectric ceramic plate 52. 53a, 53b, 53c, 53d, which connects the electrode film 53a and the electrode film 53d located diagonally, and connects the electrode film 53b and the electrode film 53c located diagonally, and on the other main surface Is formed of a vibrating body 55 having an electrode film (not shown) formed on almost the entire surface, and a friction member 56 made of ceramic or glass provided on the end face of the piezoelectric ceramic plate 52, and formed on the other main surface. By grounding the electrode film and applying voltages having different phases to the electrode film 53b and the electrode film 53d formed on one main surface, longitudinal vibration and lateral vibration are generated in the piezoelectric ceramic plate 52. The friction member 56 has been adapted to elliptical motion by the resultant force of these vibrations.
[0007]
In addition, the ultrasonic motor 51 is held on both sides in the case 57 via springs 58, and the ultrasonic motor 51 is pressed against the driving force transmission member 64 of the stage 63 by the pressing force of the spring 59. It was.
[0008]
Therefore, when the ultrasonic motor 51 is driven, the stage 63 can be moved along the guide member 62 by friction drive with the friction member 56 of the ultrasonic motor 51, and position detecting means accompanying the movement of the stage 63. The controller 68 performs, for example, PID calculation processing on the basis of the parameter that changes in accordance with the deviation between the position information from 67 and the preset reference position information of the stage 63, and sends the driver 69 to the ultrasonic motor 51. The stage 63 is moved and positioned by performing feedback control that outputs the command signal.
[0009]
However, the friction member 56 of the ultrasonic motor 51 and the driving force transmission member 64 of the stage 63 are worn away, and the abrasion powder adheres to the contact surface 64a of the driving force transmission member 64. Since the contact state changes when it is engaged between the friction member 56 of 51 and the driving force transmission member 64 of the stage 63, the driving characteristics of the stage 63 are made unstable, and the friction member 56 of the ultrasonic motor 51 and Wear of the driving force transmission member 64 of the stage 63 is promoted, and there is a problem that the ultrasonic motor 51 and the driving force transmission member 64 must be replaced for a short period of use.
[0010]
Therefore, in response to these problems, Japanese Patent Application Laid-Open No. 11-18446 discloses that a brush, a roller, a felt, a peeling claw, or the like is attached to the driving force transmission member 64 in order to remove the abrasion powder adhering to the driving force transmission member 64. A technique for removing abrasion powder by abutting is disclosed.
[0011]
However, even if it is attempted to remove the wear powder using a brush, roller, felt, peeling claw, etc., there is a problem that scraping remains or the scraped wear powder is reattached to the driving force transmission member 64. The abrasion powder could not be removed.
[0012]
Japanese Patent Laid-Open No. 11-18446 discloses that a cleaning solution is applied in order to prevent the reattachment of wear powder. When this cleaning solution adheres to the driving force transmission member 64, ultrasonic waves are applied. There has been a problem that slip occurs between the friction member 56 of the motor 51 and the driving force transmission member 64 of the stage 63, which adversely affects the driving characteristics of the stage 63.
[0013]
[Means for Solving the Problems]
In view of the above problems, the present invention is in contact with an ultrasonic motor including a vibrating body that generates an elliptical motion and a friction member that transmits the elliptical motion of the vibrating body, and a friction member of the ultrasonic motor. In a guide device using an ultrasonic motor composed of a movable body movable by driving as a drive source of the movable body, wear powder adhering to the contact surface between the ultrasonic motor and the movable body is removed. A pair of gaps between the contact surface of the movable body and the friction member of the ultrasonic motor on the contact surface of the movable body so as to be positively and negatively charged on the substrate made of an insulating material. And at least one adsorbing member formed by depositing an insulating protective film on the adsorbing electrode, and a high-voltage power source for applying a voltage to the adsorbing electrode of the adsorbing member; Dust is collected by electrostatic force by adsorption means consisting of It is characterized by that.
[0014]
The insulating protective film is made of a ceramic film mainly composed of barium titanate, lead zirconate titanate (PZT), lead lanthanum zirconate titanate, lead magnesium niobate, or a mixture thereof. .
[0015]
Further, a groove having a width smaller than that of the friction member of the ultrasonic motor is formed on the contact surface of the movable body, and an adsorption electrode provided on the bottom surface of the groove as adsorption means, and an electric charge is applied to the adsorption electrode. It is preferable to use what consists of a high voltage power supply which applies a voltage in order to charge.
[0016]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described.
[0017]
FIG. 1 is a perspective view showing a reference example of a guide device according to the present invention using an ultrasonic motor as a drive source for a movable body. In addition, about the same part as a prior art example, it shows with the same code | symbol.
[0018]
This guide device is provided with a pair of guide members 62 such as cross roller guides on a base board 61 and linearly guides a stage 63 as a movable body by these guide members 62.
[0019]
A driving force transmission member 64 is provided on one side surface of the stage 63 in parallel with the guide member 62, and a linear scale 65 is provided on the other side surface of the stage 63 in parallel with the driving force transmission member 64. A measuring head 66 is provided at a position facing the linear scale 65 to constitute a position detecting means 67, and a single ultrasonic motor (not suitable) is disposed at a position facing the driving force transmitting member 64. The friction member 56 of the ultrasonic motor is in contact with the contact surface of the driving force transmission member 64 perpendicularly.
[0020]
In the figure, 68 is a control unit for controlling the driving conditions of the stage 63 based on the position information obtained from the position detecting means 67, and 69 is for driving the ultrasonic motor based on the signal output from the control unit 68. A driver for outputting a command signal for causing the motor to be operated, and 57 is a case for accommodating the ultrasonic motor. The structure of the ultrasonic motor and the attachment structure of the ultrasonic motor shown in FIG. 1 are the same as the structure of the ultrasonic motor 51 and the attachment structure of the ultrasonic motor 51 shown in FIG. To do.
[0021]
Further, the suction electrodes 1 are provided on the contact surface 64a of the driving force transmission member 64 in the vicinity of the contact area S with the friction member 56 of the ultrasonic motor indicated by the dotted line. By connecting to the high-voltage power supply 2, the friction region 56 of the ultrasonic motor and the driving force transmission member 64 provided on the stage 63 generate frictional driving, and the contact region S on the contact surface 64 a of the driving force transmission member 64 is generated. An adsorbing means for collecting the wear powder adhering to the surface by electrostatic force is configured.
[0022]
That is, the inventors of the present invention have been conducting research while paying attention to the wear powder, and the wear powder generated by sliding between the friction member 56 and the driving force transmission member 64 is charged, and the charged state of the wear powder. If the one charged to a polarity different from that of the contact area S on the contact surface 64a of the driving force transmission member 64 is disposed near the contact area S, the wear powder can be moved out of the contact area S by electrostatic force. The present inventors have found that wear powder can be prevented from biting between the transmission member 64 and the friction member 56 and have reached the present invention.
[0023]
Specifically, when the friction member 56 and the driving force transmission member 64 are formed of ceramics, sapphire, or glass, the wear powder of these materials is positively charged. If the friction member 56 and the driving force transmission member 64 are made of metal or resin, the wear powder of these materials is negatively charged. The adsorption electrode 1 may be positively charged.
[0024]
Therefore, when a command signal is output from the driver 69 and the friction member 56 of the ultrasonic motor is moved elliptically, the stage 63 can be moved along the guide member 62 by friction drive with the driving force transmission member 64. The control unit 68 performs, for example, PID calculation processing based on a parameter that changes in accordance with the deviation between the position information from the position detection unit 67 accompanying the movement of the stage 63 and the preset reference position information of the stage 63. By performing feedback control that outputs a command signal to the ultrasonic motor to the driver 69, the stage 63 can be moved under a predetermined condition.
[0025]
According to the guide device of the present invention, the abrasion powder generated by the friction drive between the friction member 56 of the ultrasonic motor and the driving force transmission member 64 provided in the stage 63 is adsorbed to the adsorption electrode 1 by electrostatic force and driven. Since it is possible to keep almost no abrasion powder in the contact region S on the contact surface 64a of the force transmission member 64, the abrasion powder does not bite between the driving force transmission member 64 and the friction member 56. Since a stable contact state can be obtained at all times, the stage 63 can be driven stably by driving the ultrasonic motor, and accuracy is required even when movement accuracy of about 1 μm or positioning accuracy of 1 μm or less is required. Can move and position well.
[0026]
The form of the attracting electrode 1 is not particularly limited. For example, a metal foil, a thin metal plate, a conducting wire, or a conductor film can be used. In attaching the driving force transmitting member 64 to the contact surface 64a, In consideration of compatibility with the material of the driving force transmission member 64, adhesion, metallization, or the like may be used. Moreover, although the example which provided the two electrodes 1 for adsorption | suction so that the contact area S was pinched | interposed was shown in FIG. 1, it should just be formed only in at least any one.
[0027]
By the way, the charged state of the wear powder may be measured by using the charging characteristic result of the material confirmed by j. Henniker: Nature, 196 (1962) 474 or by actually rubbing it. The amount of charge for charging the adsorption electrode 1 depends on the size of the wear powder and the distance from the contact area S, but may be determined in advance by confirming the amount of charge that can be absorbed by the wear powder.
[0028]
In addition, when it is difficult to determine the charged state of the wear powder, one of the adsorption electrodes 1 is positively charged and the other of the adsorption electrodes 1 is negatively charged, regardless of the charged state of the wear powder. Wear powder can be adsorbed to one of the adsorption electrodes 1.
[0029]
Next, various other embodiments of the present invention will be described.
[0030]
In the embodiment shown in FIG. 2, the adsorbing means is composed of an adsorbing member 10 having an adsorbing electrode and a high-voltage power supply 2 that applies a voltage to charge the adsorbing electrode of the adsorbing member 10. The suction member 10 has a structure similar to that of the guide device shown in FIG. A gap of about 0.5 mm or less is provided with the surface 64a, and the adsorption electrode is installed so as to face the contact surface 64a. The adsorption members 10 are provided on both sides of the ultrasonic motor. It is.
[0031]
According to this embodiment, the stage 63 is obtained by charging the suction electrode of the suction member 10 to a polarity different from the charged state of the friction powder generated by the frictional drive of the driving force transmission member 64 and the friction member 56. When the wear powder adhering to the contact surface 64a of the driving force transmission member 64 comes to a position facing the adsorption member 10 by the movement of the wear force, the wear powder can be adsorbed to the adsorption member 10 by electrostatic force. Since the wear powder adhering to the contact region S on the contact surface 64a of the driving force transmission member 64 can be removed and the wear powder can be prevented from being caught between the driving force transmission member 64 and the friction member 56. A stable contact state can be obtained at all times, and the stage 63 can be precisely adjusted even when a moving accuracy of about 1 μm or a positioning accuracy of 1 μm or less is required by driving the ultrasonic motor. It can be moved and positioned well.
[0032]
By the way, as the adsorption member 10, as shown in FIG. 3A, an adsorption electrode 11 made of a metal foil, a metal thin plate, a conductor film, or the like is formed on a substrate 12 made of an insulating material such as ceramics. Further, on the electrode 11 for adsorption, a resin film such as polyimide tape as the insulating protective film 13, or barium titanate, lead zirconate titanate (PZT), lead lanthanum zirconate titanate, lead magnesium niobate or a mixture thereof It is possible to use a ceramic film mainly composed of In particular, a ceramic film mainly composed of barium titanate, lead zirconate titanate (PZT), lead lanthanum zirconate titanate, lead magnesium niobate or a mixture thereof has a higher dielectric constant than the resin film. Therefore, since a large electrostatic force can be obtained, the adsorption power of the wear powder can be greatly improved. In order to manufacture the adsorption member 10 having such a ceramic film, for example, a solvent or binder is added to lead zirconate titanate (PZT), lead lanthanum zirconate titanate, lead magnesium niobate, or a mixture thereof. A slurry is formed by mixing, a plurality of sheets having a thickness of several hundred μm to several mm prepared by tape molding are prepared, and after several sheets are stacked, an adsorption electrode 11 is provided, and further a ceramic film is formed. It can be obtained by stacking the remaining sheets and pressurizing them while heating to form a laminate in which the adsorption electrode 11 is embedded, and then firing.
[0033]
Further, when it is difficult to determine the charged state of the wear powder, as shown in FIG. 3 (b), the pattern shape of the adsorption electrode 1 is a pair of comb teeth, and the adsorption electrode 11 having one comb teeth is formed. By positively charging and negatively charging the other comb-like adsorption electrode 11, the abrasion powder can be adsorbed to the adsorption member 10 regardless of the charged state of the abrasion powder.
[0034]
In the embodiment shown in FIG. 4, the adsorbing means can be driven by an adsorbing member 20 that can be driven by a conveyor mechanism in which a sheet-like adsorbing electrode 21 is stretched by two rollers 22, and the adsorbing electrode 21 of the adsorbing member 20. The suction member 20 has a structure similar to that of the guide device shown in FIG. 1 except that it includes a high-voltage power supply 2 that applies a voltage to charge the charge. In the vicinity of the contact area S on the contact surface 64a, a clearance of about 0.5 mm or less is provided with the contact surface 64a of the driving force transmission member 64, and the suction electrode 21 is disposed so as to face the contact surface 64a. The adsorption member 20 is provided on each side of the ultrasonic motor.
[0035]
According to this embodiment, the stage is provided by charging the suction electrode 21 of the suction member 20 to a polarity different from the charged state of the friction powder generated by the frictional drive of the driving force transmission member 64 and the friction member 56. Since the wear powder adhering to the contact surface 64a of the driving force transmission member 64 due to the movement of 63 comes to a position facing the adsorption member 20, the wear powder can be adsorbed to the adsorption member 20 by electrostatic force. Since the wear powder adhering to the contact area S on the contact surface 64a of the driving force transmission member 64 can be removed, it is possible to prevent the wear powder from being caught between the driving force transmission member 64 and the friction member 56. The stage 63 can always obtain a stable contact state, and even when a moving accuracy of about 1 μm or a positioning accuracy of 1 μm or less is required by driving the ultrasonic motor. Can be moved and positioned with high accuracy.
[0036]
Further, since the suction member 20 can be rotated by a conveyor mechanism in which the sheet-like suction electrode 21 is stretched by two rollers 22, the contact of the driving force transmission member 64 of the sheet-like suction electrode 21 is prevented. When wear powder adheres to the area facing the contact surface 64a and the adsorption capacity of the wear powder decreases, the sheet-like adsorption electrode 21 is moved by the conveyor mechanism to drive a new surface on which the wear powder is not adsorbed. Since it can be made to oppose sequentially with the contact surface 64a of the force transmission member 64, a guide apparatus can be driven over a long period of time compared with embodiment shown in FIG.1 and FIG.2.
[0037]
By the way, as the adsorption electrode 21 forming the adsorption member 20, for example, a metal foil sandwiched between polyimide sheets may be used. The energization of the adsorption electrode 21 may be performed using a slip ring from the incoming terminal. Further, by holding a separation pawl against the suction electrode 21 on the side opposite to the driving force transmitting member 64, the abrasion powder adsorbed on the suction electrode 21 is scraped off by the separation pawl, and the suction electrode 21 Playback may be performed. However, when abrasion powder is scraped off by a separation nail, it is preferable to provide a wear powder recovery mechanism in the vicinity thereof. By providing such a recovery mechanism, wear powder is not scattered around and used semipermanently. be able to.
[0038]
In the embodiment shown in FIG. 5, a plurality of grooves 32 having a smaller width than the friction member 56 of the ultrasonic motor are formed on the contact surface 64 a of the driving force transmission member 64 provided in the stage 63, and the suction means is illustrated. As shown in FIG. 6 (a), FIG. 1 shows a configuration except that the suction electrodes 31 are provided at the groove bottom portions 32a and the high voltage power source 2 applies a voltage to charge the suction electrodes 31 with electric charges. It has the same structure as the guide device shown.
[0039]
Here, the pattern shape of the groove 32 formed on the contact surface 64a of the driving force transmission member 64 is not particularly limited. For example, as shown in FIG. A plurality of extending grooves 32 arranged in parallel in a direction perpendicular to the moving direction of the stage 63, or a groove 32 extending obliquely with respect to the moving direction of the stage 63, as shown in FIG. Are arranged in parallel in the moving direction of the stage 63, or as shown in FIG. 7C, the grooves 32 extending obliquely with respect to the moving direction of the stage 63 are arranged in a cross shape. Various pattern shapes can be employed.
[0040]
According to this embodiment, since the groove 32 is formed in the contact surface 64 a of the driving force transmission member 64, the groove 32 is generated by friction drive between the driving force transmission member 64 and the friction member 56, and the contact of the driving force transmission member 64 is reduced. Since the friction powder adhering to the contact surface 64a and the friction member 56 can be cut off in the groove 32, it is possible to effectively prevent the wear powder from being caught between the driving force transmission member 64 and the friction member 56. Can do.
[0041]
In addition, an adsorption electrode 31 is provided on the groove bottom surface 32a. By charging the adsorption electrode 31 to a polarity different from the charged state of the wear powder, the wear powder missing in the groove 32 can be electrostatically removed. Since dust can be collected by being attracted to the attracting electrode 31 by force, it is possible to prevent the abrasion powder adhering in the groove 32 from adhering again to the contact surface 64a of the friction member 56 or the driving force transmitting member 64. Can do.
[0042]
Therefore, it is effective to efficiently remove the wear powder adhering to the contact region S on the contact surface 64a of the drive force transmission member 64 and to allow the wear powder to be caught between the drive force transmission member 64 and the friction member 56. Therefore, a stable contact state can always be obtained, and the stage 63 can be moved with high accuracy even when the moving accuracy of about 1 μm or the positioning accuracy of 1 μm or less is required by driving the ultrasonic motor.・ Can be positioned.
[0043]
By the way, in order to obtain such an effect, it is necessary to make the width of the groove 32 smaller than the friction member 56 of the ultrasonic motor, and it is preferable that the width is preferably 0.03 mm to 1 mm. That is, when the width W of the groove 32 is equal to or larger than that of the friction member 56 of the ultrasonic motor, the contact state between the friction member 56 and the driving force transmission member 64 changes, which adversely affects the driving characteristics of the stage 63 or causes friction. This is because the wear of the member 56 is promoted, and the edge portion of the groove 32 is damaged by the friction member 56. Particularly, when the width W of the groove 32 exceeds 1 mm, the above-mentioned problem starts to appear remarkably. Conversely, when the width W of the groove 32 is less than 0.03 mm, it is difficult to provide the adsorption electrode 31 on the groove bottom surface 32a.
[0044]
When the depth L of the groove 32 exceeds 1 mm, the distance between the wear powder adhering to the vicinity of the opening of the groove 32 and the adsorption electrode 31 on the groove bottom surface 32a is too far, and the electrostatic adsorption force acting on the wear powder. Becomes too small, it becomes difficult to hold the wear powder in the groove 32. On the other hand, when the depth L of the groove 32 is less than 0.05 mm, the dust collection amount of the wear powder that has been cut off in the groove 32 is significantly reduced. For this reason, the depth L of the groove 32 is preferably 0.05 to 1 mm.
[0045]
The groove 32 may be formed at least in the contact area S with the friction member 56 of the ultrasonic motor in the contact surface 64a of the driving force transmission member 64.
[0046]
As described above, in the present embodiment, the guide device in which the movable body moves linearly has been described as an example. However, it goes without saying that the present invention can be applied to a guide device in which the movable body rotates, and further, an ultrasonic motor that drives the movable body. In addition, the present invention is not limited to the multi-mode type, and may be a single-vibration mode standing wave type or traveling wave, a multi-vibration mode mode conversion type, or a composite vibration type ultrasonic motor.
[0047]
As described above, various improvements and changes may be made without departing from the scope of the present invention.
[0048]
【Example】
(Embodiment 1) Here, abrasion powder is scraped off the guide device (reference example) shown in FIG. 1, the conventional guide device (conventional example 1) shown in FIG. 8, and the conventional guide device shown in FIG. In the experiment, each of the guide devices was driven, and the amount of wear of the friction member 56 of the ultrasonic motor 51 and the life of the guide device were examined.
[0049]
In this experiment, the vibration body 55 of the ultrasonic motor 51 has a length of 30 mm, a width of 7.5 mm, and a thickness of 3 mm, and is formed of lead zirconate titanate-based piezoelectric ceramics. Alumina ceramics was used for the friction member 56 to be joined, and its dimensions were a cylinder with a length of 4.2 mm and a diameter of 3 mm, and the contact surface was a spherical surface with a curvature radius of 7 mm.
[0050]
Further, a cross roller guide having a stroke of 100 mm was used as the guide member 62 constituting the guide device, and the stage 63 having a weight of 5 kg was moved through the guide member 62. The driving force transmission member 64 that contacts the friction member 56 of the ultrasonic motor is made of alumina ceramics, and the contact surface 64a with the friction member 56 is 0.05 μm in arithmetic mean roughness (Ra).
[0051]
In the guide device of the present invention, a copper wire having a diameter of 1 mm is used as the suction electrode 1 at a position 1 mm away from the axis of the contact area S with the friction member 56 on the contact surface 64a of the driving force transmission member 64. Was fixed to the contact surface 64a with two adhesives.
Further, by energizing the adsorption electrode 1 from the high voltage power source 2, the adsorption electrode 1 is charged with a negative charge of 1 kV.
[0052]
Moreover, the conventional guide apparatus provided with the brush for scraping off abrasion powder has arranged the brush so as to contact the contact surface 64a of the driving force transmission member 64 on both sides of the ultrasonic motor.
[0053]
Then, as a profile of the stage 13 set in advance in the control unit 68, trapezoidal control is set with a movement distance of 100 mm, an acceleration / deceleration speed of 0.03 G, and a maximum speed of 100 mm / s, and the ultrasonic motor 51 is driven at a driving frequency of 40 kHz. I did it. And the removal state of the abrasion powder after driving the stage 63 by 500 km on this condition and the wear amount of the friction member 56 were measured, respectively, and the lifetime of the guide device was measured. As for the life of the guide device, if the deviation between the actual position signal obtained from the position detecting means 67 and the reference position signal exceeds 1 μm, the stage 63 cannot be driven stably, so the deviation is 1 μm. The moving distance of the stage 63 exceeding the range is defined as the life.
[0054]
Each result is as shown in Table 1.
[0055]
[Table 1]
Figure 0003827554
[0056]
As a result, the guide device of the prior art 1 that does not include the wear powder removing means has a large wear amount of the friction member 56 due to the biting of the wear powder, and the movement distance of the stage 63 is 200 km and the deviation is 1 μm. The life span was short.
[0057]
Further, in the guide device of Conventional Example 2 equipped with a brush as a means for removing wear powder, although the wear amount of the friction member 56 is small, the deviation of the deviation of 1 μm is increased in some places since the moving distance of the stage 63 has exceeded 300 km. Beyond. Examining this reason, the wear powder removed by the brush reattached to the contact surface 64a of the driving force transmission member 64, and the reattached wear powder was caught.
[0058]
On the other hand, the guide device of the present invention can attach the abrasion powder to the adsorption electrode 1, and almost no abrasion powder is present in the contact area S of the contact surface 64 of the driving force transmission member 64 with the friction member 56. Since it does not remain, the wear amount of the friction member 56 is extremely small, and even if the stage 63 is driven by 500 km, the deviation does not exceed 1 μm, so that it can be driven stably for a long time, which is excellent.
(Example 2)
Next, the same experiment as in Example 1 was performed using the guide device of the present invention shown in FIG.
[0059]
The suction member 10 constituting the suction means is bonded to a ceramic plate 12 having a length of 25 mm and a width of 30 mm as a suction electrode 11 and a polyimide tape as an insulating protective film 13 thereon. 2 were placed at both ends of the ultrasonic motor 51. However, the gap between the suction member 10 and the driving force transmission member 64 was set to 0.5 mm. Then, the adsorption electrode 11 was energized by the high-voltage power supply 2 so that the adsorption electrode 11 was charged with a negative charge of 1 kV.
[0060]
The results are as shown in Table 2.
[0061]
[Table 2]
Figure 0003827554
[0062]
As a result, the guide device of the present invention shown in FIG. 2 can attach the abrasion powder adhering to the driving force transmission member 64 to the adsorption member 10, so that the friction member 56 on the contact surface 64 of the driving force transmission member 64. There is almost no wear powder remaining in the contact area S, the wear amount of the friction member 56 is extremely small, and even if the stage 63 is driven by 500 km, the deviation does not exceed 1 μm, so it is stable for a long time. I was able to drive.
Example 3
Next, an experiment similar to that of Example 1 was performed over 5000 km using the guide device of the present invention shown in FIG.
[0063]
The adsorbing member 20 constituting the adsorbing means has a conveyor structure in which a copper foil is sandwiched between polyimide sheets and a sheet-shaped adsorbing electrode 21 having a width of 30 mm is stretched by a pair of rollers 22. Two ultrasonic motors 51 are arranged at both ends. However, the gap between the suction member 20 and the driving force transmission member 64 was set to 0.5 mm. Then, the adsorption electrode 21 was energized by the high-voltage power supply 2 so that the adsorption electrode 21 was charged with a negative charge of 1 kV.
[0064]
Further, on the side opposite to the driving force transmission member 64 across the adsorption electrode 21, a resin separation pawl is pressed with a force of 50 g so that the abrasion powder scraped off by the separation pawl is collected by the collection tray. did.
[0065]
However, the adsorption electrode 21 of the adsorption member 20 was rotated once every time the stage 63 moved 500 km, and step-feeded in 10 stages.
[0066]
As a result, the wear amount of the friction member 56 of the ultrasonic motor 51 is a steady wear proportional to the moving distance of the stage 63, and no uneven wear is observed, so that the stage 63 can be driven stably during driving. In addition, since it has a function of collecting wear powder, it can be applied to a semiconductor manufacturing apparatus that requires a clean environment.
Example 4
Next, an experiment similar to that of Example 1 was performed over 5000 km using the guide device of the present invention shown in FIG.
[0067]
The grooves 32 formed on the contact surface 64a of the driving force transmission member 64 with the friction member 56 are inclined grooves 32 having an angle of 45 degrees with respect to the moving direction of the stage 63, and are formed at a pitch of 1 mm. The width W of the groove 32 is 50 μm, and the depth L of the groove 32 is 100 μm. Further, an adsorption electrode 21 was formed by depositing a silver film having a thickness of 3 μm on each groove bottom surface 32a.
[0068]
Then, the adsorption electrode 21 was energized by the high-voltage power supply 2 so that the adsorption electrode 21 was charged with a negative charge of 1 kV.
[0069]
As a result, almost no wear powder remained in the contact area S of the contact surface 64 of the driving force transmission member 64 with the friction member 56 and was held in the groove 32. Therefore, the wear amount of the friction member 56 is extremely small, and even when the stage 63 is driven by 5000 km, the deviation does not exceed 1 μm and can be driven stably for a long time. Moreover, in this embodiment, not only the wear powder adhering to the contact surface 64 of the driving force transmission member 64 but also the wear powder adhering to the friction member 56 of the ultrasonic motor 51 can be removed in the groove 32. Therefore, compared with the other embodiments of the present invention shown in FIGS. 1 to 4, the amount of wear attached to the friction member 56 can be extremely reduced, and the contact state between the driving force transmission member 64 and the friction member 56 can be reduced. Since the change can be reduced, the behavior of the stage 63 during the movement can be stabilized.
[0070]
【The invention's effect】
As described above, according to the present invention, the ultrasonic motor including the vibrating body that generates the elliptical motion, the friction member that transmits the elliptical motion of the vibrating body, and the friction member of the ultrasonic motor are in contact with each other. In a guide device using an ultrasonic motor composed of a movable body movable by friction drive as a drive source of the movable body, wear powder adhering to the contact surface of the movable body by friction drive between the ultrasonic motor and the movable body An adsorption means for collecting the dust by electrostatic force is provided. As the adsorption means, at least one adsorption electrode provided in the vicinity of the contact area of the contact surface of the movable body with the friction member of the ultrasonic motor, and the adsorption electrode Use a high-voltage power supply that applies a voltage to charge the charge, or in the vicinity of the contact area with the friction member of the ultrasonic motor on the contact surface of the movable body and between the contact surface of the movable body and the gap It comprises at least one adsorbing member having an adsorbing electrode installed and a high-voltage power source for applying a voltage to charge the adsorbing electrode of the adsorbing member, or a contact surface of the movable body A plurality of grooves having a width smaller than that of the friction member are formed in a contact area with the friction member of the ultrasonic motor in the case, and the suction electrode arranged on the bottom surface of the groove and the charge for charging the suction electrode By using what comprises a high-voltage power supply that applies a voltage to the frictional drive, it is possible to remove the abrasion powder generated by the friction drive from the contact area with the friction member on the contact surface of the movable body. Abrasion powder can be prevented from getting caught between the contact surfaces with the movable body, the movable body can be driven stably, and the accuracy during movement is 1 μm and the positioning accuracy is high. Even when high accuracy of 0.1 μm is required, the movable body can be moved and positioned with high accuracy, and furthermore, it does not pollute the surrounding atmosphere, so it is also suitable for use in a vacuum atmosphere. can do.
[Brief description of the drawings]
FIG. 1 is a perspective view showing an example of a guide device of the present invention using an ultrasonic motor as a drive source for a movable body.
FIG. 2 is a perspective view showing another example of the guide device of the present invention using an ultrasonic motor as a drive source for the movable body.
FIGS. 3A and 3B are perspective views, partly broken, showing the structure of the suction member provided in the guide device of FIG.
FIG. 4 is a perspective view showing still another example of the guide device according to the present invention using an ultrasonic motor as a drive source of the movable body.
FIG. 5 is a perspective view showing still another example of the guide device according to the present invention in which an ultrasonic motor is used as a driving source of the movable body.
6 is an enlarged cross-sectional view of a part of a main part provided in the guide device of FIG.
7A, 7B, and 7C are plan views showing groove pattern shapes provided in the guide device of FIG.
FIG. 8 is a perspective view showing an example of a conventional guide device using an ultrasonic motor as a driving source of a movable body.
FIG. 9 is a cross-sectional view, partly broken away, showing an ultrasonic motor mounting structure in a case.
[Explanation of symbols]
1, 11, 21, 31: Electrode for adsorption 2: High-voltage power supply 10, 20: Adsorption member
12: Substrate 13: Insulating protective film 22: Roller 32: Groove 32a: Groove bottom
51: Ultrasonic motor 52: Piezoelectric ceramic body
53a, 53b, 53c, 53d: electrode film
55: Vibrating body 56: Friction member 57: Case 58: Spring
59: Spring 61: Base board 62: Guide member 63: Stage
64: Driving force transmission member 65: Linear scale 66: Measuring head
67: Position detecting means 68: Control unit 69: Driver

Claims (4)

楕円運動を発生させる振動体と、該振動体の楕円運動を伝達する摩擦部材とからなる超音波モータと、該超音波モータの摩擦部材と当接し、摩擦駆動により可動する可動体とから成る超音波モータを可動体の駆動源とする案内装置において、上記超音波モータと上記可動体との当接面に付着する摩耗粉を、上記可動体の当接面における上記超音波モータの摩擦部材との接触領域近傍で、上記可動体の当接面と隙間を設けて、絶縁材料からなる基板上に、それぞれ正負に帯電させる一対の櫛歯状の吸着用電極を形成するとともに、該吸着用電極上に絶縁保護膜を被着してなる少なくとも一つの吸着部材と、該吸着部材の吸着用電極に電圧を印加する高圧電源とからなる吸着手段により、静電気力により集塵することを特徴とする超音波モータを可動体の駆動源とする案内装置。An ultrasonic motor comprising an oscillating body that generates an elliptical motion, a friction member that transmits the elliptical motion of the oscillating body, and a movable body that is in contact with the friction member of the ultrasonic motor and is movable by friction drive. In the guide device using the sonic motor as a drive source of the movable body, the abrasion powder adhering to the contact surface between the ultrasonic motor and the movable body is separated from the friction member of the ultrasonic motor on the contact surface of the movable body. A pair of comb-like adsorption electrodes that are positively and negatively charged are formed on a substrate made of an insulating material by providing a gap between the contact surface of the movable body and a gap in the vicinity of the contact area, and the adsorption electrodes Dust collection by electrostatic force is performed by an adsorbing means comprising at least one adsorbing member having an insulating protective film deposited thereon and a high-voltage power source for applying a voltage to the adsorbing electrode of the adsorbing member. Ultrasonic motor Guide device for a driving source of the moving object. 上記絶縁保護膜は、チタン酸バリウム、チタン酸ジルコン酸鉛(PZT)、ランタンチタン酸ジルコン酸鉛、マグネシウムニオブ酸鉛あるいはこれらの混合物を主成分とするセラミック膜からなることを特徴とする請求項1に記載の超音波モータを可動体の駆動源とする案内装置。 The insulating protective film is made of a ceramic film mainly composed of barium titanate, lead zirconate titanate (PZT), lead lanthanum zirconate titanate, lead magnesium niobate, or a mixture thereof. A guide device using the ultrasonic motor according to 1 as a driving source of a movable body. 楕円運動を発生させる振動体と、該振動体の楕円運動を伝達する摩擦部材とからなる超音波モータと、該超音波モータの摩擦部材と当接し、摩擦駆動により可動する可動体とから成る超音波モータを可動体の駆動源とする案内装置において、
上記超音波モータと上記可動体との当接面に付着する摩耗粉を、上記可動体の当接面に設けられた上記超音波モータの摩擦部材よりも小さな幅を有する溝と、該溝底面に設けた吸着用電極と、該吸着用電極に電荷を帯電させるために電圧を印加する高圧電源とからなる吸着手段により、静電気力により集塵することを特徴とする超音波モータを可動体の駆動源とする案内装置。
An ultrasonic motor comprising an oscillating body that generates an elliptical motion, a friction member that transmits the elliptical motion of the oscillating body, and a movable body that is in contact with the friction member of the ultrasonic motor and is movable by friction drive. In a guide device using a sonic motor as a drive source of a movable body,
A groove having a smaller width than the friction member of the ultrasonic motor provided on the contact surface of the movable body, the wear powder adhering to the contact surface between the ultrasonic motor and the movable body, and the bottom surface of the groove An ultrasonic motor that collects dust by electrostatic force by an adsorption means comprising an adsorption electrode provided on the electrode and a high-voltage power supply that applies a voltage to charge the adsorption electrode . A guide device as a drive source.
上記溝は、上記ステージの移動方向に対して45度の角度をもつ斜め方向に形成したことを特徴とする請求項3に記載の超音波モータを可動体の駆動源とする案内装置。 The guide device using the ultrasonic motor as a driving source of the movable body according to claim 3, wherein the groove is formed in an oblique direction having an angle of 45 degrees with respect to the moving direction of the stage .
JP2001330084A 2000-11-30 2001-10-29 Guide device using ultrasonic motor as drive source of movable body Expired - Fee Related JP3827554B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001330084A JP3827554B2 (en) 2000-11-30 2001-10-29 Guide device using ultrasonic motor as drive source of movable body

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2000365583 2000-11-30
JP2000-365583 2000-11-30
JP2001330084A JP3827554B2 (en) 2000-11-30 2001-10-29 Guide device using ultrasonic motor as drive source of movable body

Publications (2)

Publication Number Publication Date
JP2002233172A JP2002233172A (en) 2002-08-16
JP3827554B2 true JP3827554B2 (en) 2006-09-27

Family

ID=26604980

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001330084A Expired - Fee Related JP3827554B2 (en) 2000-11-30 2001-10-29 Guide device using ultrasonic motor as drive source of movable body

Country Status (1)

Country Link
JP (1) JP3827554B2 (en)

Also Published As

Publication number Publication date
JP2002233172A (en) 2002-08-16

Similar Documents

Publication Publication Date Title
US7960925B2 (en) Ultrasonic motor driving method and ultrasonic motor
US7960895B2 (en) Drive unit
US20130140951A1 (en) Piezoelectric motor, drive unit, robot hand, robot, electronic component transporting apparatus, electronic component inspecting apparatus, and printer
JP2005096057A (en) Guiding device
JP2004187384A (en) Vibration actuator
JP3827554B2 (en) Guide device using ultrasonic motor as drive source of movable body
JP2005051836A (en) Guiding device
JP3931288B2 (en) Laser marking device and marking method
US10811998B2 (en) Driving device, piezoelectric motor, robot, electronic-component conveying device, and printer
JP2002142471A (en) Guiding device using ultrasonic motor as drive source of movable member
JP2004236389A (en) Ultrasonic motor driver
JP2006272531A (en) Guide device
JPH01315280A (en) Method of driving ultrasonic motor and vibrator for the motor
JP4522055B2 (en) Driving method and driving apparatus for ultrasonic motor
JP2003251541A (en) Guide device using ultrasonic motor as drive source of movable body
JP3228610B2 (en) Ultrasonic actuator
JPH0417584A (en) Ultrasonic actuator
JP2006280030A (en) Guide device
JP2006129587A (en) Guiding means
CN111130386B (en) Piezoelectric driving device, control method thereof, robot and printer
JP2003259667A (en) Method of driving piezoelectric motor
JP2011244598A (en) Ultrasonic motor and driving device provided with ultrasonic motor
JP2010060695A (en) Stage mechanism
JPH06169582A (en) Ultrasonic driving device
JP2526549Y2 (en) Vibration wave device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040415

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060116

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060214

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060414

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060627

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060704

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090714

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100714

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110714

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120714

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130714

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees