JP2003251181A - Catalyst for removing carbon monoxide in hydrogen gas - Google Patents

Catalyst for removing carbon monoxide in hydrogen gas

Info

Publication number
JP2003251181A
JP2003251181A JP2002059224A JP2002059224A JP2003251181A JP 2003251181 A JP2003251181 A JP 2003251181A JP 2002059224 A JP2002059224 A JP 2002059224A JP 2002059224 A JP2002059224 A JP 2002059224A JP 2003251181 A JP2003251181 A JP 2003251181A
Authority
JP
Japan
Prior art keywords
catalyst
platinum
rhenium
titania
weight
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002059224A
Other languages
Japanese (ja)
Other versions
JP4087621B2 (en
Inventor
Masashi Endo
昌志 遠藤
Hiroyuki Kaji
博幸 楫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NE Chemcat Corp
Original Assignee
NE Chemcat Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NE Chemcat Corp filed Critical NE Chemcat Corp
Priority to JP2002059224A priority Critical patent/JP4087621B2/en
Publication of JP2003251181A publication Critical patent/JP2003251181A/en
Application granted granted Critical
Publication of JP4087621B2 publication Critical patent/JP4087621B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Hydrogen, Water And Hydrids (AREA)
  • Catalysts (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To obtain a catalyst for removing CO having an effect to suppress a methanation reaction in which catalyst activity is high when used to remove CO contained in a hydrogen rich gas, such as a reformed gas, by converting to CO<SB>2</SB>by the reaction of a water gas shift, and in which the CO is converted to CH<SB>4</SB>in a high temperature region. <P>SOLUTION: This catalyst for removing carbon monoxide in the hydrogen rich gas is characterized in that platinum and/or platinum oxide and rhenium and/or rhenium oxide are supported on a carrier comprising titania or a metal oxide containing the titania. <P>COPYRIGHT: (C)2003,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、改質ガス等の水素
リッチなガス中に含まれるCOを、水性ガスシフト反応
によってCO2に転化させて除去する際に用いるCO除
去用触媒に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a CO-removing catalyst used for removing CO contained in a hydrogen-rich gas such as a reformed gas by converting it to CO 2 by a water gas shift reaction. .

【0002】[0002]

【従来の技術】近年、固体高分子型燃料電池の改良が注
目されている。固体高分子型燃料電池は、アノード側に
水素(燃料)を供給し、カソード側に酸素または空気
(酸化剤)を供給して、固体電解質膜(プロトン伝導
膜)を介して反応させ、電流を得るものである。電極触
媒としては、アノード、カソード共に白金黒、カーボン
に白金あるいは白金合金を担持した触媒等が用いられて
いるが、この電極触媒は水素(燃料)中にCOが含まれ
ていると、少量でも被毒され電池性能の低下が著しいこ
とが知られている。
2. Description of the Related Art In recent years, improvements in polymer electrolyte fuel cells have been drawing attention. A polymer electrolyte fuel cell supplies hydrogen (fuel) to the anode side and oxygen or air (oxidizer) to the cathode side to cause a reaction through a solid electrolyte membrane (proton conductive membrane) and generate an electric current. I will get it. As the electrode catalyst, platinum black is used for both the anode and cathode, and a catalyst in which platinum or a platinum alloy is supported on carbon is used. However, when the hydrogen (fuel) contains CO, even if a small amount of this electrode catalyst is used, It is known that it is poisoned and the battery performance is significantly deteriorated.

【0003】水素ガス中のCOを除去する方法としては
触媒の存在下、反応系内に酸素を導入し、COを選択的
にCO2に酸化し除去する方法(下記式(1))、および反
応系内に水(H2O)を添加し、触媒共存下水性ガスシ
フト反応を起こさせる方法(下記式(2))が公知であ
る。 [CO酸化反応] CO+1/2O2 → CO2 (1) [水性ガスシフト反応] CO+H2O ⇔ CO2+H2 (2)(ΔH=−41 kJ/mol)
As a method for removing CO in hydrogen gas, oxygen is introduced into the reaction system in the presence of a catalyst to selectively oxidize and remove CO into CO 2 (the following formula (1)), and A method (the following formula (2)) in which water (H 2 O) is added to the reaction system to cause a water gas shift reaction in the presence of a catalyst is known. [CO oxidation reaction] CO + 1 / 2O 2 → CO 2 (1) [water gas shift reaction] CO + H 2 O ⇔ CO 2 + H 2 (2) (ΔH = -41 kJ / mol)

【0004】前者の方法では、反応系内の水素濃度が高
い場合には、下記式(3)で示すように系内に導入した酸
素が系内に多量に存在する水素と反応してしまうので、
選択性の高い触媒が必要である。 H2+1/2O2 → H2O (3)
In the former method, when the hydrogen concentration in the reaction system is high, the oxygen introduced into the system reacts with a large amount of hydrogen present in the system as shown in the following formula (3). ,
A highly selective catalyst is needed. H 2 + 1 / 2O 2 → H 2 O (3)

【0005】一方、反応系内に水を添加する水性ガスシ
フト反応は、水素を製造する方法等として広く知られて
いる(特開2000-302405号公報参照)。この方法の特徴
としては、一般に2つの反応温度でのプロセスを組み合
わせて行われることである。つまり、反応温度により高
温シフト反応および低温シフト反応と呼ばれており、前
記高温シフト反応は400℃前後で、また、前記低温シフ
ト反応は250℃前後で行われる。水性ガスシフト反応は
上記式(2)に示したように発熱反応であることから、
低温で反応を行った方が平衡論的に水素生成に対しては
有利であるが、反応速度が遅くなるという問題がある。
そこで、高温では平衡的には不利であるが反応速度が速
いことから、先ず高温で多量のCOをCO2に転化し、
次に低温で残ったCOをさらに低濃度になるように処理
するという通常2段階プロセスで行われている。この高
温シフト反応に用いられる触媒としては鉄-クロム-コバ
ルト系の触媒が、低温シフト反応に用いられる触媒とし
ては銅-亜鉛系の触媒が、従来より知られている(特公
昭59-46883号公報、特開昭53-141191公報参照)。
On the other hand, the water gas shift reaction in which water is added to the reaction system is widely known as a method for producing hydrogen (see Japanese Patent Laid-Open No. 2000-302405). A feature of this method is that it is generally carried out by combining processes at two reaction temperatures. That is, depending on the reaction temperature, it is called a high temperature shift reaction and a low temperature shift reaction. The high temperature shift reaction is performed at about 400 ° C, and the low temperature shift reaction is performed at about 250 ° C. Since the water gas shift reaction is an exothermic reaction as shown in the above formula (2),
Equilibrium is advantageous in carrying out the reaction at low temperature for hydrogen production, but there is a problem that the reaction rate becomes slow.
Therefore, at high temperature, it is disadvantageous in equilibrium, but since the reaction rate is fast, first, a large amount of CO is converted to CO 2 at high temperature,
Then, the CO remaining at a low temperature is treated so as to have a further lower concentration, which is usually a two-step process. An iron-chromium-cobalt type catalyst has been conventionally known as a catalyst used for this high temperature shift reaction, and a copper-zinc type catalyst has been conventionally known as a catalyst used for a low temperature shift reaction (Japanese Patent Publication No. 59-46883). Japanese Patent Laid-Open Publication No. 53-141191).

【0006】また、最近では低温シフト反応用触媒とし
てジルコニア担体に白金、白金-レニウム等を担持させ
た触媒が、従来の銅-亜鉛系触媒よりも高活性を示すこ
とが知られている(特許第3215680号公報参照)。しか
し、前記触媒を用いて高温域(350℃前後)で水生ガス
シフト反応を行った場合、下記式(4)に示すCOのメタ
ーネーション反応によりメタンを生成するという副反応
を抑制することが不十分であり、水素生成効率を低下さ
せるという問題がある。 [メタネーション反応] CO+3H2 → CH4+H2O (4) この副反応は、水性ガスシフト反応によりCOを含まな
い水素を高収率で得ようとする場合、極めて好ましくな
い。このようなことから、水生ガスシフト反応用触媒と
して、メタネーション反応を抑制し、かつ高活性なCO
除去用触媒が望まれていた。
Recently, it has been known that a catalyst in which platinum, platinum-rhenium or the like is supported on a zirconia carrier as a catalyst for low temperature shift reaction has higher activity than conventional copper-zinc catalysts (patent). (See Japanese Patent No. 3215680). However, when the aquatic gas shift reaction is performed in the high temperature range (around 350 ° C.) using the catalyst, it is insufficient to suppress the side reaction of producing methane by the CO methanation reaction represented by the following formula (4). Therefore, there is a problem that hydrogen generation efficiency is reduced. [Methanation Reaction] CO + 3H 2 → CH 4 + H 2 O (4) This side reaction is extremely unfavorable when CO-free hydrogen is to be obtained in a high yield by a water gas shift reaction. Therefore, as a catalyst for aquatic gas shift reaction, CO that suppresses the methanation reaction and has high activity
A removal catalyst has been desired.

【0007】[0007]

【発明が解決しようとする課題】本発明の課題は、上記
水性ガスシフト反応において、高活性で、かつメタネー
ション反応を抑制し、水素ガス中のCO濃度を効率的に
低減させることができる触媒を提供することである。
An object of the present invention is to provide a catalyst which is highly active in the above water gas shift reaction, can suppress the methanation reaction, and can effectively reduce the CO concentration in hydrogen gas. Is to provide.

【0008】[0008]

【課題を解決するための手段】本発明は、上記課題を解
決するため、チタニアまたはチタニアを含有する金属酸
化物からなる担体に、白金および/または白金酸化物、
並びに、レニウムおよび/またはレニウム酸化物を担持
してなることを特徴とする水素ガス中の一酸化炭素除去
用触媒を提供する。
In order to solve the above-mentioned problems, the present invention provides a carrier comprising titania or a metal oxide containing titania, platinum and / or platinum oxide,
Also provided is a catalyst for removing carbon monoxide in hydrogen gas, which is characterized by supporting rhenium and / or rhenium oxide.

【0009】[0009]

【発明の実施の形態】本発明の一酸化炭素除去用触媒に
ついて、以下に詳述する。 [担体]本発明において用いられる担体は、チタニアま
たはチタニアを添加した金属酸化物であり、いずれの場
合も、通常、粒径2〜4mmφ程度の大きさの粒状、ペレ
ット状等で多孔質のものが用いられる。
BEST MODE FOR CARRYING OUT THE INVENTION The carbon monoxide removing catalyst of the present invention will be described in detail below. [Carrier] The carrier used in the present invention is titania or a metal oxide to which titania is added, and in any case, a granular or pellet-like porous material having a particle size of about 2 to 4 mmφ is usually used. Is used.

【0010】担体として、チタニアを添加した金属酸化
物を用いる場合、前記金属酸化物としては、例えば、ジ
ルコニア、アルミナ、シリカ、シリカ・アルミナ、ゼオ
ライト、セリア等を挙げることができ、中でも、触媒調
製が比較的容易であることなどの点から、ジルコニアま
たはアルミナを用いることが好ましい。
When a metal oxide added with titania is used as the carrier, examples of the metal oxide include zirconia, alumina, silica, silica-alumina, zeolite and ceria. Among them, catalyst preparation is possible. It is preferable to use zirconia or alumina because it is relatively easy.

【0011】上記金属酸化物にチタニアを添加する方法
としては、粒状の金属酸化物に、例えば、しゅう酸チタ
ンカリウム二水和物、塩化チタン、硫酸チタン等のチタ
ン化合物の水溶液またはチタニアゾルを金属酸化物に滴
下し、前記チタン化合物を前記粒状金属酸化物に含浸さ
せたのち、乾燥し、次いで、通常、200〜700℃、好まし
くは300〜600℃の温度で、10分〜3時間程度焼成するこ
とにより、チタニアを含有する金属酸化物を得ることが
できる。
As a method of adding titania to the above metal oxide, an aqueous solution of a titanium compound such as titanium potassium oxalate dihydrate, titanium chloride or titanium sulfate or a titania sol is added to the metal oxide in the form of metal oxide. Then, the titanium compound is impregnated in the granular metal oxide, dried, and then fired at a temperature of usually 200 to 700 ° C., preferably 300 to 600 ° C. for about 10 minutes to 3 hours. As a result, a metal oxide containing titania can be obtained.

【0012】こうして得られた粒状のチタニア含有金属
酸化物に含有されるチタニアの量は、通常、0.1〜50.0
重量%、好ましくは0.1〜20.0重量%、特に好ましくは
0.1〜10.0重量%とする。チタニア含有量が少なすぎる
と、水性ガスシフト反応活性向上の効果が十分でなく、
かつ、メタネーション反応の抑制が不十分となり、逆に
多すぎると、前記効果の更なる向上が期待できないばか
りか、経済性の利点に欠ける。
The amount of titania contained in the particulate titania-containing metal oxide thus obtained is usually 0.1 to 50.0.
% By weight, preferably 0.1-20.0% by weight, particularly preferably
0.1 to 10.0% by weight. If the titania content is too low, the effect of improving the water gas shift reaction activity is not sufficient,
In addition, if the suppression of the methanation reaction becomes insufficient, and if it is too large on the contrary, further improvement of the above effects cannot be expected, and the advantage of economy is lacking.

【0013】[触媒活性成分の担持]上記担体に触媒活
性成分である白金および/または白金酸化物、並びに、
レニウムおよび/またはレニウム酸化物を担持させて、
本発明のCO除去用触媒を得ることができる。上記触媒
中の白金および/または白金酸化物、並びに、レニウム
および/またはレニウム酸化物の担持量としては、触媒
重量に対して、白金および/または白金酸化物が、通
常、0.01〜20.0重量%、好ましくは0.01〜10.0重量%、
特に好ましくは0.1〜5.0重量%であり、また、レニウム
および/またはレニウム酸化物が、通常、0.01〜20.0重
量%、好ましくは0.01〜10.0重量%、特に好ましくは0.
1〜5.0重量%である。白金および/または白金酸化物、
並びに、レニウムおよび/またはレニウム酸化物の含有
量が少なすぎると、水性ガスシフト反応によって水素ガ
ス中のCOをCO2に転化させて除去する際の触媒活性
を十分に得ることが困難であり、逆に多すぎても触媒活
性の更なる向上が期待できないばかりか、貴金属を用い
ることから経済性の点で不利となる。
[Carrying of Catalytically Active Component] Platinum and / or platinum oxide which is a catalytically active component, and
By supporting rhenium and / or rhenium oxide,
The CO removal catalyst of the present invention can be obtained. Platinum and / or platinum oxide in the catalyst, and, as the supported amount of rhenium and / or rhenium oxide, platinum and / or platinum oxide is usually 0.01 to 20.0% by weight, relative to the weight of the catalyst. Preferably 0.01 to 10.0% by weight,
It is particularly preferably 0.1 to 5.0% by weight, and rhenium and / or rhenium oxide is usually 0.01 to 20.0% by weight, preferably 0.01 to 10.0% by weight, particularly preferably 0.
It is 1 to 5.0% by weight. Platinum and / or platinum oxide,
In addition, if the content of rhenium and / or rhenium oxide is too low, it is difficult to obtain sufficient catalytic activity when CO in hydrogen gas is converted to CO 2 by a water gas shift reaction and removed. If the amount is too large, further improvement in catalytic activity cannot be expected, and use of a noble metal is disadvantageous in terms of economy.

【0014】触媒として用いる、白金および/または白
金酸化物と、レニウムおよび/またはレニウム酸化物と
の割合としては、金属原子重量比で、通常、Pt/Re
=4/1〜1/4、好ましくは3/1〜1/3、特に好まし
くは2/1〜1/2である。
The ratio of platinum and / or platinum oxide to rhenium and / or rhenium oxide used as a catalyst is usually Pt / Re in terms of metal atom weight ratio.
= 4/1 to 1/4, preferably 3/1 to 1/3, particularly preferably 2/1 to 1/2.

【0015】上記担体に、白金および/または白金酸化
物、並びに、レニウムおよび/またはレニウム酸化物を
担持させる方法としては、特に制限はなく、公知の方法
が採用される。例えば、ジニトロジアンミン白金[Pt(N
O2)2(NH3)2]の硝酸溶液または塩化白金酸六水和物等の
水溶液を、上記担体に滴下・含浸したのち、乾燥させ
る。次いで、例えば、過レニウム酸アンモニウム、過レ
ニウム酸、酸化レニウム、塩化レニウム等のレニウム化
合物の水溶液等を、同様に滴下・含浸したのち、乾燥さ
せる。なお、レニウム化合物溶液による処理を先に行
い、その後に、白金化合物溶液による処理を行ってもよ
い。次に、300〜700℃、好ましくは400〜600℃の温度
で、30分〜2時間程度焼成することにより、担体に担持
された金属としての白金および/または白金酸化物、並
びに、金属としてのレニウムおよび/またはレニウム酸
化物を存在せしめる。
The method of loading platinum and / or platinum oxide and rhenium and / or rhenium oxide on the carrier is not particularly limited, and a known method can be adopted. For example, dinitrodiammine platinum [Pt (N
A nitric acid solution of [O 2 ) 2 (NH 3 ) 2 ] or an aqueous solution of chloroplatinic acid hexahydrate or the like is dropped and impregnated into the above carrier, and then dried. Next, for example, an aqueous solution of a rhenium compound such as ammonium perrhenate, perrhenic acid, rhenium oxide, or rhenium chloride is dropped and impregnated in the same manner, and then dried. The treatment with the rhenium compound solution may be performed first, and then the treatment with the platinum compound solution may be performed. Next, by firing at a temperature of 300 to 700 ° C., preferably 400 to 600 ° C. for about 30 minutes to 2 hours, platinum and / or platinum oxide as the metal supported on the carrier, and Presence of rhenium and / or rhenium oxide.

【0016】[本発明触媒の特徴]上記のようにして得
られた本発明の触媒は、担体としてチタニアまたはチタ
ニアを添加した金属酸化物を採用したことにより、白金
およびレニウムの水性ガスシフト反応によるCOのCO
2への転化・除去の触媒活性を向上させ、かつ、メタネー
ション反応を抑制することができるものである。
[Characteristics of the catalyst of the present invention] The catalyst of the present invention obtained as described above employs titania or a metal oxide to which titania is added as a carrier, so that CO due to a water gas shift reaction of platinum and rhenium is adopted. CO
It is possible to improve the catalytic activity of conversion / removal to 2 , and to suppress the methanation reaction.

【0017】[0017]

【実施例】実施例−1 ジルコニア粒状担体(第一稀元素化学工業(株)製:RSC-
HP)100gを容器に入れ、しゅう酸チタンカリウム水溶
液(濃度:40重量%)27 mLを滴下・含浸させ、滴下終了
後1時間放置した。その後、乾燥器を用い、空気中で11
0℃×2時間乾燥した。更に、焼成炉内において室温か
ら500℃まで1時間で昇温し、500℃×1時間の焼成処理
(空気中)を行ない、2重量%のチタニアを含むジルコ
ニア粒状担体を調製した。
[Examples] Example-1 Zirconia granular carrier (manufactured by Daiichi Rare Element Chemical Industry Co., Ltd .: RSC-
(HP) 100 g was placed in a container, 27 mL of an aqueous solution of potassium titanium oxalate (concentration: 40% by weight) was dropped and impregnated, and left for 1 hour after completion of dropping. Then, using a dryer, in air 11
It was dried at 0 ° C for 2 hours. Further, the temperature was raised from room temperature to 500 ° C. in a baking furnace in 1 hour, and a baking treatment (in air) was carried out at 500 ° C. for 1 hour to prepare a zirconia granular carrier containing 2% by weight of titania.

【0018】上記で得られた粒状担体の97gを容器に取
り、ジニトロジアンミン白金硝酸溶液(濃度:7.4重量
%、白金金属換算:2.0g)27 mLを滴下・含浸し、滴下
終了後1時間放置した。その後、乾燥器を用い、空気中
で110℃×2時間乾燥した。乾燥後のものを、容器に入
れ、過レニウム酸アンモニウム水溶液(濃度:3.7重量
%、レニウム金属換算:1.0g)27 mLを滴下・含浸し、
滴下終了後1時間放置した。その後、乾燥器を用い、空
気中で110℃×2時間乾燥した。
97 g of the granular carrier obtained above was placed in a container, and 27 mL of dinitrodiammine platinum nitric acid solution (concentration: 7.4% by weight, platinum metal equivalent: 2.0 g) was added dropwise and impregnated, and left for 1 hour after the completion of the addition. did. Then, using a dryer, it was dried in air at 110 ° C. for 2 hours. The dried product was put in a container, and 27 mL of an ammonium perrhenate aqueous solution (concentration: 3.7% by weight, rhenium metal conversion: 1.0 g) was dropped and impregnated,
After completion of dropping, the mixture was left for 1 hour. Then, using a dryer, it was dried in air at 110 ° C. for 2 hours.

【0019】続いて、焼成炉内において室温から500℃
まで1時間で昇温し、500℃×1時間の焼成処理(空気
中)を行ない、ジルコニア粒状担体(チタニア2重量%
含有)に白金(2重量%)およびレニウム(1重量%)
が担持されたCO除去用触媒100gを調製した。
Then, from room temperature to 500 ° C. in the firing furnace.
The temperature is raised to 1 hour, and a calcination treatment (in air) at 500 ° C for 1 hour is performed to obtain a zirconia granular carrier (titania 2% by weight).
Platinum (2% by weight) and rhenium (1% by weight)
100 g of a CO-removing catalyst on which was carried was prepared.

【0020】比較例-1 ジルコニアにチタニアを担持させないこと以外は、実施
例-1と同様にして、ジルコニア粒状担体に白金(2重
量%)およびレニウム(1重量%)が担持されたCO除
去用触媒(比較用)100gを調製した。
Comparative Example-1 In the same manner as in Example-1, except that titania was not supported on zirconia, platinum (2% by weight) and rhenium (1% by weight) were supported on a zirconia granular carrier to remove CO. 100 g of catalyst (for comparison) was prepared.

【0021】実施例-2 アルミナ粒状担体(住友化学(株)製:KHA-24)100gを容
器に入れ、しゅう酸チタンカリウム水溶液(濃度:40重
量%)27 mLを滴下・含浸し、滴下終了後1時間放置し
た。その後、乾燥器を用い、空気中で110℃×2時間乾
燥した。更に、焼成炉内において室温から500℃まで1
時間で昇温し、500℃×1時間の焼成処理(空気中)を
行ない、4重量%のチタニアを含むアルミナ粒状担体を
調製した。
Example-2 100 g of alumina granular carrier (KHA-24, manufactured by Sumitomo Chemical Co., Ltd.) was placed in a container, and 27 mL of an aqueous potassium potassium oxalate solution (concentration: 40% by weight) was added dropwise and impregnated, and the addition was completed. After that, it was left for 1 hour. Then, using a dryer, it was dried in air at 110 ° C. for 2 hours. Furthermore, from room temperature to 500 ° C in the firing furnace 1
The temperature was raised over time, and a calcination treatment (in air) at 500 ° C. for 1 hour was performed to prepare an alumina granular carrier containing 4% by weight of titania.

【0022】上記で得られた粒状担体の97gを容器に取
り、ジニトロジアンミン白金硝酸溶液(濃度:5.3重量
%、白金金属換算:2.0g)38 mLを滴下・含浸し、滴下
終了後1時間放置した。その後、乾燥器を用い、空気中
で110℃×2時間乾燥した。乾燥後のものを、容器に入
れ、過レニウム酸アンモニウム水溶液(濃度:2.7重量
%、レニウム金属換算:1.0g)38 mLを滴下・含浸し、
滴下終了後1時間放置した。その後、乾燥器を用い、空
気中で110℃×2時間乾燥した。
97 g of the granular carrier obtained above was placed in a container, 38 mL of dinitrodiammine platinum nitric acid solution (concentration: 5.3% by weight, platinum metal equivalent: 2.0 g) was added dropwise and impregnated, and left for 1 hour after completion of the addition. did. Then, using a dryer, it was dried in air at 110 ° C. for 2 hours. The dried product was placed in a container, and 38 mL of an ammonium perrhenate aqueous solution (concentration: 2.7% by weight, rhenium metal conversion: 1.0 g) was dropped and impregnated,
After completion of dropping, the mixture was left for 1 hour. Then, using a dryer, it was dried in air at 110 ° C. for 2 hours.

【0023】続いて、焼成炉内において室温から500℃
まで1時間で昇温し、500℃×1時間の焼成処理(空気
中)を行ない、アルミナ粒状担体(チタニア4重量%含
有)に白金(2重量%)およびレニウム(1重量%)が
担持されたCO除去用触媒100gを調製した。
Then, from room temperature to 500 ° C. in the firing furnace.
The temperature is raised to 1 hour, and a calcination treatment (in air) at 500 ° C. for 1 hour is performed, and platinum (2% by weight) and rhenium (1% by weight) are supported on the alumina granular carrier (containing 4% by weight of titania). 100 g of the CO removing catalyst was prepared.

【0024】比較例-2 アルミナにチタニアを担持させないこと以外は、実施例
-2と同様にして、ジルコニア粒状担体に白金(2重量
%)およびレニウム(1重量%)が担持されたCO除去
用触媒(比較用)100gを調製した。
Comparative Example-2 Example except that alumina does not carry titania.
In the same manner as in -2, 100 g of a CO-removing catalyst (for comparison) in which platinum (2 wt%) and rhenium (1 wt%) were supported on a zirconia granular carrier was prepared.

【0025】実施例-3 チタニア粒状担体(堺化学工業(株)製:CS-300S-24)97
gを容器に入れ、ジニトロジアンミン白金硝酸溶液(濃
度:10重量%、白金金属換算:2.0g)20 mLを滴下・含
浸し、滴下終了後1時間放置した。その後、乾燥器を用
い、空気中で110℃×2時間乾燥した。乾燥後のもの
を、容器に入れ、過レニウム酸アンモニウム水溶液(濃
度:5.0重量%、レニウム金属換算:1.0g)20 mLを滴
下・含浸し、滴下終了後1時間放置した。その後、乾燥
器を用い、空気中で110℃×2時間乾燥した。
Example 3 Titania Granular Carrier (Sakai Chemical Industry Co., Ltd .: CS-300S-24) 97
20 g of dinitrodiammine platinum nitric acid solution (concentration: 10% by weight, platinum metal conversion: 2.0 g) was dropped and impregnated in the container, and left for 1 hour after the dropping was completed. Then, using a dryer, it was dried in air at 110 ° C. for 2 hours. The dried product was placed in a container, 20 mL of an aqueous ammonium perrhenate solution (concentration: 5.0% by weight, rhenium metal conversion: 1.0 g) was added dropwise and impregnated, and left for 1 hour after completion of the addition. Then, using a dryer, it was dried in air at 110 ° C. for 2 hours.

【0026】続いて、焼成炉内において室温から500℃
まで1時間で昇温し、500℃×1時間の焼成処理(空気
中)を行ない、チタニア粒状担体に白金(2重量%)お
よびレニウム(1重量%)が担持されたCO除去用触媒
100gを調製した。
Then, from room temperature to 500 ° C. in the firing furnace.
The catalyst for CO removal in which platinum (2% by weight) and rhenium (1% by weight) are supported on the titania granular carrier after heating to 500 ° C for 1 hour (in air)
100 g was prepared.

【0027】比較例-3 チタニア粒状担体(堺化学工業(株)製:CS-300S-24)98
gを容器に入れ、ジニトロジアンミン白金硝酸溶液(濃
度:10重量%、白金金属換算:2.0g)20 mLを滴下・含
浸し、滴下終了後1時間放置した。その後、乾燥器を用
い、空気中で110℃×2時間乾燥した。続いて、焼成炉
内において室温から500℃まで1時間で昇温し、500℃×
1時間の焼成処理(空気中)を行ない、チタニア粒状担
体に白金(2重量%)が担持されたCO除去用触媒(比
較用)100gを調製した。
Comparative Example-3 Titania granular carrier (Sakai Chemical Industry Co., Ltd .: CS-300S-24) 98
20 g of dinitrodiammine platinum nitric acid solution (concentration: 10% by weight, platinum metal conversion: 2.0 g) was dropped and impregnated in the container, and left for 1 hour after the dropping was completed. Then, using a dryer, it was dried in air at 110 ° C. for 2 hours. Subsequently, the temperature is raised from room temperature to 500 ° C in a firing furnace in 1 hour, and the temperature is 500 ° C ×
A calcination treatment (in air) was carried out for 1 hour to prepare 100 g of a CO removing catalyst (for comparison) in which platinum (2% by weight) was supported on a titania granular carrier.

【0028】上記実施例-1〜3および比較例-1〜3の
触媒組成を、表1にまとめて示す。
Table 1 summarizes the catalyst compositions of Examples -1 to 3 and Comparative Examples -1 to 3 above.

【0029】[0029]

【表1】 [Table 1]

【0030】[評価]上記の実施例-1〜-3および比較
例-1〜-3の触媒について、CO除去性能等について評
価した。 [評価方法]容積15.0 mLの反応管に上記触媒を充填
し、H2(20容量%)およびN2(80容量%)の混合ガスを流
しながら、室温から300℃まで30分で昇温させた後、1
時間同温度を保持して還元処理を行なった。
[Evaluation] The catalysts of Examples -1 to -3 and Comparative Examples -1 to -3 were evaluated for CO removal performance and the like. [Evaluation method] A reaction tube having a volume of 15.0 mL was filled with the above catalyst, and a mixed gas of H 2 (20% by volume) and N 2 (80% by volume) was flown to raise the temperature from room temperature to 300 ° C in 30 minutes. After 1
The same temperature was maintained for a period of time for reduction treatment.

【0031】次に、混合ガスをN2ガスに切替え、加熱
を止め100℃以下になるまで降温させた。温度が100℃以
下に下がったら、N2ガスの供給を止めて、次に、H2(8
0容量%)、CO2(12容量%)およびCO(8容量%)の混
合ガスをSV(空筒速度)が10,000(h-1)の条件で供給し
た。この混合ガスに、H2O(水蒸気)をH2O/CO=
4.2(容量比)となる条件を満足するように加え、触媒
温度を200℃まで昇温し、200℃の温度で保持した定常状
態で、反応管出口のCO濃度(容量%)を、H2Oを除い
た測定条件下で、非分散型赤外線法を測定原理としたガ
ス分析計((株)ベスト測器製:Bex-2201E)を用いて測
定した。
Next, the mixed gas was switched to N 2 gas, the heating was stopped, and the temperature was lowered to 100 ° C. or lower. When the temperature drops below 100 ° C, the supply of N 2 gas is stopped, and then H 2 (8
A mixed gas of 0% by volume, CO 2 (12% by volume) and CO (8% by volume) was supplied under the condition that the SV (blank speed) was 10,000 (h −1 ). H 2 O (steam) was added to this mixed gas as H 2 O / CO =
In order to satisfy the condition of 4.2 (volume ratio), the catalyst temperature was raised to 200 ° C, and the CO concentration (volume%) at the reaction tube outlet was changed to H 2 in a steady state where the temperature was maintained at 200 ° C. Under the measurement conditions except O, the measurement was performed using a gas analyzer (Bex-2201E manufactured by Best Sokki Co., Ltd.) using the non-dispersion infrared method as a measurement principle.

【0032】同様にして、触媒温度が250℃、300℃およ
び350℃の場合についても、測定を行った。また、触媒
温度が350℃の場合については、反応管出口のCH4含有
量(ppm)を、同様の手法および同一の測定機器を用い
て測定した。
In the same manner, the measurement was carried out also when the catalyst temperatures were 250 ° C., 300 ° C. and 350 ° C. When the catalyst temperature was 350 ° C., the CH 4 content (ppm) at the outlet of the reaction tube was measured using the same method and the same measuring instrument.

【0033】[測定結果および分析]実施例および比較
例の触媒についての上記測定結果を、図1〜図4に示
す。図1および図2から、チタニアを添加したジルコニ
アまたはアルミナ粒状担体を用いた触媒の場合の実施例
-1および実施例-2について、チタニアを添加したこと
によるCO濃度低減化効果が確認された。図3から、レ
ニウムを担持したチタニア粒状担体触媒の場合の実施例
-3について、白金とともにレニウムを併用したことに
よるCO濃度低減化効果が確認された。
[Measurement Results and Analysis] The above measurement results for the catalysts of Examples and Comparative Examples are shown in FIGS. From FIG. 1 and FIG. 2, an example in the case of a catalyst using a zirconia or alumina granular support added with titania
-1 and Example-2 were confirmed to have the effect of reducing the CO concentration by adding titania. From FIG. 3, an example in the case of a titania granular carrier catalyst supporting rhenium
Regarding -3, the effect of reducing the CO concentration by using rhenium together with platinum was confirmed.

【0034】また、副反応としてメタネーション反応が
生じていることを示すCH濃度について、図4に示し
た測定結果から、チタニアを添加したジルコニアまたは
アルミナ粒状担体を用いた触媒の場合の実施例-1およ
び実施例-2について、メタネーション反応が低く抑制
されていることが確認された。レニウムを担持したチタ
ニア粒状担体触媒の場合の実施例-3の場合も、チタニ
アを添加したジルコニアまたはアルミナ粒状担体を用い
た触媒の場合の実施例-1および実施例-2の場合よりも
若干CH4濃度は高いが、チタニアを添加していないジ
ルコニアまたはアルミナ粒状担体を用いた触媒の場合の
比較例-1および比較例-2よりも、メタネーション反応
が顕著に低く抑制されていることが分かる。
Regarding the CH 4 concentration indicating that a methanation reaction is occurring as a side reaction, the results of the measurement shown in FIG. 4 indicate that an example in the case of a catalyst using a titania-added zirconia or alumina granular carrier was used. It was confirmed that the methanation reaction was suppressed to be low for -1 and Example-2. Also in the case of Example-3 in the case of the titania granular carrier catalyst supporting rhenium, the amount of CH is slightly more than that in the case of the catalyst using the zirconia or alumina granular carrier in which titania is added. 4 Although the concentration is high, it can be seen that the methanation reaction is suppressed to be significantly lower than that of Comparative Example-1 and Comparative Example-2 in the case of a catalyst using a zirconia or alumina granular carrier to which titania is not added. .

【0035】従って、本発明に係るCO除去用触媒は、
水生ガスシフト反応において、高温域(350℃)でメタ
ネーション反応を抑制し、かつ、シフト反応の活性を高
く維持できるものである。
Therefore, the catalyst for removing CO according to the present invention is
In the aquatic gas shift reaction, the methanation reaction can be suppressed in the high temperature range (350 ° C.) and the activity of the shift reaction can be maintained high.

【0036】[0036]

【発明の効果】本発明のCO除去用触媒は、改質ガス等
の水素リッチなガスに含まれるCOを水生ガスシフト反
応によってCO2に転化させて除去する際の触媒活性を
高く維持することができる。更に、高温域でCOがCH
4に転化されるというメタネーション反応を抑制する効
果をも奏するものである。この本発明のCO除去用触媒
は、例えば、燃料電池の燃料用の水素ガス製造用等に有
用である。
INDUSTRIAL APPLICABILITY The catalyst for CO removal of the present invention can maintain high catalytic activity when CO contained in hydrogen-rich gas such as reformed gas is converted into CO 2 by aquatic gas shift reaction and removed. it can. Furthermore, CO is CH in the high temperature range.
It also has the effect of suppressing the methanation reaction of being converted to 4 . The CO removing catalyst of the present invention is useful, for example, for producing hydrogen gas as a fuel for fuel cells.

【図面の簡単な説明】[Brief description of drawings]

【図1】図1は、実施例-1および比較例-1で得た触媒
の各触媒温度におけるCO除去性能を示す図である。
FIG. 1 is a diagram showing CO removal performance of catalysts obtained in Example-1 and Comparative Example-1 at respective catalyst temperatures.

【図2】図2は、実施例-2および比較例-2で得た触媒
の各触媒温度におけるCO除去性能を示す図である。
FIG. 2 is a diagram showing the CO removal performance of the catalysts obtained in Example-2 and Comparative Example-2 at respective catalyst temperatures.

【図3】図3は、実施例-3および比較例-3で得た触媒
の各触媒温度におけるCO除去性能を示す図である。
FIG. 3 is a diagram showing CO removal performance of the catalysts obtained in Example-3 and Comparative Example-3 at respective catalyst temperatures.

【図4】図4は、実施例-1〜実施例-3および比較例-
1〜比較例-3で得た触媒の触媒温度350℃におけるメタ
ネーション反応抑制性能を示す図である。
FIG. 4 shows Example-1 to Example-3 and Comparative Example-
It is a figure which shows the methanation reaction suppression performance in the catalyst temperature of 350 degreeC of the catalyst obtained in 1-Comparative example-3.

─────────────────────────────────────────────────────
─────────────────────────────────────────────────── ───

【手続補正書】[Procedure amendment]

【提出日】平成14年7月3日(2002.7.3)[Submission date] July 3, 2002 (2002.7.3)

【手続補正1】[Procedure Amendment 1]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0021[Correction target item name] 0021

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【0021】実施例-2 アルミナ粒状担体(住友化学(株)製:KHA-24)100gを容
器に入れ、しゅう酸チタンカリウム水溶液(濃度:40重
量%)50 mLを滴下・含浸し、滴下終了後1時間放置し
た。その後、乾燥器を用い、空気中で110℃×2時間乾
燥した。更に、焼成炉内において室温から500℃まで1
時間で昇温し、500℃×1時間の焼成処理(空気中)を
行ない、4重量%のチタニアを含むアルミナ粒状担体を
調製した。
Example-2 100 g of alumina granular carrier (KHA-24 manufactured by Sumitomo Chemical Co., Ltd.) was placed in a container, and 50 mL of an aqueous solution of potassium titanium oxalate (concentration: 40% by weight) was added dropwise and impregnated. After that, it was left for 1 hour. Then, using a dryer, it was dried in air at 110 ° C. for 2 hours. Furthermore, from room temperature to 500 ° C in the firing furnace 1
The temperature was raised over time, and a calcination treatment (in air) at 500 ° C. for 1 hour was performed to prepare an alumina granular carrier containing 4% by weight of titania.

───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 4G040 EB31 4G069 AA03 BA01A BA01B BA02A BA03A BA04A BA04B BA05A BA05B BA07A BA20A BA20B BB02A BB02B BC64A BC64B BC75A BC75B CC17 CC25 CC32 EA02Y FC08    ─────────────────────────────────────────────────── ─── Continued front page    F-term (reference) 4G040 EB31                 4G069 AA03 BA01A BA01B BA02A                       BA03A BA04A BA04B BA05A                       BA05B BA07A BA20A BA20B                       BB02A BB02B BC64A BC64B                       BC75A BC75B CC17 CC25                       CC32 EA02Y FC08

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】チタニアまたはチタニアを含有する金属酸
化物からなる担体に、白金および/または白金酸化物、
並びに、レニウムおよび/またはレニウム酸化物を担持
してなることを特徴とする水素ガス中の一酸化炭素除去
用触媒。
1. A carrier comprising titania or a metal oxide containing titania, platinum and / or platinum oxide,
And a catalyst for removing carbon monoxide in hydrogen gas, which comprises rhenium and / or rhenium oxide.
【請求項2】前記チタニアを含有する金属酸化物中のチ
タニア含有率が、0.1〜20.0重量%であることを特徴と
する請求項1に記載の触媒。
2. The catalyst according to claim 1, wherein the titania content in the titania-containing metal oxide is 0.1 to 20.0% by weight.
【請求項3】前記担体に、白金および/または白金酸化
物、並びに、レニウムおよび/またはレニウム酸化物を
担持させた触媒重量に対する、白金および/または白金
酸化物の担持量が、0.01〜10.0重量%であり、かつ、レ
ニウムおよび/またはレニウム酸化物の担持量が、0.01
〜10.0重量%であることを特徴とする請求項1または2
に記載の触媒。
3. The amount of platinum and / or platinum oxide supported on the carrier is 0.01 to 10.0 weight based on the weight of the catalyst supporting platinum and / or platinum oxide and rhenium and / or rhenium oxide. %, And the supported amount of rhenium and / or rhenium oxide is 0.01
~ 10.0% by weight, characterized in that 1 or 2
The catalyst according to 1.
【請求項4】前記金属酸化物がアルミナおよびジルコニ
アから成る群から選ばれる1種以上の金属酸化物である
ことを特徴とする請求項1〜3のいずれか1項に記載の
触媒。
4. The catalyst according to claim 1, wherein the metal oxide is one or more metal oxides selected from the group consisting of alumina and zirconia.
JP2002059224A 2002-03-05 2002-03-05 Catalyst for removing carbon monoxide in hydrogen gas Expired - Fee Related JP4087621B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002059224A JP4087621B2 (en) 2002-03-05 2002-03-05 Catalyst for removing carbon monoxide in hydrogen gas

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002059224A JP4087621B2 (en) 2002-03-05 2002-03-05 Catalyst for removing carbon monoxide in hydrogen gas

Publications (2)

Publication Number Publication Date
JP2003251181A true JP2003251181A (en) 2003-09-09
JP4087621B2 JP4087621B2 (en) 2008-05-21

Family

ID=28668970

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002059224A Expired - Fee Related JP4087621B2 (en) 2002-03-05 2002-03-05 Catalyst for removing carbon monoxide in hydrogen gas

Country Status (1)

Country Link
JP (1) JP4087621B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005061108A1 (en) * 2003-12-02 2005-07-07 Sud-Chemie Inc. A water gas shift catalyst on a lanthanum-doped anatase titanium dioxide support for fuel cells application
JP2006523004A (en) * 2003-03-28 2006-10-05 ユーティーシー フューエル セルズ,エルエルシー High performance fuel processing system for fuel cell power plant
JP2007029811A (en) * 2005-07-25 2007-02-08 Sakai Chem Ind Co Ltd Shift reaction catalyst for water gas, and method for removing carbon monoxide gas in hydrogen gas by using the same
KR100862272B1 (en) * 2006-08-09 2008-10-09 주식회사 코캣 Catalyst for Removal of Carbon Monoxide and Preparation Method Thereof
JP2009520660A (en) * 2005-12-16 2009-05-28 ビーエーエスエフ、カタリスツ、エルエルシー Treatment conditions for Pt-Re bimetallic water gas shift catalyst
US8119558B2 (en) 2008-03-14 2012-02-21 Süd-Chemie Inc. Ultra high temperature shift catalyst with low methanation

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006523004A (en) * 2003-03-28 2006-10-05 ユーティーシー フューエル セルズ,エルエルシー High performance fuel processing system for fuel cell power plant
JP4829779B2 (en) * 2003-03-28 2011-12-07 ユーティーシー パワー コーポレイション High performance fuel processing system for fuel cell power plant
WO2005061108A1 (en) * 2003-12-02 2005-07-07 Sud-Chemie Inc. A water gas shift catalyst on a lanthanum-doped anatase titanium dioxide support for fuel cells application
JP2007029811A (en) * 2005-07-25 2007-02-08 Sakai Chem Ind Co Ltd Shift reaction catalyst for water gas, and method for removing carbon monoxide gas in hydrogen gas by using the same
JP4569408B2 (en) * 2005-07-25 2010-10-27 堺化学工業株式会社 Water gas shift reaction catalyst and method for removing carbon monoxide gas from hydrogen gas using the same
JP2009520660A (en) * 2005-12-16 2009-05-28 ビーエーエスエフ、カタリスツ、エルエルシー Treatment conditions for Pt-Re bimetallic water gas shift catalyst
KR100862272B1 (en) * 2006-08-09 2008-10-09 주식회사 코캣 Catalyst for Removal of Carbon Monoxide and Preparation Method Thereof
US8119558B2 (en) 2008-03-14 2012-02-21 Süd-Chemie Inc. Ultra high temperature shift catalyst with low methanation

Also Published As

Publication number Publication date
JP4087621B2 (en) 2008-05-21

Similar Documents

Publication Publication Date Title
WO2000054879A1 (en) Catalyst for water gas shift reaction, method for removing carbon monoxide in hydrogen gas and electric power-generating system of fuel cell
JP5483705B2 (en) Hydrogen production catalyst and hydrogen production method using the same
TWI294413B (en) Method for converting co and hydrogen into methane and water
EP1571125A2 (en) Catalyst for removal of carbon monoxide from hydrogen gas
TW200838607A (en) Preparation of mangania-iron-supported nano-gold catalysts and using the same
CN114602496A (en) Nano-carbon-loaded platinum-iron bimetallic catalyst, preparation method thereof and application thereof in CO selective oxidation reaction under hydrogen-rich atmosphere
JP2003251181A (en) Catalyst for removing carbon monoxide in hydrogen gas
JP4824332B2 (en) Carbon monoxide removal catalyst
JP2005066516A (en) Catalyst for reforming dimethyl ether and synthesizing method therefor
JPH04141235A (en) Electrode catalyst for an anode pole
JP2008161742A (en) Catalyst for removing carbon monoxide in hydrogen gas
JP4250971B2 (en) Inorganic material and shift catalyst using the same
JP2000342968A (en) Catalyst and producing method
US20050119119A1 (en) Water gas shift catalyst on a lanthanum-doped anatase titanium dioxide support for fuel cells application
US20050119118A1 (en) Water gas shift catalyst for fuel cells application
JP2006252929A (en) Co modification catalyst for dss operating fuel cell, its manufacturing method, and fuel cell system
JP4083556B2 (en) Selective oxidation catalyst for carbon monoxide in reformed gas
JP4569408B2 (en) Water gas shift reaction catalyst and method for removing carbon monoxide gas from hydrogen gas using the same
JP2001232198A (en) Catalyst and manufacturing method of catalyst
JP3975803B2 (en) Method for producing CO selective oxidation catalyst
JP2004097859A (en) Catalyst and method for eliminating carbon monoxide
JP2006167606A (en) Carbon monoxide selective oxidation catalyst
JP2020062609A (en) REGENERATION METHOD OF Ni/γ-Al2O3-BASED MATERIAL
JP2002128507A (en) Hydrogen-purifying unit
JP4206813B2 (en) Carbon monoxide conversion catalyst and carbon monoxide conversion method using the catalyst

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050210

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20071107

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071113

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080111

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080219

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080221

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110228

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4087621

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120229

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120229

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130228

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140228

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees