JP2003251145A - Remove for organic chlorine compound, nitrogen oxides and sulfur oxides and method for producing the same - Google Patents

Remove for organic chlorine compound, nitrogen oxides and sulfur oxides and method for producing the same

Info

Publication number
JP2003251145A
JP2003251145A JP2002083754A JP2002083754A JP2003251145A JP 2003251145 A JP2003251145 A JP 2003251145A JP 2002083754 A JP2002083754 A JP 2002083754A JP 2002083754 A JP2002083754 A JP 2002083754A JP 2003251145 A JP2003251145 A JP 2003251145A
Authority
JP
Japan
Prior art keywords
iron oxide
oxides
organic chlorine
nitrogen oxides
loess
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002083754A
Other languages
Japanese (ja)
Other versions
JP3898078B2 (en
Inventor
Hisatsugu Kitaguchi
久継 北口
Akira Gushima
昭 具島
Junichi Sakuragi
準一 桜木
Tsuneo Ikeda
恒男 池田
Michio Chiba
道夫 千葉
Masami Ikemoto
正美 池本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Tetsugen Corp
Original Assignee
Nippon Steel Corp
Tetsugen Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp, Tetsugen Corp filed Critical Nippon Steel Corp
Priority to JP2002083754A priority Critical patent/JP3898078B2/en
Publication of JP2003251145A publication Critical patent/JP2003251145A/en
Application granted granted Critical
Publication of JP3898078B2 publication Critical patent/JP3898078B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/20Air quality improvement or preservation, e.g. vehicle emission control or emission reduction by using catalytic converters

Landscapes

  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)
  • Catalysts (AREA)
  • Treating Waste Gases (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To obtain a remover which economically and highly removes dioxins, organic chlorine compounds, nitrogen oxides, and sulfur oxides from exhaust gas. <P>SOLUTION: The remover for the organic chlorine compounds, the nitrogen oxides, and the sulfur oxides can be obtained through heat treatment of soil composed mainly of hydrated iron oxide at ≥200°C and ≤500°C, and a method for producing the same is also provided. <P>COPYRIGHT: (C)2003,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、例えば都市ゴミや
産業廃棄物の焼却設備、鉄鋼電気炉等から排出されるダ
イオキシン、窒素酸化物および硫黄酸化物等の有害物質
の除去剤に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a remover for harmful substances such as dioxins, nitrogen oxides and sulfur oxides discharged from, for example, incinerators of municipal waste and industrial waste, iron and steel electric furnaces and the like. .

【0002】[0002]

【従来の技術】従来、燃焼過程で発生するダイオキシン
類等の有機塩素化合物を削減する方法は活性炭による吸
着法が一般的に行なわれている。吸着処理方法として、
主に活性炭または活性コークスを吸着剤に用いた充填層
による吸着技術と粉末の吸着剤の吹き込み技術が実用化
されている。また、活性コークスは、特開昭58−12
2042号公報、特開平4−219308号公報に示さ
れるように、排ガス中の窒素酸化物および硫黄酸化物の
除去剤としても実用化されている。
2. Description of the Related Art Hitherto, as a method for reducing organic chlorine compounds such as dioxins generated in a combustion process, an adsorption method using activated carbon is generally performed. As an adsorption treatment method,
Mainly, the adsorption technology using a packed bed using activated carbon or activated coke as the adsorbent and the blowing technology of the powder adsorbent have been put into practical use. In addition, activated coke is disclosed in JP-A-58-12.
As disclosed in Japanese Patent Laid-Open No. 2042 and Japanese Patent Laid-Open No. 4-219308, it has been put to practical use as a remover for nitrogen oxides and sulfur oxides in exhaust gas.

【0003】また、活性炭に代わって、例えば特開平1
1−267507号公報に示されているような、酸化鉄
触媒を用いたゴミ焼却炉のダイオキシンの抑制方法が開
発されている。この方法は酸化鉄触媒をゴミ焼却炉の燃
焼室または再燃室に吹き込み、ダイオキシンを抑制する
ものである。ここで用いられる酸化鉄は試薬から調製さ
れる。例えばゲータイト粉末は、第一鉄塩、水酸化アル
カリ、炭酸アルカリおよびアンモニアから選ばれる1種
または2種以上を用いて反応させ、得られた鉄の水酸化
物や炭酸鉄等である第一鉄含有沈澱物を含む懸濁液中
に、空気等の酸素含有ガスを通気してゲータイト粒子を
生成させて得ることができる。また、ヘマタイト粉末
は、前記ゲータイト粉末を空気中で200〜800℃の
温度範囲で加熱脱水を行って得ることができる。さら
に、マグネタイト粉末は、前記ヘマタイト粉末を還元性
雰囲気下、300〜600℃で加熱還元して得られる。
Further, instead of activated carbon, for example, Japanese Patent Laid-Open No.
A method for suppressing dioxin in a refuse incinerator using an iron oxide catalyst has been developed as disclosed in Japanese Patent Laid-Open No. 1-267507. In this method, an iron oxide catalyst is blown into the combustion chamber or reburning chamber of a refuse incinerator to suppress dioxins. The iron oxide used here is prepared from reagents. For example, goethite powder is a ferrous hydroxide or iron carbonate obtained by reacting with one or more selected from ferrous salts, alkali hydroxides, alkali carbonates and ammonia. It can be obtained by aerating an oxygen-containing gas such as air into the suspension containing the contained precipitate to generate goethite particles. The hematite powder can be obtained by subjecting the goethite powder to heat dehydration in air at a temperature range of 200 to 800 ° C. Further, the magnetite powder is obtained by heating and reducing the hematite powder at 300 to 600 ° C. in a reducing atmosphere.

【0004】一般に、排ガス中の窒素酸化物除去には
「触媒講座」第7巻(触媒学会)253頁第5行目に示
されているように、アンモニア還元脱硝触媒としてV2
5−TiO2触媒が利用されている。
[0004] Generally, as the nitrogen oxide removal in the flue gas are shown "catalyst Course", Vol. 7 (Catalysis Society) p. 253 to the line 5, V 2 as an ammonia reduction denitration catalyst
O 5 -TiO 2 catalyst has been used.

【0005】[0005]

【発明が解決しようとする課題】活性炭による吸着法の
場合には、ダイオキシン類を吸着後の活性炭の処理と炭
塵爆発の危険性が問題となっている。これら、ダイオキ
シン類を吸着した活性炭は廃棄物として埋め立て地に埋
めることはできない。そのため、再度ダイオキシン類を
分解することができる高温焼却が必要である。この高温
焼却の場合でも、冷却過程で再度ダイオキシン類が発生
する危険性が秘められている。また、ダイオキシン類は
300℃〜500℃の温度領域で再合成されることが一
般に知られているが、この温度領域に活性炭の粉末を吹
き込むと炭塵爆発の危険性がある等の問題がある。ま
た、活性コークスの窒素酸化物および硫黄酸化物の除去
剤も上記問題点を包含している。
In the case of the adsorption method using activated carbon, there is a problem of the treatment of activated carbon after adsorption of dioxins and the risk of coal dust explosion. Activated carbon that has adsorbed dioxins cannot be buried in landfills as waste. Therefore, high-temperature incineration that can decompose dioxins again is necessary. Even in the case of this high temperature incineration, there is a risk that dioxins will be generated again in the cooling process. Further, it is generally known that dioxins are re-synthesized in a temperature range of 300 ° C to 500 ° C, but if activated carbon powder is blown into this temperature range, there is a problem that there is a risk of coal dust explosion. . Further, a nitrogen oxide and sulfur oxide removing agent of activated coke also includes the above problems.

【0006】また、上述したような特開平11−267
507号公報の酸化鉄触媒では、大規模な工事を必要と
しないが、酸化鉄は、V25−TiO2系あるいはV2
5−TiO2−WO3系の触媒に比べて、塩素や硫黄酸化
物と結びつきやすく、触媒活性が低下しやすい。このた
め長時間使用ができず、排ガス中への吹き込みによる短
時間の使用となる。しかし、ダイオキシンを抑制するた
めには、排ガス中に絶えず吹き込む必要がある。また、
酸化鉄触媒は、上述のように複雑な工程を経て試薬から
触媒を調製するため高価になる。このような高価な酸化
鉄触媒を吹き込む場合、使用済みの酸化鉄触媒はダスト
とともに回収され、かつ、排ガス中の塩素や硫黄酸化物
により被毒されるため再使用が困難であり、ゴミ焼却の
場合はダストとともに廃棄される。さらに、酸化鉄触媒
は、効率的な分解活性を得るためには250℃以上の温
度が必要であり、吹き込み位置が排ガスの高温部分に限
定されるか、排ガス温度が250℃よりも低い場合は排
ガスを加熱する必要があり、除去性能が十分であるとは
いえない。
[0006] Further, as described above, Japanese Patent Laid-Open No. 11-267.
The iron oxide catalyst of Japanese Patent No. 507 does not require large-scale construction, but iron oxide is V 2 O 5 -TiO 2 system or V 2 O.
Compared with a 5- TiO 2 —WO 3 type catalyst, it is more likely to be bound to chlorine and sulfur oxides, and the catalytic activity is likely to decrease. Therefore, it cannot be used for a long time, and it is used for a short time by being blown into the exhaust gas. However, in order to suppress dioxin, it is necessary to constantly blow it into the exhaust gas. Also,
The iron oxide catalyst is expensive because the catalyst is prepared from the reagent through the complicated process as described above. When such an expensive iron oxide catalyst is blown in, the used iron oxide catalyst is collected together with dust and poisoned by chlorine and sulfur oxides in the exhaust gas, making it difficult to reuse the waste iron incinerator. In some cases, it is discarded together with dust. Further, the iron oxide catalyst requires a temperature of 250 ° C. or higher in order to obtain efficient decomposition activity, and if the blowing position is limited to the high temperature part of the exhaust gas or the exhaust gas temperature is lower than 250 ° C. Exhaust gas needs to be heated, and its removal performance is not sufficient.

【0007】「触媒講座」第7巻に示されている窒素酸
化物除去方法はバナジウムを使用するため触媒が非常に
高価であり、かつ、アンモニアを還元剤とする窒素酸化
物の還元分解反応であるため、200〜400℃の排ガ
ス温度が必要とされ、200℃以下の排ガスへの適用が
困難であった。
The method of removing nitrogen oxides shown in Volume 7 of "Catalyst Lecture" uses vanadium, so that the catalyst is very expensive and the reduction decomposition reaction of nitrogen oxides using ammonia as a reducing agent is performed. Therefore, the exhaust gas temperature of 200 to 400 ° C. is required, and it is difficult to apply to the exhaust gas of 200 ° C. or less.

【0008】そこで、本発明は、安価で高性能なダイオ
キシン類等の有機塩素化合物、窒素酸化物および硫黄酸
化物などの有害物質を除去する除去剤を提供することを
目的とする。
Therefore, an object of the present invention is to provide an inexpensive and high-performance remover for removing harmful substances such as organic chlorine compounds such as dioxins, nitrogen oxides and sulfur oxides.

【0009】[0009]

【課題を解決するための手段】その発明の要旨とすると
ころは、(1)有機塩素化合物、窒素酸化物または硫黄
酸化物の1種または2種以上の除去剤であって、主成分
が含水酸化鉄である土壌を200℃以上500℃以下で
熱処理することにより得られる除去剤、(2)有機塩素
化合物、窒素酸化物または硫黄酸化物の1種または2種
以上の除去剤の製造方法であって、主成分が含水酸化鉄
である土壌を200℃以上500℃以下で熱処理するこ
とを特徴とする除去剤の製造方法、にある。
Means for Solving the Problems The gist of the invention is (1) an agent for removing one or more organic chlorine compounds, nitrogen oxides or sulfur oxides, the main component of which is water-containing. A method for producing a scavenger obtained by heat-treating soil that is iron oxide at 200 ° C. or higher and 500 ° C. or lower, (2) one or more scavengers of organic chlorine compounds, nitrogen oxides or sulfur oxides. There is a method for producing a removing agent, which comprises heat-treating a soil whose main component is hydrous iron oxide at 200 ° C. or higher and 500 ° C. or lower.

【0010】[0010]

【発明の実施の形態】ダイオキシン類等の有機塩素化合
物を吸着、分解するためには、吸着するための細孔を有
し、かつ、排ガス中でダイオキシンが再合成する300
〜500℃の温度領域で使用することでダイオキシンの
再合成を抑制する際に、上記温度領域で燃焼が起きない
物質が有効である。本発明は、上述の特性を鑑み含水酸
化鉄に着目し、含水酸化鉄を200〜500℃で加熱す
ると結合水が脱離し、表面に無数の細孔が形成されるこ
とを見出した。また、この中でも含水酸化鉄を主成分と
する土壌を熱処理して得られた物質は、天然物であるた
め安価である上に、ダイオキシンなどの有機塩素化合物
だけでなく窒素酸化物および硫黄酸化物の吸着性能も極
めて良好で優れており、さらに300〜500℃の温度
領域で燃焼が起こらないことを見出し発明に到ったもの
である。
BEST MODE FOR CARRYING OUT THE INVENTION In order to adsorb and decompose an organic chlorine compound such as dioxins, there are pores for adsorbing, and dioxins are resynthesized in exhaust gas.
A substance that does not burn in the above temperature range is effective in suppressing the re-synthesis of dioxin when used in the temperature range of up to 500 ° C. The present invention has focused on hydrous iron oxide in view of the above characteristics, and has found that when hydrous iron oxide is heated at 200 to 500 ° C., bound water is desorbed and innumerable pores are formed on the surface. In addition, among these, substances obtained by heat-treating soil containing iron oxide hydroxide as the main component are inexpensive because they are natural products, and they are not only organic chlorine compounds such as dioxins but also nitrogen oxides and sulfur oxides. The present invention has been found to have an extremely good and excellent adsorption performance, and further, that combustion does not occur in the temperature range of 300 to 500 ° C., leading to the invention.

【0011】土壌とは、地殻表面の岩石の分解によって
生じた無機物が地表に堆積したものであり、多くのもの
は腐敗分解した有機物を含んでいる。なかでも含水酸化
鉄を主成分とする土壌は、一般に大昔、火山の火口湖に
溶出していた鉄が化学的または生物的作用により含水酸
化鉄として沈降し、火口湖が干上がり土壌を形成したも
のであり、鉄の他に様々な鉱物質および有機物が含まれ
ており、主成分として含水酸化鉄を鉄として20〜60
質量%、また、その他成分として有機物を炭素として1
〜10質量%含んでいることが特徴である。なお、鉄な
どの成分の測定は乾燥土壌ベースで行う。乾燥は土壌に
吸着する水分を分離するためのものであり、結合水を分
離することを意味するものではなく、通常、105〜1
10℃の範囲で1時間以上処理する。ここで、含水酸化
鉄とは、構造式FeOOH(または、Fe23・H
2O)で表されるものである。また、熱処理とは、土壌
から結合水を脱離させるために土壌を200〜500℃
程度に加熱できる方法であれば、手段は問わない。工業
的には、種々の乾燥機、例えば、回分式箱形乾燥機、材
料移送型乾燥機、材料撹拌型乾燥機、熱風移送型乾燥
機、円筒乾燥機などが利用できる。
[0011] Soil is a material in which inorganic substances produced by decomposition of rocks on the surface of the crust are deposited on the surface of the earth, and most of them contain organic matter decomposed and decomposed. Among them, the soil containing iron oxide hydroxide as a main component is the one in which the iron that had been dissolved in the volcanic crater lake of ancient times generally settled as hydrous iron oxide by chemical or biological action, and the crater lake formed dry soil. , Iron, and various minerals and organic substances are contained, and hydrous iron oxide as the main component is 20 to 60 as iron.
% By mass, and as other components, organic matter as carbon 1
It is characterized by containing 10 to 10 mass%. In addition, the measurement of iron and other components is based on dry soil. Drying is for separating water adsorbed to soil, does not mean to separate bound water, and is usually 105 to 1
Treat at a temperature of 10 ° C for 1 hour or more. Here, the iron oxide hydroxide is a structural formula FeOOH (or Fe 2 O 3 .H
2 O). Further, the heat treatment means that the soil is heated to 200 to 500 ° C. in order to desorb the bound water from the soil.
Any means can be used as long as it can be heated to a certain degree. Industrially, various dryers such as a batch type box dryer, a material transfer type dryer, a material stirring type dryer, a hot air transfer type dryer, and a cylindrical dryer can be used.

【0012】以下、本発明を、含水酸化鉄を主成分にす
る土壌と試薬から合成した含水酸化鉄の比較により詳細
に説明する。
The present invention will be described in detail below by comparing soil containing iron oxide hydroxide as a main component with iron oxide hydroxide synthesized from a reagent.

【0013】含水酸化鉄を主成分とする土壌と試薬から
合成した含水酸化鉄の加熱処理による比表面積(BET
法)の変化を図1に示す。加熱処理は空気雰囲気中で1
時間行った。ここで用いた含水酸化鉄を主成分とする土
壌は、阿蘇山の山麓より採取した黄土と呼ばれる土壌で
あり、試薬から合成した含水酸化鉄は、塩化第一鉄と水
酸化ナトリウムを用いて反応して得られる鉄の水酸化物
を含む懸濁液中に空気等の酸素含有ガスを通気して得ら
れたゲーサイトである。黄土、ゲーサイトともに、20
0℃以上で比表面積が増加し始めるが、ゲーサイトは2
20℃をピークに温度上昇とともに比表面積が低下する
のに対して、黄土は290℃付近で比表面積が最大とな
るが400℃までは比表面積が低下せず、500℃で低
下する。このように黄土は、幅広い温度領域で安定して
いるため、300℃以上の高温領域で使用する場合もゲ
ーサイトに比べて有利である。また、ゲーサイト、黄土
ともに加熱による比表面積の増加は、含水酸化鉄の結合
水の脱離による孔の形成が主因と考えられるが、加熱に
よる比表面積の増加率が黄土の方が高いことから、黄土
の比表面積の増加には、有機物の炭化等による別の要因
での比表面積増加の寄与も考えられる。また、上記加熱
処理により、ゲーサイトでは、200℃以上でゲーサイ
ト(α−FeOOH)は、ヘマタイト(Fe23)のみ
に変化するが、黄土では、200℃以上でヘマタイトの
他、レピドクロサイト(γ−FeOOH)、マグネタイ
ト(Fe34)の存在がX線回折により観察された。
The specific surface area (BET) of the iron oxide hydroxide synthesized from the soil containing iron oxide hydroxide as a main component and the reagent by heat treatment (BET
Method) is shown in FIG. Heat treatment 1 in air atmosphere
I went on time. The soil containing iron oxide hydroxide as the main component used here is a soil called loess collected from the foot of Mt. Aso, and the iron oxide hydroxide synthesized from the reagent reacts with ferrous chloride and sodium hydroxide. It is a goethite obtained by aerating an oxygen-containing gas such as air in the suspension containing iron hydroxide obtained in the above. 20 for both loess and game site
The specific surface area begins to increase at 0 ° C or higher,
While the specific surface area decreases with a temperature rise at a peak of 20 ° C., the specific surface area of loess reaches its maximum near 290 ° C., but the specific surface area does not decrease up to 400 ° C. and decreases at 500 ° C. As described above, since loess is stable in a wide temperature range, it is more advantageous than goethite when used in a high temperature range of 300 ° C. or higher. The increase in specific surface area due to heating of both goethite and loess is thought to be mainly due to the formation of pores due to desorption of bound water of hydrous iron oxide, but since the rate of increase in specific surface area due to heating is higher for loess. The increase in the specific surface area of loess may be attributed to the increase in the specific surface area due to another factor such as carbonization of organic matter. Further, by the above heat treatment, in goethite, goethite (α-FeOOH) changes to hematite (Fe 2 O 3 ) only at 200 ° C. or higher, but in loess, hematite and lepidocrochrome at 200 ° C. or higher. The presence of sites (γ-FeOOH) and magnetite (Fe 3 O 4 ) was observed by X-ray diffraction.

【0014】図2に300℃1時間熱処理後の黄土およ
びゲーサイトの細孔分布(細孔容積変化)を示す。ゲー
サイトは細孔半径30nmにピークを有するのに対し、
黄土は半径2nm付近にピークを有する。ダイオキシン
等の低濃度の有機塩素化合物を吸着するためには、吸着
分子よりも大きくかつ吸着分子の大きさの数倍程度の孔
を有していることが必要である。細孔径が吸着分子より
も小さい場合は、孔内に分子を吸着できず、逆に細孔径
が大きい場合、孔が大きいほど吸着力が弱くなるため、
低濃度の有機塩素化合物を吸着保持することが困難にな
る。ダイオキシン類で最も毒性の高い2,3,7,8−
T4CDDの大きさが長さ約1.8nm,巾約1.0n
m,厚さ約0.3nmであることから、ゲーサイトより
も黄土がダイオキシンの吸着に適していると考えられ、
細孔半径として1nm以上3nm以下程度の細孔が好ま
しい。
FIG. 2 shows the pore distribution (pore volume change) of loess and goethite after heat treatment at 300 ° C. for 1 hour. While goethite has a peak at a pore radius of 30 nm,
Loess has a peak near a radius of 2 nm. In order to adsorb low-concentration organic chlorine compounds such as dioxins, it is necessary to have pores that are larger than the adsorbed molecules and several times the size of the adsorbed molecules. If the pore size is smaller than the adsorbed molecule, the molecule cannot be adsorbed in the pore, and conversely, if the pore size is large, the larger the pore, the weaker the adsorption force becomes.
It becomes difficult to adsorb and hold a low concentration of the organic chlorine compound. The most toxic dioxins 2,3,7,8-
T4CDD has a length of about 1.8 nm and a width of about 1.0 n
Since m and thickness are about 0.3 nm, it is considered that loess is more suitable for dioxin adsorption than goethite,
The pore radius is preferably about 1 nm or more and 3 nm or less.

【0015】黄土では、200℃以上、500℃以下、
好ましくは250℃以上、400℃以下の加熱処理によ
りダイオキシン等の有機塩素化合物の吸着性能が向上す
る。200℃未満では結合水の脱離が少なく孔が形成さ
れず比表面積の増加が少ない。500℃を超えると、形
成された孔が崩壊し、孔径が大きくなり比表面積が低下
する。このため、吸着性能の向上は小さい。特に250
℃以上、400℃以下の加熱処理では、比表面積の増加
が顕著であるため、好ましい。また、加熱処理時間とし
ては、結合水を脱離できる時間であれば良く、加熱温度
によって異なり、特に規定するものではないが、通常は
0.5〜2時間程度である。加熱雰囲気は、問わない
が、酸素を含有している雰囲気で加熱処理したものは、
吸着性能の面で好ましい。
In loess, 200 ° C or higher and 500 ° C or lower,
Preferably, the heat treatment at 250 ° C. or higher and 400 ° C. or lower improves the adsorption performance of organic chlorine compounds such as dioxins. If the temperature is lower than 200 ° C, desorption of bound water is small, pores are not formed, and the specific surface area is not increased. When it exceeds 500 ° C, the formed pores collapse, the pore diameter increases and the specific surface area decreases. Therefore, the improvement in adsorption performance is small. Especially 250
The heat treatment at a temperature of not lower than 400 ° C. and not higher than 400 ° C. is preferable because the specific surface area is significantly increased. Further, the heat treatment time may be any time as long as the bound water can be desorbed, it depends on the heating temperature, and although it is not particularly limited, it is usually about 0.5 to 2 hours. The heating atmosphere does not matter, but the one heat-treated in an atmosphere containing oxygen is
It is preferable in terms of adsorption performance.

【0016】吸着性能は、同一比表面積では、黄土がゲ
ーサイトよりも優れていることから、吸着性能の向上
は、黄土の加熱処理による比表面積増加だけでなく、半
径2nm前後の細孔の存在、炭素の存在、加熱処理によ
るレピドクロサイト(γ−FeOOH)、マグネタイト
(Fe34)の生成が効くものと考えられる。ここで、
黄土は阿蘇地方で産出するものが特にダイオキシン、窒
素酸化物および硫黄酸化物の除去性能が良いが、同様の
生成過程を経て産出する土壌であれば良く、特に産地等
を限定するものではない。上記処理を施した黄土は、ダ
イオキシンだけでなく窒素酸化物、硫黄酸化物の吸着性
能が飛躍的に上昇する。排ガス中のダイオキシン、窒素
酸化物または硫黄酸化物の2種以上の混合物であっても
同時除去が可能である。
Regarding the adsorption performance, since loess is superior to goethite at the same specific surface area, the improvement of adsorption performance is not only the increase of the specific surface area due to the heat treatment of loess, but also the existence of pores with a radius of about 2 nm. It is considered that the presence of carbon and the formation of lepidocrocite (γ-FeOOH) and magnetite (Fe 3 O 4 ) by the heat treatment are effective. here,
Loess produced in the Aso region has particularly good removal performance for dioxins, nitrogen oxides and sulfur oxides, but any soil produced through a similar production process is acceptable, and the production site is not particularly limited. The loess that has been subjected to the above treatment has a dramatically improved adsorption performance for not only dioxins but also nitrogen oxides and sulfur oxides. Even a mixture of two or more kinds of dioxins, nitrogen oxides or sulfur oxides in exhaust gas can be simultaneously removed.

【0017】[0017]

【実施例】表1に示す物質を用いて、ダイオキシンの類
似物質である1−クロロナフタレンの吸着性能を評価し
た。ここで、実施例1は、黄土(乾燥土壌ベース、鉄と
して50質量%、有機物を炭素として5質量%)を30
0℃において1時間空気中で加熱処理をおこなったも
の、比較例1は、黄土未処理、比較例2はゲーサイトを
300℃において1時間空気中で加熱処理をおこなった
もの、比較例3は、含水酸化鉄を主成分とする鉄鉱石を
300℃において1時間空気中で加熱処理をおこなった
もの、比較例4は、ダイオキシン除去に使用される活性
コークスである。なお、黄土中の鉄分は酸化還元重クロ
ム酸適定法で、有機物の炭素は赤外線吸収法で分析し
た。実験は、上記除去剤を5〜10mmに調整したもの
をガラス管に充填し恒温槽内において150℃で保温し
た。窒素をキャリアとして1−クロロナフタレン濃度を
14ppmに調整したガスを、除去剤を充填したガラス
管に流し、除去剤の質量変化を調べた。除去剤は、1−
クロロナフタレンを吸着し、質量が増加するが、平衡吸
着量に達するとそれ以上質量は増加しない。この平衡吸
着量をそれぞれの除去剤について測定した。各除去剤の
平衡吸着量を表1に示す。黄土が加熱処理を行うこと
で、飛躍的に吸着量が増大している。これは人工的に調
製したゲーサイトおよび黄土と同様な天然物で含水酸化
鉄を主成分とする鉄鉱石、または、活性コークスの吸着
量を大きく上回るもので、実施例1が、有機塩素化合物
に対して優れた吸着特性を示すことがわかる。
EXAMPLES The substances shown in Table 1 were used to evaluate the adsorption performance of 1-chloronaphthalene, which is a substance similar to dioxin. Here, in Example 1, 30 loess (dry soil base, 50% by mass as iron, 5% by mass as organic matter as carbon) was used.
What was heat-treated in air at 0 ° C. for 1 hour, Comparative Example 1 was untreated with loess, Comparative Example 2 was heat-treated with goethite in air at 300 ° C. for 1 hour, Comparative Example 3 was The iron ore containing iron oxide hydroxide as a main component was heat-treated in air at 300 ° C. for 1 hour, and Comparative Example 4 is an active coke used for removing dioxin. The iron content in the loess was analyzed by the redox dichromic acid titration method, and the carbon in the organic matter was analyzed by the infrared absorption method. In the experiment, a glass tube was filled with the above removing agent adjusted to 5 to 10 mm and kept at 150 ° C. in a constant temperature bath. A gas in which the concentration of 1-chloronaphthalene was adjusted to 14 ppm using nitrogen as a carrier was passed through a glass tube filled with a removing agent, and the mass change of the removing agent was examined. The remover is 1-
Chloronaphthalene is adsorbed and the mass increases, but when the equilibrium adsorption amount is reached, the mass does not increase any more. This equilibrium adsorption amount was measured for each removing agent. Table 1 shows the equilibrium adsorption amount of each removing agent. Heat treatment of loess has dramatically increased the amount of adsorption. This is an artificially prepared natural product similar to goethite and loess, which is far more than the adsorption amount of iron ore mainly containing hydrous iron oxide or active coke. On the other hand, it can be seen that it exhibits excellent adsorption characteristics.

【0018】[0018]

【表1】 [Table 1]

【0019】上記、実施例1および比較例1〜4の除去
剤を用いて、ゴミ焼却炉排ガス中のダイオキシンの除去
実験を実施した。ゴミ焼却炉のバグフィルター通過後の
排ガスから100Nm3/hrの排ガスを分取し、上記
除去剤を0.01m3充填し、150℃に保温した固定
層に導入し、固定層前後のダイオキシン濃度から、10
0時間後のダイオキシン除去率を求めた。ここでダイオ
キシン除去率は(1−固定層出口ダイオキシン濃度/固
定層入口ダイオキシン濃度)×100(%)で定義され
る。結果を表2に示す。表2からも実施例1の黄土を3
00℃において1時間空気中で加熱処理をおこなったも
のが優れたダイオキシン除去特性を示していることがわ
かる。
Using the removing agents of Example 1 and Comparative Examples 1 to 4 described above, an experiment for removing dioxin in exhaust gas from a refuse incinerator was carried out. Exhaust gas of 100 Nm 3 / hr was separated from the exhaust gas after passing through the bag filter of the garbage incinerator, and 0.01 m 3 of the above-mentioned scavenger was charged and introduced into the fixed bed kept at 150 ° C. to obtain the dioxin concentration before and after the fixed bed. From 10
The dioxin removal rate after 0 hours was obtained. Here, the dioxin removal rate is defined by (1-fixed layer outlet dioxin concentration / fixed layer inlet dioxin concentration) × 100 (%). The results are shown in Table 2. From Table 2 as well, 3 loess of Example 1
It can be seen that the one that was heat-treated in the air at 00 ° C. for 1 hour exhibited excellent dioxin removal characteristics.

【0020】[0020]

【表2】 [Table 2]

【0021】上記、実施例1および比較例1〜4の除去
剤を用いて、窒素酸化物および硫黄酸化物の吸着実験を
実施した。実験は、上記除去剤を5〜10mmに調整し
たものをガラス管に充填し、恒温槽内において150℃
で保温した。窒素をキャリアとして容量基準で一酸化窒
素(NO)200ppm、二酸化硫黄(SO2)200
ppm、酸素15%に調整したガスをガス流量1000
Ncm3/分で、除去剤を充填したガラス管に流し、ガ
ラス管出口におけるNO、NO2(二酸化窒素)、SO2
濃度変化を調べた。ちなみに、SO3についてはごく微
量しか発生しないことから無視できるため、SO3の測
定は行っていない。ここで、NO2は調整ガス組成には存
在しないが、酸素が共存するためにNOの一部がNO2
に酸化される。NOx(NO+NO2)は、減圧式化学
発光法で、SO2は、非分散赤外吸収法で連続測定を行
った。NOx,SO2ともに吸着により除去されるため
ガラス管出口濃度は、吸着能力が時間とともに低下する
ため、時間経過とともに上昇する。このため、除去性能
の評価には、0〜20時間までの平均除去率を用いた。
平均除去率の定義を下式に示す。ここで、20時間は、
上記実験条件において吸着性能の差を判別するために必
要な時間で実験的に決定した。
Adsorption experiments of nitrogen oxides and sulfur oxides were carried out using the removing agents of Example 1 and Comparative Examples 1 to 4 described above. The experiment was carried out by filling the glass tube with the above-mentioned removing agent adjusted to 5 to 10 mm and keeping it in a constant temperature bath at 150 ° C.
I kept it warm. Nitrogen as a carrier 200 ppm by volume of nitric oxide (NO), sulfur dioxide (SO 2 ) 200
Gas flow rate of 1000, adjusted to ppm and oxygen of 15%
Ncm 3 / min, flow into a glass tube filled with a removing agent, NO, NO 2 (nitrogen dioxide), SO 2 at the glass tube outlet
The change in concentration was examined. By the way, SO 3 is not measured because it can be ignored because SO 3 is generated in a very small amount. Here, NO 2 does not exist in the adjusted gas composition, but since oxygen coexists, a part of NO 2 is NO 2
Is oxidized to. NOx (NO + NO 2 ) was continuously measured by a reduced pressure chemiluminescence method, and SO 2 was continuously measured by a non-dispersive infrared absorption method. Since both NOx and SO 2 are removed by adsorption, the glass tube outlet concentration increases with time because the adsorption capacity decreases with time. Therefore, the average removal rate from 0 to 20 hours was used to evaluate the removal performance.
The definition of the average removal rate is shown below. Here, 20 hours
Under the above experimental conditions, the time required to distinguish the difference in adsorption performance was determined experimentally.

【0022】 平均除去率(%)=100×(A−B)/A (ただし、式中、A=ガラス管入口濃度、B=20時間
平均ガラス管出口濃度を示す。) 各除去剤のNOxおよびSO2の20時間平均除去率を
表3に示す。実施例1の黄土を300℃において1時間
空気中で加熱処理を行ったものが、比較例1の黄土未処
理に対し、NOx除去率、SO2除去率ともに大幅に向
上している。また、比較例2のゲーサイト、比較例3の
鉄鉱石に比べてSO2除去率が、比較例4の活性コーク
スに比べてNOx除去率が優れている。このように、実
施例1の黄土を300℃において1時間空気中で加熱処
理を行ったものは、ダイオキシン除去性能が優れている
だけでなく、窒素酸化物および硫黄酸化物の除去性能が
優れていることがわかる。
Average removal rate (%) = 100 × (A−B) / A (wherein, A = glass tube inlet concentration, B = 20-hour average glass tube outlet concentration) NOx of each remover Table 3 shows the average removal rates of SO 2 and SO 2 for 20 hours. When the loess of Example 1 was heat-treated in air at 300 ° C. for 1 hour, both the NOx removal rate and the SO 2 removal rate were significantly improved as compared with the untreated loess of Comparative Example 1. Further, the SO 2 removal rate is superior to the goethite of Comparative Example 2 and the iron ore of Comparative Example 3, and the NOx removal rate is superior to the activated coke of Comparative Example 4. Thus, the one obtained by heat-treating the loess of Example 1 in air at 300 ° C. for 1 hour not only has excellent dioxin removal performance but also excellent nitrogen oxide and sulfur oxide removal performance. You can see that

【0023】[0023]

【表3】 [Table 3]

【0024】[0024]

【発明の効果】以上、本発明を用いれば、天然物である
含水酸化鉄を主成分とする安価な土壌を利用して、ダイ
オキシンをはじめとする有機塩素化合物、窒素酸化物お
よび硫黄酸化物の除去を経済的に行える。
INDUSTRIAL APPLICABILITY As described above, according to the present invention, it is possible to utilize organic chlorinated compounds such as dioxins, nitrogen oxides and sulfur oxides by using inexpensive soil containing iron oxide hydroxide, which is a natural product, as a main component. Can be removed economically.

【図面の簡単な説明】[Brief description of drawings]

【図1】は、加熱処理温度と比表面積の関係を示すグラ
フである。
FIG. 1 is a graph showing the relationship between heat treatment temperature and specific surface area.

【図2】は、300℃処理の黄土とゲーサイトの細孔分
布を示すグラフである。
FIG. 2 is a graph showing pore distributions of loess and goethite treated at 300 ° C.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) B01D 53/86 B01D 53/34 123A 53/94 129A B01J 20/12 53/36 D 20/30 G 23/745 102C C07D 319/24 B01J 23/74 301A (72)発明者 具島 昭 福岡県北九州市戸畑区飛幡町1−1 新日 本製鐵株式会社八幡製鐵所内 (72)発明者 桜木 準一 福岡県北九州市戸畑区飛幡町1−1 新日 本製鐵株式会社八幡製鐵所内 (72)発明者 池田 恒男 福岡県北九州市戸畑区飛幡町2−2 株式 会社鐵原八幡支店内 (72)発明者 千葉 道夫 東京都千代田区富士見1−4−4 株式会 社鐵原内 (72)発明者 池本 正美 東京都千代田区富士見1−4−4 株式会 社鐵原内 Fターム(参考) 4D002 AA02 AA12 AA21 AC02 AC04 BA04 DA58 GA01 GB11 4D048 AA02 AA06 AA11 BA36X BA41X BB01 4G066 AA66B CA23 CA28 CA31 DA02 FA34 4G069 AA02 AA08 BA16A BA16B BA16C BC66B CA02 CA10 CA12 CA13 CA19 DA05 EA01Y EA02Y ─────────────────────────────────────────────────── ─── Continuation of front page (51) Int.Cl. 7 Identification code FI theme code (reference) B01D 53/86 B01D 53/34 123A 53/94 129A B01J 20/12 53/36 D 20/30 G 23 / 745 102C C07D 319/24 B01J 23/74 301A (72) Inventor Akira Tomoshima 1-1 Hibatamachi, Tobata-ku, Kitakyushu, Kitakyushu, Fukuoka Inside the Nippon Steel Corporation Yawata Works (72) Inventor Junichi Sakuragi Fukuoka 1-1 Hibatacho, Tobata-ku, Kitakyushu, Japan (72) Inventor, Yawata Works (72) Inventor Tsuneo Ikeda 2-2, Hibata-cho, Tobata-ku, Kitakyushu, Fukuoka (72) Invention Person Michio Chiba 1-4-4 Fujimi, Chiyoda-ku, Tokyo Incorporated in Ironworks (72) Inventor Masami Ikemoto 1-4-4 Fujimi, Chiyoda-ku, Tokyo F-term in Incorporated ) 4D002 AA02 AA12 AA21 AC02 AC04 BA04 DA58 GA01 GB11 4D048 AA02 AA06 AA11 BA36X BA41X BB01 4G066 AA66B CA23 CA28 CA31 DA02 FA34 4G069 AA02 AA08 BA16A BA16B BA16C BC66B CA02 CA10 CA12 CA13 CA19 DA05 EA01Y EA02Y

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 有機塩素化合物、窒素酸化物または硫黄
酸化物の1種または2種以上の除去剤であって、主成分
が含水酸化鉄である土壌を200℃以上500℃以下で
熱処理することにより得られる除去剤。
1. Heat treatment of soil containing one or more kinds of organic chlorine compounds, nitrogen oxides or sulfur oxides, the main component of which is hydrous iron oxide, at 200 ° C. or more and 500 ° C. or less. Removal agent obtained by.
【請求項2】 有機塩素化合物、窒素酸化物または硫黄
酸化物の1種または2種以上の除去剤の製造方法であっ
て、主成分が含水酸化鉄である土壌を200℃以上50
0℃以下で熱処理することを特徴とする除去剤の製造方
法。
2. A method for producing one or more removing agents for organic chlorine compounds, nitrogen oxides or sulfur oxides, wherein soil containing iron oxide hydroxide as the main component is heated to 200 ° C. or higher.
A method for producing a removing agent, which comprises performing a heat treatment at 0 ° C. or lower.
JP2002083754A 2001-12-26 2002-03-25 Method for removing organochlorine compounds, nitrogen oxides or sulfur oxides Expired - Fee Related JP3898078B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002083754A JP3898078B2 (en) 2001-12-26 2002-03-25 Method for removing organochlorine compounds, nitrogen oxides or sulfur oxides

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2001-394020 2001-12-26
JP2001394020 2001-12-26
JP2002083754A JP3898078B2 (en) 2001-12-26 2002-03-25 Method for removing organochlorine compounds, nitrogen oxides or sulfur oxides

Publications (2)

Publication Number Publication Date
JP2003251145A true JP2003251145A (en) 2003-09-09
JP3898078B2 JP3898078B2 (en) 2007-03-28

Family

ID=28677152

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002083754A Expired - Fee Related JP3898078B2 (en) 2001-12-26 2002-03-25 Method for removing organochlorine compounds, nitrogen oxides or sulfur oxides

Country Status (1)

Country Link
JP (1) JP3898078B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005000819A (en) * 2003-06-12 2005-01-06 National Institute Of Advanced Industrial & Technology Modified loess particle powder, manufacture method therefor, manufacturing apparatus therefor, waste gas treating agent containing the same, and waste gas treatment method using the treating agent
JP2009037821A (en) * 2007-08-01 2009-02-19 Miura Co Ltd Method of desulfurizing fuel gas for fuel cell
JP2011502040A (en) * 2007-10-30 2011-01-20 ニュー テクノロジー ベンチャーズ,インコーポレイテッド Processes and reagents for removing oxygen from hydrocarbon streams
CN113385008A (en) * 2021-06-28 2021-09-14 北京工业大学 Method for flue gas denitration by using iron-carbon composite material as SNCR (selective non-catalytic reduction) additive

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005000819A (en) * 2003-06-12 2005-01-06 National Institute Of Advanced Industrial & Technology Modified loess particle powder, manufacture method therefor, manufacturing apparatus therefor, waste gas treating agent containing the same, and waste gas treatment method using the treating agent
JP2009037821A (en) * 2007-08-01 2009-02-19 Miura Co Ltd Method of desulfurizing fuel gas for fuel cell
JP2011502040A (en) * 2007-10-30 2011-01-20 ニュー テクノロジー ベンチャーズ,インコーポレイテッド Processes and reagents for removing oxygen from hydrocarbon streams
CN113385008A (en) * 2021-06-28 2021-09-14 北京工业大学 Method for flue gas denitration by using iron-carbon composite material as SNCR (selective non-catalytic reduction) additive
CN113385008B (en) * 2021-06-28 2022-10-11 北京工业大学 Method for flue gas denitration by using iron-carbon composite material as SNCR (selective non-catalytic reduction) additive

Also Published As

Publication number Publication date
JP3898078B2 (en) 2007-03-28

Similar Documents

Publication Publication Date Title
Wu et al. Characteristics of the removal of mercury vapor in coal derived fuel gas over iron oxide sorbents
Tan et al. Preparation and characterization of Fe2O3–SiO2 composite and its effect on elemental mercury removal
ES2181612T3 (en) Mineralization procedure of organic water pollutants by catalytic ozoneation
JP5198875B2 (en) Method for purifying exhaust gas produced by a sintering process of ores and / or other metal-containing substances in metal production
Liu et al. Mercury removal from coal combustion flue gas by modified palygorskite adsorbents
ES2310338T3 (en) PROCEDURE TO REDUCE HEAVY METALS OF SMOKE GASES.
Yang et al. Removal of elemental mercury (Hg0) from simulated flue gas over MnOx-TiO2 sorbents
KR102123168B1 (en) Ozone oxidation decomposition treatment method of VOC and/or gaseous inorganic reducing compound in gas
JP2003286020A (en) Highly activated active coke powder and manufacturing method thereof
WO2005030641A1 (en) Highly activated coke powder and process for producing the same
MX2013004850A (en) Manganese based sorbent for removal of mercury species from fluids.
JP2003251145A (en) Remove for organic chlorine compound, nitrogen oxides and sulfur oxides and method for producing the same
CN108137359B (en) Method for purifying hazardous substance-containing liquid and hazardous substance-containing liquid purification apparatus for carrying out the method
KR100506813B1 (en) Mn oxide catalyst for decomposing ozone and the method therefor
KR101154040B1 (en) Regeneration method for activity of spent activated carbon catalyst for selective catalytic reduction
JP3029512B2 (en) Method for removing nitrous oxide from combustion gas
CN106362679A (en) Modifying method for sepiolite
EP0567473B1 (en) Process for treatment of a fluid
JP2003112012A (en) Method of removing dioxins in exhaust gas of waste treating furnace and equipment for the same
JP2007229546A (en) Oxidation catalyst and method and apparatus for treating exhaust gas
JP4047523B2 (en) Organochlorine decomposition method and catalyst
KR102472334B1 (en) Dust collector for the simultaneous treatment of dust and volatile organic compounds from exhaust gas
KR100564359B1 (en) Method for preparing adsorbents for removing acid gases and method for removing acid gases with the adsorbent prepared by the same
JP4195652B2 (en) Method for producing organochlorine compound remover
JP4628752B2 (en) Activated carbon for treating organic halogen compounds and method for treating exhaust gas containing organic halogen compounds using the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041108

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20051027

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20051101

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051228

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20051228

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060523

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060721

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20060725

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061031

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061115

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20061212

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20061220

R151 Written notification of patent or utility model registration

Ref document number: 3898078

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100105

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110105

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120105

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120105

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130105

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130105

Year of fee payment: 6

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130105

Year of fee payment: 6

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130105

Year of fee payment: 6

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130105

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140105

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees