JP4047523B2 - Organochlorine decomposition method and catalyst - Google Patents

Organochlorine decomposition method and catalyst Download PDF

Info

Publication number
JP4047523B2
JP4047523B2 JP2000212970A JP2000212970A JP4047523B2 JP 4047523 B2 JP4047523 B2 JP 4047523B2 JP 2000212970 A JP2000212970 A JP 2000212970A JP 2000212970 A JP2000212970 A JP 2000212970A JP 4047523 B2 JP4047523 B2 JP 4047523B2
Authority
JP
Japan
Prior art keywords
iron ore
mass
decomposition
catalyst
organochlorine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000212970A
Other languages
Japanese (ja)
Other versions
JP2002028446A (en
Inventor
久継 北口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2000212970A priority Critical patent/JP4047523B2/en
Publication of JP2002028446A publication Critical patent/JP2002028446A/en
Application granted granted Critical
Publication of JP4047523B2 publication Critical patent/JP4047523B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【0001】
【発明の属する技術分野】
本発明は、例えば都市ゴミや産業廃棄物の焼却設備、鉄鋼電気炉、鉄鋼焼結機から排出されるダイオキシン等の有害物質の除去方法に関するものである。
【0002】
【従来の技術】
遷移金属の酸化物は、日本化学会誌Vol.1989,p.139(1989)に示されるように、有機塩素化合物の酸化分解活性を有することは知られている。これらを利用して、排ガス中の有機塩素化合物の触媒分解技術が開発されている。
【0003】
触媒(第41巻、210頁、1999年)に記載されているような、従来から窒素酸化物の接触還元触媒として使用されてきたV25−TiO2系あるいは耐SOx性を考慮したV25−TiO2−WO3系の触媒による分解技術が実用化されている。これらの触媒は高価であるため一般にハニカムまたは粒状で、固定層として長期的に使用される。
【0004】
また特開平11−267507号公報に示されているような、酸化鉄触媒を用いたゴミ焼却炉のダイオキシンの抑制方法が開発されている。この方法は酸化鉄触媒をゴミ焼却炉の燃焼室または再燃室に吹き込み、ダイオキシンを抑制するものである。ここで用いられる酸化鉄は試薬から調整される。例えばゲータイト粉末は、第一鉄塩、水酸化アルカリ、炭酸アルカリおよびアンモニアから選ばれる1種または2種以上を用いて反応させ、得られた鉄の水酸化物や炭酸鉄等である第一鉄含有沈澱物を含む懸濁液中に、空気等の酸素含有ガスを通気してゲータイト粒子を生成させて得ることができる。またヘマタイト粉末は、前記ゲータイト粉末を空気中で200〜800℃の温度範囲で加熱脱水を行って得ることができる。さらにマグネタイト粉末は、前記ヘマタイト粉末を還元性雰囲気下、300〜600℃で加熱還元して得られる。
【0005】
【発明が解決しようとする課題】
しかしながら、V25−TiO2系あるいはV25−TiO2−WO3系の触媒の場合は、固定層で使用するために、ダクトの途中に触媒層を設けなければならず、大規模な工事の必要があった。
【0006】
また特開平11-267507号公報の酸化鉄触媒では、大規模な工事を必要としないが、酸化鉄は、V25−TiO2系あるいはV25−TiO2−WO3系の触媒に比べて、塩素や硫黄酸化物と結びつきやすく、触媒活性が低下しやすい。このため長時間使用ができず、排ガス中への吹き込みによる短時間の使用となる。しかしダイオキシンを抑制するためには、排ガス中に絶えず吹き込む必要がある。しかし酸化鉄触媒は、上述のように複雑な工程を経て試薬から触媒を調整するため高価になる。このような高価な酸化鉄触媒を吹き込む場合、使用済みの酸化鉄触媒はダストとともに回収され、かつ排ガス中の塩素や硫黄酸化物により被毒されるため再使用が困難であり、ゴミ焼却の場合はダストとともに廃棄される。
【0007】
また、上述のV25−TiO2系あるいはV25−TiO2−WO3系の触媒、または酸化鉄等の遷移金属酸化物は、有機塩素の分解活性は高いものの、Cl2の生成活性も高い。Cl2はHClと比べて反応活性が高く、炭素質と結びついてダイオキシン等の有機塩素化合物の再生成を起こしやすい。
【0008】
【課題を解決するための手段】
本発明者は、上記の課題を解決するために鋭意研究した結果、触媒として鉄鉱石を用いることにより安価かつ効率的な有機塩素化合物分解が達成できることを見いだし本発明に至った。
【0009】
すなわち、本発明は
(1)有機塩素化合物分解触媒として、鉄鉱石を使用する、有機塩素化合物であるモノクロロベンゼン又はダイオキシン類の分解方法であって、前記鉄鉱石は、Feを50質量%以上、およびAlとSiOの和を3質量%以上で含む、又は、更に結合水を4質量%以上で含むことを特徴とする有機塩素化合物の分解方法、
(2)前記鉄鉱石を250℃以上で使用前または使用中に加熱処理し、鉄鉱石中の含水酸化鉄をヘマタイトに変態せしめることを特徴とする(1)の有機塩素化合物の分解方法
(3)鉄鉱石よりなる有機塩素化合物であるモノクロロベンゼン又はダイオキシン類の分解触媒であって、前記鉄鉱石は、Feを50質量%以上、およびAlとSiOの和を3質量%以上で含む、又は、更に結合水を4質量%以上で含むことを特徴とする有機塩素化合物分解触媒、および
(4)前記鉄鉱石は、250℃以上で使用前または使用中に加熱処理し、鉄鉱石中の含水酸化鉄をヘマタイトに変態せしめ、Feの含有率を70質量%以上かつ比表面積が10m/g以上であることを特徴とする(3)の有機塩素化合物分解触媒
である。
【0010】
【発明の実施の形態】
以下、本発明を詳細に説明する。従来技術に示したように、遷移金属酸化物は、有機塩素化合物の分解活性に優れているが、触媒活性が強いためCl2を生成しやすい。Cl2は反応活性が高いため、炭素質を塩素化し、ダイオキシン等の有機塩素化合物を再生成する。このため、遷移金属酸化物を分解触媒に使用した場合、有機塩素化合物が再生成することがあり、分解効率が低下する。
【0011】
そこで種々の物質を探索した結果、鉄鉱石が有機塩素化合物の分解活性に優れ、かつ比較的Cl2の発生が抑制できることを見出した。鉄鉱石の主成分は酸化鉄であるが、脈石分としてアルミナ、シリカを含んでいる。これらの物質は有機塩素の分解活性は低いがCl2生成を抑制する機能を有しているため、Cl2と炭素質によるダイオキシン等の有機塩素化合物の再生成を抑制できると考えられる。すなわち、アルミナ、シリカがある一定量以上存在することにより、遷移金属酸化物の有機塩素化合物分解活性を損なうことなくCl2生成を抑制でき、効率的に有機塩素化合物を分解することができる。具体的にはFeの割合が50質量%以上かつアルミナ(Al23)とシリカ(SiO2)の合計が3質量%以上含有している鉱石が有機塩素化合物分解活性が高く、Cl2の生成活性が低い。いずれも上限の規定は特にない。ここでFeの割合が50質量%未満、またはアルミナとシリカの合計が3質量%未満の場合、有機塩素化合物分解活性が低く、Cl2の生成活性が低くならず好ましくない。
【0012】
さらに鉄鉱石の中でも分解活性の高い鉱石があることを見出した。その分解活性の高い鉱石とは、結合水を多く含んでいる鉱石であり、いわゆる含水酸化鉄が主成分の鉱石である。結合水を多く含んでいる鉱石は酸化鉄の結晶化度が比較的低いため、表面活性が高くかつ比表面積も大きいため有機塩素化合物の分解活性に優れる。具体的には、結合水を4質量%以上含有する鉄鉱石である。結合水の上限の規定は特にない。ここで結合水が4質量%未満の場合、比表面積が小さく、触媒作用の高い含水酸化鉄の割合が減少し好ましくない。
【0013】
また、上述の結合水を多く含む鉱石は、250℃以上の温度で加熱することにより結合水を放出しヘマタイト(α−Fe23)に変態する。
【0014】
【化1】

Figure 0004047523
【0015】
本方式で作製したヘマタイトは、元の含水酸化鉄および最初からヘマタイトとして鉱石中に存在しているヘマタイト系鉄鉱石よりも表面活性が高く、かつ比表面積も大きい。このため有機塩素化合物の分解活性が高くなっている。温度は250℃以上であれば、特に上限を規定しない。ここで、加熱温度が250℃未満の場合、ヘマタイトに変態せず好ましくない。雰囲気は、水素や一酸化炭素ガス等の還元性ガス以外であれば良く、例えば、空気、燃焼排ガス、窒素が好ましい。加熱時間は、温度が高いほど短くなるが、300℃で30分、好ましくは60分以上を必要とする。また、比表面積が10m2/g未満の場合、有機塩素化合物の分解活性が充分に発揮されないが、上記条件で作製した場合、ヘマタイトの比表面積は、10m2/g以上とすることができ、有機塩素化合物の分解活性が向上すため、非常に好ましい。
【0016】
本発明の鉄鉱石の使用形態であるが、鉄鉱石は、通常の触媒と比べて安価であるため、ある温度以上の排ガス温度を有するダクトに吹き込んで一過使用するのが好ましい。排ガス温度は200℃以上、好ましくは250℃以上であれば有機塩素分解が効率的に進行する。鉄鉱石は塊状であるため充填層として使用可能であるが、塩素や硫黄酸化物と結合し活性が低下するため、充填層として使用する場合は、上流に酸性ガス除去装置(脱塩、脱硫装置)を設ける必要がある。
【0017】
【実施例】
以下、実施例1〜3で本発明を具体的に説明する。
【0018】
表1に示す組成の鉱石をそれぞれ実施例1および2、ならびに比較例1および2とし、これらの200gを石英管に充填し、空気をベースガスとして、ダイオキシンの前駆体であるモノクロロベンゼンを1000ppmの濃度に調整したガスを、1000Ncm3/minの流量で石英管に流通することにより、モノクロロベンゼンの分解実験を反応温度300℃にて実施した。結果を合わせて表1に示す。ここでモノクロロベンゼンの分解率は、ガスクロマトグラフィーで石英管出側モノクロロベンゼン濃度を測定することによって算出した。またCl2生成率は、モノクロロベンゼンのClが全量Cl2に転化した場合を100%として石英管出側塩素濃度を測定し、算出した。塩素濃度はオルトトリジン法にて分析を行った。比較例1および2ではモノクロロベンゼンの分解率は高いがCl2が大量に生成していた。これに対して実施例1ではモノクロロベンゼンの分解率は比較例とほぼ同じであるが、Cl2生成が抑制されていた。さらに結合水、SiO2、Al23の割合の高い実施例2ではモノクロロベンゼン分解率は向上し、Cl2生成がさらに抑制されていた。
【0019】
【表1】
Figure 0004047523
【0020】
さらに実施例2の鉱石を250℃で4時間熱処理を行った鉱石(実施例3)と比較例2の鉱石を同様の熱処理を施した鉱石(比較例3)にて、上述の実施例1および2ならびに比較例1および2と同一実験条件にてモノクロロベンゼンの分解実験を実施した。その結果を表2に示す。表2に示すように、ヘマタイト(Fe23)の含有率は比較例3の方が多いが、実施例3ではCl2の生成率はほとんど変化せずにモノクロロベンゼンの分解率のみが向上している。比較例3では熱処理を行っても分解性能の向上は見られなかった。比表面積の差が分解活性に効いているものと考えられる。
【0021】
【表2】
Figure 0004047523
【0022】
次に、実施例1〜3および比較例2の鉱石を使用してダイオキシン除去性能を調査した。ここでダイオキシンはダイオキシン類を指し、PCDDs,PCDFs,PCBsのことを意味している。
【0023】
ゴミ焼却炉の電気集塵機後排ガスを分取し、酸性ガス除去後、300℃まで昇温し鉱石の充填層に導いた。充填層入口、出口のダイオキシン濃度を測定し、除去率を算出した。比較例2ではほとんどダイオキシンが低減していないのに対して実施例1〜3ではダイオキシンが低減していた。実施例2と3で除去性能がほぼ同じになったのは、排ガス温度が300℃であるため、実施例2において排ガスにより熱処理と同様の効果が得られたものと考えられる。
【0024】
【表3】
Figure 0004047523
【0025】
【発明の効果】
以上、本発明を用いれば、製鉄原料である安価な鉄鉱石を利用してダイオキシンをはじめとする有機塩素化合物の分解・除去を経済的に行える。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for removing harmful substances such as dioxins discharged from, for example, incineration facilities for municipal waste and industrial waste, steel electric furnaces, and steel sintering machines.
[0002]
[Prior art]
Transition metal oxides are described in the Chemical Society of Japan, Vol. 1989, p. 139 (1989), it is known to have an oxidative degradation activity of an organic chlorine compound. Utilizing these, a catalytic decomposition technique for organochlorine compounds in exhaust gas has been developed.
[0003]
Considering the V 2 O 5 —TiO 2 system or SO x resistance, which has been conventionally used as a catalytic reduction catalyst for nitrogen oxides, as described in Catalysts (Vol. 41, 210, 1999). A decomposition technique using a V 2 O 5 —TiO 2 —WO 3 -based catalyst has been put into practical use. Since these catalysts are expensive, they are generally honeycomb or granular and are used for a long time as a fixed layer.
[0004]
In addition, a method for suppressing dioxins in a refuse incinerator using an iron oxide catalyst has been developed as disclosed in JP-A-11-267507. In this method, an iron oxide catalyst is blown into a combustion chamber or a reburning chamber of a garbage incinerator to suppress dioxins. The iron oxide used here is prepared from the reagent. For example, goethite powder is a ferrous iron or iron carbonate obtained by reacting with one or more selected from ferrous salt, alkali hydroxide, alkali carbonate and ammonia. It can be obtained by generating goethite particles by aeration of an oxygen-containing gas such as air into the suspension containing the contained precipitate. The hematite powder can be obtained by subjecting the goethite powder to heat dehydration in the temperature range of 200 to 800 ° C. in the air. Further, the magnetite powder is obtained by heating and reducing the hematite powder at 300 to 600 ° C. in a reducing atmosphere.
[0005]
[Problems to be solved by the invention]
However, in the case of a V 2 O 5 —TiO 2 or V 2 O 5 —TiO 2 —WO 3 catalyst, a catalyst layer must be provided in the middle of the duct in order to use it in a fixed layer. There was a need for extensive construction.
[0006]
Further, the iron oxide catalyst disclosed in JP-A-11-267507 does not require a large-scale construction, but iron oxide is a V 2 O 5 —TiO 2 or V 2 O 5 —TiO 2 —WO 3 catalyst. Compared with NO, it is easy to be combined with chlorine and sulfur oxides, and the catalytic activity tends to decrease. For this reason, it cannot be used for a long time, and is used for a short time by being blown into the exhaust gas. However, in order to suppress dioxins, it is necessary to continuously blow into the exhaust gas. However, the iron oxide catalyst becomes expensive because the catalyst is prepared from the reagent through complicated processes as described above. In the case of blowing such an expensive iron oxide catalyst, the used iron oxide catalyst is recovered together with dust and is poisoned by chlorine and sulfur oxides in the exhaust gas. Is discarded with dust.
[0007]
Also, V 2 O 5 -TiO 2 system or V 2 O 5 -TiO 2 -WO 3 based catalysts discussed above or transition metal oxides such as iron oxide, may, although degradation activity of organochlorine high, the Cl 2 High production activity. Cl 2 has a higher reaction activity than HCl, and is liable to regenerate organic chlorine compounds such as dioxin when combined with carbonaceous matter.
[0008]
[Means for Solving the Problems]
As a result of diligent research to solve the above problems, the present inventor has found that the use of iron ore as a catalyst can achieve an inexpensive and efficient organic chlorine compound decomposition, and has led to the present invention.
[0009]
That is, the present invention is (1) a method for decomposing monochlorobenzene or dioxins, which is an organic chlorine compound, using iron ore as an organic chlorine compound decomposition catalyst, wherein the iron ore contains 50 mass% or more of Fe, mETHOD degradation and Al 2 O 3 and including at the sum of SiO 2 3% by mass or more, or, organic chlorine compounds, characterized in that it comprises further a bound water at 4% by mass or more,
(2) The method for decomposing an organochlorine compound according to (1), wherein the iron ore is heat-treated at 250 ° C. or higher before or during use, and the hydrous iron oxide in the iron ore is transformed into hematite. ) A decomposition catalyst for monochlorobenzene or dioxins, which is an organic chlorine compound composed of iron ore, wherein the iron ore contains Fe in an amount of 50% by mass or more, and the sum of Al 2 O 3 and SiO 2 is 3% by mass or more. including, or even organic chlorine compound-decomposing catalyst comprising a bound water at 4% by mass or more, and (4) the iron ore is subjected to heat treatment before or during use at 250 ° C. or higher, iron The organochlorine compound decomposition catalyst according to (3), wherein the hydrous iron oxide in the stone is transformed into hematite, the content of Fe 2 O 3 is 70% by mass or more, and the specific surface area is 10 m 2 / g or more. is there.
[0010]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, the present invention will be described in detail. As shown in the prior art, transition metal oxides are excellent in the decomposition activity of organochlorine compounds, but are easy to produce Cl 2 due to their strong catalytic activity. Since Cl 2 has high reaction activity, it chlorinates carbonaceous matter and regenerates organic chlorine compounds such as dioxins. For this reason, when a transition metal oxide is used as a decomposition catalyst, an organic chlorine compound may be regenerated, resulting in a decrease in decomposition efficiency.
[0011]
Thus, as a result of searching for various substances, it was found that iron ore is excellent in the activity of decomposing organochlorine compounds and relatively suppresses the generation of Cl 2 . The main component of iron ore is iron oxide, but it contains alumina and silica as gangue. Although these substances have a low activity of decomposing organic chlorine but have a function of suppressing Cl 2 production, it is considered that regeneration of organic chlorine compounds such as dioxin by Cl 2 and carbonaceous matter can be suppressed. That is, when a certain amount or more of alumina and silica are present, Cl 2 generation can be suppressed without impairing the organochlorine compound decomposition activity of the transition metal oxide, and the organochlorine compound can be efficiently decomposed. Specifically at least 50% by mass percentage of Fe is and alumina (Al 2 O 3) and silica (SiO 2) total is higher chlorinated organic compound decomposing activity ores containing more than 3 wt% of the Cl 2 Production activity is low. There is no particular upper limit for either. Here, when the proportion of Fe is less than 50% by mass, or the total of alumina and silica is less than 3% by mass, the organochlorine compound decomposition activity is low and the Cl 2 production activity is not low, which is not preferable.
[0012]
Furthermore, it has been found that there is an ore with high decomposition activity among iron ores. The ore having a high decomposition activity is an ore containing a large amount of bound water, and is an ore mainly composed of so-called hydrous iron oxide. Since the ore containing a large amount of bound water has a relatively low crystallinity of iron oxide, it has a high surface activity and a large specific surface area, so that it has an excellent decomposition activity of organochlorine compounds. Specifically, it is an iron ore containing 4% by mass or more of bound water. There is no specific upper limit for bound water. Here, when the bound water is less than 4% by mass, the specific surface area is small, and the ratio of hydrous iron oxide having a high catalytic action is not preferable.
[0013]
Further, the ore containing a large amount of the above-mentioned bound water releases it by heating at a temperature of 250 ° C. or higher, and transforms into hematite (α-Fe 2 O 3 ).
[0014]
[Chemical 1]
Figure 0004047523
[0015]
The hematite produced by this method has higher surface activity and a larger specific surface area than the original hydrous iron oxide and the hematite iron ore that is present in the ore as hematite from the beginning. For this reason, the decomposition activity of organochlorine compounds is high. If temperature is 250 degreeC or more, an upper limit will not be prescribed | regulated in particular. Here, when the heating temperature is less than 250 ° C., it does not transform into hematite, which is not preferable. The atmosphere may be other than a reducing gas such as hydrogen or carbon monoxide gas. For example, air, combustion exhaust gas, and nitrogen are preferable. The heating time is shorter as the temperature is higher, but requires 30 minutes at 300 ° C., preferably 60 minutes or more. In addition, when the specific surface area is less than 10 m 2 / g, the decomposition activity of the organic chlorine compound is not sufficiently exhibited, but when produced under the above conditions, the specific surface area of hematite can be 10 m 2 / g or more, This is very preferable because the decomposition activity of the organic chlorine compound is improved.
[0016]
Although the iron ore of the present invention is used, iron ore is cheaper than a normal catalyst, and therefore, it is preferably used by being blown into a duct having an exhaust gas temperature higher than a certain temperature. If the exhaust gas temperature is 200 ° C. or higher, preferably 250 ° C. or higher, the organic chlorine decomposition proceeds efficiently. Since iron ore is agglomerated, it can be used as a packed bed. However, since it binds to chlorine and sulfur oxides and its activity decreases, when used as a packed bed, an acid gas removal device (demineralization / desulfurization device) is used upstream. ) Must be provided.
[0017]
【Example】
Hereinafter, the present invention will be specifically described in Examples 1 to 3.
[0018]
The ores having the compositions shown in Table 1 were designated as Examples 1 and 2, and Comparative Examples 1 and 2, respectively, 200 g of these were filled in a quartz tube, air was used as a base gas, and 1000 ppm of monochlorobenzene as a dioxin precursor was added. A monochlorobenzene decomposition experiment was performed at a reaction temperature of 300 ° C. by circulating a gas adjusted to a concentration through a quartz tube at a flow rate of 1000 Ncm 3 / min. The results are shown in Table 1. Here, the decomposition rate of monochlorobenzene was calculated by measuring the monochlorobenzene concentration on the exit side of the quartz tube by gas chromatography. The Cl 2 production rate was calculated by measuring the chlorine concentration at the quartz tube outlet side with 100% of the monochlorobenzene converted to Cl 2 as the total amount. The chlorine concentration was analyzed by the orthotolidine method. In Comparative Examples 1 and 2, the decomposition rate of monochlorobenzene was high, but a large amount of Cl 2 was produced. On the other hand, in Example 1, the decomposition rate of monochlorobenzene was almost the same as that of the comparative example, but Cl 2 production was suppressed. Furthermore, in Example 2 in which the proportions of bound water, SiO 2 and Al 2 O 3 were high, the monochlorobenzene decomposition rate was improved and Cl 2 production was further suppressed.
[0019]
[Table 1]
Figure 0004047523
[0020]
Further, the ore of Example 2 was heat-treated at 250 ° C. for 4 hours (Example 3) and the ore of Comparative Example 2 were subjected to the same heat treatment (Comparative Example 3). 2 and monochlorobenzene decomposition experiments were carried out under the same experimental conditions as in Comparative Examples 1 and 2. The results are shown in Table 2. As shown in Table 2, the content of hematite (Fe 2 O 3 ) is higher in Comparative Example 3, but in Example 3, the Cl 2 production rate hardly changes and only the monochlorobenzene decomposition rate is improved. is doing. In Comparative Example 3, no improvement in decomposition performance was observed even after heat treatment. The difference in specific surface area is considered to be effective for the decomposition activity.
[0021]
[Table 2]
Figure 0004047523
[0022]
Next, the dioxin removal performance was investigated using the ores of Examples 1 to 3 and Comparative Example 2. Here, dioxin refers to dioxins and means PCDDs, PCDFs, and PCBs.
[0023]
The exhaust gas was collected after the electric dust collector of the garbage incinerator, and after removing the acid gas, the temperature was raised to 300 ° C. and led to the packed bed of ore. The dioxin concentration at the inlet and outlet of the packed bed was measured and the removal rate was calculated. In Comparative Example 2, dioxin was hardly reduced, whereas in Examples 1 to 3, dioxin was reduced. The reason why the removal performance is almost the same in Examples 2 and 3 is that the exhaust gas temperature is 300 ° C., so it is considered that the same effect as the heat treatment was obtained by the exhaust gas in Example 2.
[0024]
[Table 3]
Figure 0004047523
[0025]
【The invention's effect】
As mentioned above, if this invention is used, decomposition | disassembly and removal of organic chlorine compounds including dioxin can be economically performed using the cheap iron ore which is a steelmaking raw material.

Claims (4)

有機塩素化合物分解触媒として、鉄鉱石を使用する、有機塩素化合物であるモノクロロベンゼン又はダイオキシン類の分解方法であって、前記鉄鉱石は、Feを50質量%以上、およびAlとSiOの和を3質量%以上で含む、又は、更に結合水を4質量%以上で含むことを特徴とする有機塩素化合物の分解方法。A method for decomposing monochlorobenzene or dioxins, which are organochlorine compounds, using iron ore as an organochlorine compound decomposition catalyst, wherein the iron ore contains Fe in an amount of 50% by mass or more, and Al 2 O 3 and SiO 2 sum including at 3 wt% or more, or method for decomposing organic chlorinated compounds, which comprises further a bound water at 4% by mass or more. 前記鉄鉱石を250℃以上で使用前または使用中に加熱処理し、鉄鉱石中の含水酸化鉄をヘマタイトに変態せしめることを特徴とする請求項1に記載の有機塩素化合物の分解方法。  The method for decomposing an organochlorine compound according to claim 1, wherein the iron ore is heat-treated at 250 ° C. or more before or during use, and the hydrous iron oxide in the iron ore is transformed into hematite. 鉄鉱石よりなる有機塩素化合物であるモノクロロベンゼン又はダイオキシン類の分解触媒であって、前記鉄鉱石は、Feを50質量%以上、およびAlとSiOの和を3質量%以上で含む、又は、更に結合水を4質量%以上で含むことを特徴とする有機塩素化合物分解触媒。A decomposition catalyst for monochlorobenzene or dioxins, which is an organic chlorine compound composed of iron ore, wherein the iron ore contains Fe in an amount of 50% by mass or more and the sum of Al 2 O 3 and SiO 2 in an amount of 3% by mass or more. Or further containing 4% by mass or more of bound water . 前記鉄鉱石は、250℃以上で使用前または使用中に加熱処理し、鉄鉱石中の含水酸化鉄をヘマタイトに変態せしめ、Feの含有率を70質量%以上かつ比表面積が10m/g以上であることを特徴とする請求項3に記載の有機塩素化合物分解触媒。The iron ore is heat-treated at a temperature of 250 ° C. or more before or during use to transform the hydrous iron oxide in the iron ore into hematite, the Fe 2 O 3 content is 70% by mass or more, and the specific surface area is 10 m 2. The organochlorine compound decomposition catalyst according to claim 3, which is at least / g.
JP2000212970A 2000-07-13 2000-07-13 Organochlorine decomposition method and catalyst Expired - Fee Related JP4047523B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000212970A JP4047523B2 (en) 2000-07-13 2000-07-13 Organochlorine decomposition method and catalyst

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000212970A JP4047523B2 (en) 2000-07-13 2000-07-13 Organochlorine decomposition method and catalyst

Publications (2)

Publication Number Publication Date
JP2002028446A JP2002028446A (en) 2002-01-29
JP4047523B2 true JP4047523B2 (en) 2008-02-13

Family

ID=18708803

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000212970A Expired - Fee Related JP4047523B2 (en) 2000-07-13 2000-07-13 Organochlorine decomposition method and catalyst

Country Status (1)

Country Link
JP (1) JP4047523B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103596704A (en) * 2011-04-29 2014-02-19 同济大学 Treatment method of persistent organic pollutant in particulates

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114892003B (en) * 2022-05-19 2023-04-11 中南大学 Method for synchronously removing fluorine, chlorine and iron in solution

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103596704A (en) * 2011-04-29 2014-02-19 同济大学 Treatment method of persistent organic pollutant in particulates
CN103596704B (en) * 2011-04-29 2016-04-20 同济大学 The processing method of contained persistence organic pollutant in a kind of particle

Also Published As

Publication number Publication date
JP2002028446A (en) 2002-01-29

Similar Documents

Publication Publication Date Title
JP5198875B2 (en) Method for purifying exhaust gas produced by a sintering process of ores and / or other metal-containing substances in metal production
CN1331571C (en) Flue gas hydrargyrum-removing method by catalytic oxidation
JP3480596B2 (en) Dry desulfurization denitrification process
KR100650110B1 (en) Process for treating dioxin-containing exhaust gas and composite catalyst composition for inhibiting generation of dioxin
EP1050333B1 (en) Iron compound catalyst for inhibiting generation of dioxin and incineration process of municipal solid waste using the same
US20070217979A1 (en) Method For Reducing Heavy Metals In Flue Gases
WO2005030641A1 (en) Highly activated coke powder and process for producing the same
JP2003286020A (en) Highly activated active coke powder and manufacturing method thereof
JP4047523B2 (en) Organochlorine decomposition method and catalyst
US6589495B2 (en) Process for reducing the levels of halogenated hydrocarbons
JPH0889757A (en) Treatment of waste gas from refuse incineration furnace
JPH10180038A (en) Waste gas simultaneous treating device and method thereof
JP3898078B2 (en) Method for removing organochlorine compounds, nitrogen oxides or sulfur oxides
KR100382050B1 (en) Catalyst for Removing Dioxin and Nitrogen Oxides in Flue Gas and Method for Treating Combustion Exhaust Gases Using the Same
JP2003112012A (en) Method of removing dioxins in exhaust gas of waste treating furnace and equipment for the same
JP2002355533A (en) Method and catalyst for decomposing organochlorine compound
JP2007275761A (en) Method for producing removing agent of sulfur oxide in gas
JP4144931B2 (en) Iron compound catalyst for dioxin suppression and method for incineration of garbage using the iron compound catalyst
JPH08155300A (en) Dry denitration of sulfur oxide-containing low temperature exhaust gas and desulfurizing-denitrating catalyst
CA2179000C (en) Removal of mercury from a combustion gas stream
JP3596424B2 (en) Exhaust gas treatment method and treatment device
JPH1147536A (en) Method for treating exhaust gas
JPH06210138A (en) Dry exhaust gas purifying method and operation of blast furnace and sintering machine
JP4332941B2 (en) Hazardous exhaust gas treatment method using fluidized bed
JP2002028480A (en) Adsorbing removing method and decomposing method of organic chlorine compound

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040902

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070607

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070612

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070808

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070911

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071019

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20071120

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20071122

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101130

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101130

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111130

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111130

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121130

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121130

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131130

Year of fee payment: 6

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131130

Year of fee payment: 6

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131130

Year of fee payment: 6

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees