JP3898078B2 - Method for removing organochlorine compounds, nitrogen oxides or sulfur oxides - Google Patents

Method for removing organochlorine compounds, nitrogen oxides or sulfur oxides Download PDF

Info

Publication number
JP3898078B2
JP3898078B2 JP2002083754A JP2002083754A JP3898078B2 JP 3898078 B2 JP3898078 B2 JP 3898078B2 JP 2002083754 A JP2002083754 A JP 2002083754A JP 2002083754 A JP2002083754 A JP 2002083754A JP 3898078 B2 JP3898078 B2 JP 3898078B2
Authority
JP
Japan
Prior art keywords
loess
iron oxide
oxides
nitrogen oxides
dioxins
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002083754A
Other languages
Japanese (ja)
Other versions
JP2003251145A (en
Inventor
久継 北口
昭 具島
準一 桜木
恒男 池田
道夫 千葉
正美 池本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2002083754A priority Critical patent/JP3898078B2/en
Publication of JP2003251145A publication Critical patent/JP2003251145A/en
Application granted granted Critical
Publication of JP3898078B2 publication Critical patent/JP3898078B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/20Air quality improvement or preservation, e.g. vehicle emission control or emission reduction by using catalytic converters

Description

【0001】
【発明の属する技術分野】
本発明は、例えば都市ゴミや産業廃棄物の焼却設備、鉄鋼電気炉等から排出されるダイオキシン、窒素酸化物および硫黄酸化物などの有害物質の除去方法に関するものである。
【0002】
【従来の技術】
従来、燃焼過程で発生するダイオキシン類等の有機塩素化合物を削減する方法は活性炭による吸着法が一般的に行なわれている。吸着処理方法として、主に活性炭または活性コークスを吸着剤に用いた充填層による吸着技術と粉末の吸着剤の吹き込み技術が実用化されている。また、活性コークスは、特開昭58−122042号公報、特開平4−219308号公報に示されるように、排ガス中の窒素酸化物および硫黄酸化物の除去剤としても実用化されている。
【0003】
また、活性炭に代わって、例えば特開平11−267507号公報に示されているような、酸化鉄触媒を用いたゴミ焼却炉のダイオキシンの抑制方法が開発されている。この方法は酸化鉄触媒をゴミ焼却炉の燃焼室または再燃室に吹き込み、ダイオキシンを抑制するものである。ここで用いられる酸化鉄は試薬から調製される。例えばゲータイト粉末は、第一鉄塩、水酸化アルカリ、炭酸アルカリおよびアンモニアから選ばれる1種または2種以上を用いて反応させ、得られた鉄の水酸化物や炭酸鉄等である第一鉄含有沈澱物を含む懸濁液中に、空気等の酸素含有ガスを通気してゲータイト粒子を生成させて得ることができる。また、ヘマタイト粉末は、前記ゲータイト粉末を空気中で200〜800℃の温度範囲で加熱脱水を行って得ることができる。さらに、マグネタイト粉末は、前記ヘマタイト粉末を還元性雰囲気下、300〜600℃で加熱還元して得られる。
【0004】
一般に、排ガス中の窒素酸化物除去には「触媒講座」第7巻(触媒学会)253頁第5行目に示されているように、アンモニア還元脱硝触媒としてV25−TiO2触媒が利用されている。
【0005】
【発明が解決しようとする課題】
活性炭による吸着法の場合には、ダイオキシン類を吸着後の活性炭の処理と炭塵爆発の危険性が問題となっている。これら、ダイオキシン類を吸着した活性炭は廃棄物として埋め立て地に埋めることはできない。そのため、再度ダイオキシン類を分解することができる高温焼却が必要である。この高温焼却の場合でも、冷却過程で再度ダイオキシン類が発生する危険性が秘められている。また、ダイオキシン類は300℃〜500℃の温度領域で再合成されることが一般に知られているが、この温度領域に活性炭の粉末を吹き込むと炭塵爆発の危険性がある等の問題がある。また、活性コークスの窒素酸化物および硫黄酸化物の除去剤も上記問題点を包含している。
【0006】
また、上述したような特開平11−267507号公報の酸化鉄触媒では、大規模な工事を必要としないが、酸化鉄は、V25−TiO2系あるいはV25−TiO2−WO3系の触媒に比べて、塩素や硫黄酸化物と結びつきやすく、触媒活性が低下しやすい。このため長時間使用ができず、排ガス中への吹き込みによる短時間の使用となる。しかし、ダイオキシンを抑制するためには、排ガス中に絶えず吹き込む必要がある。また、酸化鉄触媒は、上述のように複雑な工程を経て試薬から触媒を調製するため高価になる。このような高価な酸化鉄触媒を吹き込む場合、使用済みの酸化鉄触媒はダストとともに回収され、かつ、排ガス中の塩素や硫黄酸化物により被毒されるため再使用が困難であり、ゴミ焼却の場合はダストとともに廃棄される。さらに、酸化鉄触媒は、効率的な分解活性を得るためには250℃以上の温度が必要であり、吹き込み位置が排ガスの高温部分に限定されるか、排ガス温度が250℃よりも低い場合は排ガスを加熱する必要があり、除去性能が十分であるとはいえない。
【0007】
「触媒講座」第7巻に示されている窒素酸化物除去方法はバナジウムを使用するため触媒が非常に高価であり、かつ、アンモニアを還元剤とする窒素酸化物の還元分解反応であるため、200〜400℃の排ガス温度が必要とされ、200℃以下の排ガスへの適用が困難であった。
【0008】
そこで、本発明は、安価で高性能なダイオキシン類等の有機塩素化合物、窒素酸化物および硫黄酸化物などの有害物質を除去する除去方法を提供することを目的とする。
【0009】
【課題を解決するための手段】
その発明の要旨とするところは、
成分が含水酸化鉄である黄土を200℃以上500℃以下で熱処理することにより得られ除去材を用いて、アンモニアを還元剤として使用せずに、ガス中の有機塩素化合物、窒素酸化物または硫黄酸化物の1種または2種以上を吸着除去することを特徴とする有機塩素化合物、窒素酸化物または硫黄酸化物の除去方法
にある。
【0010】
【発明の実施の形態】
ダイオキシン類等の有機塩素化合物を吸着、分解するためには、吸着するための細孔を有し、かつ、排ガス中でダイオキシンが再合成する300〜500℃の温度領域で使用することでダイオキシンの再合成を抑制する際に、上記温度領域で燃焼が起きない物質が有効である。本発明は、上述の特性を鑑み含水酸化鉄に着目し、含水酸化鉄を200〜500℃で加熱すると結合水が脱離し、表面に無数の細孔が形成されることを見出した。また、この中でも含水酸化鉄を主成分とする土壌を熱処理して得られた物質は、天然物であるため安価である上に、ダイオキシンなどの有機塩素化合物だけでなく窒素酸化物および硫黄酸化物の吸着性能も極めて良好で優れており、さらに300〜500℃の温度領域で燃焼が起こらないことを見出し発明に到ったものである。
【0011】
土壌とは、地殻表面の岩石の分解によって生じた無機物が地表に堆積したものであり、多くのものは腐敗分解した有機物を含んでいる。なかでも含水酸化鉄を主成分とする土壌である黄土は、一般に大昔、火山の火口湖に溶出していた鉄が化学的または生物的作用により含水酸化鉄として沈降し、火口湖が干上がり土壌を形成したものであり、鉄の他に様々な鉱物質および有機物が含まれており、主成分として含水酸化鉄を鉄として20〜60質量%、また、その他成分として有機物を炭素として1〜10質量%含んでいることが特徴である。なお、鉄などの成分の測定は乾燥土壌ベースで行う。乾燥は土壌に吸着する水分を分離するためのものであり、結合水を分離することを意味するものではなく、通常、105〜110℃の範囲で1時間以上処理する。ここで、含水酸化鉄とは、構造式FeOOH(または、Fe・HO)で表されるものである。また、熱処理とは、土壌から結合水を脱離させるために土壌を200〜500℃程度に加熱できる方法であれば、手段は問わない。工業的には、種々の乾燥機、例えば、回分式箱形乾燥機、材料移送型乾燥機、材料撹拌型乾燥機、熱風移送型乾燥機、円筒乾燥機などが利用できる。
【0012】
以下、本発明を、含水酸化鉄を主成分にする黄土と試薬から合成した含水酸化鉄の比較により詳細に説明する。
【0013】
含水酸化鉄を主成分とする黄土と試薬から合成した含水酸化鉄の加熱処理による比表面積(BET法)の変化を図1に示す。加熱処理は空気雰囲気中で1時間行った。ここで用いた含水酸化鉄を主成分とする黄土は、阿蘇山の山麓より採取した黄土であり、試薬から合成した含水酸化鉄は、塩化第一鉄と水酸化ナトリウムを用いて反応して得られる鉄の水酸化物を含む懸濁液中に空気等の酸素含有ガスを通気して得られたゲーサイトである。黄土、ゲーサイトともに、200℃以上で比表面積が増加し始めるが、ゲーサイトは220℃をピークに温度上昇とともに比表面積が低下するのに対して、黄土は290℃付近で比表面積が最大となるが400℃までは比表面積が低下せず、500℃で低下する。このように黄土は、幅広い温度領域で安定しているため、300℃以上の高温領域で使用する場合もゲーサイトに比べて有利である。また、ゲーサイト、黄土ともに加熱による比表面積の増加は、含水酸化鉄の結合水の脱離による孔の形成が主因と考えられるが、加熱による比表面積の増加率が黄土の方が高いことから、黄土の比表面積の増加には、有機物の炭化等による別の要因での比表面積増加の寄与も考えられる。また、上記加熱処理により、ゲーサイトでは、200℃以上でゲーサイト(α−FeOOH)は、ヘマタイト(Fe)のみに変化するが、黄土では、200℃以上でヘマタイトの他、レピドクロサイト(γ−FeOOH)、マグネタイト(Fe)の存在がX線回折により観察された。
【0014】
図2に300℃1時間熱処理後の黄土およびゲーサイトの細孔分布(細孔容積変化)を示す。ゲーサイトは細孔半径30nmにピークを有するのに対し、黄土は半径2nm付近にピークを有する。ダイオキシン等の低濃度の有機塩素化合物を吸着するためには、吸着分子よりも大きくかつ吸着分子の大きさの数倍程度の孔を有していることが必要である。細孔径が吸着分子よりも小さい場合は、孔内に分子を吸着できず、逆に細孔径が大きい場合、孔が大きいほど吸着力が弱くなるため、低濃度の有機塩素化合物を吸着保持することが困難になる。ダイオキシン類で最も毒性の高い2,3,7,8−T4CDDの大きさが長さ約1.8nm,巾約1.0nm,厚さ約0.3nmであることから、ゲーサイトよりも黄土がダイオキシンの吸着に適していると考えられ、細孔半径として1nm以上3nm以下程度の細孔が好ましい。
【0015】
黄土では、200℃以上、500℃以下、好ましくは250℃以上、400℃以下の加熱処理によりダイオキシン等の有機塩素化合物の吸着性能が向上する。200℃未満では結合水の脱離が少なく孔が形成されず比表面積の増加が少ない。500℃を超えると、形成された孔が崩壊し、孔径が大きくなり比表面積が低下する。このため、吸着性能の向上は小さい。特に250℃以上、400℃以下の加熱処理では、比表面積の増加が顕著であるため、好ましい。また、加熱処理時間としては、結合水を脱離できる時間であれば良く、加熱温度によって異なり、特に規定するものではないが、通常は0.5〜2時間程度である。加熱雰囲気は、問わないが、酸素を含有している雰囲気で加熱処理したものは、吸着性能の面で好ましい。
【0016】
吸着性能は、同一比表面積では、黄土がゲーサイトよりも優れていることから、吸着性能の向上は、黄土の加熱処理による比表面積増加だけでなく、半径2nm前後の細孔の存在、炭素の存在、加熱処理によるレピドクロサイト(γ−FeOOH)、マグネタイト(Fe34)の生成が効くものと考えられる。
ここで、黄土は阿蘇地方で産出するものが特にダイオキシン、窒素酸化物および硫黄酸化物の除去性能が良いが、同様の生成過程を経て産出する土壌であれば良く、特に産地等を限定するものではない。上記処理を施した黄土は、ダイオキシンだけでなく窒素酸化物、硫黄酸化物の吸着性能が飛躍的に上昇する。排ガス中のダイオキシン、窒素酸化物または硫黄酸化物の2種以上の混合物であっても同時除去が可能である。
【0017】
【実施例】
表1に示す物質を用いて、ダイオキシンの類似物質である1−クロロナフタレンの吸着性能を評価した。ここで、実施例1は、黄土(乾燥土壌ベース、鉄として50質量%、有機物を炭素として5質量%)を300℃において1時間空気中で加熱処理をおこなったもの、比較例1は、黄土未処理、比較例2はゲーサイトを300℃において1時間空気中で加熱処理をおこなったもの、比較例3は、含水酸化鉄を主成分とする鉄鉱石を300℃において1時間空気中で加熱処理をおこなったもの、比較例4は、ダイオキシン除去に使用される活性コークスである。なお、黄土中の鉄分は酸化還元重クロム酸適定法で、有機物の炭素は赤外線吸収法で分析した。実験は、上記除去剤を5〜10mmに調整したものをガラス管に充填し恒温槽内において150℃で保温した。窒素をキャリアとして1−クロロナフタレン濃度を14ppmに調整したガスを、除去剤を充填したガラス管に流し、除去剤の質量変化を調べた。除去剤は、1−クロロナフタレンを吸着し、質量が増加するが、平衡吸着量に達するとそれ以上質量は増加しない。この平衡吸着量をそれぞれの除去剤について測定した。各除去剤の平衡吸着量を表1に示す。黄土が加熱処理を行うことで、飛躍的に吸着量が増大している。これは人工的に調製したゲーサイトおよび黄土と同様な天然物で含水酸化鉄を主成分とする鉄鉱石、または、活性コークスの吸着量を大きく上回るもので、実施例1が、有機塩素化合物に対して優れた吸着特性を示すことがわかる。
【0018】
【表1】

Figure 0003898078
【0019】
上記、実施例1および比較例1〜4の除去剤を用いて、ゴミ焼却炉排ガス中のダイオキシンの除去実験を実施した。ゴミ焼却炉のバグフィルター通過後の排ガスから100Nm3/hrの排ガスを分取し、上記除去剤を0.01m3充填し、150℃に保温した固定層に導入し、固定層前後のダイオキシン濃度から、100時間後のダイオキシン除去率を求めた。ここでダイオキシン除去率は(1−固定層出口ダイオキシン濃度/固定層入口ダイオキシン濃度)×100(%)で定義される。結果を表2に示す。表2からも実施例1の黄土を300℃において1時間空気中で加熱処理をおこなったものが優れたダイオキシン除去特性を示していることがわかる。
【0020】
【表2】
Figure 0003898078
【0021】
上記、実施例1および比較例1〜4の除去剤を用いて、窒素酸化物および硫黄酸化物の吸着実験を実施した。実験は、上記除去剤を5〜10mmに調整したものをガラス管に充填し、恒温槽内において150℃で保温した。窒素をキャリアとして容量基準で一酸化窒素(NO)200ppm、二酸化硫黄(SO2)200ppm、酸素15%に調整したガスをガス流量1000Ncm3/分で、除去剤を充填したガラス管に流し、ガラス管出口におけるNO、NO2(二酸化窒素)、SO2濃度変化を調べた。ちなみに、SO3についてはごく微量しか発生しないことから無視できるため、SO3の測定は行っていない。ここで、NO2は調整ガス組成には存在しないが、酸素が共存するためにNOの一部がNO2に酸化される。NOx(NO+NO2)は、減圧式化学発光法で、SO2は、非分散赤外吸収法で連続測定を行った。NOx,SO2ともに吸着により除去されるためガラス管出口濃度は、吸着能力が時間とともに低下するため、時間経過とともに上昇する。このため、除去性能の評価には、0〜20時間までの平均除去率を用いた。平均除去率の定義を下式に示す。ここで、20時間は、上記実験条件において吸着性能の差を判別するために必要な時間で実験的に決定した。
【0022】
平均除去率(%)=100×(A−B)/A
(ただし、式中、A=ガラス管入口濃度、B=20時間平均ガラス管出口濃度を示す。)
各除去剤のNOxおよびSO2の20時間平均除去率を表3に示す。実施例1の黄土を300℃において1時間空気中で加熱処理を行ったものが、比較例1の黄土未処理に対し、NOx除去率、SO2除去率ともに大幅に向上している。また、比較例2のゲーサイト、比較例3の鉄鉱石に比べてSO2除去率が、比較例4の活性コークスに比べてNOx除去率が優れている。このように、実施例1の黄土を300℃において1時間空気中で加熱処理を行ったものは、ダイオキシン除去性能が優れているだけでなく、窒素酸化物および硫黄酸化物の除去性能が優れていることがわかる。
【0023】
【表3】
Figure 0003898078
【0024】
【発明の効果】
以上、本発明を用いれば、天然物である含水酸化鉄を主成分とする安価な黄土を利用して、ダイオキシンをはじめとする有機塩素化合物、窒素酸化物および硫黄酸化物の除去を経済的に行える。
以上
【図面の簡単な説明】
【図1】は、加熱処理温度と比表面積の関係を示すグラフである。
【図2】は、300℃処理の黄土とゲーサイトの細孔分布を示すグラフである。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for removing harmful substances such as dioxins, nitrogen oxides and sulfur oxides discharged from, for example, incineration facilities for municipal waste and industrial waste, steel electric furnaces and the like.
[0002]
[Prior art]
Conventionally, an adsorption method using activated carbon is generally performed as a method for reducing organic chlorine compounds such as dioxins generated in the combustion process. As an adsorption treatment method, an adsorption technique using a packed bed mainly using activated carbon or activated coke as an adsorbent and a powder adsorbent blowing technique have been put into practical use. Active coke has also been put into practical use as a remover for nitrogen oxides and sulfur oxides in exhaust gas, as disclosed in JP-A Nos. 58-122042 and 4-219308.
[0003]
Further, instead of activated carbon, a method for suppressing dioxins in a refuse incinerator using an iron oxide catalyst has been developed as disclosed in, for example, JP-A-11-267507. In this method, an iron oxide catalyst is blown into a combustion chamber or a reburning chamber of a garbage incinerator to suppress dioxins. The iron oxide used here is prepared from a reagent. For example, goethite powder is a ferrous iron or iron carbonate obtained by reacting with one or more selected from ferrous salt, alkali hydroxide, alkali carbonate and ammonia. It can be obtained by generating goethite particles by aeration of an oxygen-containing gas such as air into the suspension containing the contained precipitate. The hematite powder can be obtained by subjecting the goethite powder to heat dehydration in the temperature range of 200 to 800 ° C. in the air. Further, the magnetite powder can be obtained by heating and reducing the hematite powder at 300 to 600 ° C. in a reducing atmosphere.
[0004]
In general, as shown in “Catalyst Course” Vol. 7 (Catalyst Society), page 253, line 5 for removing nitrogen oxides in exhaust gas, a V 2 O 5 —TiO 2 catalyst is used as an ammonia reduction denitration catalyst. It's being used.
[0005]
[Problems to be solved by the invention]
In the case of the adsorption method using activated carbon, the treatment of activated carbon after adsorption of dioxins and the danger of a coal dust explosion are problems. These activated carbons adsorbing dioxins cannot be buried in landfills as waste. Therefore, high-temperature incineration that can decompose dioxins again is necessary. Even in the case of this high-temperature incineration, there is a danger that dioxins are generated again during the cooling process. In addition, it is generally known that dioxins are re-synthesized in a temperature range of 300 ° C. to 500 ° C., but there is a problem that there is a risk of a coal dust explosion if activated carbon powder is blown into this temperature range. . Moreover, the removal agent of nitrogen oxides and sulfur oxides of activated coke also includes the above problems.
[0006]
In addition, the iron oxide catalyst disclosed in JP-A-11-267507 as described above does not require a large-scale construction, but iron oxide is a V 2 O 5 —TiO 2 type or V 2 O 5 —TiO 2 —. Compared to a catalyst based on WO 3 , it is easily combined with chlorine and sulfur oxides, and the catalytic activity is likely to be lowered. For this reason, it cannot be used for a long time, and is used for a short time by being blown into the exhaust gas. However, in order to suppress dioxins, it is necessary to continuously blow into the exhaust gas. Moreover, since an iron oxide catalyst prepares a catalyst from a reagent through a complicated process as mentioned above, it becomes expensive. When such an expensive iron oxide catalyst is blown in, the used iron oxide catalyst is recovered together with dust and is poisoned by chlorine and sulfur oxides in the exhaust gas. If it is discarded with dust. Furthermore, the iron oxide catalyst requires a temperature of 250 ° C. or higher in order to obtain efficient decomposition activity, and the blowing position is limited to the high temperature portion of the exhaust gas, or the exhaust gas temperature is lower than 250 ° C. It is necessary to heat the exhaust gas, and it cannot be said that the removal performance is sufficient.
[0007]
Since the method for removing nitrogen oxides shown in “Catalyst Course” Vol. 7 uses vanadium, the catalyst is very expensive, and it is a reductive decomposition reaction of nitrogen oxides using ammonia as a reducing agent. An exhaust gas temperature of 200 to 400 ° C. was required, and application to exhaust gas of 200 ° C. or less was difficult.
[0008]
Accordingly, an object of the present invention is to provide a removal method for removing harmful and harmful substances such as organic chlorine compounds such as dioxins, nitrogen oxides and sulfur oxides which are inexpensive and have high performance.
[0009]
[Means for Solving the Problems]
The gist of the invention is that
Using the removing material obtained by the main component is heat-treated at below 500 ° C. 200 ° C. or higher loess is hydrated iron oxide, without the use of ammonia as a reducing agent, organic chlorine compounds in the gas, the nitrogen oxides Or a method for removing organochlorine compounds, nitrogen oxides or sulfur oxides, wherein one or more sulfur oxides are adsorbed and removed ,
It is in.
[0010]
DETAILED DESCRIPTION OF THE INVENTION
In order to adsorb and decompose organochlorine compounds such as dioxins, dioxins can be used in a temperature range of 300 to 500 ° C. having pores for adsorbing and dioxin recombining in exhaust gas. In suppressing resynthesis, a substance that does not cause combustion in the above temperature range is effective. In view of the above-mentioned characteristics, the present invention pays attention to hydrous iron oxide and found that when the hydrous iron oxide is heated at 200 to 500 ° C., the bound water is detached and innumerable pores are formed on the surface. Of these, substances obtained by heat treatment of soil containing hydrous iron oxide as a main component are inexpensive because they are natural products, and they are not only organic chlorine compounds such as dioxins but also nitrogen oxides and sulfur oxides. The adsorption performance is extremely good and excellent, and it has been found that combustion does not occur in the temperature range of 300 to 500 ° C. and the present invention has been achieved.
[0011]
Soil is a deposit of minerals generated by the decomposition of rocks on the surface of the crust on the earth's surface, and many contain organic matter that has decayed. Among them , the loess , which is a soil mainly composed of hydrous iron oxide, generally settled as hydrous iron by chemical or biological action, and the crater lake dried up to form soil. In addition to iron, various minerals and organic substances are included, and as a main component, hydrous iron oxide is contained in an amount of 20 to 60% by mass as iron, and as other components, an organic substance is contained in an amount of 1 to 10% by mass as carbon. It is characteristic that it is. In addition, measurement of components such as iron is performed on a dry soil basis. Drying is for separating moisture adsorbed on the soil, and does not mean separating bound water, and is usually treated in the range of 105 to 110 ° C. for 1 hour or longer. Here, the hydrous iron oxide is represented by the structural formula FeOOH (or Fe 2 O 3 .H 2 O). The heat treatment is not limited as long as it is a method capable of heating the soil to about 200 to 500 ° C. in order to desorb bound water from the soil. Industrially, various dryers such as batch-type box dryers, material transfer dryers, material agitation dryers, hot air transfer dryers, and cylindrical dryers can be used.
[0012]
Hereinafter, the present invention will be described in detail by comparing a loess containing hydrous iron oxide as a main component with hydrous iron oxide synthesized from a reagent.
[0013]
FIG. 1 shows changes in specific surface area (BET method) due to heat treatment of hydrous iron oxide synthesized from loess mainly composed of hydrous iron oxide and a reagent. The heat treatment was performed for 1 hour in an air atmosphere. Loess as a main component hydrous iron oxide used herein is a loess collected from the foot of Mount Aso, iron oxide hydroxide synthesized from the reagent reacts with sodium hydroxide and ferrous chloride obtained It is a goethite obtained by ventilating oxygen-containing gas such as air in a suspension containing iron hydroxide. In both loess and goethite, the specific surface area begins to increase at 200 ° C or higher, while goethite peaks at 220 ° C and decreases with increasing temperature, whereas loess has the largest specific surface area at around 290 ° C. However, the specific surface area does not decrease up to 400 ° C, but decreases at 500 ° C. Thus, since loess is stable in a wide temperature range, it is more advantageous than a goethite when used in a high temperature range of 300 ° C. or higher. The increase in the specific surface area due to heating in both goethite and loess is thought to be mainly due to the formation of pores due to the desorption of bound water of hydrous iron oxide, but the rate of increase in specific surface area due to heating is higher in loess. The increase in the specific surface area of loess can also be attributed to the increase in specific surface area due to other factors such as carbonization of organic matter. In addition, by the above heat treatment, goethite (α-FeOOH) is changed only to hematite (Fe 2 O 3 ) at 200 ° C. or higher in goethite, but in loess, in addition to hematite at 200 ° C. or higher, lipid chrome is added. The presence of sites (γ-FeOOH) and magnetite (Fe 3 O 4 ) was observed by X-ray diffraction.
[0014]
FIG. 2 shows pore distribution (change in pore volume) of loess and goethite after heat treatment at 300 ° C. for 1 hour. Goethite has a peak at a pore radius of 30 nm, whereas loess has a peak near a radius of 2 nm. In order to adsorb low-concentration organochlorine compounds such as dioxins, it is necessary to have pores that are larger than the adsorbed molecules and several times the size of the adsorbed molecules. If the pore size is smaller than the adsorbed molecule, the molecule cannot be adsorbed in the pore. Conversely, if the pore size is large, the larger the pore, the weaker the adsorbing power. Becomes difficult. Dioxins, the most toxic 2,3,7,8-T4CDD, are about 1.8 nm long, about 1.0 nm wide, and about 0.3 nm thick. It is considered suitable for dioxin adsorption, and pores having a pore radius of about 1 nm to 3 nm are preferred.
[0015]
In ocher, the adsorption performance of organic chlorine compounds such as dioxin is improved by heat treatment at 200 ° C. or higher and 500 ° C. or lower, preferably 250 ° C. or higher and 400 ° C. or lower. Below 200 ° C., there is little desorption of bound water and no pores are formed, resulting in a small increase in specific surface area. When the temperature exceeds 500 ° C., the formed pores collapse, the pore diameter increases, and the specific surface area decreases. For this reason, the improvement in adsorption performance is small. In particular, the heat treatment at 250 ° C. or more and 400 ° C. or less is preferable because the specific surface area is remarkably increased. Further, the heat treatment time may be a time during which bound water can be desorbed, varies depending on the heating temperature, and is not particularly defined, but is usually about 0.5 to 2 hours. The heating atmosphere is not limited, but heat treatment in an atmosphere containing oxygen is preferable in terms of adsorption performance.
[0016]
Adsorption performance is better than goethite at the same specific surface area. Therefore, the improvement in adsorption performance is not only the increase in specific surface area due to heat treatment of loess, but also the presence of pores with a radius of around 2 nm, Presence and production of lepidocrotite (γ-FeOOH) and magnetite (Fe 3 O 4 ) by heat treatment are considered to be effective.
Here, the loess produced in the Aso region is particularly good at removing dioxins, nitrogen oxides and sulfur oxides, but it may be any soil that is produced through the same production process, and in particular the production area is limited. is not. The ocher that has been subjected to the above treatment dramatically increases the adsorption performance of not only dioxins but also nitrogen oxides and sulfur oxides. Even a mixture of two or more dioxins, nitrogen oxides or sulfur oxides in the exhaust gas can be removed simultaneously.
[0017]
【Example】
Using the substances shown in Table 1, the adsorption performance of 1-chloronaphthalene, which is a similar substance to dioxin, was evaluated. Here, Example 1 was obtained by heat-treating loess (dry soil base, 50% by mass as iron, and 5% by mass as organic carbon) in air at 300 ° C. for 1 hour, and Comparative Example 1 was loess. Untreated, Comparative Example 2 was heat-treated at 300 ° C for 1 hour in air, and Comparative Example 3 was heated iron ore containing hydrous iron oxide as the main component at 300 ° C for 1 hour in air. The treated product, Comparative Example 4, is activated coke used for dioxin removal. The iron content in the loess was analyzed by the redox dichromate titration method, and the organic carbon was analyzed by the infrared absorption method. In the experiment, a glass tube was filled with the remover adjusted to 5 to 10 mm and kept at 150 ° C. in a thermostatic bath. A gas in which the concentration of 1-chloronaphthalene was adjusted to 14 ppm using nitrogen as a carrier was passed through a glass tube filled with a removing agent, and the mass change of the removing agent was examined. The remover adsorbs 1-chloronaphthalene and the mass increases, but the mass does not increase any more when the equilibrium adsorption amount is reached. This equilibrium adsorption amount was measured for each remover. Table 1 shows the equilibrium adsorption amount of each remover. The amount of adsorption is dramatically increased by the heat treatment of the loess. This is an artificially prepared natural product similar to goethite and loess, which is much more than the amount of iron ore mainly composed of hydrous iron oxide or active coke. Example 1 is an organochlorine compound. On the other hand, it can be seen that excellent adsorption characteristics are exhibited.
[0018]
[Table 1]
Figure 0003898078
[0019]
The removal experiment of the dioxin in waste incinerator exhaust gas was implemented using the said removal agent of Example 1 and Comparative Examples 1-4. 100Nm 3 / hr exhaust gas is separated from the exhaust gas after passing through the bag filter of the garbage incinerator, introduced into the fixed bed filled with 0.01m 3 of the above remover and kept at 150 ° C, and the dioxin concentration before and after the fixed bed From this, the dioxin removal rate after 100 hours was determined. Here, the dioxin removal rate is defined as (1-fixed-bed outlet dioxin concentration / fixed-bed inlet dioxin concentration) × 100 (%). The results are shown in Table 2. Table 2 also shows that the ocher of Example 1 was heat-treated in air at 300 ° C. for 1 hour, showing excellent dioxin removal characteristics.
[0020]
[Table 2]
Figure 0003898078
[0021]
The adsorption experiment of nitrogen oxides and sulfur oxides was performed using the removing agents of Example 1 and Comparative Examples 1 to 4 described above. In the experiment, a glass tube was filled with the above remover adjusted to 5 to 10 mm, and kept at 150 ° C. in a thermostatic bath. A gas adjusted to nitrogen monoxide (NO) 200 ppm, sulfur dioxide (SO 2 ) 200 ppm, and oxygen 15% on a volume basis using nitrogen as a carrier is allowed to flow through a glass tube filled with a remover at a gas flow rate of 1000 Ncm 3 / min. Changes in NO, NO 2 (nitrogen dioxide) and SO 2 concentration at the tube outlet were examined. By the way, SO 3 is not measured because SO 3 is negligible and can be ignored. Here, NO 2 does not exist in the adjusted gas composition, but part of NO is oxidized to NO 2 because oxygen coexists. NOx (NO + NO 2 ) was continuously measured by a reduced pressure chemiluminescence method, and SO 2 was continuously measured by a non-dispersive infrared absorption method. Since both NOx and SO 2 are removed by adsorption, the concentration at the outlet of the glass tube increases with time since the adsorption capacity decreases with time. For this reason, the average removal rate from 0 to 20 hours was used for evaluation of removal performance. The definition of average removal rate is shown in the following equation. Here, 20 hours was experimentally determined as the time required to discriminate the difference in adsorption performance under the above experimental conditions.
[0022]
Average removal rate (%) = 100 × (A−B) / A
(However, in the formula, A = glass tube inlet concentration, B = 20 hour average glass tube outlet concentration.)
Table 3 shows the average removal rate of NOx and SO 2 for each removal agent for 20 hours. When the ocher of Example 1 was heat-treated in air at 300 ° C. for 1 hour, both the NOx removal rate and the SO 2 removal rate were significantly improved as compared to the untreated ocher of Comparative Example 1. Further, the SO 2 removal rate is superior to the goethite of Comparative Example 2 and the iron ore of Comparative Example 3, and the NOx removal rate is superior to the activated coke of Comparative Example 4. Thus, what heat-processed the ocher of Example 1 in the air at 300 degreeC for 1 hour not only has the excellent dioxin removal performance, but is excellent in the removal performance of nitrogen oxide and sulfur oxide. I understand that.
[0023]
[Table 3]
Figure 0003898078
[0024]
【The invention's effect】
As described above, according to the present invention, it is economical to remove organic chlorine compounds such as dioxin, nitrogen oxides and sulfur oxides using inexpensive loess mainly composed of hydrous iron oxide which is a natural product. Yes.
[Brief description of drawings]
FIG. 1 is a graph showing the relationship between heat treatment temperature and specific surface area.
FIG. 2 is a graph showing the pore distribution of loess and goethite treated at 300 ° C.

Claims (1)

成分が含水酸化鉄である黄土を200℃以上500℃以下で熱処理することにより得られ除去材を用いて、アンモニアを還元剤として使用せずに、ガス中の有機塩素化合物、窒素酸化物または硫黄酸化物の1種または2種以上を吸着除去することを特徴とする有機塩素化合物、窒素酸化物または硫黄酸化物の除去方法 Using the removing material obtained by the main component is heat-treated at below 500 ° C. 200 ° C. or higher loess is hydrated iron oxide, without the use of ammonia as a reducing agent, organic chlorine compounds in the gas, the nitrogen oxides Alternatively, a method for removing an organic chlorine compound, nitrogen oxide or sulfur oxide, wherein one or more sulfur oxides are adsorbed and removed .
JP2002083754A 2001-12-26 2002-03-25 Method for removing organochlorine compounds, nitrogen oxides or sulfur oxides Expired - Fee Related JP3898078B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002083754A JP3898078B2 (en) 2001-12-26 2002-03-25 Method for removing organochlorine compounds, nitrogen oxides or sulfur oxides

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2001-394020 2001-12-26
JP2001394020 2001-12-26
JP2002083754A JP3898078B2 (en) 2001-12-26 2002-03-25 Method for removing organochlorine compounds, nitrogen oxides or sulfur oxides

Publications (2)

Publication Number Publication Date
JP2003251145A JP2003251145A (en) 2003-09-09
JP3898078B2 true JP3898078B2 (en) 2007-03-28

Family

ID=28677152

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002083754A Expired - Fee Related JP3898078B2 (en) 2001-12-26 2002-03-25 Method for removing organochlorine compounds, nitrogen oxides or sulfur oxides

Country Status (1)

Country Link
JP (1) JP3898078B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005000819A (en) * 2003-06-12 2005-01-06 National Institute Of Advanced Industrial & Technology Modified loess particle powder, manufacture method therefor, manufacturing apparatus therefor, waste gas treating agent containing the same, and waste gas treatment method using the treating agent
US7931815B2 (en) * 2005-09-15 2011-04-26 New Technology Ventures, Inc. Method for reducing oxygen content of fluid streams containing sulfur compounds
JP5194617B2 (en) * 2007-08-01 2013-05-08 三浦工業株式会社 Method for desulfurization of fuel gas for fuel cell
CN113385008B (en) * 2021-06-28 2022-10-11 北京工业大学 Method for flue gas denitration by using iron-carbon composite material as SNCR (selective non-catalytic reduction) additive

Also Published As

Publication number Publication date
JP2003251145A (en) 2003-09-09

Similar Documents

Publication Publication Date Title
Shan et al. Preparation of microwave-activated magnetic bio-char adsorbent and study on removal of elemental mercury from flue gas
US9468886B2 (en) Sorbents for the oxidation and removal of mercury
Wu et al. Characteristics of the removal of mercury vapor in coal derived fuel gas over iron oxide sorbents
JP5198875B2 (en) Method for purifying exhaust gas produced by a sintering process of ores and / or other metal-containing substances in metal production
Tan et al. Preparation and characterization of Fe2O3–SiO2 composite and its effect on elemental mercury removal
Shi et al. Using H2S plasma to modify activated carbon for elemental mercury removal
CA2876164C (en) Magnetic adsorbents, methods for manufacturing a magnetic adsorbent, and methods of removal of contaminants from fluid streams
Liu et al. Mercury removal from coal combustion flue gas by modified palygorskite adsorbents
Wu et al. Development of iron-based sorbents for Hg0 removal from coal derived fuel gas: Effect of hydrogen chloride
Han et al. Removal of mercury from flue gases over iron modified activated carbon made by in situ ion exchange method
JP2007054694A (en) Method for decomposing hardly decomposable chlorinated organic compound, and carbon nanotube composite material
MXPA06010638A (en) Method for reducing heavy metals of flue gases.
KR101680610B1 (en) Activated carbon adsorbent for acidic gas removal and manufacturing method the same
WO2005030641A1 (en) Highly activated coke powder and process for producing the same
JP2003286020A (en) Highly activated active coke powder and manufacturing method thereof
He et al. Highly efficient sorption and immobilization of gaseous arsenic from flue gas on MnO2/attapulgite composite with low secondary leaching risks
JP3898078B2 (en) Method for removing organochlorine compounds, nitrogen oxides or sulfur oxides
JP2003192407A (en) Method of producing cement for reducing mercury in raw material
JP2015521539A (en) Fluid purification means, its production method, its use
JP2002102689A (en) Carbonaceous adsorbent
JP4047523B2 (en) Organochlorine decomposition method and catalyst
JP2003112012A (en) Method of removing dioxins in exhaust gas of waste treating furnace and equipment for the same
CA3102270A1 (en) Magnetic adsorbents and methods of their use for removal of contaminants
JP4332941B2 (en) Hazardous exhaust gas treatment method using fluidized bed
JP2005000751A (en) Agent for removing organochlorine compound and its manufacturing method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041108

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20051027

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20051101

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051228

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20051228

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060523

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060721

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20060725

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061031

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061115

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20061212

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20061220

R151 Written notification of patent or utility model registration

Ref document number: 3898078

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100105

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110105

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120105

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120105

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130105

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130105

Year of fee payment: 6

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130105

Year of fee payment: 6

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130105

Year of fee payment: 6

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130105

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140105

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees