JP4195652B2 - Method for producing organochlorine compound remover - Google Patents

Method for producing organochlorine compound remover Download PDF

Info

Publication number
JP4195652B2
JP4195652B2 JP2003368484A JP2003368484A JP4195652B2 JP 4195652 B2 JP4195652 B2 JP 4195652B2 JP 2003368484 A JP2003368484 A JP 2003368484A JP 2003368484 A JP2003368484 A JP 2003368484A JP 4195652 B2 JP4195652 B2 JP 4195652B2
Authority
JP
Japan
Prior art keywords
iron
waste liquid
surface area
specific surface
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003368484A
Other languages
Japanese (ja)
Other versions
JP2005131481A (en
Inventor
久継 北口
理 三木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2003368484A priority Critical patent/JP4195652B2/en
Publication of JP2005131481A publication Critical patent/JP2005131481A/en
Application granted granted Critical
Publication of JP4195652B2 publication Critical patent/JP4195652B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Treating Waste Gases (AREA)
  • Treatment Of Water By Oxidation Or Reduction (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)
  • Catalysts (AREA)

Description

本発明は、例えば都市ゴミや産業廃棄物の焼却設備、鉄鋼電気炉等から排出されるダイオキシン等の有機塩素化合物の除去剤およびその製造方法に関する。   The present invention relates to a removal agent for organic chlorine compounds such as dioxins discharged from, for example, incineration facilities for municipal waste and industrial waste, steel electric furnaces and the like, and a method for producing the same.

従来、燃焼過程で発生するダイオキシン類等の有機塩素化合物を削減する方法は活性炭による吸着法が一般的に行なわれている。吸着処理方法として、主に活性炭または活性コークスを吸着剤に用いた充填層による吸着技術と粉末の吸着剤の吹き込み技術が実用化されている。   Conventionally, an adsorption method using activated carbon is generally performed as a method for reducing organic chlorine compounds such as dioxins generated in the combustion process. As an adsorption treatment method, an adsorption technique using a packed bed mainly using activated carbon or activated coke as an adsorbent and a powder adsorbent blowing technique have been put into practical use.

また、活性炭に変わって、例えば、特開平11-267507号公報(特許文献1参照)に示されているような、酸化鉄触媒を用いたゴミ焼却炉のダイオキシンの抑制方法が開発されている。この方法は酸化鉄触媒をゴミ焼却炉の燃焼室または再燃室に吹き込み、ダイオキシンを抑制するものである。ここで用いられる酸化鉄は試薬から調整される。例えばゲータイト粉末は、第一鉄塩、および水酸化アルカリ、炭酸アルカリ、アンモニアから選ばれる1種または2種以上を用いて反応させ、得られた鉄の水酸化物や炭酸鉄等である第一鉄含有沈澱物を含む懸濁液中に、空気等の酸素含有ガスを通気してゲータイト粒子を生成させて得ることができる。またヘマタイト粉末は、前記ゲータイト粉末を空気中で200〜800℃の温度範囲で加熱脱水を行って得ることができる。さらにマグネタイト粉末は、前記ヘマタイト粉末を還元性雰囲気下、300〜600℃で加熱還元して得られる。
特開平11-267507号公報
Further, instead of activated carbon, for example, a method for suppressing dioxins in a garbage incinerator using an iron oxide catalyst has been developed as disclosed in JP-A-11-267507 (see Patent Document 1). In this method, an iron oxide catalyst is blown into a combustion chamber or a reburning chamber of a garbage incinerator to suppress dioxins. The iron oxide used here is prepared from the reagent. For example, the goethite powder is a ferrous salt obtained by reacting with ferrous salt and one or more selected from alkali hydroxide, alkali carbonate, and ammonia. It can be obtained by producing goethite particles by passing an oxygen-containing gas such as air through a suspension containing an iron-containing precipitate. The hematite powder can be obtained by subjecting the goethite powder to heat dehydration in the temperature range of 200 to 800 ° C. in the air. Further, the magnetite powder is obtained by heating and reducing the hematite powder at 300 to 600 ° C. in a reducing atmosphere.
JP-A-11-267507

活性炭による吸着法の場合には、ダイオキシン類を吸着後の活性炭の処理と炭塵爆発の危険性が問題となっている。これら、ダイオキシン類を吸着した活性炭は廃棄物として埋め立て地に埋めることはできない。そのため、再度ダイオキシン類を分解することができる高温焼却が必要である。この高温焼却の場合でも冷却過程で再度ダイオキシン類が発生する危険性が秘められている。また、ダイオキシン類は300℃〜500℃の温度領域で再合成されることが一般に知られているが、この温度領域に活性炭の粉末を吹き込むと炭塵爆発の危険性がある等の問題がある。   In the case of the adsorption method using activated carbon, the treatment of activated carbon after adsorption of dioxins and the danger of a coal dust explosion are problems. These activated carbons adsorbing dioxins cannot be buried in landfills as waste. Therefore, high-temperature incineration that can decompose dioxins again is necessary. Even in the case of this high-temperature incineration, there is a danger that dioxins are generated again during the cooling process. In addition, it is generally known that dioxins are re-synthesized in a temperature range of 300 ° C. to 500 ° C., but there is a problem that there is a risk of a coal dust explosion if activated carbon powder is blown into this temperature range. .

また、上述したような特許文献1の酸化鉄触媒では、酸化鉄は、V25-TiO2系あるいはV25-TiO2-WO3系の触媒に比べて、塩素や硫黄酸化物と結びつきやすく、触媒活性が低下しやすい。このため長時間使用ができず、排ガス中への吹き込みによる短時間の使用となる。しかしダイオキシンを抑制するためには、排ガス中に絶えず吹き込む必要がある。また、酸化鉄触媒は、上述のように複雑な工程を経て試薬から触媒を調製するため高価になる。このような高価な酸化鉄触媒を吹き込む場合、使用済みの酸化鉄触媒はダストとともに回収され、かつ排ガス中の塩素や硫黄酸化物により被毒されるため再使用が困難であり、ゴミ焼却の場合はダストとともに廃棄される。さらに酸化鉄触媒は、効率的な分解活性を得るためには250℃以上の温度が必要であり、吹き込み位置が排ガスの高温部分に限定されるか、排ガス温度が250℃よりも低い場合は排ガスを加熱する必要があり、除去性能が十分であるとはいえない。
そこで、本発明は、安価で高性能なダイオキシン類等の有機塩素化合物を除去する除去剤及びその製造方法を提供することを目的とする。
Further, in the iron oxide catalyst of Patent Document 1 as described above, iron oxide is a chlorine or sulfur oxide as compared with a V 2 O 5 —TiO 2 or V 2 O 5 —TiO 2 —WO 3 catalyst. The catalytic activity tends to decrease. For this reason, it cannot be used for a long time, and is used for a short time by being blown into the exhaust gas. However, in order to suppress dioxins, it is necessary to continuously blow into the exhaust gas. Moreover, since an iron oxide catalyst prepares a catalyst from a reagent through a complicated process as mentioned above, it becomes expensive. In the case of blowing such an expensive iron oxide catalyst, the used iron oxide catalyst is recovered together with dust and is poisoned by chlorine and sulfur oxides in the exhaust gas. Is discarded with dust. Furthermore, the iron oxide catalyst requires a temperature of 250 ° C. or higher in order to obtain an efficient decomposition activity, and if the blowing position is limited to the high temperature portion of the exhaust gas or the exhaust gas temperature is lower than 250 ° C., the exhaust gas Need to be heated, and the removal performance is not sufficient.
Then, an object of this invention is to provide the removal agent which removes organic chlorine compounds, such as cheap and high performance dioxins, and its manufacturing method.

本願発明の要旨とするところは、
[1]熱間圧延鋼板の塩酸酸洗廃液、熱間圧延鋼板の硫酸酸洗廃液、クロメート処理を行う電気亜鉛メッキ工程の硫酸酸洗廃液の1種または2種以上からなる鋼板の酸洗工程から排出される廃液中のFe2+をFe3+まで酸化し、そして生成した水酸化第2鉄および/または鉄とクロムの複合水酸化物のスラリーを濾過・乾燥して、水酸化第2鉄、並びに/または、鉄およびクロムの複合水酸化物を70%以上含み、BET法で求めた比表面積が150m 2 /g以上で、かつ、BET法で求めた比表面積に対するt−プロット法で求めた細孔半径1nm以下のミクロ孔の比表面積の割合が70%以上であるガス中の有機塩素化合物の除去剤を得ることを特徴とする、ガス中の有機塩素化合物の除去剤の製造方法。
The gist of the present invention is that
[1] Hydrochloric acid pickling waste liquid for hot-rolled steel sheet, sulfuric acid pickling waste liquid for hot-rolled steel sheet, and pickling process for steel sheet comprising one or more kinds of sulfuric acid pickling waste liquid for electrogalvanization process for chromate treatment The Fe 2+ in the effluent discharged from the reactor is oxidized to Fe 3+ , and the resulting ferric hydroxide and / or the composite hydroxide slurry of iron and chromium is filtered and dried to ferric hydroxide, And / or containing 70% or more of a composite hydroxide of iron and chromium, the specific surface area determined by the BET method is 150 m 2 / g or more, and determined by the t-plot method against the specific surface area determined by the BET method. A method for producing an organochlorine compound remover in a gas, wherein a remover for the organochlorine compound in the gas having a specific surface area ratio of micropores having a pore radius of 1 nm or less is 70% or more .

[2]熱間圧延鋼板の塩酸酸洗廃液、熱間圧延鋼板の硫酸酸洗廃液、クロメート処理を行う電気亜鉛メッキ工程の硫酸酸洗廃液の1種または2種以上からなる鋼板の酸洗工程から排出される廃液中のFe2+をFe3+まで酸化し、そして生成した水酸化第2鉄および/または鉄とクロムの複合水酸化物のスラリーをアルカリ性の水溶液でpH5〜11に調整し、そして濾過・乾燥して、水酸化第2鉄、並びに/または、鉄およびクロムの複合水酸化物を70%以上含み、BET法で求めた比表面積が150m 2 /g以上で、かつ、BET法で求めた比表面積に対するt−プロット法で求めた細孔半径1nm以下のミクロ孔の比表面積の割合が70%以上であるガス中の有機塩素化合物の除去剤を得ることを特徴とする、ガス中の有機塩素化合物の除去剤の製造方法。 [2] Hydrochloric acid pickling waste liquid for hot-rolled steel sheet, sulfuric acid pickling waste liquid for hot-rolled steel sheet, and pickling process for steel sheet made of one or more kinds of sulfuric acid pickling waste liquid for electrogalvanizing process for chromate treatment The Fe 2+ in the effluent discharged from the reactor is oxidized to Fe 3+ , and the resulting ferric hydroxide and / or iron and chromium composite hydroxide slurry is adjusted to pH 5-11 with an alkaline aqueous solution, and It is filtered and dried to contain 70% or more of ferric hydroxide and / or a composite hydroxide of iron and chromium, the specific surface area determined by the BET method is 150 m 2 / g or more, and the BET method It is possible to obtain an organic chlorine compound remover in a gas in which the ratio of the specific surface area of micropores having a pore radius of 1 nm or less determined by the t-plot method with respect to the determined specific surface area is 70% or more. Organic chlorination of Method for producing a removing agent of the object.

[3]前記廃液中のFe2+を、酸化剤および/または鉄酸化細菌を用いてFe3+まで酸化することを特徴とする、[1]または[2]に記載のガス中の有機塩素化合物の除去剤の製造方法。 [3] The organochlorine compound in the gas according to [1] or [2], wherein Fe 2+ in the waste liquid is oxidized to Fe 3+ using an oxidizing agent and / or iron-oxidizing bacteria . A method for producing a remover .

本発明に係る有機塩素化合物の除去剤の製造方法を用いれば、製鉄プロセスの副生物である酸洗廃液等を利用して有機塩素化合物の除去剤を経済的製造できると共に、製造した除去剤はミクロ孔の割合が極めて多いため、ダイオキイシン等を効率的に吸着、分解でき、従来の酸化鉄触媒では困難であった排ガス温度が低温の場合でもダイオキシンを十分に除去できるという優れた効果を奏する。   If the method for producing an organic chlorine compound remover according to the present invention is used, an organic chlorine compound remover can be economically produced using a pickling waste liquid or the like, which is a byproduct of the iron making process, and the produced remover is Since the proportion of micropores is extremely large, dioxin and the like can be efficiently adsorbed and decomposed, and the excellent effect of sufficiently removing dioxin even when the exhaust gas temperature is low, which has been difficult with conventional iron oxide catalysts, is achieved.

ダイオキシン類等の有機塩素化合物を吸着・分解するためには、吸着するための細孔を有し、かつ、排ガス中でダイオキシンが再合成する300〜500℃の温度領域で使用することでダイオキシンの再合成を抑制する際に燃焼が起きない物質が有効である。本発明は、上述の特性を鑑み水酸化鉄に着目した。水酸化鉄を含む物質を種々調査した結果、製鉄所から発生する中和スラッジが比較的水酸化鉄の含有率が高いことを発見した。   In order to adsorb and decompose organic chlorine compounds such as dioxins, dioxins can be used in a temperature range of 300 to 500 ° C., which has pores for adsorbing and dioxins are re-synthesized in exhaust gas. Substances that do not cause combustion are effective in suppressing resynthesis. The present invention has focused on iron hydroxide in view of the above characteristics. As a result of various investigations on substances containing iron hydroxide, it was found that the neutralized sludge generated from steelworks has a relatively high content of iron hydroxide.

中和スラッジとは、一般に、製鉄所において冷延鋼板あるいは亜鉛メッキ、錫メッキなとの表面処理鋼板を製造する際の酸洗工程の副生成物として大量に副成される。冷延鋼板あるいは亜鉛メッキ、錫メッキなとの表面処理鋼板を製造する際に、酸洗洗浄廃液として、塩酸、硫酸等の廃液が排出される。これらの酸性廃液には金属イオンとして、第一鉄、亜鉛、錫、ニッケル、クロム等が含まれ、特に第一鉄イオン(Fe2+)は他の金属イオンに比較し多量に含まれている。これらの排水を公共用水域に排出するために、金属イオン及びpHを環境規制の水質以下に除去または調整している。このための従来技術としては、アルカリ凝集沈澱が用いられている。すなわち、これらの酸性排水を混合するとpH約2〜4となるがその後、消石灰等のアルカリ剤を添加し、pHを8〜9に維持し、排水に多量の空気を吹込み、水酸化第一鉄を水酸化第二鉄に酸化して沈殿させる。同時に亜鉛、ニッケル、クロム等も水酸化物として沈殿させる。これらの沈殿物を中和スラッジと称する。 The neutralized sludge is generally by-produced in a large amount as a by-product of a pickling process when manufacturing a cold-rolled steel sheet or a surface-treated steel sheet such as galvanized or tin-plated at an ironworks. When manufacturing cold-rolled steel sheets or surface-treated steel sheets such as galvanized or tin-plated, waste liquids such as hydrochloric acid and sulfuric acid are discharged as waste liquids for pickling and washing. These acidic waste liquids contain ferrous iron, zinc, tin, nickel, chromium and the like as metal ions, and particularly ferrous ions (Fe 2+ ) are contained in a larger amount than other metal ions. In order to discharge these wastewaters into public water bodies, metal ions and pH are removed or adjusted below the water quality of environmental regulations. As a prior art for this purpose, alkali coagulation precipitation is used. That is, when these acidic wastewaters are mixed, the pH becomes about 2 to 4, but thereafter, an alkaline agent such as slaked lime is added, the pH is maintained at 8 to 9, and a large amount of air is blown into the wastewater. Iron is oxidized to ferric hydroxide and precipitated. At the same time, zinc, nickel, chromium, etc. are precipitated as hydroxides. These precipitates are called neutralized sludge.

従来技術で得られる中和スラッジは、主成分が水酸化第二鉄であるが比表面積が小さく、ダイオキシン等の有機塩素化合物の除去剤としては適さない。
そこで本発明者らは鋭意開発を進めた結果、本発明に至った。すなわち、鋼板の酸洗工程から生じる廃液(以下酸洗廃液)を、pH調整をしない状態(pH2〜4)において2価鉄イオン(Fe2+)から3価鉄イオン(Fe3+)に酸化し、その後、水酸化第二鉄として沈殿させることで、微細で比表面積の大きな水酸化鉄が得られることを発見したのである。pH2〜4の条件下で2価鉄イオンを酸化する方法としては、過酸化水素等の薬品酸化法、生物酸化法があるが、pH2〜4の条件下で2価鉄イオンを酸化できれば、いずれの方法を用いてもかまわない。
The neutralized sludge obtained by the prior art is composed mainly of ferric hydroxide, but has a small specific surface area and is not suitable as a removal agent for organic chlorine compounds such as dioxin.
Therefore, as a result of intensive development, the present inventors have reached the present invention. That is, the waste liquid resulting from the pickling process of steel sheet (hereinafter referred to as pickling waste liquid) is oxidized from divalent iron ions (Fe 2+ ) to trivalent iron ions (Fe 3+ ) in a state where pH adjustment is not performed (pH 2 to 4), Subsequently, it was discovered that fine iron hydroxide with a large specific surface area can be obtained by precipitation as ferric hydroxide. Methods for oxidizing divalent iron ions under conditions of pH 2-4 include chemical oxidation methods such as hydrogen peroxide and biological oxidation methods. If divalent iron ions can be oxidized under pH 2-4 conditions, The method may be used.

以下、薬品酸化法について説明する。薬品(酸化剤)を用いれば低pH領域での2価鉄イオン(Fe2+)から3価鉄イオン(Fe3+)への酸化が可能となる。酸化剤としては、過酸化水素、次亜塩素酸、オゾン、二酸化カルシウム等がある。酸化剤が還元する際に、2価鉄イオン(Fe2+)を3価鉄イオン(Fe3+)に酸化する。反応式は、以下のとおりである。 Hereinafter, the chemical oxidation method will be described. If a chemical (oxidizing agent) is used, oxidation from divalent iron ions (Fe 2+ ) to trivalent iron ions (Fe 3+ ) in a low pH region becomes possible. Examples of the oxidizing agent include hydrogen peroxide, hypochlorous acid, ozone, and calcium dioxide. When the oxidizing agent is reduced, divalent iron ions (Fe 2+ ) are oxidized to trivalent iron ions (Fe 3+ ). The reaction formula is as follows.

2Fe2++H22+2H+ → 2Fe3++2H2
2Fe2++NaOCl+2H2O → 2Fe3++NaCl+2OH-
2Fe2++O3+2H+ → 2Fe3++2H2O+O2
2Fe2++CaO2+H2O → 2Fe3++CaO+2OH-
2Fe 2+ + H 2 O 2 + 2H + → 2Fe 3+ + 2H 2 O
2Fe 2+ + NaOCl + 2H 2 O → 2Fe 3+ + NaCl + 2OH
2Fe 2+ + O 3 + 2H + → 2Fe 3+ + 2H 2 O + O 2
2Fe 2+ + CaO2 + H 2 O → 2Fe 3+ + CaO + 2OH

具体的には、酸洗工程から排出される廃液を満たした鉄酸化槽に、2価鉄イオン濃度に応じた濃度の酸化剤を混合・撹拌することにより、2価鉄イオンを3価鉄イオンまで安定的に酸化して、水酸化鉄スラリーを形成する。   Specifically, by mixing and stirring an oxidizing agent having a concentration corresponding to the concentration of divalent iron ions in an iron oxidation tank filled with the waste liquid discharged from the pickling process, trivalent iron ions are converted into trivalent iron ions. Until stable oxidation to form an iron hydroxide slurry.

また、生物酸化法としては、例えば、pH2〜4で活性のある鉄酸化細菌を用いる方法がある。すなわち、2価鉄イオンを3価鉄イオンまで酸化する際に発生するエネルギーを用いて増殖する鉄酸化細菌を用いる方法がある。鉄酸化細菌は中性・糸状細菌と酸性・非糸状細菌に大別されるが、ここで用いる細菌は後者の酸性・非糸状細菌であり、例えば、チオバチラス・フェロオキシダンス(Thiobachillus ferrooxidans)が代表的な細菌である。この鉄酸化細菌のうち、pHが2〜4で棲息あるいは活性のある鉄酸化細菌を用いて2価鉄イオンを含む廃水を処理すれば、pHが低い段階で2価鉄イオンを3価鉄イオンまで迅速に酸化することができる。 Moreover, as a bio-oxidation method, for example, there is a method using iron-oxidizing bacteria that are active at pH 2-4. That is, there is a method using an iron-oxidizing bacterium that grows using energy generated when oxidizing a divalent iron ion to a trivalent iron ion. Iron oxidizing bacteria are classified into neutral, filamentous bacteria and the acid-non-filamentous bacteria, bacteria to be used herein is the latter acidic and non-filamentous bacteria, for example, Chiobachirasu-ferrooxidans (Thiobachillus ferrooxidans) representative Bacteria. If waste water containing divalent iron ions is treated using iron oxidizing bacteria that have a pH of 2 to 4 and are active or active among these iron oxidizing bacteria, divalent iron ions are converted to trivalent iron ions at a low pH stage. Can be rapidly oxidized.

具体的には、まず、鉄酸化槽に下水処理場から採取した活性汚泥を投入して、アルカリ性の水溶液、例えば、NaOHにより、pHを2.0以上3.0未満に調整した。その後、2時間静置して、活性汚泥の上澄液を捨てた後、酸洗工程から排出される廃液を鉄酸化槽が満杯になるまで投入した。さらに、鉄酸化槽の溶存酸素が2mg/l以上となるように、ブロアにより空気を供給した。その後、鉄酸化槽の酸化還元電位(ORP)を監視し、ORPが+550mVに上昇すれば、酸化完了と判断し、空気の供給をとめ、2時間静置して、上澄液をすてた。鉄酸化槽の底部には鉄酸化細菌のスラッジが堆積した。この後、再び、メッキ排水を鉄酸化槽が満杯になるまで投入し、同じ操作を繰り返し、鉄酸化細菌を増殖させた。   Specifically, first, activated sludge collected from a sewage treatment plant was put into an iron oxidation tank, and the pH was adjusted to 2.0 or more and less than 3.0 with an alkaline aqueous solution, for example, NaOH. Then, after leaving still for 2 hours and throwing away the supernatant liquid of activated sludge, the waste liquid discharged | emitted from a pickling process was thrown in until the iron oxidation tank became full. Furthermore, air was supplied by a blower so that the dissolved oxygen in the iron oxidation tank was 2 mg / l or more. Thereafter, the oxidation-reduction potential (ORP) of the iron oxidation tank was monitored, and when ORP rose to +550 mV, it was judged that the oxidation was completed, the supply of air was stopped, the mixture was left to stand for 2 hours, and the supernatant was poured . Sludge of iron-oxidizing bacteria accumulated at the bottom of the iron oxidation tank. Thereafter, the plating wastewater was again poured until the iron oxidation tank became full, and the same operation was repeated to grow iron-oxidizing bacteria.

鉄酸化槽の鉄酸化細菌の重量濃度が2000mg/lになったら、メッキ排水を事前鉄酸化槽の滞留時間(HRT)が60分になるように連続的に供給した。連続処理では、鉄酸化槽の酸化還元電位(ORP)が+550mV以上に維持されるように、ブロアの回転数を制御して曝気した。   When the weight concentration of iron-oxidizing bacteria in the iron oxidation tank reached 2000 mg / l, the plating waste water was continuously supplied so that the residence time (HRT) of the pre-iron oxidation tank was 60 minutes. In the continuous treatment, aeration was performed by controlling the rotation speed of the blower so that the oxidation-reduction potential (ORP) of the iron oxidation tank was maintained at +550 mV or higher.

本方法により、酸洗工程から排出される廃液中の2価鉄イオンを3価鉄イオンまで安定的に酸化し、水酸化第二鉄スラリーを形成できた。
本方法で得られた水酸化第二鉄は、比表面積が大きく、ダイオキシン等の有機塩素化合物の吸着および分解に有効なミクロ孔(細孔半径1nm以下)の割合が極めて多い特長がある。
pH2〜4の低pHで酸化し、水酸化第二鉄を形成するとミクロ孔が多く存在する極めて非晶質な水酸化鉄となるためと考えられる。
By this method, divalent iron ions in the waste liquid discharged from the pickling process were stably oxidized to trivalent iron ions, and a ferric hydroxide slurry could be formed.
The ferric hydroxide obtained by this method has a large specific surface area and has a very large proportion of micropores (pore radius of 1 nm or less) effective for adsorption and decomposition of organic chlorine compounds such as dioxin.
It is considered that when oxidized at a low pH of 2 to 4 to form ferric hydroxide, it becomes extremely amorphous iron hydroxide having many micropores.

さらに、種々検討した結果、生成した水酸化第二鉄をアルカリ性の水溶液でpH5〜11、好ましくはpH8〜10で処理することで、より微細な孔の割合が多く、より除去性能の優れた除去剤を得ることができる。特に、ガス中に水分が共存するときに優れた性能を発揮する。pHが5未満では、pH上昇の効果が少なく、吸着性能は、向上しない。pHが11超では、アルカリ塩の付着により、ミクロ孔が閉塞し、比表面積が小さくなり吸着性能が低下する。この理由は、水酸化第二鉄は、酸性領域では、正に帯電しており負に帯電している硫酸イオンや塩素イオンを強吸着している。水酸化第二鉄の電荷の中和点がpH8〜9であるためpHをアルカリ性の水溶液で上げることにより水酸化第二鉄の正の帯電が中和され硫酸イオンや塩素イオンが除去されるためだと考えられる。特に、硫酸イオンは、親水性であるため、硫酸イオンの除去は、ガス中に水分が共存する場合の有機塩素化合物の吸着除去に効果的であると考えられる。ここでアルカリ性の水溶液とは、アルカリ金属または、アルカリ土類金属の水酸化物、アルカリ金属炭酸塩、アンモニア、アミンを溶解または、懸濁スラリーとした水溶液である。   Furthermore, as a result of various investigations, the produced ferric hydroxide is treated with an alkaline aqueous solution at a pH of 5 to 11, preferably at a pH of 8 to 10, so that the proportion of finer pores is larger and the removal performance is more excellent. An agent can be obtained. In particular, it exhibits excellent performance when moisture coexists in the gas. If the pH is less than 5, the effect of increasing the pH is small and the adsorption performance is not improved. When the pH is more than 11, due to adhesion of alkali salt, the micropores are blocked, the specific surface area is reduced, and the adsorption performance is lowered. This is because ferric hydroxide is positively charged in the acidic region and strongly adsorbs negatively charged sulfate ions and chlorine ions. Since the neutralization point of the charge of ferric hydroxide is pH 8-9, raising the pH with an alkaline aqueous solution neutralizes the positive charge of ferric hydroxide and removes sulfate ions and chloride ions. It is thought that. In particular, since sulfate ions are hydrophilic, removal of sulfate ions is considered effective for adsorption removal of organochlorine compounds when moisture coexists in the gas. Here, the alkaline aqueous solution is an aqueous solution in which an alkali metal or alkaline earth metal hydroxide, alkali metal carbonate, ammonia, or amine is dissolved or suspended.

一般に鋼板は、鋼板表面のスケール、汚れ、酸化膜、酸などを除去するために硫酸または塩酸により酸洗処理を行っている。いずれの廃液にも薬品酸化法または鉄酸化細菌を用いた生物酸化法が適用できるが、硫酸廃液から得られる水酸化物の方が、微細でかつ比表面積が大きくミクロ孔の割合が大きい。   In general, steel sheets are pickled with sulfuric acid or hydrochloric acid in order to remove scale, dirt, oxide film, acid, and the like on the surface of the steel sheet. Chemical oxidation methods or biological oxidation methods using iron-oxidizing bacteria can be applied to any of the waste liquids, but hydroxides obtained from sulfuric acid waste liquids are finer, have a larger specific surface area, and a larger proportion of micropores.

さらに、クロムが廃液中に含有されていると、水酸化第二鉄の鉄の一部がIII価のクロムに置換され、鉄とクロムの複合水酸化物を形成する。鉄とクロムの複合水酸化物は、水酸化第二鉄よりも微細でかつ比表面積が大きくミクロ孔の割合が大きい。鉄とクロムの両方を含む廃液は、例えば、電気亜鉛メッキ工程で後処理としてクロメート処理工程を有するプロセスで発生する。この廃液から得られた沈殿物は、微細でかつ比表面積が大きくミクロ孔の割合が大きい。ここで、クロメート処理とは、耐食性、塗装性向上のために鋼板を電気亜鉛メッキ処理後、クロムを含有する水溶液を塗布するものである。   Further, when chromium is contained in the waste liquid, a part of iron of ferric hydroxide is replaced with trivalent chromium, and a composite hydroxide of iron and chromium is formed. The composite hydroxide of iron and chromium is finer than ferric hydroxide, has a large specific surface area, and a large proportion of micropores. The waste liquid containing both iron and chromium is generated, for example, in a process having a chromate treatment step as a post treatment in an electrogalvanization step. The precipitate obtained from this waste liquid is fine, has a large specific surface area, and a large proportion of micropores. Here, the chromate treatment is to apply an aqueous solution containing chromium after electrogalvanizing the steel sheet in order to improve corrosion resistance and paintability.

本発明で製造した除去剤は、X線解析および熱天秤による測定にて、非晶質の水酸化第2鉄、並びに/または、鉄およびクロムの複合水酸化物の含有量を測定した結果、これらを70%以上含んでいることが判った。また、BET法で求めた比表面積が150m2/g以上で、且つBET法で求めた比表面積に対するt−プロット法で求めたミクロ孔の面積の割合が70%以上と極めて微細な孔を持つことも分かった。 As a result of measuring the content of amorphous ferric hydroxide and / or a composite hydroxide of iron and chromium, the removal agent produced in the present invention was measured by X-ray analysis and thermobalance. It was found that 70% or more of these were included. Further, the specific surface area determined by the BET method is 150 m 2 / g or more, and the ratio of the area of the micropores determined by the t-plot method to the specific surface area determined by the BET method is 70% or more and has extremely fine pores. I also understood that.

本発明の除去剤の使用形態として充填層で使用する場合とガス中に吹き込む場合がある。ガス中に吹き込む場合は、粉体のまま使用し、充填層で使用する場合は、ペレットまたはブリケット成型をおこなって使用する。   The removing agent of the present invention may be used in a packed bed or may be blown into a gas. When it is blown into the gas, it is used as a powder, and when it is used in a packed bed, it is used after forming a pellet or briquette.

以下の表1に示す物質を用いて、ダイオキシン類の一種であるポリクロロジベンゾフラン(PCDF)の骨格物質であるジベンゾフランの吸着性能を評価した。ここで、実施例1は、熱間圧延鋼板の塩酸酸洗廃液をpH調整無しで鉄酸化細菌により酸化して、沈殿させた。実施例2は、実施例1と同じ廃液を鉄酸化細菌により酸化後、水酸化ナトリウムによりpHを9に調整した。実施例3は熱間圧延鋼板の硫酸酸洗廃液をpH調整無しで鉄酸化細菌により酸化後、水酸化ナトリウムによりpHを9に調整した。実施例4はクロメート処理を行う電気亜鉛メッキ工程の硫酸酸洗廃液をpH調整無しで鉄酸化細菌により酸化後、水酸化ナトリウムによりpHを9に調整した。実施例5は、実施例4と同じ廃液をpH調整無しで過酸化水素水溶液により酸化後、水酸化ナトリウムによりpHを9に調整した。比較例1は、実施例4と同じ廃液を炭酸カルシウムでpH9に調整し、空気で酸化した。いずれの試料も、上記処理後、水洗、乾燥を行った。X線解析および熱天秤による測定にて、水酸化第2鉄と、鉄およびクロムの複合水酸化物の合計の含有量を測定した結果、これらを70〜95%含んでいることを確認した。   Using the substances shown in Table 1 below, the adsorption performance of dibenzofuran, which is a skeleton substance of polychlorodibenzofuran (PCDF), which is a kind of dioxins, was evaluated. Here, in Example 1, the hydrochloric acid pickling waste liquid of the hot-rolled steel sheet was oxidized and precipitated by iron-oxidizing bacteria without adjusting the pH. In Example 2, the same waste liquid as in Example 1 was oxidized with iron-oxidizing bacteria, and then the pH was adjusted to 9 with sodium hydroxide. In Example 3, the sulfuric acid pickling waste liquid of the hot-rolled steel sheet was oxidized with iron-oxidizing bacteria without adjusting the pH, and then adjusted to pH 9 with sodium hydroxide. In Example 4, the sulfuric acid pickling waste liquid in the electrogalvanizing step for chromate treatment was oxidized with iron-oxidizing bacteria without adjusting the pH, and then adjusted to pH 9 with sodium hydroxide. In Example 5, the same waste liquid as in Example 4 was oxidized with an aqueous hydrogen peroxide solution without adjusting the pH, and the pH was adjusted to 9 with sodium hydroxide. In Comparative Example 1, the same waste liquid as in Example 4 was adjusted to pH 9 with calcium carbonate and oxidized with air. All samples were washed and dried after the treatment. As a result of measuring the total content of ferric hydroxide and a composite hydroxide of iron and chromium by X-ray analysis and measurement with a thermobalance, it was confirmed that 70 to 95% of these were contained.

Figure 0004195652
Figure 0004195652

実験は、上記除去剤を粒径0.5〜1.0mmに調整したものをガラス管に充填し恒温槽内で100℃において保温した。窒素をキャリアとしてジベンゾフラン濃度を20ppmに調整したガスを、除去剤を充填したガラス管に流し、除去剤の質量変化を調べた。ガラス管を出たガスを一部分取し、オートサンプラーを経てFIDガスクロに供給し、ジベンゾフラン濃度の分析を行った。出口ジベンゾフラン濃度が供給ジベンゾフラン濃度と同じになるまで実験を行い。供給濃度と出口濃度の差(吸着濃度)の積算値より吸着量を求めた。各除去剤の比表面積、ミクロ孔面積割合、吸着量を以下の表2に示す。比表面積は、液体窒素温度での試料の吸着等温線よりBET法で算出し、ミクロ孔の比表面積は、液体窒素温度での試料の吸着等温線よりt−プロット法で算出した。ミクロ孔面積の割合は、BET法での比表面積に対する、t−プロット法でのミクロ孔の比表面積の割合として求めた。比較例1に対して実施例のいずれの試料も比表面積、ミクロ孔面積の割合、吸着量ともに増加した。   In the experiment, a glass tube prepared by adjusting the particle size of the removing agent to 0.5 to 1.0 mm was filled and kept at 100 ° C. in a thermostatic bath. A gas having a dibenzofuran concentration adjusted to 20 ppm using nitrogen as a carrier was passed through a glass tube filled with a removing agent, and the mass change of the removing agent was examined. A portion of the gas exiting the glass tube was taken and supplied to the FID gas chromatograph via an autosampler to analyze the concentration of dibenzofuran. Experiment until the outlet dibenzofuran concentration is the same as the supplied dibenzofuran concentration. The adsorption amount was obtained from the integrated value of the difference between the supply concentration and the outlet concentration (adsorption concentration). Table 2 below shows the specific surface area, the micropore area ratio, and the amount of adsorption of each remover. The specific surface area was calculated by the BET method from the adsorption isotherm of the sample at the liquid nitrogen temperature, and the specific surface area of the micropore was calculated by the t-plot method from the adsorption isotherm of the sample at the liquid nitrogen temperature. The ratio of the micropore area was determined as the ratio of the specific surface area of the micropore by the t-plot method to the specific surface area by the BET method. As compared with Comparative Example 1, both the specific surface area, the ratio of the micropore area, and the amount of adsorption increased in all the samples of the examples.

Figure 0004195652
Figure 0004195652

上記、実施例1〜5および比較例1の除去剤を用いて、ゴミ焼却炉排ガス中のダイオキシンの除去実験を実施した。ゴミ焼却炉のバグフィルター通過後の排ガスから100Nm3/hrの排ガスを分取し、上記除去剤を0.01m充填し、150℃に保温した固定層に導入し、連続運転100時間後の固定層前後のダイオキシン濃度から、ダイオキシン除去率を求めた。 Using the removal agents of Examples 1 to 5 and Comparative Example 1, the dioxin removal experiment in the waste incinerator exhaust gas was performed. Was separated exhaust gas of 100 Nm @ 3 / hr from the exhaust gas after the bag filter passage of waste incinerators, the removing agent was 0.01 m 3 filled, and introduced into a fixed bed which is kept at 0.99 ° C., after continuous operation for 100 hours fixed The dioxin removal rate was determined from the dioxin concentration before and after the layer.

ここでダイオキシン除去率は、以下の式:
(1−固定層出口ダイオキシン濃度/固定層入口ダイオキシン濃度)×100(%)
で定義される。
Here, the dioxin removal rate is expressed by the following formula:
(1-fixed-bed outlet dioxin concentration / fixed-bed inlet dioxin concentration) × 100 (%)
Defined by

結果を以下の表3に示す。   The results are shown in Table 3 below.

Figure 0004195652
Figure 0004195652

実施例1〜5のいずれの試料も比較例1の試料の除去率を大きく上回っている。ゴミ焼却炉の排ガスは、水分を20〜30%程度含んでいるためにアルカリ処理を行っていない実施例1においては、除去率がやや低いが、アルカリ処理を行った実施例2〜4においては、除去率が向上した。このように、本発明は、従来の酸化鉄触媒では困難であった排ガス温度が150℃と低い温度においても、ダイオキシンを十分に除去する効果を有することが分かる。   All the samples of Examples 1 to 5 greatly exceed the removal rate of the sample of Comparative Example 1. In Example 1 where the waste gas from the refuse incinerator contains about 20 to 30% of moisture and thus the alkali treatment is not performed, the removal rate is slightly low, but in Examples 2 to 4 where the alkali treatment is performed, The removal rate was improved. Thus, it can be seen that the present invention has an effect of sufficiently removing dioxins even at an exhaust gas temperature as low as 150 ° C., which was difficult with a conventional iron oxide catalyst.

Claims (3)

熱間圧延鋼板の塩酸酸洗廃液、熱間圧延鋼板の硫酸酸洗廃液、クロメート処理を行う電気亜鉛メッキ工程の硫酸酸洗廃液の1種または2種以上からなる鋼板の酸洗工程から排出される廃液中のFe2+をFe3+まで酸化し、そして生成した水酸化第2鉄および/または鉄とクロムの複合水酸化物のスラリーを濾過・乾燥して、水酸化第2鉄、並びに/または、鉄およびクロムの複合水酸化物を70%以上含み、BET法で求めた比表面積が150m 2 /g以上で、かつ、BET法で求めた比表面積に対するt−プロット法で求めた細孔半径1nm以下のミクロ孔の比表面積の割合が70%以上であるガス中の有機塩素化合物の除去剤を得ることを特徴とする、ガス中の有機塩素化合物の除去剤の製造方法。 It is discharged from the pickling process of steel plate consisting of one or more kinds of hydrochloric acid pickling waste liquid of hot rolled steel sheet, sulfuric acid pickling waste liquid of hot rolled steel sheet, and sulfuric acid pickling waste liquid of electrogalvanizing process for chromate treatment. The Fe 2+ in the waste liquid is oxidized to Fe 3+ , and the resulting ferric hydroxide and / or composite hydroxide slurry of iron and chromium is filtered and dried to obtain ferric hydroxide and / or And a pore radius determined by the t-plot method with respect to the specific surface area determined by the BET method, including a composite hydroxide of iron and chromium of 70% or more, a specific surface area determined by the BET method of 150 m 2 / g or more A method for producing an organic chlorine compound remover in a gas, wherein the organic chlorine compound remover in the gas has a ratio of the specific surface area of micropores of 1 nm or less of 70% or more . 熱間圧延鋼板の塩酸酸洗廃液、熱間圧延鋼板の硫酸酸洗廃液、クロメート処理を行う電気亜鉛メッキ工程の硫酸酸洗廃液の1種または2種以上からなる鋼板の酸洗工程から排出される廃液中のFe2+をFe3+まで酸化し、そして生成した水酸化第2鉄および/または鉄とクロムの複合水酸化物のスラリーをアルカリ性の水溶液でpH5〜11に調整し、そして濾過・乾燥して、水酸化第2鉄、並びに/または、鉄およびクロムの複合水酸化物を70%以上含み、BET法で求めた比表面積が150m 2 /g以上で、かつ、BET法で求めた比表面積に対するt−プロット法で求めた細孔半径1nm以下のミクロ孔の比表面積の割合が70%以上であるガス中の有機塩素化合物の除去剤を得ることを特徴とする、ガス中の有機塩素化合物の除去剤の製造方法。 It is discharged from the pickling process of steel plate consisting of one or more kinds of hydrochloric acid pickling waste liquid of hot rolled steel sheet, sulfuric acid pickling waste liquid of hot rolled steel sheet, and sulfuric acid pickling waste liquid of electrogalvanizing process for chromate treatment. The Fe 2+ in the waste liquid is oxidized to Fe 3+ , and the resulting ferric hydroxide and / or iron / chromium composite hydroxide slurry is adjusted to pH 5-11 with an alkaline aqueous solution and filtered and dried. Then , ferric hydroxide and / or a composite hydroxide of iron and chromium containing 70% or more, the specific surface area determined by the BET method is 150 m 2 / g or more, and the ratio determined by the BET method Organochlorine in gas, characterized in that a removal agent for organochlorine compounds in gas having a ratio of the specific surface area of micropores having a pore radius of 1 nm or less determined by the t-plot method with respect to the surface area is 70% or more Compound Manufacturing method of Sa agent. 前記廃液中のFe2+を、酸化剤および/または鉄酸化細菌を用いてFe3+まで酸化することを特徴とする、請求項1または2に記載のガス中の有機塩素化合物の除去剤の製造方法。 The method for producing an organic chlorine compound remover in gas according to claim 1 or 2, wherein Fe 2+ in the waste liquid is oxidized to Fe 3+ using an oxidizing agent and / or iron oxidizing bacteria. .
JP2003368484A 2003-10-29 2003-10-29 Method for producing organochlorine compound remover Expired - Fee Related JP4195652B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003368484A JP4195652B2 (en) 2003-10-29 2003-10-29 Method for producing organochlorine compound remover

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003368484A JP4195652B2 (en) 2003-10-29 2003-10-29 Method for producing organochlorine compound remover

Publications (2)

Publication Number Publication Date
JP2005131481A JP2005131481A (en) 2005-05-26
JP4195652B2 true JP4195652B2 (en) 2008-12-10

Family

ID=34646129

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003368484A Expired - Fee Related JP4195652B2 (en) 2003-10-29 2003-10-29 Method for producing organochlorine compound remover

Country Status (1)

Country Link
JP (1) JP4195652B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5881980B2 (en) * 2011-06-27 2016-03-09 学校法人大阪産業大学 Sulfur oxide removal material
CN104150645B (en) * 2014-09-01 2016-08-24 中冶赛迪上海工程技术有限公司 A kind of hot-rolling wastewater recycling processing system and method

Also Published As

Publication number Publication date
JP2005131481A (en) 2005-05-26

Similar Documents

Publication Publication Date Title
Sruthi et al. Stabilized landfill leachate treatment using heterogeneous Fenton and electro-Fenton processes
Mashayekh-Salehi et al. Use of mine waste for H2O2-assisted heterogeneous Fenton-like degradation of tetracycline by natural pyrite nanoparticles: Catalyst characterization, degradation mechanism, operational parameters and cytotoxicity assessment
Dimitrova Use of granular slag columns for lead removal
US4029578A (en) Catalytic process for ozonation of water containing organic contaminants
Gupta et al. Process development for the removal of lead and chromium from aqueous solutions using red mud—an aluminium industry waste
JP5792664B2 (en) Method for regenerating used activated carbon, activated activated carbon and method for producing the same
Darmayanti et al. Removal of Copper (II) Ions in Aqueous Solutions by Sorption onto Fly Ash.
Brewster et al. Use of electrochemical iron generation for removing heavy metals from contaminated groundwater
Sahu et al. Utilization of ferrous slags as coagulants, filters, adsorbents, neutralizers/stabilizers, catalysts, additives, and bed materials for water and wastewater treatment: A review
Nielsen et al. Continuous removal of heavy metals from FGD wastewater in a fluidised bed without sludge generation
Agrawal et al. Systematic studies on adsorption of lead on sea nodule residues
Ikhlaq et al. Combined ozonation and adsorption system for the removal of heavy metals from municipal wastewater: Effect of COD removal
CN109437386B (en) Method for removing metal thallium in wastewater
Lee et al. Long-term treatment of acid mine drainage by alkali diffusion ceramic reactor: Simultaneous metal removal mechanisms
Kareem et al. Functionalised graphene oxide dual nanocomposites for treatment of hazardous environmental contaminants
Salihi et al. Equilibrium and kinetic studies on lead (II) adsorption by sugarcane bagasse derived activated carbon
JP4195652B2 (en) Method for producing organochlorine compound remover
JP2008264627A (en) Waste treatment material and treatment method for detoxifying fly ash (soot and dust) and burned ash or the like
Solís–Rodríguez et al. Vanadium removal by electrocoagulation with anodes of zinc
Wan et al. Application of sintered textile sludge as novel adsorbents for Sb (V) removal from textile wastewater: Performances, mechanisms and perspectives
JPH0889757A (en) Treatment of waste gas from refuse incineration furnace
JP5567288B2 (en) Method for producing deodorant
JP2007275761A (en) Method for producing removing agent of sulfur oxide in gas
JP3724062B2 (en) Waste treatment material and waste treatment method
JP5791981B2 (en) Wastewater treatment method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050913

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080415

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080422

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080620

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080805

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080819

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080916

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080926

R151 Written notification of patent or utility model registration

Ref document number: 4195652

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111003

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111003

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121003

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121003

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131003

Year of fee payment: 5

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131003

Year of fee payment: 5

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131003

Year of fee payment: 5

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees