JP2003247929A - Scanning probe microscope - Google Patents

Scanning probe microscope

Info

Publication number
JP2003247929A
JP2003247929A JP2002051888A JP2002051888A JP2003247929A JP 2003247929 A JP2003247929 A JP 2003247929A JP 2002051888 A JP2002051888 A JP 2002051888A JP 2002051888 A JP2002051888 A JP 2002051888A JP 2003247929 A JP2003247929 A JP 2003247929A
Authority
JP
Japan
Prior art keywords
sample
signal
probe
scanning
cantilever
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002051888A
Other languages
Japanese (ja)
Other versions
JP3942915B2 (en
Inventor
Masatoshi Yasutake
正敏 安武
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Instruments Inc
Original Assignee
Seiko Instruments Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Instruments Inc filed Critical Seiko Instruments Inc
Priority to JP2002051888A priority Critical patent/JP3942915B2/en
Publication of JP2003247929A publication Critical patent/JP2003247929A/en
Application granted granted Critical
Publication of JP3942915B2 publication Critical patent/JP3942915B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Length Measuring Devices With Unspecified Measuring Means (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for finding a minute sample scattered widely on a substrate in a short time and provide a method for securely moving the sample to an arbitrary position on the substrate by a probe of a scanning probe microscope with reduced damages of the probe and the sample. <P>SOLUTION: A mechanism for finding the sample is formed by performing raster scanning by predetermined high magnification ratio image frame when reaching a predetermined position and condition while performing raster scanning at low magnification ratio. Moreover, a signal (Z signal) indicating a height just below the probe during moving, a signal (error signal) proportional to a deviation amount from an initially set value of force in Z direction which acts on the probe and the substrate just below the probe or the sample, and a signal (friction signal) in the horizontal direction which acts between the sample and the substrate just below the probe or the sample are detected to form a mechanism which displays a time series signal and an instantaneous value signal of these signals and converts the error signal into reaction force in Z direction and the friction signal into reaction force in XY directions through an operation lever to inform a worker of them. <P>COPYRIGHT: (C)2003,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】この発明は、走査型プローブ
顕微鏡の測定画面で微細な試料を発見し、その画面を基
に、試料を所定の位置へ移動させるための試料移動機構
のついた走査型プローブ顕微鏡と探針を用いて試料面を
加工する走査型プローブ顕微鏡に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention finds a fine sample on a measurement screen of a scanning probe microscope, and based on the screen, a scanning type with a sample moving mechanism for moving the sample to a predetermined position. The present invention relates to a scanning probe microscope that processes a sample surface using a probe microscope and a probe.

【0002】[0002]

【従来の技術】従来技術の走査型プローブ顕微鏡は、試
料の画像観察が主目的であり、観察した複数試料を任意
の場所に移動したり、配列することには不都合な点があ
った。たとえば、基板上にカーボンナノチューブ、DN
A、微細な粒子等が分散している場合、これらの粒子を
すばやく発見し、所定の位置へ移動させたり、配列させ
ることに多大の時間を要した。またスキャナーに使用さ
れているピエゾ素子の非線形性とヒステリシス及び試料
位置の熱的ドリフト等で微細な試料への位置合わせ(接
触)には困難を要した。これらピエゾ素子の非線形性と
ヒステリシスを改善する目的で、S.Desogus、S.Lany、
R.Nerino、G.B.Picotto等はピエゾスキャナーに静電容
量センサーなどのリニアな素子を組み込み、素子の読み
取り量に合わせるようにピエゾスキャナーの印加電圧を
クローズドループ制御する方法を採用した。(J.Vac.Sc
i.Technol.B12(3),1665−1668、1994
年)しかしこの方法は、装置が複雑になり、またピエゾ
スキャナーに3軸センサーを取り付けるためセンサーの
自重が増加し、ピエゾスキャナーの応答性が劣化した。
また移動中の微細な試料は観察できないためなんらかの
代替手段が必要である。
2. Description of the Related Art A conventional scanning probe microscope has a main purpose of observing an image of a sample, and there is a disadvantage in moving or arranging a plurality of observed samples to arbitrary places. For example, carbon nanotube, DN on the substrate
When A, fine particles, etc. were dispersed, it took a lot of time to quickly find these particles and move them to a predetermined position or arrange them. Further, it is difficult to align (contact) with a fine sample due to non-linearity of the piezo element used in the scanner, hysteresis and thermal drift of the sample position. In order to improve the nonlinearity and hysteresis of these piezo elements, S.Desogus, S.Lany,
R. Nerino, GB Picotto, etc. adopted a method in which a linear element such as a capacitance sensor was installed in the piezo scanner and the voltage applied to the piezo scanner was closed-loop controlled to match the reading amount of the element. (J.Vac.Sc
i.Technol. B12 (3), 1665-1668, 1994
However, this method complicates the device, and since the 3-axis sensor is attached to the piezo scanner, the self-weight of the sensor increases and the responsiveness of the piezo scanner deteriorates.
In addition, since a fine sample cannot be observed during movement, some alternative means is necessary.

【0003】ノースカロライナ大学のM.Finch, V.Chi,
R. M.Falvo, M. Washburn, R. Superfine等は、論文(A
CM SIGGRAPH, New York, 1995. pp. 13-18.)で原子間
力顕微鏡(AFM)を制御するナノマニュピュレータに
ついて述べている。またアメリカの3rdTecn社は、AF
Mで測定した画像を取り込み、コンピュターグラフィク
で画像を再生し、画像上にバーチャルな探針を表示さ
せ、この探針がコンピュターグラフィク画像の試料に接
触すると、作業者の操作するレバーに擬似的な反力信号
を発生させ作業者に知らせる装置を開発した(登録商標
NanoManipulatorDP-100)。しかしこれら方法は、実際
AFM探針が微細な試料に接触している相互作用を反映
しておらず、試料移動の確実性は増加せず操作性の改善
にとどまった。
M. Finch, V. Chi, of the University of North Carolina
RMFalvo, M. Washburn, R. Superfine et al.
CM SIGGRAPH, New York, 1995. pp. 13-18.) Describes a nanomanipulator controlling an atomic force microscope (AFM). In addition, 3rdTecn of the United States is AF
The image measured by M is taken in, the image is reproduced by computer graphics, a virtual probe is displayed on the image, and when this probe comes into contact with the sample of the computer graphic image, the lever operated by the operator is simulated. We have developed a device that generates a reaction force signal and informs the operator (registered trademark
NanoManipulatorDP-100). However, these methods did not reflect the interaction in which the AFM probe was actually in contact with a fine sample, and the reliability of sample movement did not increase, and the operability was improved.

【0004】[0004]

【発明が解決しようとする課題】走査型プローブ顕微鏡
を用いて微細な試料を所定の位置に移動する場合、まず
移動する試料の発見、移動先位置の確認、試料に接触、
試料の移動等が必要になる。この一連の作業で第一の課
題は、移動する試料が基板上に広く分散しており発見に
時間を要する。たとえば基板上に分散した、直径0.0
5μm程度の微粒子を100μm画郭から探す場合は、
XYとも5000本以上の走査ラインが必要になる。こ
の場合、測定画郭を10μmにした場合、100枚の画
像の測定が必要になり試料発見のための測定に多大な時
間を要する。第二の課題として、現在走査型プローブ顕
微鏡に使用しているピエゾスキャナーが非線形素子であ
り、またヒステリシスやクリープなどで時間的に位置が
変動し、あるいは、熱的影響で試料位置が変動するため
に、微細な試料に1回で接触するのは困難である。第三
の課題は、移動中の試料の観察ができないため、実際に
移動している試料がはずれたり、障害物に遭遇した場合
に、どうように外れたり、障害物を回避するか作業者に
知らせる複数の信号源が必要になる。
When a fine sample is moved to a predetermined position using a scanning probe microscope, first, the moving sample is found, the position of the moving destination is confirmed, the sample is touched,
It is necessary to move the sample. The first problem in this series of operations is that the moving sample is widely dispersed on the substrate and it takes time to find it. For example, dispersed on the substrate, diameter 0.0
When searching for fine particles of about 5 μm from the 100 μm section,
For XY, 5000 or more scanning lines are required. In this case, if the measurement area is set to 10 μm, 100 images need to be measured, and a great amount of time is required for the measurement for discovering the sample. The second problem is that the piezo scanner currently used in the scanning probe microscope is a non-linear element, and the position changes temporally due to hysteresis and creep, or the sample position changes due to thermal effects. In addition, it is difficult to contact a fine sample at one time. The third problem is that it is not possible to observe the moving sample, so when the moving sample comes off or encounters an obstacle, how to detach it or avoid the obstacle is asked to the operator. Multiple sources of signaling are required.

【0005】本発明は、基板上に広く分散した、微細な
試料を短時間で発見する手段と、微細試料の移動を確実
に行なう、あるいは正確な位置で試料面加工を行なう走
査型プローブ顕微鏡を提供するものである。
The present invention provides a means for discovering a fine sample widely dispersed on a substrate in a short time, and a scanning probe microscope for surely moving the fine sample or processing the sample surface at an accurate position. It is provided.

【0006】[0006]

【課題を解決するための手段】第一の課題および題二の
課題を解決するために、本発明では、低倍率でラスター
走査をしながら、所定の位置あるいは所定の条件になる
と所定の高倍率画郭でラスター走査を行ない、目的とす
る試料を発見あるいは試料と接触すると探針を停止する
機構(ラスター走査/試料発見/探針停止機構)を作成
した。第三の課題を解決するために、移動中に探針直下
の高さを示す信号(Z信号)と探針と探針直下の基板あ
るいは試料に働くZ方向の力の初期設定置からのずれ量
に比例した信号(エラー信号)と試料と探針直下の基板
あるいは試料の間に働く水平方向の力の信号(摩擦信
号)をそれぞれ検出して、これらの信号を時系列信号お
よび瞬時置信号として表示したり、操作レバーを介して
エラー信号をZ方向反力に摩擦信号をXY方向反力とし
て作業者に知らせる機構を作成した。
In order to solve the first problem and the problem of the second problem, the present invention performs a predetermined high magnification at a predetermined position or under a predetermined condition while performing raster scanning at a low magnification. A mechanism (raster scanning / sample finding / probe stop mechanism) that stops the probe when a target sample is discovered or comes into contact with the sample by performing raster scanning in the image frame was created. In order to solve the third problem, a signal (Z signal) indicating the height immediately below the probe during movement and deviation of the force in the Z direction acting on the probe and the substrate or sample immediately below the probe from the initial setting position A signal proportional to the amount (error signal) and a horizontal force signal (friction signal) acting between the sample and the substrate directly under the probe or the sample are detected, and these signals are time-series signals and instantaneous position signals. Or a mechanism for notifying the operator of an error signal as a Z-direction reaction force and a friction signal as an XY-direction reaction force via an operation lever.

【0007】[0007]

【作用】走査型プローブ顕微鏡を用いて試料を所定の位
置に移動する場合、まず試料の発見、移動先位置の確
認、試料に接触、試料移動等の一連の作業が必要にな
る。移動する試料を発見するために、従来は広い領域
(通常は数μm角から100μm角)で走査を行なう
(画面1)。この画像より、目視で移動させる試料の概
略位置を確認し、その位置へ探針を移動し高倍率で測定
する(画面2)。
When a sample is moved to a predetermined position by using a scanning probe microscope, a series of operations such as finding the sample, confirming the position to move to, contacting the sample and moving the sample are required. In order to find a moving sample, scanning is conventionally performed in a wide area (usually several μm square to 100 μm square) (screen 1). From this image, the approximate position of the sample to be moved is visually confirmed, the probe is moved to that position, and measurement is performed at high magnification (screen 2).

【0008】ここで目視確認できなかったり、分解能不
足で試料の形状がほとんど確認できない場合がよくあ
る。この場合は以下実施例で詳細をしめすラスター走査
/試料発見/探針停止機構を用いる。
It is often the case that the shape of the sample cannot be confirmed visually or that the resolution is insufficient. In this case, a raster scanning / sample finding / probe stop mechanism, which will be described in detail in the following embodiments, is used.

【0009】次に移動先位置の概略を画面1より決定
し、その位置へ探針を移動し高倍率で測定する(画面
3)。次に前記画面1上に試料を移動させる道順を記入
する。そうすると移動する道順に沿って試料面からの最
大高さなどの凹凸情報が表示される。
Next, the outline of the destination position is determined on the screen 1, the probe is moved to that position, and measurement is performed at high magnification (screen 3). Next, the route for moving the sample is entered on the screen 1. Then, the unevenness information such as the maximum height from the sample surface is displayed along the moving route.

【0010】次に探針を移動させる試料に画面1の位置
情報をもとに接触させる。このとき探針は、試料位置ま
で直接空中を移動して行くか、あるいは試料面をなぞっ
て直線上に移動してもよい。ただしピエゾスキャナーの
ヒステリシスや熱ドリフトのため狙いの試料に1回で接
触することは難しい。この場合は以下実施例で詳細を示
すラスター走査/試料発見/探針停止機構を用いると容
易に微細試料に接触可能となる。接触点を中心として高
倍率(通常は0.1μm画郭以下)で測定し、移動する
試料の詳細画像(画面4)を得る。
Next, the probe to be moved is brought into contact with the sample based on the position information on the screen 1. At this time, the probe may directly move in the air to the sample position, or may trace a sample surface and move straight. However, it is difficult to contact the target sample at one time because of the hysteresis and thermal drift of the piezo scanner. In this case, it is possible to easily contact the fine sample by using the raster scanning / sample finding / probe stop mechanism described in detail in the following embodiments. Measurement is performed at a high magnification (usually 0.1 μm or less) around the contact point to obtain a detailed image (screen 4) of the moving sample.

【0011】画面4より試料を押す位置を定め、試料の
移動を前記道筋に沿って開始する。この移動に際し、高
さ信号、エラー信号あるいは、摩擦信号を表示させ、こ
れらが設定置以下になるように移動速度を調整する。試
料が移動先に到着後再び移動後の画面の高倍率測定を行
ない移動後の形態を確認する(画面5)。
The position where the sample is pushed is determined on the screen 4, and the movement of the sample is started along the path. At the time of this movement, a height signal, an error signal, or a friction signal is displayed, and the moving speed is adjusted so that these are below the set values. After the sample arrives at the destination, high-magnification measurement of the screen after the movement is performed again to confirm the form after the movement (screen 5).

【0012】以上が試料移動の動作概略であるが発明の
実施形態でラスター走査/試料発見/探針停止機構と試
料移動中の各高さ信号、エラー信号あるいは、摩擦信号
とその利用の方法をより詳しく説明する。
The above is the outline of the operation of moving the sample. In the embodiment of the invention, the raster scanning / sample finding / probe stop mechanism and each height signal, error signal or friction signal during sample movement are used. This will be described in more detail.

【0013】[0013]

【発明の実施の形態】<装置構成>以下本発明の試料移
動・加工走査型プローブ顕微鏡の模式図(図1)に基づ
いてこの発明の実施の形態を説明する。
BEST MODE FOR CARRYING OUT THE INVENTION <Device Configuration> An embodiment of the present invention will be described below with reference to a schematic diagram (FIG. 1) of a sample moving / processing scanning probe microscope of the present invention.

【0014】図1より、Z粗動系メカニズム[1]にX
YZスキャナー[2]が固定され、ピエゾ振動板[3]を
介してカンチレバー部[4]が取り付けられている。カ
ンチレバー部は、試料台[6]に固定された試料[5]
に対向している。カンチレバー[4]は、背面をレーザ
ービーム[7]で照射され、反射光は4分割位置検出器
[8]に入射している。4分割位置検出器の上下のセン
サーの信号は、高さ方向の信号としてプレアンプ[1
0]により増幅され、Z方向の力の設定置(△1力Se
t)との差信号(エラー信号)がZサーボ系[12]
に入力される。その出力信号(Z方向高さ信号)が高
圧アンプ[13]により増幅されXYZスキャナー
[2]のZ軸が伸縮し、カンチレバーのたわみ量が一定
になるように探針−試料間の距離が制御されている。一
方4分割位置検出器左右のセンサーの信号は、プレアン
プ[9]により増幅され摩擦信号となる。
From FIG. 1, it can be seen that the Z coarse movement mechanism [1] has X.
The YZ scanner [2] is fixed, and the cantilever part [4] is attached via the piezoelectric diaphragm [3]. The cantilever part is the sample [5] fixed to the sample table [6].
Is facing. The back surface of the cantilever [4] is irradiated with the laser beam [7], and the reflected light is incident on the 4-division position detector [8]. The signals from the upper and lower sensors of the 4-division position detector are preamplifiers [1
0] and set the force in the Z direction (△ 1 force Se
The difference signal (error signal) from t) is Z servo system [12]
Entered in. The output signal (Z direction height signal) is amplified by the high voltage amplifier [13], the Z axis of the XYZ scanner [2] expands and contracts, and the distance between the probe and sample is controlled so that the amount of deflection of the cantilever becomes constant. Has been done. On the other hand, the signals from the left and right sensors of the four-division position detector are amplified by the preamplifier [9] to become friction signals.

【0015】これらZ高さ信号()、エラー信号
()、摩擦信号()はそれぞれアナログ/デジタル
変換器(A/D変換器)[20、21、22]によって
デジタル信号に変換され、それぞれの瞬時値(図2A)
とこの値を試料の移動開始時から時系列に表示した時系
列データ(図2B)として表示器[42]に表示され
る。またはエラー信号をZ方向反力に摩擦信号をXY方
向反力として-デジタルアナログ変換後[43]、操作
レバー[44]を操作している作業者に反力で知らせる
機構を作成した。さらに操作レバー[44]をもちいて
試料を移動する場合、前記Z高さ信号、エラー信号、摩
擦信号の値がそれぞれ比較器[16、17、18]の設
定値(△1‘高さ Set、△2エラーSet、△3摩
擦Set)を超えた場合、XY走査コントローラー[1
4]に信号が伝達され、XY走査用の三角波の増加を停
止し、前記Z高さ信号、エラー信号、摩擦信号が設定値
以下になるまで探針の移動を停止する。
These Z height signal (), error signal (), and friction signal () are converted into digital signals by analog / digital converters (A / D converters) [20, 21, 22], respectively. Instantaneous value (Fig. 2A)
This value is displayed on the display [42] as time series data (FIG. 2B) displayed in time series from the start of sample movement. Alternatively, a mechanism has been created in which an error signal is converted into a reaction force in the Z direction and a friction signal is converted into a reaction force in the XY direction-after digital-analog conversion [43], the worker operating the operation lever [44] is notified by the reaction force. Further, when the sample is moved using the operation lever [44], the values of the Z height signal, the error signal, and the friction signal are the set values (Δ1 ′ height Set, If it exceeds Δ2 error Set and Δ3 friction Set), XY scan controller [1
4], the increase of the triangular wave for XY scanning is stopped, and the movement of the probe is stopped until the Z height signal, the error signal, and the friction signal are below the set values.

【0016】XY走査は、XYコントローラー内のデジ
タルアナログ変換器にラスター走査用の三角波を入力し
てその出力を高圧アンプ[15]印加しXYピエゾスキ
ャナーを駆動する。前記Z高さ信号とXYラスター信号
とで形状像、前記エラー信号とXYラスター信号とでエ
ラー信号像、前記摩擦信号とXYラスター信号とで摩擦
像表示を前記表示器[42]に行なう。また走査停止信
号()により三角波の任意の位置でXYの電圧値をホ
ールドし、探針を所定の位置に固定する。走査停止信号
は、前記Z高さ信号、エラー信号、摩擦信号が設定値以
上になった場合自動的にXY走査を停止させる。
In XY scanning, a triangular wave for raster scanning is input to a digital / analog converter in an XY controller, and its output is applied to a high voltage amplifier [15] to drive an XY piezo scanner. A shape image is displayed by the Z height signal and the XY raster signal, an error signal image is displayed by the error signal and the XY raster signal, and a friction image is displayed by the friction signal and the XY raster signal on the display [42]. Further, the scanning stop signal () holds the XY voltage values at an arbitrary position of the triangular wave, and fixes the probe at a predetermined position. The scanning stop signal automatically stops the XY scanning when the Z height signal, the error signal, and the friction signal exceed the set values.

【0017】<ラスター走査/試料発見/探針停止>図
3Aは、ラスター走査/試料発見/探針停止動作の画面
取り込み図と、図3Bは、XYスキャンコントローラー
[14]の出力電圧の時系列表示例である。以下にラス
ター走査/試料発見/探針停止動作を説明する。基板上
に広く分散している微細な試料を発見するために、図3
Aに示す、低倍率(広い領域)を走査し、試料と想定さ
れる物体を針先が検知した時その周辺を高倍率(狭い領
域)走査し微細試料の発見を容易にする動作である。図
3Aに示すように広い領域の画郭をLとし走査ライン本
数をNとする。また高倍率測定する狭い領域をlとし走
査本数をnとする。また走査の開始点の初期走査ライン
位置からのオフセット量をO=pnxL/Nとする。ま
ず低倍率(広い領域)をオフセット量ゼロで走査し、探
針直下のZ高さの瞬時値が設定値より高くなったり、探
針直下のエラー信号の瞬時値が設定値より大きくなった
り、あるいは探針直下の摩擦信号の瞬時値が設定値より
大きくなったりすることをトリガー信号()として、
そのトリガー発生位置を画面の中心になるように設定
し、狭い領域lで走査本数nの高倍率画像の測定を行な
う。その後トリガー発生点に戻り中断された低倍率走査
をつづける。N本走査しても、試料が発見されない場合
は、2分法に基づきオフセット量をO=(1/2)(L/
N)にし再度低倍率走査をN本行なう。それでも見つか
らない場合はオフセット量を順次O=(1/4)(L/
N)、O=(3/4)(L/N)・・・にして再度低倍率
走査をN本行ない微細サンプルを探す。図3Bに、低倍
率・高倍率XY走査のための三角波波形を示す。この方
法を用いると基板上に広く分散した微細な試料を自動的
に高倍率で短時間で発見できる。
<Raster scanning / sample finding / probe stop> FIG. 3A is a screen capture diagram of the raster scanning / sample finding / probe stop operation, and FIG. 3B is a time series of the output voltage of the XY scan controller [14]. It is a display example. The raster scanning / sample finding / probe stop operation will be described below. In order to find fine samples widely dispersed on the substrate, FIG.
This is an operation for scanning a low magnification (wide area) shown in A, and when the needle tip detects an object supposed to be a sample, scans the periphery thereof at a high magnification (narrow area) to facilitate the discovery of a fine sample. As shown in FIG. 3A, it is assumed that the image frame of a wide area is L and the number of scanning lines is N. Also, the narrow area for high-magnification measurement is 1, and the number of scans is n. Further, the offset amount of the scanning start point from the initial scanning line position is O = pnxL / N. First, scan a low magnification (wide area) with an offset amount of zero, and the instantaneous value of the Z height directly below the probe becomes higher than the set value, or the instantaneous value of the error signal immediately below the probe becomes larger than the set value. Alternatively, if the instantaneous value of the friction signal directly below the probe becomes larger than the set value, the trigger signal ()
The trigger generation position is set to the center of the screen, and a high-magnification image with the number of scanning lines n is measured in a narrow area l. After that, the operation returns to the trigger generation point and the interrupted low magnification scanning is continued. If the sample is not found even after scanning N lines, the offset amount is O = (1/2) (L /
N), and N low-magnification scans are performed again. If still not found, the offset amount is sequentially O = (1/4) (L /
N), O = (3/4) (L / N) ... And low-magnification scanning is performed again N times to search for a fine sample. FIG. 3B shows a triangular wave waveform for low-magnification / high-magnification XY scanning. By using this method, fine samples widely dispersed on the substrate can be automatically found at high magnification in a short time.

【0018】つぎに前記の方法で高倍率測定された画像
より目的とされた試料が発見された場合、その試料に接
触し、その位置で探針を停止する方法を述べる。前記低
倍率の画郭Lで2−3本ラスター走査をして前記トリガ
ー発生点に到達し、高倍率走査を開始する。ここでZ高
さ信号、エラー信号、あるいは摩擦信号が設定値を越え
た地点を新たに試料接触位置としてラスター走査を停止
させる。この移動方法はラスター走査をして試料に接近
するためリニアリティー補正ができ、また再度高倍率測
定を行なうため、正確に探針を試料に接触可能である。
Next, a method of contacting the sample and stopping the probe at that position when the target sample is found from the image measured at high magnification by the above method will be described. 2-3 raster scanning is performed in the low-magnification image area L to reach the trigger generation point, and high-magnification scanning is started. Here, the raster scanning is stopped by setting a point where the Z height signal, the error signal, or the friction signal exceeds the set value as a new sample contact position. In this moving method, rasterization is performed to approach the sample, so that linearity correction can be performed, and since high-magnification measurement is performed again, the probe can be accurately brought into contact with the sample.

【0019】<ラスター走査の加工への適用>このラス
ター走査方法は、試料面の加工にも適用できる。基板上
にAFMの探針を使用して機械的加工あるいは電気的加
工する方法は、たとえば、特願平5−49713などに
提案されている。しかし今までは、図4Aに示すように
「A」という文字を加工する場合、一筆書きで直接Aと
いう文字を作成してきた。この方法で作成するとピエゾ
スキャナーの非線形性とヒステリシスの影響で文字が歪
んでしまう。したがって図4Bに示すようラスター走査
をしながら所定の場所に到達したら試料面を加工する方
法を適用した。電気的加工を例にして説明すると、まず
加工する画郭L1とラスター本数N1を決める。つぎに
探針が走査ラインを移動しているある期間(図4B:t
1)に探針/試料間に電圧を印加し、試料面を加工す
る。このラスター走査をしながら加工する方法は、探針
が一定の走査を繰り返すため、走査ラインごとにリニア
リティー補正ができ、正確な位置での加工が可能であ
る。) <試料移動時の各信号モニター>つぎに試料の移動時の
記述を行なう。試料の移動は通常探針と試料間の力が一
定となるように制御する(コンタクトモード)で制御し
ながら試料を所定の場所まで移動させる。作用の項で記
述した画面1と画面5より、試料の移動先場所と移動の
方向をきめ、画面1上に移動のルートを決め表示させて
おく。探針が試料に接触後、高倍率画面の形状より試料
の重心位置を割りだし、試料を移動する方向と重心位置
にもとづいた試料への押圧位置(図5A)を画像表示器
に位置を示し、探針をその位置に移動後試料に押圧をし
て移動を開始する。探針の現在位置は、画面1を測定し
たときのXYのピエゾスキャナーに印加した電圧より割
り出し、画面1上に表示する。基板が滑らかなところで
は探針の移動速度が一定になると、図5Bに示すように
摩擦信号は当初静止摩擦のため大きくなり、すぐに一定
になる。エラー信号とZ高さ信号も一定になる。しかし
試料が段差などの障害物に当たった場合、図2Bに示す
ように摩擦信号とエラー信号が増大し、遅れてZの高さ
信号が増大する。この場合探針が破損あるいは、試料に
ダメージを与えないように前記エラー信号設定値以下に
上記信号が戻るまで移動を停止し、増大した摩擦信号と
エラー信号に比例した反力を操作レバーに発生させ作業
者に体感させたり画面に表示し、移動速度を落とす。
<Application of Raster Scanning to Processing> This raster scanning method can also be applied to processing of a sample surface. A method of performing mechanical processing or electrical processing on a substrate using an AFM probe is proposed in, for example, Japanese Patent Application No. 5-49713. However, until now, when processing the character “A” as shown in FIG. 4A, the character A was directly created with a single stroke. If this method is used, the characters will be distorted due to the influence of the nonlinearity and hysteresis of the piezo scanner. Therefore, as shown in FIG. 4B, a method of processing the sample surface when reaching a predetermined position while performing raster scanning was applied. Explaining the electric processing as an example, first, the image contour L1 to be processed and the number N1 of raster lines are determined. Next, during a certain period during which the probe is moving on the scanning line (FIG. 4B: t
In 1), a voltage is applied between the probe and the sample to process the sample surface. In the method of processing while performing raster scanning, since the probe repeats constant scanning, linearity correction can be performed for each scanning line, and processing at an accurate position is possible. ) <Each signal monitor during sample movement> Next, a description will be given when the sample is moved. The movement of the sample is usually controlled so that the force between the probe and the sample is constant (contact mode), and the sample is moved to a predetermined location. From the screen 1 and the screen 5 described in the section of action, the moving destination place and the moving direction of the sample are determined, and the moving route is determined and displayed on the screen 1. After the probe comes into contact with the sample, the center of gravity of the sample is calculated from the shape of the high-magnification screen, and the position to press the sample (Fig. 5A) based on the moving direction of the sample and the center of gravity is shown on the image display. After moving the probe to that position, the sample is pressed to start moving. The current position of the probe is calculated from the voltage applied to the XY piezo scanner when the screen 1 is measured and displayed on the screen 1. When the moving speed of the probe becomes constant where the substrate is smooth, the friction signal initially becomes large due to static friction and then becomes constant immediately as shown in FIG. 5B. The error signal and Z height signal are also constant. However, when the sample hits an obstacle such as a step, the friction signal and the error signal increase as shown in FIG. 2B, and the Z height signal increases with a delay. In this case, in order not to damage the probe or damage the sample, the movement is stopped until the above signal returns below the error signal set value, and a reaction force proportional to the increased friction signal and error signal is generated on the operation lever. Then, let the operator experience it or display it on the screen to slow down the moving speed.

【0020】つぎに突起物などの障害物に試料が阻止さ
れたときの回避の方法を述べる。試料が段差などの障害
物に当たった場合(図2B)、摩擦信号とエラー信号が
増大し、遅れてZの高さ信号が増し、3つの信号が増大
しつづける場合は、試料が障害物に接触した可能性が高
い。この場合一旦移動をやめ、現在の移動方向から+/
−45度の範囲で試料への押圧方向を変化させ(図
6)、前記3つの信号の変化を観察する。3つの信号が
障害物接触前の一定値に戻る方向に再び移動を始める。
正常に移動始めたら、方向を修正し再度画面1の目的の
方向に移動する。
Next, a method of avoiding when the sample is blocked by an obstacle such as a protrusion will be described. When the sample hits an obstacle such as a step (Fig. 2B), the friction signal and the error signal increase, and the Z height signal increases with a delay, and when the three signals continue to increase, the sample changes to the obstacle. It is likely that you have come into contact. In this case, stop moving once and move from the current moving direction to + /
The pressing direction to the sample is changed in the range of −45 degrees (FIG. 6), and the changes of the three signals are observed. The three signals start moving again in the direction of returning to the constant value before the obstacle contact.
When the movement starts normally, the direction is corrected and the movement in the intended direction on the screen 1 is performed again.

【0021】つぎになんらかの理由により試料が探針か
ら外れたときの対応を述べる。正常に移動しているとき
は摩擦信号が一定の値を示す。しかしなんらかの理由で
試料が探針から外れた場合は、基板に接して移動する面
積が減少するため、図7に示すように摩擦力が突然減少
する。この場合は移動を停止し、その地点で高倍率測定
を行ない試料の位置と形状を再確認し、再び前記試料へ
の押圧位置を求め移動を再開する。
Next, how to deal with the case where the sample comes off the probe for some reason will be described. When moving normally, the friction signal shows a constant value. However, if the sample comes off the probe for some reason, the area that moves in contact with the substrate decreases, and the frictional force suddenly decreases as shown in FIG. In this case, the movement is stopped, the high-magnification measurement is performed at that point, the position and shape of the sample are reconfirmed, the pressing position on the sample is obtained again, and the movement is restarted.

【0022】[0022]

【発明の効果】本発明の効果を以下に箇条書きで示す。 1.基板に広範囲に分散した微細な試料の発見が容易に
なった。 2.基板に広範囲に分散した微細な試料への探針の接触
が容易になった。 3.試料の移動中に高さ信号、摩擦信号とエラー信号を
観察できるため、移動中の試料の状態が容易に推定で
き、試料移動の確実性が向上した。 4.試料の移動中に高さ信号、摩擦信号とエラー信号の
設定値を決め、設定値を越えた場合移動を中断する機構
を設けたため、探針、試料、基板間に設定以上の力が働
かず、カンチレバーの破損、試料や基板へのダメージが
低減した。
The effects of the present invention are listed below. 1. It became easy to find fine samples dispersed over a wide area on the substrate. 2. It became easy for the probe to come into contact with a fine sample dispersed over a wide area on the substrate. 3. Since the height signal, the friction signal and the error signal can be observed during the movement of the sample, the state of the moving sample can be easily estimated and the certainty of the sample movement is improved. 4. Since the height signal, friction signal, and error signal set values are determined while the sample is moving and the movement is interrupted when the set values are exceeded, the force above the set value does not work between the probe, sample, and substrate. Damage to the cantilever and damage to the sample and substrate were reduced.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明のシステム模式図である。FIG. 1 is a schematic diagram of a system of the present invention.

【図2】(A)は高さ信号、エラー信号、摩擦信号の瞬
時値、(B)はZ高さ信号、エラー信号、摩擦信号の時
系列値の表示例である。(右端で障害物にあたった時)
FIG. 2A is a display example of height signals, error signals, and instantaneous values of friction signals, and FIG. 2B is a display example of time series values of Z height signals, error signals, and friction signals. (When you hit an obstacle at the right end)

【図3】(A)ラスター走査/試料発見/探針停止機構
による走査ラインの図である。 (B)ラスター走査/試料発見/探針停止機構による電
圧-時間の図である。
FIG. 3A is a diagram of a scanning line by a raster scanning / sample finding / probe stop mechanism. (B) is a voltage-time diagram for raster scanning / sample discovery / probe stop mechanism.

【図4】(A)は一筆書き走査による加工例、(B)は
ラスター走査による加工例である。
FIG. 4A is a processing example by one-stroke writing scanning, and FIG. 4B is a processing example by raster scanning.

【図5】(A)は試料の押圧位置、(B)はZ高さ信
号、エラー信号、摩擦信号の時系列値の表示例である。
(試料移動開始時)
5A is a display example of a pressing position of a sample, and FIG. 5B is a display example of time series values of a Z height signal, an error signal, and a friction signal.
(At the start of sample movement)

【図6】試料が障害物に当たったときの回避例である。FIG. 6 is an example of avoidance when the sample hits an obstacle.

【図7】Z高さ信号、エラー信号、摩擦信号の時系列値
の表示例である。(試料が外れたとき時)
FIG. 7 is a display example of time series values of a Z height signal, an error signal, and a friction signal. (When the sample comes off)

【符号の説明】[Explanation of symbols]

1 Z粗動メカニズム 2 XYZ微動スキャナー 3 ピエゾ振動板 4 カンチレバー部 5 試料 6 サンプル台 7 レーザービーム 8 4分割位置検出器 9 プレアンプ 10 プレアンプ 11 誤差アンプ 12 Zサーボ系 13 高圧アンプ 14 XY走査コントローラー 15 高圧アンプ 16、17、18 比較器 20、21、22 アナログデジタル変換器 30 バスライン 41 コンピュータ 42 表示器 43 デジタルアナログ変換器 44 操作レバー 1 Z coarse movement mechanism 2 XYZ fine movement scanner 3 Piezo diaphragm 4 Cantilever part 5 samples 6 sample table 7 laser beam 8 4-division position detector 9 preamplifier 10 preamplifier 11 Error amplifier 12 Z servo system 13 High-voltage amplifier 14 XY scanning controller 15 High-voltage amplifier 16, 17, 18 comparator 20, 21, 22 Analog-to-digital converter 30 bus lines 41 Computer 42 indicator 43 Digital-to-analog converter 44 Operation lever

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】 微細な探針つき片持ち梁(カンチレバ
ー)で試料表面近傍を走査し、カンチレバーのたわみ信
号より試料表面の形状、物性情報を得たのち、試料の移
動を行なう走査型プローブ顕微鏡において、試料と探針
の間に働く力の初期設定置からのずれ量(エラー信号)
を検出してずれ量に比例した信号を表示器に表示する機
構と、操作レバーに試料面と垂直方向(Z方向)反力と
して伝達する機構を有することを特徴とした、走査型プ
ローブ顕微鏡。
1. A scanning probe microscope which moves a sample after scanning the vicinity of the sample surface with a cantilever with a fine probe and obtaining the shape and physical property information of the sample surface from the deflection signal of the cantilever. At, the amount of deviation of the force acting between the sample and the probe from the initial setting (error signal)
The scanning probe microscope is characterized in that it has a mechanism for detecting a signal and displaying a signal proportional to the shift amount on a display, and a mechanism for transmitting the signal to the operation lever as a reaction force perpendicular to the sample surface (Z direction).
【請求項2】 前記ずれ量がある設定範囲内に収まるよ
うに試料の移動速度を自動的に調節する機構を有する請
求項1に記載の走査型プローブ顕微鏡。
2. The scanning probe microscope according to claim 1, further comprising a mechanism for automatically adjusting a moving speed of the sample so that the displacement amount falls within a set range.
【請求項3】 微細な探針つき片持ち梁(カンチレバ
ー)で試料表面近傍を走査し、カンチレバーのたわみ信
号より試料表面の形状、物性情報を得たのち、試料の移
動を行なう走査型プローブ顕微鏡において、試料を移動
中に試料と探針の間に働く摩擦力を検出して、摩擦力に
比例した信号(摩擦信号)を表示器に表示する機構と、
操作レバーに試料面に平行方向(XY方向)反力として
伝達する機構を有することを特徴とした、走査型プロー
ブ顕微鏡。
3. A scanning probe microscope that moves a sample after scanning the vicinity of the sample surface with a cantilever having a fine probe and obtaining the shape and physical property information of the sample surface from the deflection signal of the cantilever. In (1), a mechanism for detecting a frictional force acting between the sample and the probe while moving the sample and displaying a signal (friction signal) proportional to the frictional force on a display,
A scanning probe microscope characterized in that the operating lever has a mechanism for transmitting a reaction force parallel to the sample surface (XY direction).
【請求項4】 前記摩擦量がある設定範囲内に収まるよ
うに試料の移動速度を自動的に調節する機構を有するこ
とを特徴とした請求項3に記載の走査型プローブ顕微
鏡。
4. The scanning probe microscope according to claim 3, further comprising a mechanism for automatically adjusting a moving speed of the sample so that the friction amount falls within a set range.
【請求項5】 微細な探針つき片持ち梁(カンチレバ
ー)で試料表面近傍を走査し、カンチレバーのたわみ信
号より試料表面の形状、物性情報を得たのち、試料の移
動や試料面の加工を行なう走査型プローブ顕微鏡におい
て、基板上に広く分散した微細な試料を発見する目的
で、低倍率でラスター走査をしながら広域画像取り込
み、走査中に探針直下の高さ信号や前記エラー信号や摩
擦信号が所定の設定値を越えたとき、トリガー信号を発
生させ、そのトリガー信号を受けた地点で高倍率画像を
採取し、再びトリガー地点に復帰し低倍率でラスター走
査を行なうことを特徴とした走査型プローブ顕微鏡。
5. A sample cantilever with a fine probe (cantilever) scans the vicinity of the sample surface, obtains the sample surface shape and physical property information from the deflection signal of the cantilever, and then moves the sample or processes the sample surface. In a scanning probe microscope to be performed, a wide area image is captured while performing raster scanning at a low magnification for the purpose of discovering fine samples widely dispersed on the substrate, and the height signal immediately under the probe and the error signal and friction during scanning are acquired. When the signal exceeds a predetermined set value, a trigger signal is generated, a high-magnification image is taken at the point where the trigger signal is received, and it returns to the trigger point again and raster scanning is performed at a low magnification. Scanning probe microscope.
【請求項6】 低倍率ラスター走査後、ラスター間を補
間走査する目的でラスター間の1/2、1/4と3/
4、・・と2分法にもとづく初期オフセット位置を走査
開始位置に加え低倍率ラスター走査を行ないながらラス
ター間に埋没した微細試料を発見することを特徴とした
請求項5に記載の走査型プローブ顕微鏡。
6. After low-magnification raster scanning, 1/2, 1/4 and 3 / between rasters for the purpose of interpolating scanning between rasters.
6. The scanning probe according to claim 5, wherein an initial offset position based on the bisection method is added to the scanning start position to detect a fine sample buried between the rasters while performing low magnification raster scanning. microscope.
【請求項7】 微細な探針つき片持ち梁(カンチレバ
ー)で試料表面近傍を走査し、カンチレバーのたわみ信
号より試料表面の形状、物性情報を得たのち、試料の移
動や試料面の加工を行なう走査型プローブ顕微鏡におい
て、測定した低倍率測定画面に基づき、試料の移動位置
と移動方向を決めた後、試料移動時に障害物に遭遇した
場合、探針によって試料を押す方向を、前記高さ信号や
エラー信号や摩擦信号が障害物遭遇前の状態に近づくよ
うな方向に変えて障害物を回避移動させることを特徴と
する走査型プローブ顕微鏡。
7. A sample cantilever with a fine probe (cantilever) scans the vicinity of the sample surface, obtains the shape and physical property information of the sample surface from the deflection signal of the cantilever, and then moves the sample or processes the sample surface. In the scanning probe microscope to be performed, after determining the moving position and moving direction of the sample based on the measured low-magnification measurement screen, if an obstacle is encountered when moving the sample, the direction of pushing the sample with the probe is A scanning probe microscope characterized in that signals, error signals, and friction signals are changed so as to approach the state before encountering an obstacle to avoid the obstacle.
【請求項8】 微細な探針つき片持ち梁(カンチレバ
ー)で試料表面近傍を走査し、カンチレバーのたわみ信
号より試料表面の形状、物性情報を得たのち、試料の移
動や試料面の加工を行なう走査型プローブ顕微鏡におい
て、測定した低倍率測定画面に基づき、試料の移動位置
と移動方向を決めた後、移動中の試料の探針からの外れ
を前記摩擦信号の変化より検知することを特徴とする走
査型プローブ顕微鏡。
8. A sample cantilever with a fine probe (cantilever) scans the vicinity of the sample surface, obtains the sample surface shape and physical property information from the deflection signal of the cantilever, and then moves the sample or processes the sample surface. In the scanning probe microscope to be performed, after determining the moving position and moving direction of the sample based on the measured low-magnification measurement screen, the deviation of the moving sample from the probe is detected from the change of the friction signal. Scanning probe microscope.
JP2002051888A 2002-02-27 2002-02-27 Method for discovering sample on substrate using scanning probe microscope, method for moving sample on substrate using scanning probe microscope, and scanning probe microscope Expired - Fee Related JP3942915B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002051888A JP3942915B2 (en) 2002-02-27 2002-02-27 Method for discovering sample on substrate using scanning probe microscope, method for moving sample on substrate using scanning probe microscope, and scanning probe microscope

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002051888A JP3942915B2 (en) 2002-02-27 2002-02-27 Method for discovering sample on substrate using scanning probe microscope, method for moving sample on substrate using scanning probe microscope, and scanning probe microscope

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2006148812A Division JP4602284B2 (en) 2006-05-29 2006-05-29 Scanning probe microscope

Publications (2)

Publication Number Publication Date
JP2003247929A true JP2003247929A (en) 2003-09-05
JP3942915B2 JP3942915B2 (en) 2007-07-11

Family

ID=28663746

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002051888A Expired - Fee Related JP3942915B2 (en) 2002-02-27 2002-02-27 Method for discovering sample on substrate using scanning probe microscope, method for moving sample on substrate using scanning probe microscope, and scanning probe microscope

Country Status (1)

Country Link
JP (1) JP3942915B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018131343A1 (en) * 2017-01-10 2018-07-19 国立大学法人大阪大学 Scanner and scanning probe microscope

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018131343A1 (en) * 2017-01-10 2018-07-19 国立大学法人大阪大学 Scanner and scanning probe microscope
JPWO2018131343A1 (en) * 2017-01-10 2020-02-06 国立大学法人大阪大学 Scanner and scanning probe microscope
US10884022B2 (en) 2017-01-10 2021-01-05 Osaka University Scanner and scanning probe microscope

Also Published As

Publication number Publication date
JP3942915B2 (en) 2007-07-11

Similar Documents

Publication Publication Date Title
JP4432806B2 (en) Scanning probe microscope
US9081028B2 (en) Scanning probe microscope with improved feature location capabilities
EP0843175B1 (en) Scanning probe microscope and signal processing apparatus
US20210341513A1 (en) High Speed Atomic Force Profilometry of Large Areas
JP4602284B2 (en) Scanning probe microscope
JP2003247929A (en) Scanning probe microscope
JP5806457B2 (en) Surface analyzer
JP2003014605A (en) Scanning type probe microscope
EP2367016A1 (en) Method for processing output of scanning type probe microscope, and scanning type probe microscope
JP2888599B2 (en) Microscope display device
JP2000088735A (en) Scanning probe microscope
JPH07248334A (en) Interatomic force microscope
JP4050873B2 (en) Probe scanning control method and scanning probe microscope
JP2002014025A (en) Probe scanning control device, scanning probe microscope by the same, probe scanning control method, and measuring method by the scanning control method
JPH10111300A (en) Scanning probe microscope
JP4143722B2 (en) Sensitivity calibration method for atomic force / horizontal force microscope
JPH10246728A (en) Partially measuring method for scanning probe microscope
TW202311747A (en) Afm imaging with creep correction
JP3671591B2 (en) Scanning probe microscope
JP2006228800A (en) Method of controlling movement of probe, and probe apparatus
JPH0318703A (en) Scanning type tunnel microscope
JP2003315241A (en) Scanning probe microscope
JP4448508B2 (en) Scanning probe microscope
JP2000275159A (en) Image display method of scanning-type probe microscope
JPH0668835A (en) Tunnel spectroscopy

Legal Events

Date Code Title Description
RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20040304

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20040526

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040823

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060328

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060526

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061024

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061221

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070123

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070306

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070403

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070404

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110413

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110413

Year of fee payment: 4

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: R3D03

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110413

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130413

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130413

Year of fee payment: 6

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130413

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140413

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees