JP3942915B2 - Method for discovering sample on substrate using scanning probe microscope, method for moving sample on substrate using scanning probe microscope, and scanning probe microscope - Google Patents

Method for discovering sample on substrate using scanning probe microscope, method for moving sample on substrate using scanning probe microscope, and scanning probe microscope Download PDF

Info

Publication number
JP3942915B2
JP3942915B2 JP2002051888A JP2002051888A JP3942915B2 JP 3942915 B2 JP3942915 B2 JP 3942915B2 JP 2002051888 A JP2002051888 A JP 2002051888A JP 2002051888 A JP2002051888 A JP 2002051888A JP 3942915 B2 JP3942915 B2 JP 3942915B2
Authority
JP
Japan
Prior art keywords
sample
substrate
magnification
probe
probe microscope
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002051888A
Other languages
Japanese (ja)
Other versions
JP2003247929A (en
Inventor
正敏 安武
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi High Tech Science Corp
Original Assignee
SII NanoTechnology Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SII NanoTechnology Inc filed Critical SII NanoTechnology Inc
Priority to JP2002051888A priority Critical patent/JP3942915B2/en
Publication of JP2003247929A publication Critical patent/JP2003247929A/en
Application granted granted Critical
Publication of JP3942915B2 publication Critical patent/JP3942915B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
この発明は、走査型プローブ顕微鏡に関するものである。
【0002】
【従来の技術】
従来技術の走査型プローブ顕微鏡は、試料の画像観察が主目的であり、観察した複数試料を任意の場所に移動したり、配列することには不都合な点があった。たとえば、基板上にカーボンナノチューブ、DNA、微細な粒子等の試料が分散している場合、これらの粒子をすばやく発見し、所定の位置へ移動させたり、配列させることに多大の時間を要した。
【0003】
キャナーに使用されているピエゾ素子の非線形性とヒステリシス及び試料位置の熱的ドリフト等で微細な試料への位置合わせ(接触)には困難を要した。これらピエゾ素子の非線形性とヒステリシスを改善する目的で、S.Desogus、S.Lany、R.Nerino、G.B.Picotto等はピエゾスキャナーに静電容量センサーなどのリニアな素子を組み込み、素子の読み取り量に合わせるようにピエゾスキャナーの印加電圧をクローズドループ制御する方法を採用した(J.Vac.Sci.Technol.B12(3),1665−1668、1994年)この方法は、装置が複雑になり、またピエゾスキャナーに3軸センサーを取り付けるためセンサーの自重が増加し、ピエゾスキャナーの応答性が劣化した。また移動中の微細な試料は観察できないためなんらかの代替手段が必要である。
【0004】
ノースカロライナ大学のM.Finch,V.Chi,R.M.Falvo,M.Washburn,R.Superfine等は、論文(ACMSIGGRAPH,NewYork,1995.pp.13-18.)で原子間力顕微鏡(AFM)を制御するナノマニュピュレータについて述べている。またアメリカの3rdTecn社は、AFMで測定した画像を取り込み、コンピュターグラフィクで画像を再生し、画像上にバーチャルな探針を表示させ、この探針がコンピュターグラフィク画像の試料に接触すると、作業者の操作するレバーに擬似的な反力信号を発生させ作業者に知らせる装置を開発した。これら方法は、実際AFM探針が微細な試料に接触している相互作用を反映しておらず、試料移動の確実性は増加せず操作性の改善にとどまった。
【0005】
【発明が解決しようとする課題】
走査型プローブ顕微鏡を用いて微細な試料を所定の位置に移動する場合、まず移動する試料の発見、移動先位置の確認、試料に接触、試料の移動等が必要になる。この一連の作業では、移動する試料が基板上に広く分散しており発見に時間を要する。たとえば基板上に分散した、直径0.05μm程度の微粒子を100μm画郭から探す場合は、XYとも5000本以上の走査ラインが必要になる。この場合、測定画郭を10μmにした場合、100枚の画像の測定が必要になり試料発見のための測定に多大な時間を要する。
【0006】
走査型プローブ顕微鏡に一般的に使用しているピエゾスキャナー非線形素子であり、またヒステリシスやクリープなどで時間的に位置が変動し、あるいは、熱的影響で試料位置が変動するために、微細な試料に1回で接触するのは困難である。
【0007】
動中の試料の観察ができないため、実際に移動している試料がはずれたり、障害物に遭遇した場合に、どうように外れたり、障害物を回避するか作業者に知らせる複数の信号源が必要になる。
【0008】
本発明は、新規な走査型プローブ顕微鏡を提供するものである。
【0009】
【発明の実施の形態】
本発明の実施の形態に係る走査型プローブ顕微鏡は、低倍率でラスター走査をしながら、所定の位置あるいは所定の条件になると所定の高倍率画郭でラスター走査を行ない、目的とする試料を発見あるいは試料と接触すると探針を停止する機構(ラスター走査/試料発見/探針停止機構)を有する。
【0010】
他の走査型プローブ顕微鏡は、移動中に探針直下の高さを示す信号(Z信号)と探針と探針直下の基板あるいは試料に働くZ方向の力の初期設定置からのずれ量に比例した信号(エラー信号)と試料と探針直下の基板あるいは試料の間に働く水平方向の力の信号(摩擦信号)をそれぞれ検出して、これらの信号を時系列信号および瞬時置信号として表示したり、操作レバーを介してエラー信号をZ方向反力に摩擦信号をXY方向反力として作業者に知らせる機構を有する。
【0011】
<装置構成>
以下本発明に係る試料移動・加工走査型プローブ顕微鏡の模式図(図1)などを用いて説明する。
【0012】
図1に示すように、Z粗動系メカニズム[1]にXYZスキャナー[2]が固定され、ピエゾ振動板[3]を介してカンチレバー部[4]が取り付けられている。カンチレバー部[4]は、試料台[6]に固定された基板[5]に対向している。カンチレバー[4]は、背面をレーザービーム[7]で照射され、反射光は4分割位置検出器[8]に入射している。4分割位置検出器[8]の上下のセンサーの信号は、高さ方向の信号としてプレアンプ[10]により増幅され、Z方向の力の設定置(△1力Set)との差信号(まる2エラー信号)がZサーボ系[12]に入力される。その出力信号(まる1Z方向高さ信号)が高圧アンプ[13]により増幅されXYZスキャナー[2]のZ軸が伸縮し、カンチレバーのたわみ量が一定になるように探針−試料間の距離が制御されている。一方4分割位置検出器[8]左右のセンサーの信号は、プレアンプ[9]により増幅され摩擦信号となる。
【0013】
これらZ高さ信号(まる1)、エラー信号(まる2)、摩擦信号(まる3)はそれぞれアナログ/デジタル変換器(A/D変換器)[20、21、22]によってデジタル信号に変換され、それぞれの瞬時値(図2A)とこの値を試料の移動開始時から時系列に表示した時系列データ(図2B)として表示器[42]に表示される。
【0014】
上記顕微鏡は、エラー信号をZ方向反力に摩擦信号をXY方向反力としてデジタルアナログ変換後[43]、操作レバー[44]を操作している作業者に反力で知らせる機構を有する。
【0015】
高さ信号(まる1)、エラー信号(まる2)、摩擦信号(まる3)の値がそれぞれ比較器[16、17、18]の設定値(△1‘高さSet、△2エラーSet、△3摩擦Set)を超えた場合、XY走査コントローラー[14]に信号が伝達され、XY走査コントローラー[14]は、XY走査用の三角波の増加を停止し、前記Z高さ信号(まる1)、エラー信号(まる2)、摩擦信号(まる3)が設定値以下になるまで探針の移動を停止する。
【0016】
XY走査コントローラー[14]は、XYコントローラー[14]内のデジタルアナログ変換器にラスター走査用の三角波を入力してその出力を高圧アンプ[15]印加しXYピエゾスキャナー[2]を駆動する。前記Z高さ信号とXYラスター信号とで形状像、前記エラー信号とXYラスター信号とでエラー信号像、前記摩擦信号とXYラスター信号とで摩擦像をそれぞれ算出し、前記表示器[42]に表示する
【0017】
また、図に示すように、Z方向高さ信号(まる1)、エラー信号(まる2)及び/又は摩擦信号(まる3)が閾値を超えたら走査停止信号(まる4)を発生するように構成し、この信号を受信したXYコントローラー[14]は、XYの電圧値をホールドし、探針を所定の位置に固定する。つまり、走査停止信号は、前記Z高さ信号(まる1)、エラー信号(まる2)、摩擦信号(まる3)が設定値以上になった場合に探針による基板面上の走査を停止させるための信号である
【0018】
<ラスター走査/試料発見/探針停止>
図3は、ラスター走査/試料発見/探針停止動作の画面取り込み図(走査ラインの様子を示した模式図)で、図3は、XYスキャンコントローラー[14]の出力電圧の時系列表示例である。以下にラスター走査/試料発見/探針停止動作を説明する。
この一連の動作は、基板上に広く分散している微細な試料を発見するために、図3に示す、低倍率(広い領域)を走査し、試料と想定される物体を針先が検知した際、その周辺を高倍率(狭い領域)走査し微細試料の発見を容易にする動作である。
図3に示すように広い領域の画郭をLとし走査ライン本数をN(本)とする。高倍率測定する狭い領域をlとし走査本数をn(本)とする。走査の開始点の初期走査ライン位置からのオフセット量OをO=pnxL/Nとする。
【0019】
低倍率(広い領域)をオフセット量ゼロで走査し、探針直下のZ高さの瞬時値が設定値より高くなったり(信号まる1)、探針直下のエラー信号の瞬時値が設定値より大きくなったり(信号まる2)、あるいは探針直下の摩擦信号の瞬時値が設定値より大きくなったり(信号まる3)することをトリガー(信号まる4)としてXY走査コントローラー[14]が信号まる5生成しこの信号まる5を受信した表示器[42]は、そのトリガー信号まる5が発生した際の基板上における探針の位置(走査位置)を、この位置と対応する表示が表示器[42]の画面の中心になるように設定する。
XY走査コントローラー[14]は、上記トリガー信号(まる5)を生成するとともに、狭い領域lで走査本数nの高倍率画像の測定(高倍率測定)を行なう。その後(領域lについての測定終了後)、基板上のトリガー発生点に戻り中断された低倍率走査をつづける(トリガー信号(まる5)が発生する前に行っていた設定による走査(低倍率走査)を、中断地点から再開する。)
【0020】
XY走査コントローラー[14]、N本走査しても(上記設定により基板を走査しても)試料が発見されない場合は、2分法に基づきオフセット量をO=(1/2)(L/N)にし、再度低倍率走査をN本行なう。それでも見つからない場合はオフセット量を順次O=(1/4)(L/N)、O=(3/4)(L/N)・・・にして再度低倍率走査をN本行い、微細サンプル(試料)を探す。に、低倍率・高倍率XY走査のための三角波波形を示す。
この走査方法を用いると、基板上に広く分散した(基板面上の)微細な試料を短時間で発見できる。
【0021】
つぎに、図3(A)に示すように、低倍率測定された画像によって目的とされた試料が発見された場合(基板面における試料(目的物)の存在が検知された場合/基板面における試料のおおよその位置が判明した場合)に探針をその試料に正確に接触させ、その位置で探針を停止する方法について説明する。
前記方法において、低倍率の画郭Lで2−3本ラスター走査をして前記トリガー発生点に到達したとすると、次いで、図3(A)に示す高倍率の画郭l、つまり試料の存在が検知された範囲を高倍率走査するこの走査においても、高さ信号、エラー信号、あるいは摩擦信号が設定値を越えた地点を新たに試料接触位置としてラスター走査を停止する
以上のようにして基板上の試料を検出する構成を採用すると(この移動方法は)、ラスター走査をして試料に接近するためリニアリティー補正ができ、また高倍率測定を行なうため、正確に探針を試料に接触可能である。
【0022】
<試料移動時の各信号モニター>
つぎに、基板上において試料移動させる方式を説明する。試料の移動は通常探針と試料間の力が一定となるように制御するコンタクトモードによって、試料を所定の場所まで押すことで移動させる。まず、上記したように、試料の移動先を決める。例えば、基板上の場所(位置)を特定したり、移動の方向を決めたりするなどして、移動のルートを決める。表示器[42]に画面表示させてもよい
【0023】
本実施の形態に係る走査型プローブ顕微鏡は、高倍率画面、つまりは図3(A)に示すような高倍率の画郭lにおける走査で得られた情報によって特定された試料の形状からその重心位置を割りだし、試料を移動する方向と重心位置にもとづいた試料への押圧位置(図5)を決定し、探針をその位置に移動し、試料に押圧し、試料を基板上の所望の位置へ移動させる押圧位置を画像表示器[42]に位置を示してもよい。
【0024】
<探針の位置の特定・表示>
針の基板面における現在位置は、上記したように高圧アンプ[15]がXYのピエゾスキャナーに印加した電圧より割り出し、画面1上に表示するとよい
【0025】
<試料と障害物とが衝突した場合の処理方法>
(基板面)が滑らかなところでは探針の移動速度が一定になる。すると、図5に示すように摩擦信号は当初静止摩擦のため大きくなり、すぐに一定になる。エラー信号とZ高さ信号も一定になる。しかし試料が段差などの障害物に当たった場合、図2に示すように摩擦信号とエラー信号が増大し、遅れてZの高さ信号が増大する。この場合探針が破損あるいは、試料にダメージを与えないように前記エラー信号設定値以下に上記信号が戻るまで移動を停止する。増大した摩擦信号とエラー信号に比例した反力を操作レバーに発生させ作業者に体感させたり画面に表示する。
【0026】
<障害物の回避方法>
つぎに突起物などの障害物に試料が阻止されたときの回避の方法(基板面上の障害物の存在により試料を目的位置へ移動させられなくなった場合における対処方法)を述べる。
図2(B)に示す例では、試料が段差などの障害物に当たった場合(時刻t)その前後で摩擦信号とエラー信号が増大し、遅れてZの高さ信号が増加する。したがって、上記3つの信号が増大しつづける場合は、試料が障害物に接触した可能性が高い)と判断できる。このような場合一旦探針の移動をやめる。
【0027】
基板面を基準とした探針の相対的移動を停止した後、図6に「ベクトルF1、F2」と示すように、現在の移動Aにおいて+/−45度の範囲の方向から試料へ押する。つまり、押圧方向を変化させて前記3つの信号の変化を観察する。そして、3つの信号が障害物接触前の一定値に戻る方向に再び移動を始める。正常に移動始めたら、方向を修正し再度目的の方向に移動する。
【0028】
<探針から試料が外れた場合の処理方法>
つぎになんらかの理由により試料が探針から外れたときの対応を述べる。
常に移動しているときは摩擦信号が一定の値を示す。しかしなんらかの理由で試料が探針から外れた場合は、基板に接して移動する面積が減少するため、図7の時刻t2に示すように摩擦力が突然減少する。この場合、探針の基板面に対する相対的な移動を停止し、その地点で高倍率測定を行ない試料の位置と形状を再確認し、再び前記試料への押圧位置を求め移動を再開する。
【0029】
上記実施形態は本発明に係る一実施形態であって、本発明は、本明細書や図面に開示された思想・精神に基づき解釈されるものであることは言うまでもない。以下に記す技術的思想は、本明細書や図面に当然に開示されている。
【0030】
技術的思想(1)
微細な探針つき片持ち梁(カンチレバー)で試料表面近傍を走査し、カンチレバーのたわみ信号より試料表面の形状、物性情報を得たのち、試料の移動を行なう走査型プローブ顕微鏡において、試料と探針の間に働く力の初期設定置からのずれ量(エラー信号)を検出してずれ量に比例した信号を表示器に表示する機構と、操作レバーに試料面と垂直方向(Z方向)反力として伝達する機構を有することを特徴とした、走査型プローブ顕微鏡。
【0031】
技術的思想(2)
前記ずれ量がある設定範囲内に収まるように試料の移動速度を自動的に調節する機構を有する、技術的思想(1)に記載の走査型プローブ顕微鏡。
【0032】
技術的思想(3)
微細な探針つき片持ち梁(カンチレバー)で試料表面近傍を走査し、カンチレバーのたわみ信号より試料表面の形状、物性情報を得たのち、試料の移動を行なう走査型プローブ顕微鏡において、試料を移動中に試料と探針の間に働く摩擦力を検出して、摩擦力に比例した信号(摩擦信号)を表示器に表示する機構と、操作レバーに試料面に平行方向(XY方向)反力として伝達する機構を有することを特徴とした、走査型プローブ顕微鏡。
【0033】
技術的思想(4)
前記摩擦量がある設定範囲内に収まるように試料の移動速度を自動的に調節する機構を有することを特徴とした、技術的思想(3)に記載の走査型プローブ顕微鏡。
【0034】
技術的思想(5)
微細な探針つき片持ち梁(カンチレバー)で試料表面近傍を走査し、カンチレバーのたわみ信号より試料表面の形状、物性情報を得たのち、試料の移動や試料面の加工を行なう走査型プローブ顕微鏡において、基板上に広く分散した微細な試料を発見する目的で、低倍率でラスター走査をしながら広域画像取り込み、走査中に探針直下の高さ信号や前記エラー信号や摩擦信号が所定の設定値を越えたとき、トリガー信号を発生させ、そのトリガー信号を受けた地点で高倍率画像を採取し、再びトリガー地点に復帰し低倍率でラスター走査を行なうことを特徴とした走査型プローブ顕微鏡。
【0035】
技術的思想(6)
低倍率ラスター走査後、さらに、ラスター間を補間走査する目的でラスター間の1/2、1/4と3/4、・・と2分法にもとづく初期オフセット位置を走査開始位置に加える、低倍率ラスター走査を行ないながらラスター間に埋没した微細試料を発見することを特徴とした、技術的思想(5)に記載の走査型プローブ顕微鏡。
【0036】
技術的思想(7)
微細な探針つき片持ち梁(カンチレバー)で試料表面近傍を走査し、カンチレバーのたわみ信号より試料表面の形状、物性情報を得たのち、試料の移動や試料面の加工を行なう走査型プローブ顕微鏡において、測定した低倍率測定画面に基づき、試料の移動位置と移動方向を決めた後、試料移動時に障害物に遭遇した場合、探針によって試料を押す方向を、前記高さ信号やエラー信号や摩擦信号が障害物遭遇前の状態に近づくような方向に変えて障害物を回避移動させることを特徴とする走査型プローブ顕微鏡。
【0037】
技術的思想(8)
微細な探針つき片持ち梁(カンチレバー)で試料表面近傍を走査し、カンチレバーのたわみ信号より試料表面の形状、物性情報を得たのち、試料の移動や試料面の加工を行なう走査型プローブ顕微鏡において、測定した低倍率測定画面に基づき、試料の移動位置と移動方向を決めた後、移動中の試料の探針からの外れを前記摩擦信号の変化より検知することを特徴とする走査型プローブ顕微鏡。
【0038】
上記実施形態の奏する作用・効果のいくつかを以下に箇条書きで示す。
1.基板に広範囲に分散した微細な試料の発見が容易になった。
2.基板に広範囲に分散した微細な試料への探針の接触が容易になった。
3.試料の移動中に高さ信号、摩擦信号とエラー信号を観察できるため、移動中の試料の状態が容易に推定でき、試料移動の確実性が向上した。
4.試料の移動中に高さ信号、摩擦信号とエラー信号の設定値を決め、設定値を越えた場合移動を中断する機構を設けたため、探針、試料、基板間に設定以上の力が働かず、カンチレバーの破損、試料や基板へのダメージが低減した。
【図面の簡単な説明】
【図1】 本発明に係る実施形態の一態様を示すシステム模式図である。
【図2】 (A)は高さ信号、エラー信号、摩擦信号の瞬時値、(B)はZ高さ信号、エラー信号、摩擦信号の時系列値の表示例である。(右端で障害物にあたった時)
【図3】 (A)ラスター走査/試料発見/探針停止機構による走査ラインの図である。
(B)ラスター走査/試料発見/探針停止機構による電圧-時間の図である。
【図4】 (A)は一筆書き走査による加工例、(B)はラスター走査による加工例である。
【図5】 (A)は試料の押圧位置、(B)はZ高さ信号、エラー信号、摩擦信号の時系列値の表示例である。(試料移動開始時)
【図6】 試料が障害物に当たったときの回避例である。
【図7】 Z高さ信号、エラー信号、摩擦信号の時系列値の表示例である。(試料が外れたとき時)
【符号の説明】
1 Z粗動メカニズム
2 XYZ微動スキャナー
3 ピエゾ振動板
4 カンチレバー部
基板
6 サンプル台
7 レーザービーム
8 4分割位置検出器
9 プレアンプ
10 プレアンプ
11 誤差アンプ
12 Zサーボ系
13 高圧アンプ
14 XY走査コントローラー
15 高圧アンプ
16、17、18 比較器
20、21、22 アナログデジタル変換器
30 バスライン
41 コンピュータ
42 表示器
43 デジタルアナログ変換器
44 操作レバー
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to run査型probe microscope.
[0002]
[Prior art]
The scanning probe microscope of the prior art is mainly intended for image observation of samples, and there are disadvantages in moving or arranging a plurality of observed samples to arbitrary locations. For example, when samples such as carbon nanotubes, DNA, and fine particles are dispersed on the substrate, it takes a lot of time to quickly find these particles, move them to predetermined positions, and arrange them.
[0003]
It took difficult to nonlinearity of the piezoelectric element used in scanners and hysteresis and thermal drift or the like in alignment to fine sintered sample position (contact). In order to improve the nonlinearity and hysteresis of these piezo elements, S. Desogus, S. Lany, R. Nerino, GBPicotto, etc. incorporate a linear element such as a capacitance sensor in the piezo scanner and adjust it to the reading amount of the element. Thus, a method of controlling the applied voltage of the piezo scanner in a closed loop was adopted (J. Vac . Sci . Technol . B12 (3), 1665-1668, 1994) . In this method, the apparatus becomes complicated, and since the three-axis sensor is attached to the piezo scanner, the weight of the sensor increases, and the responsiveness of the piezo scanner deteriorates. In addition, since a moving fine sample cannot be observed, some alternative means is necessary.
[0004]
M.Finch, V.Chi, RMFalvo, M. Washburn, R. Superfine, etc., from the University of North Carolina have a paper (ACMSIGGRAPH, NewYork, 1995.pp.13-18.) That controls atomic force microscopy (AFM). It describes a manipulator. In addition, 3rdTecn in the United States takes an image measured by AFM, reproduces the image by computer graphics, displays a virtual probe on the image, and when this probe contacts the sample of the computer graphic image, A device has been developed that generates a pseudo reaction force signal on the lever to be operated and notifies the operator . These methods are actually AFM probe does not reflect the interactions that are in contact with the minute sample, remained improved operability without increasing the certainty of the specimen movement.
[0005]
[Problems to be solved by the invention]
When a fine sample is moved to a predetermined position using a scanning probe microscope, it is first necessary to find the moving sample, confirm the movement destination position, touch the sample, move the sample, and the like. In this series of operations , the moving sample is widely dispersed on the substrate, and it takes time for discovery. For example, when searching for a fine particle having a diameter of about 0.05 μm dispersed on a substrate from a 100 μm area, 5000 or more scanning lines are required for both XY. In this case, when the measurement contour is set to 10 μm, it is necessary to measure 100 images, and it takes a lot of time for measurement for finding the sample.
[0006]
Piezo scanners commonly used in scanning probe microscopes are non-linear elements, and the position of the sample fluctuates with time due to hysteresis and creep, or the sample position fluctuates due to thermal effects. It is difficult to contact the sample once.
[0007]
Because it can not observe the sample in the moving, or out the sample that is actually moving, when encountering an obstacle, or deviated if so, a plurality of signal sources to inform the operator or avoiding an obstacle Is required.
[0008]
The present invention provides a novel scanning probe microscope.
[0009]
DETAILED DESCRIPTION OF THE INVENTION
The scanning probe microscope according to the embodiment of the present invention finds a target sample by performing raster scanning at a predetermined high magnification area when a predetermined position or a predetermined condition is reached while performing raster scanning at a low magnification. Alternatively, it has a mechanism for stopping the probe when it comes into contact with the sample (raster scanning / specimen discovery / probe stop mechanism).
[0010]
In other scanning probe microscopes, the signal indicating the height immediately below the probe (Z signal) during movement and the amount of deviation from the initial setting of the Z-direction force acting on the probe and the substrate or sample immediately below the probe Proportional signals (error signals) and horizontal force signals (friction signals) acting between the sample and the substrate directly under the probe or the sample are detected, and these signals are displayed as time-series signals and instantaneous positioning signals. Or a mechanism for notifying the operator of an error signal as a Z direction reaction force and a friction signal as an XY direction reaction force via an operation lever .
[0011]
<Device configuration>
To explain by using a less schematic of specimen movement and processing the scanning probe microscope according to the present invention Figure (Figure 1).
[0012]
As shown in FIG. 1 , an XYZ scanner [2] is fixed to a Z coarse motion system mechanism [1], and a cantilever part [4] is attached via a piezo diaphragm [3]. The cantilever part [4] faces the substrate [5] fixed to the sample stage [6]. The back surface of the cantilever [4] is irradiated with a laser beam [7], and the reflected light is incident on the quadrant position detector [8]. The signals from the upper and lower sensors of the quadrant position detector [8] are amplified by the preamplifier [10] as a signal in the height direction, and the difference signal from the Z-direction force setting (Δ1 : force Set) (round) 2 error signal) is input to the Z servo system [12]. The output signal (full 1Z direction height signal) is amplified by the high-voltage amplifier [13], the Z-axis of the XYZ scanner [2] expands and contracts, and the distance between the probe and the sample becomes constant so that the deflection of the cantilever becomes constant. It is controlled. On the other hand, the signals of the quadrant position detector [8] left and right sensors are amplified by the preamplifier [9] to become a friction signal.
[0013]
These Z height signal (full 1), error signal (full 2), and friction signal (full 3) are converted into digital signals by analog / digital converters (A / D converters) [20, 21, 22] , respectively. Each instantaneous value (FIG. 2A) and this value are displayed on the display [42] as time-series data (FIG. 2B) displayed in time series from the start of the movement of the sample.
[0014]
The microscope, an error signal as the XY direction reaction force friction signal in the Z-direction reaction force, after digital-to-analog converter [43], a mechanism for notifying by the reaction force to the operator operating the operating lever [44].
[0015]
Z height signal (Maru 1), the error signal (Maru 2), the friction signal (Maru 3) values respectively comparator [16, 17, 18] of the set value (△ 1 ': height Set, △ 2: When the error Set, Δ3 : friction Set) is exceeded, a signal is transmitted to the XY scan controller [14] , and the XY scan controller [14] stops increasing the triangular wave for XY scan, and the Z height signal The movement of the probe is stopped until the (round 1) , error signal (round 2) , and friction signal (round 3) are below the set value.
[0016]
The XY scanning controller [14] inputs a raster scanning triangular wave to the digital-analog converter in the XY controller [14] , applies the output to the high-voltage amplifier [15] , and drives the XY piezo scanner [2] . A shape image is calculated from the Z height signal and the XY raster signal, an error signal image is calculated from the error signal and the XY raster signal, and a friction image is calculated from the friction signal and the XY raster signal. ] to display.
[0017]
Further , as shown in the figure, when the Z direction height signal (round 1), error signal (round 2) and / or friction signal (round 3) exceeds a threshold value, a scanning stop signal (round 4) is generated. The XY controller [14] configured and receiving this signal holds the voltage value of XY and fixes the probe at a predetermined position. That is, the scanning stop signal, the Z-height signal (Maru 1), the error signal (Maru 2), the friction signal (Maru 3) stops scanning on the substrate surface by the probe in case of greater than or equal to the specified value It is a signal to make it .
[0018]
<Raster scan / Sample detection / Stop probe>
3 (A) is, the screen capture view of raster scan / sample discovery / probe stop operation (schematic diagram showing a state of scanning lines), FIG. 3 (B), the output voltage of the XY scanning controller [14] It is an example of time series display. The raster scanning / specimen discovery / probe stop operation will be described below.
This series of operations in order to discover the fine sample being widely distributed on the base plate, shown in FIG. 3 (A), scans the low magnification (wide area), needle object that is supposed to sample when previously detected, by scanning the periphery thereof at a high magnification (narrow region), it is an operation that facilitates discovery of fine sample.
As shown in FIG. 3 ( A ) , the outline of a wide area is L, and the number of scanning lines is N (lines) . A narrow area where high magnification is measured is l, and the number of scans is n (lines) . The offset O from the initial scan line position of the start point of the run査and O = pnxL / N.
[0019]
Also not a, a low magnification (wide area) scanned with offset zero, the instantaneous value of Z height just below the tips may become higher than the set value (signal Maru 1), the instantaneous value of the error signal immediately below the probe XY scanning controller [14] triggered by the fact that it becomes larger than the set value (signal round 2) or the instantaneous value of the friction signal immediately below the probe becomes larger than the set value (signal round 3) There generates a signal full 5, the indicator which has received the signal full 5 [42], the position of the probe on the substrate when the trigger signal full 5 has occurred (scanning position), corresponding to this position The display is set to be the center of the display [42] .
The XY scan controller [14] generates the trigger signal (5) and measures a high-magnification image (high-magnification measurement) of the number n of scans in a narrow area l. After that (after the measurement for the region 1 is completed), the trigger is returned to the trigger generation point on the substrate , and the interrupted low-magnification scanning is continued (scanning by the setting performed before the trigger signal (maru 5) is generated (low-magnification scanning). ) Is resumed from the point of interruption.)
[0020]
XY scan controller [14], if the sample is not found even after scanning N lines ( even if the substrate is scanned according to the above setting) , the offset amount is set to O = (1/2) (L / N) based on the bisection method to) low magnification scan the N lines Nau again. Still successively O = (1/4) (L / N) of the offset amount if it is not found, O = (3/4) (L / N) to be the low magnification scanning again ... performed N present, fine sample Search for (sample) . FIG. 3 ( B ) shows a triangular waveform for low magnification / high magnification XY scanning.
With this scanning method, it was widely distributed on a substrate (substrate surface) fine specimen can be found in a short time.
[0021]
Next, as shown in FIG. 3 (A), in a case / substrate surface presence is detected of a sample (target product) in the case of a sample that is an object is found (the substrate surface by the low magnification measured image (When the approximate position of the sample is found), a method for bringing the probe into contact with the sample accurately and stopping the probe at that position will be described.
In the above method, assuming that the trigger generation point is reached by performing 2-3 raster scanning with the low-magnification contour L , then, the high-magnification contour l shown in FIG. There is a high magnification scanning a detection range. Also in this scanning, the raster scanning is stopped with the point where the height signal, error signal, or friction signal exceeds the set value as a new sample contact position.
Adopted to the configuration for detecting the sample on the substrate as described above (Method This movement), and a raster scanning can linearity correction to approach the sample, for performing high magnification measurements were or exactly exploration A needle can contact the sample.
[0022]
<Each signal monitor during sample movement>
Next, a method of moving the sample on the substrate. Movement of the sample, usually by Turkey Ntakutomo de controls such that a force between the probe and the sample becomes constant, is moved by pressing the sample to a predetermined location. First, as described above, Ru determine the destination of the sample. For example, to identify a location on the substrate (position), and the like or decide the direction of movement, Ru decided moving route. The display [42] may be displayed on the screen .
[0023]
Scanning probe microscope according to the present embodiment, a high magnification screen, No clogging the Karaso shape of the sample specified by the information obtained by scanning in the Ekuruwa l of high magnification as shown in FIG. 3 (A) The position of the center of gravity is calculated, the pressing position (FIG. 5 ( A ) ) to the sample is determined based on the direction in which the sample is moved and the position of the center of gravity , the probe is moved to that position , the sample is pressed, and the sample is placed on the substrate. Move to the desired position above . The pressing position may be indicated on the image display [42] .
[0024]
<Specifying and displaying the probe position>
Current position on the substrate surface of the probe may the pressure amplifier as described above [15] is indexed than the voltage applied to the XY piezo scanner is displayed on the screen 1.
[0025]
<Treatment method when sample and obstacle collide>
The board (substrate surface) where smooth, the moving speed of the probe is constant. When the friction signal as shown in FIG. 5 (B) increases for initial static friction, quickly become constant. The error signal and the Z height signal are also constant. However, when the sample hits the obstacle such as a step, increases the frictional signal and the error signal as shown in FIG. 2 (B), the height signal Z increases late. In this case, the probe is damaged or so as not to damage the sample, it stops moving until the signal returns below the error signal value. A reaction force proportional to the increased friction signal and error signal is generated on the operation lever to allow the operator to experience it or display it on the screen .
[0026]
<How to avoid obstacles>
Next, a method of avoiding when the sample is blocked by an obstacle such as a protrusion ( a method for dealing with the case where the sample cannot be moved to the target position due to the presence of the obstacle on the substrate surface) will be described.
In the example shown in FIG. 2 (B), if the specimen is hit an obstacle such as a step (time t), the friction signal and error signal before and after increases its height signal Z is increased with a delay . Therefore, if the above three signals continue to increase , it can be determined that the sample has contacted the obstacle ( highly likely ) . In such a case, once Ru stop the movement of the probe.
[0027]
After stopping the relative movement of the probe relative to the substrate surface, as shown as "vector F1, F2" in FIG. 6, the pressing from the direction of the range of +/- 45 degrees in the current mobile A to the sample To do. In other words, observing the change of the three signals by changing the pressing direction. Then, the three signals start moving again in a direction to return to a constant value before the obstacle contact. After successful start moving, it is moving in the direction of the re-time basis to correct the direction.
[0028]
<Treatment method when the sample comes off the probe>
Next, what to do when the sample is removed from the probe for some reason is described.
When positive always moving showing friction signal a constant value. However , if the sample is removed from the probe for some reason, the area that moves in contact with the substrate decreases, and the frictional force suddenly decreases as shown at time t2 in FIG. In this case , the relative movement of the probe with respect to the substrate surface is stopped, high magnification measurement is performed at that point, the position and shape of the sample are reconfirmed, the pressing position on the sample is again obtained, and the movement is resumed.
[0029]
The above embodiment is an embodiment according to the present invention, and it goes without saying that the present invention is interpreted based on the idea and spirit disclosed in the present specification and drawings. The technical ideas described below are naturally disclosed in the present specification and drawings.
[0030]
Technical thought (1)
Scanning the vicinity of the sample surface with a fine cantilever with a probe (cantilever), obtaining the shape and physical property information of the sample surface from the deflection signal of the cantilever, and then using a scanning probe microscope that moves the sample, A mechanism that detects the amount of error (error signal) from the initial setting of the force acting between the needles and displays a signal proportional to the amount of deviation on the display, and the operation lever is perpendicular to the sample surface (Z direction) A scanning probe microscope characterized by having a mechanism for transmitting force.
[0031]
Technical thought (2)
The scanning probe microscope according to the technical idea (1), which has a mechanism for automatically adjusting the moving speed of the sample so that the deviation amount falls within a certain setting range.
[0032]
Technical thought (3)
Scan the vicinity of the sample surface with a cantilever with a fine probe (cantilever), obtain the shape and physical property information of the sample surface from the deflection signal of the cantilever, and then move the sample in a scanning probe microscope that moves the sample A mechanism that detects the friction force acting between the sample and the probe and displays a signal (friction signal) proportional to the friction force on the display, and a reaction force parallel to the sample surface (XY direction) on the control lever A scanning probe microscope characterized by having a transmission mechanism as
[0033]
Technical thought (4)
The scanning probe microscope according to the technical idea (3), further comprising a mechanism that automatically adjusts the moving speed of the sample so that the friction amount falls within a certain setting range.
[0034]
Technical thought (5)
Scanning probe microscope that scans the vicinity of the sample surface with a fine cantilever with a probe (cantilever), obtains the shape and physical property information of the sample surface from the deflection signal of the cantilever, and then moves the sample and processes the sample surface In order to find a fine sample widely dispersed on the substrate, a wide range image is captured while performing raster scanning at a low magnification, and the height signal just below the probe, the error signal, and the friction signal are set in advance during scanning. A scanning probe microscope that generates a trigger signal when a value is exceeded, collects a high-magnification image at a point where the trigger signal is received, returns to the trigger point again, and performs raster scanning at a low magnification.
[0035]
Technical thought (6)
After the low-magnification raster scan, an initial offset position based on the bisection method is added to the scan start position for the purpose of interpolating between the rasters, 1/2, 1/4 and 3/4,. The scanning probe microscope according to the technical idea (5), wherein a fine sample buried between rasters is discovered while performing magnification raster scanning.
[0036]
Technical thought (7)
Scanning probe microscope that scans the vicinity of the sample surface with a fine cantilever with a probe (cantilever), obtains the shape and physical property information of the sample surface from the deflection signal of the cantilever, and then moves the sample and processes the sample surface After determining the moving position and moving direction of the sample based on the measured low magnification measurement screen, if an obstacle is encountered when moving the sample, the direction in which the sample is pushed by the probe is set to the height signal, error signal, A scanning probe microscope characterized in that the obstacle signal is moved to avoid the obstacle by changing the direction so that the friction signal approaches the state before the obstacle encounter.
[0037]
Technical thought (8)
Scanning probe microscope that scans the vicinity of the sample surface with a fine cantilever with a probe (cantilever), obtains the shape and physical property information of the sample surface from the deflection signal of the cantilever, and then moves the sample and processes the sample surface The scanning probe characterized in that, after determining the moving position and moving direction of the sample based on the measured low-magnification measurement screen, the movement of the moving sample from the probe is detected from the change in the friction signal. microscope.
[0038]
Some of the actions and effects exhibited by the above-described embodiment are shown in the following bulleted list.
1. It has become easier to find fine samples dispersed over a wide range of substrates.
2. The probe can be easily brought into contact with a fine sample dispersed widely on the substrate.
3. Since the height signal, the friction signal, and the error signal can be observed during the movement of the sample, the state of the moving sample can be easily estimated, and the reliability of the sample movement is improved.
4). The set value of the height signal, friction signal and error signal is determined during the movement of the sample, and a mechanism is provided to interrupt movement when the set value is exceeded. Cantilever breakage, sample and substrate damage were reduced.
[Brief description of the drawings]
FIG. 1 is a system schematic diagram showing one aspect of an embodiment according to the present invention.
2A is an example of display of instantaneous values of height signals, error signals, and friction signals, and FIG. 2B is a display example of time series values of Z height signals, error signals, and friction signals. (When hitting an obstacle at the right end)
FIG. 3A is a diagram of a scanning line by a raster scanning / sample finding / probe stop mechanism.
(B) It is a figure of the voltage-time by a raster scan / sample discovery / probe stop mechanism.
4A is an example of processing by one-stroke scanning, and FIG. 4B is an example of processing by raster scanning.
FIGS. 5A and 5B are display examples of time-series values of a Z pressure signal, an error signal, and a friction signal. FIG. (At the start of sample movement)
FIG. 6 is an example of avoidance when a sample hits an obstacle.
FIG. 7 is a display example of time series values of a Z height signal, an error signal, and a friction signal. (When the sample comes off)
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Z coarse movement mechanism 2 XYZ fine movement scanner 3 Piezo diaphragm 4 Cantilever part 5 Substrate 6 Sample stand 7 Laser beam 8 4 division position detector 9 Preamplifier 10 Preamplifier 11 Error amplifier 12 Z Servo system 13 High voltage amplifier 14 XY scan controller 15 High voltage Amplifier 16, 17, 18 Comparator 20, 21, 22 Analog-digital converter 30 Bus line 41 Computer 42 Display 43 Digital-analog converter 44 Operation lever

Claims (12)

初めに低倍率で走査し、試料と想定される物体を検知した際には直ちに前記低倍率の走査を終了し、その周辺を高倍率で走査する、走査型プローブ顕微鏡を用いた基板上の試料を発見する方法であって、
所定のトリガー信号を受けた際に前記物体を検知したと判断し、直ちに前記低倍率の走査を終了して前記走査型プローブ顕微鏡の探針の移動を停止した後、前記高倍率の走査を開始する、走査型プローブ顕微鏡を用いた基板上の試料を発見する方法。
A sample on a substrate using a scanning probe microscope that first scans at a low magnification and immediately ends the scan at a low magnification when an object assumed to be a sample is detected and scans the periphery at a high magnification. A method of discovering
It is determined that the object has been detected when a predetermined trigger signal is received, and immediately after the low-magnification scanning is finished and the probe of the scanning probe microscope is stopped, the high-magnification scanning is started. A method for discovering a sample on a substrate using a scanning probe microscope.
請求項1に記載の方法であって、
前記走査型プローブ顕微鏡の探針から入力された高さ方向の瞬時値と前記探針から入力されたエラー信号の瞬時値と前記探針から入力された摩擦信号の瞬時値とを監視し、これら瞬時値のうちの少なくとも一つが設定値より大きくなった場合に前記トリガー信号を発生させる、走査型プローブ顕微鏡を用いた基板上の試料を発見する方法。
The method of claim 1, comprising:
The instantaneous value in the height direction input from the probe of the scanning probe microscope, the instantaneous value of the error signal input from the probe, and the instantaneous value of the friction signal input from the probe are monitored. A method for detecting a sample on a substrate using a scanning probe microscope, wherein the trigger signal is generated when at least one of instantaneous values becomes larger than a set value.
請求項1又は請求項2に記載の方法であって、
前記高倍率の走査が終了した後、高倍率の走査を開始する直前に低倍率の走査を行った場所から低倍率の走査を再開する、走査型プローブ顕微鏡を用いた基板上の試料を発見する方法。
A method according to claim 1 or claim 2, wherein
After the high-magnification scan is completed, the low-magnification scan is resumed from the place where the low-magnification scan was performed immediately before the start of the high-magnification scan. Method.
初めに低倍率で走査し、試料と想定される物体を検知した際には直ちに前記低倍率の走査を終了し、その周辺を高倍率で走査する、走査型プローブ顕微鏡を用いた基板上の試料を発見する方法であって、
前記高倍率の走査が終了した後、高倍率の走査を開始する直前に低倍率の走査を行った場所から低倍率の走査を再開する、走査型プローブ顕微鏡を用いた基板上の試料を発見する方法。
A sample on a substrate using a scanning probe microscope that first scans at a low magnification and immediately ends the scan at a low magnification when an object assumed to be a sample is detected and scans the periphery at a high magnification. A method of discovering
After the high-magnification scan is completed, the low-magnification scan is resumed from the place where the low-magnification scan was performed immediately before the start of the high-magnification scan. Method.
請求項1乃至請求項4のいずれか一項に記載の方法であって、
低倍率の走査は、最初の走査の開始点の走査ライン位置(初期走査ライン位置)からのオフセット量をゼロとして走査し、試料と想定される物体が検知されなかった場合、オフセット量を変更して再度同倍率の走査を行うものである、走査型プローブ顕微鏡を用いた基板上の試料を発見する方法。
A method according to any one of claims 1 to 4, comprising
For low-magnification scanning, the offset from the scan line position (initial scan line position) at the start of the first scan is set to zero, and if an object assumed to be a sample is not detected, the offset is changed. A method of finding a sample on a substrate using a scanning probe microscope, which performs scanning at the same magnification again.
請求項1乃至請求項5のいずれか一項に記載の走査型プローブ顕微鏡を用いた基板上の試料を発見する方法によって特定された基板上の試料の位置に関する情報と、基板上における試料の目標移動位置に関する情報とに基づいて、走査型プローブ顕微鏡の探針で試料を押す位置及び押圧方向を決定し、当該決定に基づいて探針で試料を押して移動させる、走査型プローブ顕微鏡を用いた基板上の試料を移動させる方法。  Information on the position of the sample on the substrate identified by the method for finding a sample on the substrate using the scanning probe microscope according to any one of claims 1 to 5, and a target of the sample on the substrate A substrate using a scanning probe microscope that determines the position and pressing direction of the sample with the probe of the scanning probe microscope based on the information on the moving position, and moves the sample by pressing the probe with the probe based on the determination. A method of moving the sample above. 請求項6に記載の方法であって、
探針が試料から外れたと判断した場合、その判断した時の基板上における探針の位置周辺を高倍率で走査し試料を発見し、発見した試料の位置に関する情報及び基板上における試料の目標移動位置に関する情報に基づいて、再度、探針で試料を押す位置及び押圧方向を決定し、当該決定に基づいて探針で試料を押して移動させる、走査型プローブ顕微鏡を用いた基板上の試料を移動させる方法。
The method of claim 6, comprising:
When it is determined that the probe has come off the sample, the vicinity of the probe position on the substrate at the time of the determination is scanned at a high magnification to detect the sample, information on the position of the detected sample and target movement of the sample on the substrate Based on the information on the position, the position and the pressing direction of the sample are again determined by the probe, and the sample on the substrate using the scanning probe microscope is moved based on the determination. How to make.
初めに低倍率で走査し、試料と想定される物体を検知した際には直ちに前記低倍率の走査を終了し、その周辺を高倍率で走査する、走査型プローブ顕微鏡を用いた基板上の試料を発見する方法によって特定された基板上の試料の位置に関する情報と、基板上における試料の目標移動位置に関する情報とに基づいて、走査型プローブ顕微鏡の探針で試料を押す位置及び押圧方向を決定し、当該決定に基づいて探針で試料を押して移動させ、
探針が試料から外れたと判断した場合、その判断した時の基板上における探針の位置周辺を高倍率で走査し試料を発見し、発見した試料の位置に関する情報及び基板上における試料の目標移動位置に関する情報に基づいて、再度、探針で試料を押す位置及び押圧方向を決定し、当該決定に基づいて探針で試料を押して移動させる、走査型プローブ顕微鏡を用いた基板上の試料を移動させる方法。
A sample on a substrate using a scanning probe microscope that first scans at a low magnification and immediately ends the scan at a low magnification when an object assumed to be a sample is detected and scans the periphery at a high magnification. The position and direction of pressing the sample with the probe of the scanning probe microscope are determined based on the information on the position of the sample on the substrate specified by the method for discovering and the information on the target movement position of the sample on the substrate. Then, based on the determination, push the sample with the probe and move it,
When it is determined that the probe has come off the sample, the vicinity of the probe position on the substrate at the time of the determination is scanned at a high magnification to detect the sample, information on the position of the detected sample and target movement of the sample on the substrate Based on the information on the position, the position and the pressing direction of the sample are again determined by the probe, and the sample on the substrate using the scanning probe microscope is moved based on the determination. How to make.
請求項6乃至請求項8のいずれか一項に記載の方法であって、
試料が障害物に衝突したと判断した場合、試料への押圧方向を変化させて該試料を移動可能な方向に押して移動させた後、試料の位置に関する情報及び基板上における試料の目標位置に関する情報に基づいて、再度、探針で試料を押す位置及び押圧方向を決定し、当該決定に基づいて探針で試料を押して移動させる、走査型プローブ顕微鏡を用いた基板上の試料を移動させる方法。
A method according to any one of claims 6 to 8, comprising
When it is determined that the sample has collided with an obstacle, the direction of pressing the sample is changed and the sample is pushed and moved in a movable direction, and then information on the position of the sample and information on the target position of the sample on the substrate A method of moving a sample on a substrate using a scanning probe microscope, which again determines a position and a pressing direction for pressing the sample with a probe, and presses and moves the sample with the probe based on the determination.
請求項6乃至請求項9のいずれか一項に記載の方法であって、
前記走査型プローブ顕微鏡の探針から入力された摩擦信号を監視し、この摩擦信号の変化に基づいて、探針が試料から外れたことを判断する、走査型プローブ顕微鏡を用いた基板上の試料を移動させる方法。
A method according to any one of claims 6 to 9, comprising
A sample on the substrate using the scanning probe microscope that monitors a friction signal input from the probe of the scanning probe microscope and determines that the probe has come off the sample based on a change in the friction signal. How to move.
請求項1乃至請求項5のいずれか一項に記載の走査型プローブ顕微鏡を用いた基板上の試料を発見する方法によって、基板上の試料を発見する、走査型プローブ顕微鏡。  A scanning probe microscope for discovering a sample on a substrate by the method for discovering a sample on a substrate using the scanning probe microscope according to any one of claims 1 to 5. 請求項6乃至請求項10のいずれか一項に記載の走査型プローブ顕微鏡を用いた基板上の試料を移動させる方法を用いて、基板上において試料を移動させる、走査型プローブ顕微鏡。  A scanning probe microscope that moves a sample on the substrate using the method of moving a sample on the substrate using the scanning probe microscope according to claim 6.
JP2002051888A 2002-02-27 2002-02-27 Method for discovering sample on substrate using scanning probe microscope, method for moving sample on substrate using scanning probe microscope, and scanning probe microscope Expired - Fee Related JP3942915B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002051888A JP3942915B2 (en) 2002-02-27 2002-02-27 Method for discovering sample on substrate using scanning probe microscope, method for moving sample on substrate using scanning probe microscope, and scanning probe microscope

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002051888A JP3942915B2 (en) 2002-02-27 2002-02-27 Method for discovering sample on substrate using scanning probe microscope, method for moving sample on substrate using scanning probe microscope, and scanning probe microscope

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2006148812A Division JP4602284B2 (en) 2006-05-29 2006-05-29 Scanning probe microscope

Publications (2)

Publication Number Publication Date
JP2003247929A JP2003247929A (en) 2003-09-05
JP3942915B2 true JP3942915B2 (en) 2007-07-11

Family

ID=28663746

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002051888A Expired - Fee Related JP3942915B2 (en) 2002-02-27 2002-02-27 Method for discovering sample on substrate using scanning probe microscope, method for moving sample on substrate using scanning probe microscope, and scanning probe microscope

Country Status (1)

Country Link
JP (1) JP3942915B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10884022B2 (en) 2017-01-10 2021-01-05 Osaka University Scanner and scanning probe microscope

Also Published As

Publication number Publication date
JP2003247929A (en) 2003-09-05

Similar Documents

Publication Publication Date Title
US9081028B2 (en) Scanning probe microscope with improved feature location capabilities
US10197595B2 (en) Dual-probe scanning probe microscope
US8732861B2 (en) Control system for a scanning probe microscope
WO2007089365A2 (en) Variable density scanning
JP2007085764A (en) Probe control method of scanning probe microscope
EP0843175B1 (en) Scanning probe microscope and signal processing apparatus
JP5121619B2 (en) Probe microscope probe alignment method and probe microscope operated by the method
US11668730B2 (en) High speed atomic force profilometry of large areas
JP3942915B2 (en) Method for discovering sample on substrate using scanning probe microscope, method for moving sample on substrate using scanning probe microscope, and scanning probe microscope
US7795581B2 (en) Pattern measuring method and electron microscope
JP4602284B2 (en) Scanning probe microscope
JP5806457B2 (en) Surface analyzer
EP2367016A1 (en) Method for processing output of scanning type probe microscope, and scanning type probe microscope
JP2007322363A (en) Probe structure and scanning probe microscope
JPH07325090A (en) Optical lever type scanning probe microscope and atomic force microscope
JP2000088735A (en) Scanning probe microscope
JP3892184B2 (en) Scanning probe microscope
JP2002014025A (en) Probe scanning control device, scanning probe microscope by the same, probe scanning control method, and measuring method by the scanning control method
JP2004108979A (en) Inspection method and device using scanning electron microscope
JP4448508B2 (en) Scanning probe microscope
JP3597613B2 (en) Scanning probe microscope
TW202311747A (en) Afm imaging with creep correction
JPH07248334A (en) Interatomic force microscope
JP2000214067A (en) Probe movement control method for scanning probe microscope
WO2023121467A1 (en) Scanning probe microscopy system and method of operating such a system

Legal Events

Date Code Title Description
RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20040304

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20040526

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040823

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060328

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060526

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061024

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061221

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070123

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070306

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070403

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070404

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110413

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110413

Year of fee payment: 4

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: R3D03

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110413

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130413

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130413

Year of fee payment: 6

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130413

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140413

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees