JP4143722B2 - Sensitivity calibration method for atomic force / horizontal force microscope - Google Patents

Sensitivity calibration method for atomic force / horizontal force microscope Download PDF

Info

Publication number
JP4143722B2
JP4143722B2 JP2003303584A JP2003303584A JP4143722B2 JP 4143722 B2 JP4143722 B2 JP 4143722B2 JP 2003303584 A JP2003303584 A JP 2003303584A JP 2003303584 A JP2003303584 A JP 2003303584A JP 4143722 B2 JP4143722 B2 JP 4143722B2
Authority
JP
Japan
Prior art keywords
probe
displacement
tip
sample
leaf spring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2003303584A
Other languages
Japanese (ja)
Other versions
JP2005069993A (en
Inventor
悟 藤澤
徳志 木塚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute of Advanced Industrial Science and Technology AIST filed Critical National Institute of Advanced Industrial Science and Technology AIST
Priority to JP2003303584A priority Critical patent/JP4143722B2/en
Publication of JP2005069993A publication Critical patent/JP2005069993A/en
Application granted granted Critical
Publication of JP4143722B2 publication Critical patent/JP4143722B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Description

この発明は、校正機能付き原子間力/水平力顕微鏡と原子間力/水平力顕微鏡の感度校正方法に関するものであり、特に探針先端部を直視することのできる電子顕微鏡を備えた原子間力/水平力顕微鏡と、その電子顕微鏡を用いた原子間力/水平力顕微鏡の感度校正方法に関するものである。   The present invention relates to an atomic force / horizontal force microscope with a calibration function and a sensitivity calibration method for an atomic force / horizontal force microscope, and in particular, an atomic force equipped with an electron microscope capable of directly viewing the tip of a probe. The present invention relates to a horizontal force microscope and an atomic force / horizontal force microscope sensitivity calibration method using the electron microscope.

原子間力/水平力顕微鏡(atomic force / lateral force microscope)は、1986年にG. Binnigらにより開発されたものであって、試料と探針先端との間に作用する原子間力(水平力)によって探針を保持する板バネ(カンチレバー)を撓ませ、その撓みを例えば光てこ方式の変位検出器により検出して試料表面の凹凸情報を得るものであり、原子スケールでの表面形状の観察が可能なことから、広い分野での表面形状の観察に採用されている。而して、原子間力/水平力顕微鏡により試料表面形状の精確な情報を得るためには、その精度の高い感度校正が必要となる。   The atomic force / lateral force microscope was developed by G. Binnig et al. In 1986, and it works between the specimen and the tip of the probe (horizontal force). ) To deflect the leaf spring (cantilever) that holds the probe and detect the deflection by, for example, an optical lever type displacement detector, and obtain surface roughness information on the atomic scale. Therefore, it has been adopted for observing surface shapes in a wide range of fields. Thus, in order to obtain accurate information on the sample surface shape with the atomic force / horizontal force microscope, it is necessary to calibrate the sensitivity with high accuracy.

原子間力/水平力顕微鏡の感度校正については既にいくつかの方法が提案されている。その第1は、光干渉で波長を物差しとして用いた校正方法である。これは、光干渉計より板バネ上に照射された光の反射光と光干渉計内部での反射光との干渉を計測することによって変位を検出するものである。この校正では、探針変位を計測するためには正確に板バネ上に干渉用光を当てる必要があるところ、干渉光の太さが探針太さに比べて十分に太いためそれが困難である。水平力顕微鏡では、カンチレバーに光線を当てること自体が非常に難しいため、現実的ではない。
その第2は、試料載置台により任意のZ方向変位量を試料に発生させて探針を変位させ、そのときの試料載置台の変位量を用いてその際に現れた原子間力出力を校正する方法である。この方法では、試料のZ方向変位により探針はZだけでなくY変位も十分に発生してしまっており、2つの変位の混ざった原子間力出力を見ており、Z方向の校正ができない。また、変位発生装置の校正誤差がそのままZ方向の校正に乗ってくるため、誤差要因が大きい。
Several methods have already been proposed for sensitivity calibration of atomic force / horizontal force microscopes. The first is a calibration method using a wavelength as a rule by optical interference. This detects displacement by measuring the interference between the reflected light of the light irradiated on the leaf spring from the optical interferometer and the reflected light inside the optical interferometer. In this calibration, in order to measure the probe displacement, it is necessary to irradiate the interference light accurately on the leaf spring, which is difficult because the thickness of the interference light is sufficiently thick compared to the probe thickness. is there. In a horizontal force microscope, it is very impractical to irradiate the cantilever with light.
Second, an arbitrary Z-direction displacement amount is generated on the sample by the sample mounting table to displace the probe, and the atomic force output that appears at that time is calibrated using the displacement amount of the sample mounting table. It is a method to do. In this method, due to the displacement of the sample in the Z direction, not only the Z but also the Y displacement is sufficiently generated, the atomic force output in which the two displacements are mixed is observed, and the calibration in the Z direction cannot be performed. . In addition, since the calibration error of the displacement generator is directly applied to the calibration in the Z direction, the error factor is large.

その第3は、水平力顕微鏡でX方向の校正方法として、Z方向変位を校正した換算係数を角度変化の換算係数と見なしてX方向の角度変化に当てはめて校正する方法である。この方法では、Z方向とX方向では変位に対する角度変化の現れ方が異なるので、Z方向の換算係数をX方向に当てはめてよいとはいえず、誤差が大きくなる。
その第4は、静止摩擦力が発生している状態を利用して探針変位と走査距離が同じである状態を作り出し、探針変位量と走査距離が同じであることを利用して校正する方法である(例えば、非特許文献1参照)。しかしながら、この方法では、静止摩擦状態でも探針はわずかながら滑っており探針変位量と走査距離が同じにならない。また、変位発生装置の校正誤差がそのままZ方向の校正に乗ってくる。そして、この方法では静止摩擦力状態がはっきりと確認できない場合には、用いることができない。
Fujisawa et al., Appl. Phys.Lett. 66(4),23 Jan., 1995
The third method is a calibration method in the X direction using a horizontal force microscope, in which the conversion coefficient obtained by calibrating the displacement in the Z direction is regarded as the conversion coefficient for the angle change and applied to the angle change in the X direction. In this method, since the change in angle with respect to the displacement appears differently in the Z direction and the X direction, it cannot be said that the conversion factor in the Z direction may be applied to the X direction, and the error increases.
Fourth, a state in which the probe displacement and the scanning distance are the same is created using the state in which the static friction force is generated, and calibration is performed using the fact that the probe displacement and the scanning distance are the same. It is a method (for example, refer nonpatent literature 1). However, in this method, the probe slips slightly even in the static friction state, and the probe displacement amount and the scanning distance are not the same. Further, the calibration error of the displacement generator is directly applied to the calibration in the Z direction. This method cannot be used when the static frictional force state cannot be clearly confirmed.
Fujisawa et al., Appl. Phys. Lett. 66 (4), 23 Jan., 1995

本願発明は、上述した従来技術の問題点を解決すべくなされたものであってその目的は、原子間力/水平力顕微鏡の校正を高い精度で行うことができるようにすることである。   The present invention has been made to solve the above-described problems of the prior art, and an object thereof is to enable calibration of an atomic force / horizontal force microscope with high accuracy.

上記の目的を達成するため、本発明によれば、
試料が載置される試料載置台と、試料表面にその先端部が接触ないし近接することのできる探針をその先端部に保持した板バネと、探針の変位を検出することのできる変位検出器と、を備え、電子顕微鏡により探針の先端部の座標を取得して校正を行う原子間力/水平力顕微鏡の感度校正方法であって、
前記板バネの長手方向と直交しかつ試料台表面と平行する方向をX方向、前記板バネの長手方向と平行しかつ試料台表面と平行する方向をY方向、X方向およびY方向と直交する方向をZ方向として、探針の先端部を少なくともX方向に変位させ、前記変位検出器により探針のX方向の変位を検出するとともに電子顕微鏡により探針の先端部のX方向変位を検出してX方向に係る校正を行うことを特徴とする原子間力/水平力顕微鏡の感度校正方法、が提供される。
In order to achieve the above object, according to the present invention,
A sample mounting table on which a sample is placed, a leaf spring that holds a probe whose tip can contact or approach the sample surface at its tip, and displacement detection that can detect the displacement of the probe A sensitivity calibration method for an atomic force / horizontal force microscope that performs calibration by acquiring the coordinates of the tip of the probe with an electron microscope,
The direction perpendicular to the longitudinal direction of the leaf spring and parallel to the sample table surface is the X direction, and the direction parallel to the longitudinal direction of the leaf spring and parallel to the sample table surface is orthogonal to the Y direction, the X direction, and the Y direction. The direction is the Z direction, the tip of the probe is displaced at least in the X direction, the displacement detector detects the displacement of the probe in the X direction, and the electron microscope detects the displacement of the tip of the probe in the X direction. Thus , there is provided a sensitivity calibration method for an atomic force / horizontal force microscope characterized by performing calibration in the X direction .

また、上記の目的を達成するため、本発明によれば、試料が載置される試料載置台と、試料表面にその先端部が接触ないし近接することのできる探針をその先端部に保持した板バネと、探針の変位を検出することのできる変位検出器と、を備え、電子顕微鏡により探針の先端部の座標を取得して校正を行う原子間力/水平力顕微鏡の感度校正方法であって、
前記板バネの長手方向と直交しかつ試料台表面と平行する方向をX方向、前記板バネの長手方向と平行しかつ試料台表面と平行する方向をY方向、X方向およびY方向と直交する方向をZ方向として、探針の先端部を少なくともY方向(またはX方向)およびZ方向に変位させ、前記変位検出器により探針のY方向(またはX方向)およびZ方向の変位を検出するとともに電子顕微鏡により探針の先端部のY方向(またはX方向)およびZ方向変位を検出してY方向(またはX方向)およびZ方向に係る校正を行うことを特徴とする原子間力/水平力顕微鏡の感度校正方法、が提供される。
In order to achieve the above object, according to the present invention, a sample mounting table on which a sample is mounted and a probe whose tip can contact or approach the sample surface are held at the tip. A sensitivity calibration method for an atomic force / horizontal force microscope that includes a leaf spring and a displacement detector that can detect the displacement of the probe, and that performs calibration by acquiring the coordinates of the tip of the probe using an electron microscope. Because
The direction perpendicular to the longitudinal direction of the leaf spring and parallel to the sample table surface is the X direction, and the direction parallel to the longitudinal direction of the leaf spring and parallel to the sample table surface is orthogonal to the Y direction, the X direction, and the Y direction. With the direction as the Z direction, the tip of the probe is displaced at least in the Y direction (or X direction) and the Z direction, and the displacement detector detects the displacement of the probe in the Y direction (or X direction) and the Z direction. At the same time, an atomic force / horizontal is characterized in that the Y-direction (or X-direction) and Z-direction displacements of the tip of the probe are detected by an electron microscope and calibration in the Y-direction (or X-direction) and Z-direction is performed. A force microscope sensitivity calibration method is provided.

本発明によれば、原子間力/水平力顕微鏡を校正用の電子顕微鏡に内蔵させこれを用いて探針先端部の変位量(座標)を直接的に計測し、これにより原子間力/水平力顕微鏡の校正を行う。従って、本発明によれば、探針のすべりや変位発生装置の校正誤差に影響されないで正確な校正が可能となる。   According to the present invention, an atomic force / horizontal force microscope is incorporated in an electron microscope for calibration, and the displacement amount (coordinates) of the tip of the probe is directly measured using the microscope, whereby the atomic force / horizontal force microscope is measured. Calibrate the force microscope. Therefore, according to the present invention, accurate calibration is possible without being affected by the slip of the probe or the calibration error of the displacement generator.

次に、本発明の実施の形態について図面を参照して詳細に説明する。
[第1の実施の形態]
図1は、本発明の第1の実施の形態の概略の構成を示すブロック図である。校正用に設けられた電子顕微鏡1には、電子銃2が備えられており、電子銃2から放出された電子線3は、レンズ4により試料10上に集束され、走査コイル5により試料10面上を走査される。レンズ4と走査コイル5は、図示が省略されたレンズ制御回路、走査回路により駆動される。試料表面および探針先端部から放出された2次電子は電子顕微鏡の2次電子検出器7により検出され、その2次電子像は、電子顕微鏡画像モニタ8に表示される。
Next, embodiments of the present invention will be described in detail with reference to the drawings.
[First Embodiment]
FIG. 1 is a block diagram showing a schematic configuration of the first embodiment of the present invention. An electron microscope 1 provided for calibration is provided with an electron gun 2, and an electron beam 3 emitted from the electron gun 2 is focused on a sample 10 by a lens 4, and the surface of the sample 10 is scanned by a scanning coil 5. Scanned up. The lens 4 and the scanning coil 5 are driven by a lens control circuit and a scanning circuit (not shown). Secondary electrons emitted from the sample surface and the tip of the probe are detected by the secondary electron detector 7 of the electron microscope, and the secondary electron image is displayed on the electron microscope image monitor 8.

試料10が載置される試料台9は、例えばピエゾアクチュエータによりXYZ方向にそれぞれ独立に変位させることができるように構成されている。ここで、X方向は紙面垂直方向であり、Y方向は紙面上下方向であり、Z方向は紙面左右方向である。試料10の表面上に臨んでカンチレバーである板バネ12の先端部に保持された探針11が配備されており、試料台9を操作することにより、試料の表面に探針11の先端を接触ないし近接させることができ、探針11の先端が試料表面上を走査することができるようになされている。板バネ12の探針11の取り付けられていない側の端部は装置のフレームに固定されている。探針11の変位は、板バネ12の角度変位を原子間力/水平力顕微鏡のAFM/LFM変位検出計13が観測することにより検出される。AFM/LFM変位検出計13には板バネ12上にレーザビームを照射するレーザ光源と、レーザビームの反射光を受光する、受光領域を4つに分割されたフォトダイオードが備えられている。AFM/LFM変位検出計13により検出された原子間力出力と水平力出力とは原子間力/水平力顕微鏡モニタ14へ伝達され、ここに表示される。   The sample stage 9 on which the sample 10 is placed is configured such that it can be independently displaced in the XYZ directions by a piezoelectric actuator, for example. Here, the X direction is a vertical direction on the paper surface, the Y direction is a vertical direction on the paper surface, and the Z direction is a horizontal direction on the paper surface. A probe 11 is provided that faces the surface of the sample 10 and is held at the tip of a leaf spring 12 that is a cantilever. By operating the sample table 9, the tip of the probe 11 contacts the surface of the sample. The tip of the probe 11 can be scanned over the sample surface. The end of the leaf spring 12 on the side where the probe 11 is not attached is fixed to the frame of the apparatus. The displacement of the probe 11 is detected by observing the angular displacement of the leaf spring 12 with the AFM / LFM displacement detector 13 of the atomic force / horizontal force microscope. The AFM / LFM displacement detector 13 is provided with a laser light source that irradiates a laser beam onto the leaf spring 12 and a photodiode that receives the reflected light of the laser beam and is divided into four light receiving areas. The atomic force output and the horizontal force output detected by the AFM / LFM displacement detector 13 are transmitted to the atomic force / horizontal force microscope monitor 14 and displayed there.

図2は、本実施の形態の動作を説明するための要部斜視図である。板バネ12の表面で反射したレーザビームは、4つの受光領域D1〜D4をもつ4分割フォトダイオード15に入射する。4分割フォトダイオード15の受光面はYZ平面に垂直であり、その分割線の一つはX方向と平行、もう一つの分割線はYZ平面と平行である。受光領域(D1+D4)と受光領域(D2+D3)の出力が差動アンプ16に入力されると、X方向に係る差動出力が、すなわち水平力出力が得られる。受光領域(D2+D1)と受光領域(D3+D4)の出力が差動アンプ17に入力されると、Y方向およびZ方向に係る差動出力が、すなわち原子間力出力が得られる。   FIG. 2 is a perspective view of relevant parts for explaining the operation of the present embodiment. The laser beam reflected by the surface of the leaf spring 12 is incident on a quadrant photodiode 15 having four light receiving regions D1 to D4. The light receiving surface of the four-divided photodiode 15 is perpendicular to the YZ plane, one of the dividing lines is parallel to the X direction, and the other dividing line is parallel to the YZ plane. When the outputs of the light receiving area (D1 + D4) and the light receiving area (D2 + D3) are input to the differential amplifier 16, a differential output in the X direction, that is, a horizontal force output is obtained. When outputs from the light receiving region (D2 + D1) and the light receiving region (D3 + D4) are input to the differential amplifier 17, differential outputs in the Y direction and the Z direction, that is, an atomic force output is obtained.

図3に示すように、探針11がある点に存在するときその点を基準点〔座標(0,0,0)〕と定め、そのときの原子間力/水平力顕微鏡の各出力を0であるものとする。いま、試料台を操作して探針11に任意の方向の変位1を発生させ、電子顕微鏡で探針位置を見ることによりXYZのそれぞれの方向の探針変位量X1, Y1, Z1を読み取る。これにより正確な変位量を得ることができる。また、原子間力/水平力顕微鏡により、水平力出力VX1、原子間力出力(Y1+ Z1)を観測する。X方向は探針変位量X1による角度変化と水平力出力VX1が一対一で対応しているので、これで水平力出力あたりの探針X方向変位量
a = X1/VX1 ・・・(1)
が求められて校正が可能となる。YとZ方向にも同様の式が成り立つ。
VY1 = bY1 ・・・(2)
VZ1 = cZ1 ・・・ (3)
しかし、YZ方向は共に原子間力出力となるのでVY1とVZ1は区別ができないため、式(2)と(3)を加算した次の式を満たすことになる。
VY1 + VZ1 = bY1 + cZ1 ・・・(4)
(4)だけではbとcを求められないので、さらに別の方向に変位2を発生させて電子顕微鏡により、探針変位量Y2、 Z2を、また、原子間力/水平力顕微鏡により、原子間力出力(Y+ Z)を観測する。このときYとZの探針変位量Y2とZ2に対しても次の式が成り立つ。
VY2 = bY2 ・・・ (5)
VZ2 = cZ2 ・・・ (6)
ここでも、式(5)と(6)を加算した次の式を満たすことになる。
VY2 + VZ2 = bY2 + cZ2 ・・・(7)
式(4)と式(7)による連立方程式をたてて、これをbとcについて解けば、YとZ方向のそれぞれの原子間力出力あたりの探針変位量であるbとcが下記のように求まることにより、校正が可能となる。
b = (VY2 + VZ2 −(VY1 + VZ1) Z2/Z1)/(Y2 −Y1 Z2/Z1)
c = (VY2 + VZ2 −(VY1 + VZ1) Y2/Y1)/(Z2 −Z1 Y2/Y1)
As shown in FIG. 3, when the probe 11 exists at a certain point, that point is defined as a reference point [coordinates (0, 0, 0)], and each output of the atomic force / horizontal force microscope at that time is set to 0. Suppose that Now, the sample stage is operated to generate a displacement 1 in an arbitrary direction on the probe 11 and the probe position X 1 , Y 1 , Z 1 in each of XYZ directions is observed by viewing the probe position with an electron microscope. Read. As a result, an accurate displacement amount can be obtained. In addition, the horizontal force output V X1 and the atomic force output (Y 1 + Z 1 ) are observed with an atomic force / horizontal force microscope. In the X direction, there is a one-to-one correspondence between the angle change due to the probe displacement amount X 1 and the horizontal force output V X1, so this is the displacement amount of the probe X direction per horizontal force output.
a = X 1 / V X1 ... (1)
Is required and calibration is possible. Similar equations hold in the Y and Z directions.
V Y1 = bY 1 ... (2)
V Z1 = cZ 1 ... (3)
However, since both YZ directions are atomic force outputs, V Y1 and V Z1 cannot be distinguished from each other, and therefore, the following equation obtained by adding equations (2) and (3) is satisfied.
V Y1 + V Z1 = bY 1 + cZ 1 ... (4)
Since b and c cannot be obtained by (4) alone, displacement 2 is generated in another direction, and the probe displacement amounts Y 2 and Z 2 are obtained using an electron microscope, and the atomic force / horizontal force microscope is used. Observe the atomic force output (Y 2 + Z 2 ). At this time, the following equation holds for the Y and Z probe displacement amounts Y 2 and Z 2 .
V Y2 = bY 2 ... (5)
V Z2 = cZ 2 ... (6)
Again, the following equation obtained by adding equations (5) and (6) is satisfied.
V Y2 + V Z2 = bY 2 + cZ 2 ... (7)
When the simultaneous equations of Equation (4) and Equation (7) are established and solved for b and c, the probe displacements b and c per atomic force output in the Y and Z directions are as follows: The calibration is possible by obtaining as follows.
b = (V Y2 + V Z2 − (V Y1 + V Z1 ) Z 2 / Z 1 ) / (Y 2 −Y 1 Z 2 / Z 1 )
c = (V Y2 + V Z2 − (V Y1 + V Z1 ) Y 2 / Y 1 ) / (Z 2 −Z 1 Y 2 / Y 1 )

[第2の実施の形態]
図4は、本発明の第2の実施の形態の概略の構成を示すブロック図である。図4において、図1に示した第1の実施の形態の部材と同等の機能を有する部分には同一の参照符号が付せられているので重複する説明は省略する。本実施の形態においては、校正用の電子顕微鏡に、透過型の電子顕微鏡が用いられる。電子銃2から放出された電子線3は、レンズ4により試料10と探針11との接触部に集束され、その透過電子線は透過電子線検出器18により検出され、その電子画像は電子顕微鏡画像モニタ8上に表示される。
[Second Embodiment]
FIG. 4 is a block diagram showing a schematic configuration of the second embodiment of the present invention. 4, parts having the same functions as those of the member of the first embodiment shown in FIG. 1 are denoted by the same reference numerals, and redundant description is omitted. In this embodiment, a transmission electron microscope is used as the calibration electron microscope. The electron beam 3 emitted from the electron gun 2 is focused on the contact portion between the sample 10 and the probe 11 by the lens 4, the transmitted electron beam is detected by the transmitted electron beam detector 18, and the electron image is obtained by an electron microscope. It is displayed on the image monitor 8.

図5は、本実施の形態の動作を説明するための要部斜視図である。板バネ12の表面で反射したレーザビームは、4つの受光領域D1〜D4をもつ4分割フォトダイオード15に入射する。4分割フォトダイオード15の受光面はYZ平面に平行であり、その分割線の一つはY方向と平行、もう一つの分割線はZ方向と平行である。受光領域(D1+D4)と受光領域(D2+D3)の出力が差動アンプ16に入力されると、X方向に係る差動出力が、すなわち水平力出力が得られる。受光領域(D2+D1)と受光領域(D3+D4)の出力が差動アンプ17に入力されると、原子間力出力としてZ方向に係る差動出力が得られる。   FIG. 5 is a perspective view of relevant parts for explaining the operation of the present embodiment. The laser beam reflected by the surface of the leaf spring 12 is incident on a quadrant photodiode 15 having four light receiving regions D1 to D4. The light receiving surface of the four-divided photodiode 15 is parallel to the YZ plane, one of the dividing lines is parallel to the Y direction, and the other dividing line is parallel to the Z direction. When the outputs of the light receiving area (D1 + D4) and the light receiving area (D2 + D3) are input to the differential amplifier 16, a differential output in the X direction, that is, a horizontal force output is obtained. When outputs of the light receiving region (D2 + D1) and the light receiving region (D3 + D4) are input to the differential amplifier 17, a differential output in the Z direction is obtained as an atomic force output.

探針11がある点に存在するときその点を基準点〔座標(0,0,0)〕と定め、そのときの原子間力/水平力顕微鏡の各出力を0であるものとする。いま、試料台を操作して探針11の先端部をX方向に変位させ、電子顕微鏡によりその変位量X1を読み取る。また、差動アンプ16の出力から水平力出力VX1を得て式(8)のように構成校正を行うことができる。
a = X1/VX1 ・・・(8)
また、試料台9を操作して探針11の先端部をZ方向に変位させ、電子顕微鏡によりその変位量Z1を読み取る。また、差動アンプ17の出力から原子間力出力VZ1を得て式(9)のように校正を行うことができる。
c = Z1/VZ1 ・・・(9)
When the probe 11 exists at a certain point, that point is defined as a reference point [coordinates (0, 0, 0)], and each output of the atomic force / horizontal force microscope at that time is assumed to be zero. Now, by operating the sample stage to displace the end portion of the probe 11 in the X direction, it reads the displacement amount X 1 by electron microscopy. Further, the horizontal force output V X1 can be obtained from the output of the differential amplifier 16, and the configuration calibration can be performed as shown in the equation (8).
a = X 1 / V X1 ... (8)
Moreover, by operating the sample stage 9 to displace the end portion of the probe 11 in the Z direction, it reads the amount of displacement Z 1 by electron microscopy. Further, the atomic force output V Z1 can be obtained from the output of the differential amplifier 17 and the calibration can be performed as shown in Equation (9).
c = Z 1 / V Z1 ... (9)

本発明の第1の実施の形態の概略の構成を示すブロック図。1 is a block diagram showing a schematic configuration of a first embodiment of the present invention. 本発明の第1の実施の形態の動作を説明するための斜視図。The perspective view for demonstrating the operation | movement of the 1st Embodiment of this invention. 本発明の第1の実施の形態の動作を説明するための探針と板バネの変位図。FIG. 3 is a displacement diagram of a probe and a leaf spring for explaining the operation of the first embodiment of the present invention. 本発明の第2の実施の形態の概略の構成を示すブロック図。The block diagram which shows the schematic structure of the 2nd Embodiment of this invention. 本発明の第2の実施の形態の動作を説明するための斜視図。The perspective view for demonstrating the operation | movement of the 2nd Embodiment of this invention.

符号の説明Explanation of symbols

1 電子顕微鏡
2 電子銃
3 電子線
4 レンズ
5 走査コイル
6 2次電子
7 2次電子検出器
8 電子顕微鏡画像モニタ
9 試料台
10 試料
11 探針
12 板バネ
13 AFM/LFM変位検出計
14 原子間力/水平力顕微鏡
15 4分割フォトダイオード
16、17 差動アンプ
18 透過電子線検出器
DESCRIPTION OF SYMBOLS 1 Electron microscope 2 Electron gun 3 Electron beam 4 Lens 5 Scanning coil 6 Secondary electron 7 Secondary electron detector 8 Electron microscope image monitor 9 Sample stand 10 Sample 11 Probe 12 Leaf spring 13 AFM / LFM displacement detector 14 Atomic space Force / horizontal force microscope 15 4-division photodiode 16, 17 Differential amplifier 18 Transmission electron beam detector

Claims (6)

試料が載置される試料載置台と、試料表面にその先端部が接触ないし近接することのできる探針をその先端部に保持した板バネと、探針の変位を検出することのできる変位検出器と、を備え、電子顕微鏡により探針の先端部の座標を取得して校正を行う原子間力/水平力顕微鏡の感度校正方法であって、
前記板バネの長手方向と直交しかつ試料台表面と平行する方向をX方向、前記板バネの長手方向と平行しかつ試料台表面と平行する方向をY方向、X方向およびY方向と直交する方向をZ方向として、探針の先端部を少なくともX方向に変位させ、前記変位検出器により探針のX方向の変位を検出するとともに電子顕微鏡により探針の先端部のX方向変位を検出してX方向に係る校正を行うことを特徴とする原子間力/水平力顕微鏡の感度校正方法。
A sample mounting table on which a sample is placed, a leaf spring that holds a probe whose tip can contact or approach the sample surface at its tip, and displacement detection that can detect the displacement of the probe A sensitivity calibration method for an atomic force / horizontal force microscope that performs calibration by acquiring the coordinates of the tip of the probe with an electron microscope,
The direction perpendicular to the longitudinal direction of the leaf spring and parallel to the sample table surface is the X direction, and the direction parallel to the longitudinal direction of the leaf spring and parallel to the sample table surface is orthogonal to the Y direction, the X direction, and the Y direction. The direction is the Z direction, the tip of the probe is displaced at least in the X direction, the displacement detector detects the displacement of the probe in the X direction, and the electron microscope detects the displacement of the tip of the probe in the X direction. A method for calibrating the sensitivity of an atomic force / horizontal force microscope, characterized in that calibration in the X direction is performed.
試料が載置される試料載置台と、試料表面にその先端部が接触ないし近接することのできる探針をその先端部に保持した板バネと、探針の変位を検出することのできる変位検出器と、を備え、電子顕微鏡により探針の先端部の座標を取得して校正を行う原子間力/水平力顕微鏡の感度校正方法であって、
前記板バネの長手方向と直交しかつ試料台表面と平行する方向をX方向、前記板バネの長手方向と平行しかつ試料台表面と平行する方向をY方向、X方向およびY方向と直交する方向をZ方向として、探針の先端部を少なくともY方向およびZ方向に変位させ、前記変位検出器により探針のY方向およびZ方向の変位を検出するとともに電子顕微鏡により探針の先端部のY方向およびZ方向変位を検出してY方向およびZ方向に係る校正を行うことを特徴とする原子間力/水平力顕微鏡の感度校正方法。
A sample mounting table on which a sample is placed, a leaf spring that holds a probe whose tip can contact or approach the sample surface at its tip, and displacement detection that can detect the displacement of the probe A sensitivity calibration method for an atomic force / horizontal force microscope that performs calibration by acquiring the coordinates of the tip of the probe with an electron microscope,
The direction perpendicular to the longitudinal direction of the leaf spring and parallel to the sample table surface is the X direction, and the direction parallel to the longitudinal direction of the leaf spring and parallel to the sample table surface is orthogonal to the Y direction, the X direction, and the Y direction. The direction is the Z direction, the tip of the probe is displaced at least in the Y direction and the Z direction, the displacement detector detects the displacement in the Y direction and the Z direction of the probe, and the tip of the tip of the probe is detected by an electron microscope. A method for calibrating the sensitivity of an atomic force / horizontal force microscope, comprising detecting a displacement in the Y direction and the Z direction and performing calibration in the Y direction and the Z direction.
Y方向およびZ方向に異なる位置に探針の先端部を変位させ、2回の変位検出を行い連立方程式を解くことによってY方向およびZ方向に係る校正を行うことを特徴とする請求項に記載の原子間力/水平力顕微鏡の感度校正方法。 Different positions in the Y and Z directions to displace the tip of the probe into, by solving the simultaneous equations perform two displacement detection to claim 2, characterized in that for calibrating of the Y and Z directions Sensitivity calibration method for atomic force / horizontal force microscope as described. 試料が載置される試料載置台と、試料表面にその先端部が接触ないし近接することのできる探針をその先端部に保持した板バネと、探針の変位を検出することのできる変位検出器と、を備え、電子顕微鏡により探針の先端部の座標を取得して校正を行う原子間力/水平力顕微鏡の感度校正方法であって、
前記板バネの長手方向と直交しかつ試料台表面と平行する方向をX方向、前記板バネの長手方向と平行しかつ試料台表面と平行する方向をY方向、X方向およびY方向と直交する方向をZ方向として、探針の先端部をX方向およびZ方向に変位させ、前記変位検出器により探針のX方向およびZ方向の変位を検出するとともに電子顕微鏡により探針の先端部のX方向およびZ方向変位を検出してX方向およびZ方向に係る校正を行うことを特徴とする原子間力/水平力顕微鏡の感度校正方法。
A sample mounting table on which a sample is placed, a leaf spring that holds a probe whose tip can contact or approach the sample surface at its tip, and displacement detection that can detect the displacement of the probe A sensitivity calibration method for an atomic force / horizontal force microscope that performs calibration by acquiring the coordinates of the tip of the probe with an electron microscope,
The direction perpendicular to the longitudinal direction of the leaf spring and parallel to the sample table surface is the X direction, and the direction parallel to the longitudinal direction of the leaf spring and parallel to the sample table surface is orthogonal to the Y direction, the X direction, and the Y direction. The direction is the Z direction, the tip of the probe is displaced in the X and Z directions, the displacement detector detects the displacement in the X and Z directions of the probe, and the electron microscope detects the X of the tip of the probe. A method for calibrating the sensitivity of an atomic force / horizontal force microscope, comprising detecting a direction and a displacement in the Z direction and performing calibration in the X direction and the Z direction.
前記試料台を移動させて探針の先端部に変位を生じさせることを特徴とする請求項からのいずれかに記載の原子間力/水平力顕微鏡の感度校正方法。 Atomic force / lateral force microscopy sensitivity calibration method according to any one of claims 1 to 4, characterized in that to produce a displacement in the distal end portion of the moved probe the sample stage. 前記変位検出器が、前記板バネの先端表面にレーザビームを照射するレーザ光源と、レーザビームの反射光を4分割された領域において受光するフォトダイオードと、を備えることを特徴とする請求項からのいずれかに記載の原子間力/水平力顕微鏡の感度校正方法。 It said displacement detector, a laser light source for irradiating a laser beam on the tip surface of the plate spring, according to claim 1, a photodiode for receiving the four divided areas the reflected light of the laser beam, characterized in that it comprises a To 5. The method for correcting the sensitivity of an atomic force / horizontal force microscope according to any one of items 1 to 5 .
JP2003303584A 2003-08-27 2003-08-27 Sensitivity calibration method for atomic force / horizontal force microscope Expired - Lifetime JP4143722B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003303584A JP4143722B2 (en) 2003-08-27 2003-08-27 Sensitivity calibration method for atomic force / horizontal force microscope

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003303584A JP4143722B2 (en) 2003-08-27 2003-08-27 Sensitivity calibration method for atomic force / horizontal force microscope

Publications (2)

Publication Number Publication Date
JP2005069993A JP2005069993A (en) 2005-03-17
JP4143722B2 true JP4143722B2 (en) 2008-09-03

Family

ID=34407537

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003303584A Expired - Lifetime JP4143722B2 (en) 2003-08-27 2003-08-27 Sensitivity calibration method for atomic force / horizontal force microscope

Country Status (1)

Country Link
JP (1) JP4143722B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011038851A (en) * 2009-08-07 2011-02-24 Sii Nanotechnology Inc Method and device for measuring friction force

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011038851A (en) * 2009-08-07 2011-02-24 Sii Nanotechnology Inc Method and device for measuring friction force

Also Published As

Publication number Publication date
JP2005069993A (en) 2005-03-17

Similar Documents

Publication Publication Date Title
EP1892727B1 (en) Shape measuring apparatus using an interferometric displacement gauge
US7474410B2 (en) Nanometer-precision tip-to-substrate control and pattern registration for scanning-probe lithography
JP4432806B2 (en) Scanning probe microscope
US8732861B2 (en) Control system for a scanning probe microscope
KR20080092936A (en) Method for operating a measurement system containing a scanning probe microscope and measurement system
US20140289911A1 (en) Method of investigating a sample surface
JP5410880B2 (en) Friction force measuring method and friction force measuring device
US6509969B1 (en) System for inspecting and/or processing a sample
EP0843175B1 (en) Scanning probe microscope and signal processing apparatus
JP6135820B2 (en) Scanning probe microscope
Yacoot et al. An atomic force microscope for the study of the effects of tip–sample interactions on dimensional metrology
WO2006090593A1 (en) Displacement detection mechanism for scanning probe microscope and scanning probe microscope
JP4143722B2 (en) Sensitivity calibration method for atomic force / horizontal force microscope
JP2008051690A (en) Optical displacement detecting mechanism, and surface information measuring device using the same
WO2005098869A1 (en) Scanning probe microscope with integrated calibration
WO2010067570A1 (en) Method for processing output of scanning type probe microscope, and scanning type probe microscope
KR101025657B1 (en) Atomic force microscope and method for correcting scan image thereof
JP2006329704A (en) Scanning probe microscope
KR20080110234A (en) The head module of atomic force microscope
Li et al. Laser scanning system testing—Errors and improvements
Koops et al. A virtual lateral standard for AFM calibration
JP2004191277A (en) Scanning probe microscope and its measurement method
JP2011227097A (en) Method for aligning spot light position of optical displacement detection mechanism and scanning probe microscope using the same
JP2002107284A (en) Force measuring method and scanning force microscope
JP2003215017A (en) Scanning probe microscope

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050315

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080311

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080409

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080520

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

R150 Certificate of patent or registration of utility model

Ref document number: 4143722

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term